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A B S T R A C T   

Objectives: Mutational signatures (MS) are gaining traction for deriving therapeutic insights for immune check-
point inhibition (ICI). We asked if MS attributions from comprehensive targeted sequencing assays are reliable 
enough for predicting ICI efficacy in non-small cell lung cancer (NSCLC). 
Methods: Somatic mutations of m = 126 patients were assayed using panel-based sequencing of 523 cancer- 
related genes. In silico simulations of MS attributions for various panels were performed on a separate dataset 
of m = 101 whole genome sequenced patients. Non-synonymous mutations were deconvoluted using COSMIC 
v3.3 signatures and used to test a previously published machine learning classifier. 
Results: The ICI efficacy predictor performed poorly with an accuracy of 0.51+0.09

− 0.09, average precision of 0.52+0.11
− 0.11, 

and an area under the receiver operating characteristic curve of 0.50+0.10
− 0.09. Theoretical arguments, experimental 

data, and in silico simulations pointed to false negative rates (FNR) related to panel size. A secondary effect was 
observed, where deconvolution of small ensembles of point mutations lead to reconstruction errors and 
misattributions. 
Conclusion: MS attributions from current targeted panel sequencing are not reliable enough to predict ICI effi-
cacy. We suggest that, for downstream classification tasks in NSCLC, signature attributions be based on whole 
exome or genome sequencing instead.  
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hibitor; αTNFRSF7, tumour necrosis factor receptor superfamily type 7 inhibitor; αVEGF-A, vascular endothelial growth factor inhibitor; AI, artificial intelligence; 
BH, Benjamini-Hochberg; DB, durable benefit; F1 CDx, FoundationOne CDx; FFPE, formalin-fixed paraffin-embedded; FN, false negative; FNR, false negative rate; 
ICI, immune checkpoint inhibition; IQR, interquartile range; Mb, megabase; MS, mutational signatures; MSK-IMPACT, Memorial Sloan Kettering-Integrated Mutation 
Profiling of Actionable Cancer Targets; NMF, non-negative matrix factorisation; NSCLC, non-small cell lung cancer; PDL1, programmed death ligand-1; Rad, radians; 
ROC AUC, area under the receiver operating characteristic curve; SBS, single base substitution; TSO500, TruSight Oncology 500; TMB, tumour mutational burden; 
WGS, whole genome sequencing. 
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1. Introduction 

Immune checkpoint inhibitor (ICI) therapy is the backbone of first 
line treatment for the majority of patients with advanced-stage non- 
small cell lung cancer (NSCLC) who have tested negative for targetable 
mutations in the tumour. Unfortunately, only a subset of these patients 
respond to ICI treatment [1]. Even though impressive durable responses 
can be seen, meta-analysis of 12 randomised phase-III studies found that 
median progression free survival typically improves by at most 2.4 
months [1]. This heterogeneity in the population led to a surge of 
research looking for efficacy predictors [2] to single out patients that 
benefit from treatment. Two well-studied biomarkers are tumour 
mutational burden (TMB) [3] and programmed-death ligand-1 (PDL1) 
protein expression [4], but both are imperfect predictors. Currently, 
mutational signatures are becoming of increasing interest as predictive 
markers [5]. Specifically for ICI, evidence is mounting that particular 
signatures relate to treatment efficacy in lung cancer [6–12]. In partic-
ular, Ref. [11] used non-synonymous somatic mutations attributed to 
COSMIC single base substitution (SBS) signatures SBS4 [13,14] and 
SBS87 [5,15]. Earlier work suggested that these two signatures can be 
viewed as refinements of TMB [11]. Both mutational signatures were 
used as input for an artificial intelligence (AI) classifier that predicts 
durable benefit (DB) from ICI [11]. To facilitate clinical adoption of this 
AI-powered technology, it is desirable to base the input of the classifier 
(the mutational signature attributions) on a cheap and fast next- 
generation sequencing panel [16]. One such example is the Illumina 
TruSight Oncology 500 (TSO500) assay [17]. Earlier work described the 
panel-derived mutational signature attributions from samples with a 
high somatic mutation count [18–20]. However, it is not clear whether 
the signatures remain reliable in an unselected population. A related 
work in an unselected population studied SBS4-based clusters as a sur-
rogate of smoking history [21]. Their in silico analysis indicated that 
most SBS mutational signatures could be called (but their calling crite-
rion was unspecified) [21]. However, all previous work was based on 
both synonymous and non-synonymous mutations. The classifier of 
Donker et al. [11] requires non-synonymous SBS4 and SBS87 mutational 
signature attributions as input. Since high quality input data is crucial 
for the reliability of the classifier we revisit Ref. [22], scrutinise attri-
butions to signatures and validate their downstream utility in the ICI 
efficacy predictor of Ref. [11]. Our contributions are to (i) analyse 
mutational signatures in a real-world clinical population, including non- 
highly mutated samples, with a particular focus on SBS4 and SBS87 (ii) 
validate their clinical impact for use in an AI-powered ICI efficacy pre-
dictor, and (iii) estimate the reliability of the TSO500 panel, the Me-
morial Sloan Kettering-Integrated Mutation Profiling of Actionable 
Cancer Targets (MSK-IMPACT) 468 gene panel, the FoundationOne CDx 
(F1 CDx) panel, and the pan cancer panel of Xu et al. [23]. 

2. Methods 

2.1. Patients and tumor tissue 

Two cohorts of patients with (predominantly advanced) NSCLC were 
selected who were treated with PD(L)1 inhibiting immunotherapy (or 
combination therapy). Pre-ICI treatment biopsies were taken and 
retrospectively analysed. In the Cuppens et al. cohort [22], 126 
formalin-fixed paraffin-embedded (FFPE) tumour-only samples were 
analysed with TSO500. The Donker et al. discovery cohort, comprising 
101 fresh frozen samples (derived from matched tumour-normal tissue), 
were analysed with whole genome sequencing (WGS) [11,24]. 

2.2. Upstream bioinformatics 

TSO500 data from the cohort of Cuppens et al. [22] were analysed 
using the Illumina DRAGEN TruSight Oncology 500 Analysis Software 
version 2.1.0. Analysis was carried out on an Illumina DRAGEN server 

version 3. Variants eligible for tumour mutational burden (TMB) 
calculation (see the software manual for details [25]) were taken from 
the *_TMB_Trace.tsv where the values in the column Include-
dInTMBNumerator were equal to one. Coverage size was extracted from 
the *.tmb.metrics.csv files and used to normalise estimates per megabase 
(Mb). 

In silico analysis was carried out on the whole genome sequencing 
data of the Donker et al. cohort [11]. Mutations (in variant call format) 
were projected onto the in silico panel with BEDtools [26]. For compar-
ison with the TSO500, the TST500C_manifest.bed file of the DRAGEN 
TruSight Oncology 500 Analysis Software was used. To study if our 
findings were specific to panel size or composition, we performed in 
silico analysis on other targeted panels. Specifically, the Memorial Sloan 
Kettering-Integrated Mutation Profiling of Actionable Cancer Targets 
(MSK-IMPACT) 468 gene panel, the FoundationOne CDx (F1 CDx) 
panel, and the pan cancer panel (PANCAN) of Xu et al. [23]. To analyse 
these panels we used the BED files that were part of CaMutQC v0.5.0 
[27]. Panel sizes were estimated by merging genomic regions using 
BEDOPS [28] and then summing the region sizes. The resulting panel 
sizes (TSO500: 1.27 Mb, MSK-IMPACT: 1.84 Mb, F1 CDx: 1.34 Mb, Xu 
et al. PANCAN: 4.0 Mb) were used to normalise in silico estimates per 
Mb. 

2.3. Downstream analysis 

Mutation spectrum, X, computation and signature deconvolution 
[using non-negative matrix factorisation (NMF) [29]] was done as pre-
viously described [11]. Briefly, non-synonymous somatic singlets (i.e., 
single base substitutions) are partitioned by substitution (six in total) 
and flanking context (four-by-four nucleotides) and counted per patient 
(m in total), resulting in a mutation spectrum with n = 96 mutation 
channels. COSMIC v3.3 mutational signatures H (a p-by-n non-negative 
matrix of p = 78 signatures) were used to deconvolute the (n = 96) 
mutation channels into mutational signature attributions W (so that 
X ≈ WH). After deconvolution, mutational signatures flagged as 
possible sequencing artifacts by COSMIC were not further considered 
(except for the reconstruction error, see below). We validated the pre-
viously reported durable benefit (DB, defined as progression-free sur-
vival ≥ six months) naïve Bayes classifier [11]. This machine learning 
classifier modelled features SBS4 and SBS87 as zero-inflated 
exponentials. 

To measure the reconstruction errors introduced by the deconvolu-
tion process, we analysed deviations from the conservation of singlets. 
That is, for all samples i (rows), the sum across the mutation spectrum X 
channels j (columns) equals the attributed mutations W across all sig-
natures k (columns), 

∑96
j=1Xij ≈

∑78
k=1Wik. We define violations as de-

viations thereof ∊i =

∑96
j=1

Xij −
∑78

k=1
Wik

∑96
j=1

Xij
. 

2.4. Statistical aspects 

Predicted DB probabilities are dichotomised at 43.8 % (following 
Ref. [11]) to compute the accuracy. Average precision and area under 
the receiver operating characteristic curve (ROC AUC) are directly 
computed from the probabilities (i.e., not dichotomised). Correlations 
were analysed using Kendall-tau. Mutational spectra were compared 
using a multinomial test, where we pooled the counts across samples. 
We set the probability distribution of the null hypothesis to be the fre-
quencies of the whole genome sequencing data and tested deviations 
thereof using the χ2 distribution. To account for multiple testing, p- 
values were adjusted using the Benjamini-Hochberg (BH) method and 
denoted by q. All conducted statistical tests were two sided. Ninety-five 
per cent confidence intervals were obtained by 1000 bootstrap permu-
tations unless indicated otherwise. Throughout the text, we denote es-
timate a and ninety-five per cent confidence intervals [a − b, a+c] by a+c

− b. 
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2.5. Theoretical aspects false negative analysis 

For each panel of size l, we extrapolated the number of false nega-
tives to a hypothetical panel of size 2l,3l,4l, .. but similar composition. 
To this end, patients with a similar signature profile were clustered using 
k-means, where the number of clusters (k = 5) was determined by eye 
using the elbow method. To achieve a panel size of nl, the dataset was n- 
fold resampled with replacement and mutations of n patients were 
aggregated while stratifying by cluster (so that the total number of pa-
tients remained the same before and after coarse graining). For all panels 
we extrapolated up to 10l except the larger pan cancer panel of Xu et al. 
[23], where we analysed up to and including 5l, to cover a similar size in 
Mb. 

To theoretically model the non-synonymous mutations, we used a 
uniform background probability that scales with size (similar to [30], 
although our mutation model, below, differs). Specifically, we estimated 
the probability to detect a mutation on a panel of size l Mb to be pdetect =

l
47.9, assuming an exome size of 47.9 Mb [31]. We denote n(s)

NS as the 
number of non-synonymous mutations attributed to signature s (e.g., 
SBS4 or SBS87). The probability of a false negative (FN, no attributed 

mutations detected) for signature s is then p
(

n(s)
NS

)
= (1 − pdetect)

n(s)
NS . 

Finally, we determined the false negative rate (FNR), p
(
FN(s) ), in the 

Discovery cohort of Ref. [11] for each signature s. To this end, we 
estimated, n(s)

NS for each sample and then averaged 

p
(
FN(s) ) =

〈
p
(

n(s)
NS

)〉

n(s)NS

(1)  

across all positive (i.e., n(s)
NS > 0) samples using the empirical distribution 

[i.e., pdata(n) = 1
m
∑m

i=1δ(n,n(i)), with δ(x, y) the Kronecker delta function 
and naïve indicating positive samples in the Discovery set]. 

3. Result 

3.1. TSO500-derived mutational signature attributions are poor 
predictors 

In total, pre-ICI treatment samples from M = 126 lung cancer pa-
tients of Cuppens et al. [22] were re-analysed (Fig. 1 and Table 1). After 
deconvoluting the non-synonymous point mutations, we inferred on 
average, 0.65 Mb− 1 substitutions attributed to SBS4 [interquartile range 
(IQR): 0.00 to 0.00 Mb− 1] and 0.75 Mb− 1 to SBS87 (IQR: 0.00 to 1.26 
Mb− 1) (Fig. S1, Supplementary Material). Reassuringly, FFPE damage- 
related signatures SBS1 and SBS30 [32] were mostly absent with an 
average attribution of 0.26 Mb− 1 (median: 0.00; IQR: 0.00 to 0.00 Mb− 1) 
and 0.22 Mb− 1 (median: 0.00; IQR: 0.00 to 0.00 Mb− 1), respectively. 

Next, we set out to validate the classifier of Donker et al. [11] which 
uses signatures SBS4 and SBS87 to predict DB. Overall, the predictor 
performed poorly with an accuracy of 0.51+0.09

− 0.09, average precision of 
0.52+0.11

− 0.11, and a ROC AUC of 0.50+0.10
− 0.09. To show that this was not merely 

attributable to differences in feature distributions, we completely re- 
trained the model on the TSO500 data. Leave-one-out cross validation 
showed similar poor performance with an accuracy of 0.30+0.08

− 0.07, average 
precision of 0.53+0.12

− 0.10, and a ROC AUC of 0.44+0.11
− 0.11. This lack of model fit 

hints at a problem with data quality. 

3.2. Poor performance relates to panel 

The absence of a signature is an important contributor to the DB 
prediction. Given the small panel size (1.27 Mb), we reasoned that the 
poor performance is attributable to “false negative” signature attribu-
tions. That is, the panel fails to detect the presence of a mutational 
signature in the sample. This prompted us to validate the mutational 
signatures using in silico analysis. To this end, the whole genome 
sequencing Discovery dataset from [11] was re-analysed (Table 1). 
Based on the number of non-synonymous signature attributions in 
Ref. [11] we theoretically estimated (based on panel size alone) a FNR of 
0.23+0.07

− 0.06 for SBS4 and 0.67+0.04
− 0.05 for SBS87. The FNR of other mutational 

signatures were estimated to be at least as high as that of SBS4 

Fig. 1. An immune checkpoint inhibitor (ICI) efficacy classifier was tested on panel-based mutational signatures. a, Pre-treatment tumour tissue of a (previously 
published [22]) non-small cell lung cancer population were sequenced using the TruSight Oncology 500 assay. Per patient, non-synonymous singlets were aggregated 
by flanking context (indicated by pyramids) into a mutation spectrum. b, The panel-derived mutation spectra were deconvoluted into mutational signature attri-
butions. Signature SBS4 and SBS87 attributions were used to predict treatment efficacy using a previously published artificial intelligence (AI) classifier [11]. 
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(Supplementary Table 1). Projecting the WGS non-synonymous muta-
tions onto an in silico TSO500 panel revealed that the observed FNR were 
0.67+0.10

− 0.11 and 0.68+0.09
− 0.11 for SBS4 and SBS87, respectively. That is, 

smoking signature SBS4 attributable singlets were highly underrepre-
sented compared to what was theoretically expected based on panel size 
alone. These large FNRs were not specific to SBS4 and SBS87. Other 
mutational signatures also had a large FNR (Figs. S2 and S3, Supple-
mentary Material). 

Retraining the classifier on the in silico dataset showed similar per-
formance degradation (compared to the original WGS mutations) as on 
the Cuppens et al. cohort with an accuracy of 0.59+0.10

− 0.11, average preci-
sion of 0.30+0.12

− 0.08, and a ROC AUC of 0.15+0.10
− 0.09. (For reference, the ac-

curacy, average precision, and ROC AUC for the original, non-projected 
WGS data, were 0.74+0.09

− 0.09, 0.63+0.18
− 0.16, and 0.74+0.10

− 0.12, respectively [11]). 
These results provide further confirmation that the lack of predictive 
power is related to the size of the panel. 

3.3. Small panels miss signatures 

Next, we studied the FNR as a function of panel size and composition. 
Comparing the panel’s mutation spectra X with WGS, indicated that the 
Xu et al. pan cancer panel differed [p = 1.8⋅10− 12, k = 95 degrees of 
freedom χ2-test] but other panels [TSO500, p = 0.24; F1 Cdx, p = 0.40; 

MSK-IMPACT , p = 0.16, k = 95, χ2-test] had a similar allocation of 
mutations across the n = 96 channels. Signatures with > 10 positive 
cases (since we coarse grain over up to ten signature positive patients) 
and an average attribution of > 2.9% (i.e., above the expected recon-
struction error, see Sec. 3.4, below) were selected for further analysis. 
This left a total of nine signatures (SBS1, 2, 4, 13, 15, 24, 35, and 39) 
(Fig. S4, Supplementary Material) and we highlight the results of SBS4 
and SBS87 (Fig. 2). For SBS87 the FNR was high across all compositions 
and (extrapolated) panel sizes, with the decline in FNR saturating 
starting from ~10 Mb (Fig. 2a). The estimated FNRs were, within the 95 
% confidence margin, largely consistent with theory. We do observe a 
slight underestimation of the theory (especially for the F1 CDx and pan 
cancer panel) for larger panel sizes. For SBS4, the FNR remained high 
across different compositions up to a panel size of ~10 Mb (Fig. 2b). 
Interestingly, these FNRs were much higher than predicted theoreti-
cally. Other mutational signatures showed qualitatively similar trends 
(Fig. S4, Supplementary Material), although the FNR remained high for 
DNA mismatch repair-associated signature SBS15 [33], cisplatin- 
associated signature SBS35 [34], and SBS39. This was attributed to 
specific singlets being missed on the panel, which then remained missing 
in the extrapolated FNRs. Indeed, on the non-extrapolated TSO500 in 
silico mutations, the addition of one GCG:CGC → GTG:CAC singlet for 
SBS15, CTT:GAA → CAT:GTA singlet for SBS35, and ACA:TGT → AGA: 
TCT singlet for SBS39 led to the largest reduction in FNR (out of all 
channels) for the respective signature. Incidentally, from the samples 
that were whole-genome wide positive for SBS15 (m = 44), SBS35 (m =

51), or SBS39 (m = 71), those that were negative on TSO500 were 
almost exclusively negative for respectively GCG:CGC → GTG:CAC (36/ 
36, p = 5.6⋅10− 9, Fisher exact test), CTT:GAA → CAT:GTA (41/41, p =

1.1⋅10− 4, Fisher exact test) or ACA:TGT → AGA:TCT (60/62, p = 0.076, 
Fisher exact test). 

Conversely, in silico TSO500 analysis indicated an average 1.8-fold 
enrichment (median: 1.7; IQR: 1.2–2.3) for G:C → T:A singlets 
(Fig. S5, Supplementary Material). That is, the panel was enriched for 
singlets that are linked to damage from smoke-related aromatic com-
pounds [35]), but depleted for SBS4-attributed singlets. These findings 
suggest that the signature deconvolution process may itself have intro-
duced spurious attributions. 

3.4. Deconvolution of small sets of mutations lead to anomalies 

Signature deconvolution can contribute to the discrepancy in two 
ways: (i) by introducing reconstruction errors or (ii) by signature mis-
attributions (where mutations are attributed to the wrong signature). 
We therefore further validated the signatures and found that both factors 
played a role. On the TSO500 the average violation of the conservation 
of singlets was 30.2% (median: 24.9%; IQR: 16.2–36.1%). For reference, 
the average violation without a panel was only 2.90% (median: 2.07%; 
IQR: 0.98–3.92%), significantly less than the TSO500 panel 
(p = 6.9⋅10− 27 independent t-test). Other panels had similar violations 
on average as TSO500: 39.9% (IQR: 22.8–51.6%), 31.4% (IQR: 
18.5–41.5%), and 14.7% (IQR: 6.61–18.2%) for the F1 CDx, MSK- 
IMPACT, and PANCAN panels, respectively. We verified that these er-
rors were not related to lack of convergence in the NMF algorithm, by 
decreasing the error tolerance and increasing the number of iterations. 
We then looked for misattributions. To this end, attributions were nor-
malised (i.e.,W̃ij = Wij/|Wi|1, where |⋅|1 is the L1 norm) and we 
compared the in silico projected signatures on the TSO500 with the 
signatures derived from all (non-synonymous) singlets (Fig. 3). On 
average, signature SBS4 had the largest difference (16.5%) followed by 
aflatoxin-associated signature [36] SBS24 (6.53%), SBS39 (3.85%), and 
SBS35 (1.95%). Incidentally, these were the signatures that all had 
higher FNRs than theoretically predicted (Fig. S4, Supplementary Ma-
terial). Finally, we determined which signatures, with at least one 
attribution (m = 57), were misattributed. Signatures SBS3 (q = 0.03, 

Table 1 
Patient demographics and outcome of immune checkpoint inhibition treated 
non-small cell lung cancer patients. Symbols and abbreviations: αCTLA-4, 
cytotoxic T lymphocyte associated antigen-4 inhibitor; αPD-1, programmed 
death-1 inhibitor; αPD-L1, programmed death-ligand 1 inhibitor; αTNFRSF7, 
tumour necrosis factor receptor superfamily type 7 inhibitor; αVEGF-A, vascular 
endothelial growth factor inhibitor; FFPE, formalin-fixed and paraffin 
embedded; TSO500, Illumina TruSight Oncology 500.    

Cuppens et al. 
(’22) 

Donker et al. 
(’23) 

M  126 101  

Age, median 
(range)  

66 (48–85) 64 (44–82) 

Gender, m (%) female 52 (41.3) 52 (51.5)  
male 74 (58.7) 49 (48.5) 

Smoker, m (%) unknown  101 (100.0)  
current or former 112 (88.9)   
never 14 (11.1)  

Extend of disease, 
m (%) 

stage IV 112 (88.9) 101 (100.0)  

stage II/III 14 (11.1)  
Prior therapy, m 

(%) 
1 ≥ previous lines of 
therapy 

81 (64.3) 83 (82.2)  

naïve 45 (35.7) 18 (17.8) 
Treatment, m (%) αCTLA-4 + αPD-1  1 (1.0)  

αCTLA-4 + αPD-1 with 
chemotherapy  

1 (1.0)  

αPD-1 123 (97.6) 77 (76.2)  
αPD-1 with 
chemotherapy  

13 (12.9)  

αPD-L1 3 (2.4) 3 (3.0)  
αPD-L1 with 
chemotherapy  

2 (2.0)  

αPD-L1/cabozantinib  1 (1.0)  
αTNFRSF7 + αPD-1  1 (1.0)  
αVEGF-A + αPD-1  2 (2.0) 

Durable benefit, 
m (%) 

no 64 (50.8) 57 (56.4)  

yes 62 (49.2) 36 (35.6)  
unknown  8 (7.9) 

Sequencing, m 
(%) 

TSO500 126 (100.0)   

whole genome  101 (100.0) 
Tissue, m (%) FFPE 126 (100.0)   

fresh frozen  101 (100.0)  
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p = 0.0023), SBS4 (q = 4.5⋅10− 15, p = 7.9⋅10− 17), SBS19 (q = 0.046,
p = 0.0049), SBS24 (q = 4.5⋅10− 6,p = 1.6⋅10− 7), SBS38 (q = 0.03,p =

0.0026), and SBS39 (q = 1.9⋅10− 4, p = 1.0⋅10− 5) were all found to be 
significantly misattributed [one sample BH corrected t-test]. SBS87 was 
not misattributed (q = 0.69,p = 0.52, one sample BH corrected t-test). 
Analysis of the SBS4 depletion linked a (single) signature to mis-
attributions: the cisplatin-associated signature [34] SBS35, as it was 
consistently increased with decreasing SBS4 (τ = − 0.25, q = 0.036, 
p = 7.0⋅10− 4, BH corrected Kendall tau correlation). No significant 
misattributions were observed for SBS87. 

4. Discussion 

Our (parameter free) ab initio theory relied on panel size l only and 
ignored composition. In silico analyses showed that for SBS87 this was 
justified. SBS4 attributions were, however, relatively depleted compared 
to our theoretical predictions. We ascribed this to reconstruction errors 
and misattributions in the deconvolution process of relatively small 
panels. SBS4’s susceptibility to misattributions is not surprising in view 
of its relatively high entropy (3.8 nats compared to an average SBS 
signature entropy of 3.0 nats). Since SBS4 is most similar to SBS94 
(cosine distance 0.15, or 0.089⋅2π rad) and SBS45 (cosine distance 0.17, 
or 0.094⋅2π rad) we expected misattributions primarily to these signa-
tures. However, SBS4 misattributions were found to be linked to 
cisplatin-associated signature [34] SBS35 (cosine distance 0.32, or 
0.13⋅2π rad). We have no direct explanation for this observation other 
than that this signature also had a high probability of smoke-related [35] 
G:C → T:A substitutions. 

Several limitations apply to our in silico analysis. First, we extrapo-
lated existing panels to hypothetical larger-sized panels of fixed 

composition by coarse graining resampled patients. This was a conve-
nient but unrealistic idealisation: changes in panel size can only be 
accompanied by changes in composition. The high extrapolated FNR for 
SBS15, SBS35, and SBS39, which were ascribed to the missing of specific 
singlets, are assumed to be related to this oversimplification. The FNR of 
other mutational signatures maybe affected by the same mechanism, 
and therefore overestimate the FNR, specifically for the larger extrap-
olated panel sizes (where FNR saturation as a function of panel size was 
observed). Second, the coarse graining approach tacitly assumes that a 
panel double the size (but a similar composition) detects on average 
twice as many mutations. Third, although we coarse grained over 
similar patients (by stratifying by signature cluster), the aggregation 
procedure may underestimate the variability of the false negative rate 
for a small set of m = 101 patients. So the”true” error bars in the FNR 
may be wider than those calculated. Fourth, we implicitly assumed that 
the mutations detected using whole genome sequencing of matched 
tumour-normal pairs with different sample handling and bioinformatics 
pipeline, faithfully represent mutations that would be detected using the 
tumour-only TSO500 assay. Reassuringly, analytical validation of 
TSO500 shows, at least for TMB, high correlation with whole exome or 
genome sequencing [16,17,37–39]. Whether this also applies more 
generally for the three-nucleotide singlets is, to the best of our knowl-
edge, still an open problem. We can therefore not rule out that germline 
mutations from the of Cuppens et al. cohort [22] could affect the 
inferred mutational signatures. 

Effects related to formalin fixation and paraffin embedding (e.g., C:G 
→ T:A cytosine deaminations [32]) on the samples of Cuppens et al. [22] 
were not fully addressed with our in silico analysis (which were based on 
fresh-frozen material). Earlier work found that reliable panel-based 
variant calling may be achieved by imposing a variant allele 

Fig. 2. Relation between (extrapolated) panel size, composition, and the probability that an assay fails to detect a single base substitution (SBS) signature. a, False 
negative rate (FNR, compared to whole genome sequencing) of signature SBS87. Filled markers are observed in silico FNRs (panels are indicated in the legend). Open 
markers (indicated by sim. In the legend) are FNRs extrapolated to larger (integral multiples) panel sizes by coarse graining over (resampled) patients with similar 
signature profile. The ab initio theory (solid line) corresponds to a substitution detection probability proportional to panel size. b, Like in a, but for signature for 
SBS4. Error bars indicate the 95 % confidence interval region obtained by bootstrapping 100 iterations. Abbreviations: F1 CDx, FoundationOne CDx; Mb, megabases; 
MSK-IMPACT, Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets; sim., simulated;TSO500, TruSight Oncology 500. 

Fig. 3. In silico analysis of the TruSeq Oncology 500 panel shows that mutational signature SBS4, but not SBS87, is misattributed. Average (normalised) mis-
attributions (and standard deviation) per mutational signature (ranked from low to high). 
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frequency limit of detection ≥ 5% together with molecular barcodes to 
suppress deamination artefacts [38]. Both are part of the TSO500 
workflow. Moreover, the average attribution to FFPE-related signatures 
SBS1 and SBS30 [32] in the samples of Cuppens et al. was found to be 
low. Finally, there is a slight difference in population between those 
reported by Cuppens et al. [22] and Donker et al. [11]. In particular, the 
latter solely consists of metastatic lung cancer while the former also 
contained stage II or III lung cancer (11.1%). In addition, there were 
more treatment naïve patients in the cohort of Cuppens et al. Both fac-
tors could affect the (for Cuppens et al. unobserved whole genome) 
distribution of mutations across patients. The mutation distribution, in 
turn, affects the theoretically inferred FNR [cf. Eq. (1)]. However, with a 
FNR around 70% this is unlikely to change the conclusions regarding the 
utility of these panel-based mutational signature attributions, where 
larger sizes of mutational panels will be relevant as also indicated by the 
better performance of the pan-cancer panel. 

We expect that our findings, that mutational signature attributions 
from panel sequencing have a large FNR, carry over to most other cancer 
types, since lung cancer is among the highest mutated cancers [40]. 
Possible exceptions are melanoma and microsatellite-unstable colorectal 
cancer—both are characterised by a high mutation load. While different 
mutational processes are operative in other types of cancer, they would 
presumably be affected by panel size in a similar way. 

Finally, we (i) considered non-synonymous mutations only unlike 
[18–21] and (ii) different from [18–20] we also analysed samples 
without a high mutation count. Both factors would contribute to a 
reduction in the number of false negative signature attributions 
compared to our work. Heuristically speaking, these factors can be 
thought of as inducing a larger “effective panel size”. Indeed, both our in 
silico analysis cohort (based on samples from [11]) and that of [21] were 
originally collected in Ref. [24]. As such, our results can be considered 
complementary to the work of [21]. 

In toto, our findings suggest that larger panels are needed to be 
reliable enough (to detect the presence of mutational signatures in a 
sample) for use in ICI treatment-efficacy prediction models. Compared 
to size, panel composition plays a minor role. 

5. Conclusion 

This paper studied if mutational signatures derived from targeted 
gene panel sequencing can be used to predict immune checkpoint in-
hibition efficacy in non-small cell lung cancer (NSCLC). Our results came 
out negative. Based on theoretical arguments, experimental data, and in 
silico simulations we showed that mutational signature attributions from 
panel sequencing are unreliable. Specifically, mutational signatures in 
general and SBS4 and SBS87 in specific are characterised by a large false 
negative rate (FNR around 70%). Not only are commercially available 
targeted gene panels too small to detect sufficient mutations. We also 
observed a secondary effect, where small ensembles of singlets lead to 
reconstruction errors and misattributions in the deconvolution process. 
We therefore suggest that, for downstream classification tasks in NSCLC, 
signature attributions should be derived from whole exome or genome 
instead of targeted panel sequencing. 
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