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COMPARING THE KIRWAN AND NONCOMMUTATIVE

RESOLUTIONS OF QUOTIENT VARIETIES

ŠPELA ŠPENKO AND MICHEL VAN DEN BERGH

Abstract. Let a reductive group G act on a smooth variety X such that a
good quotient X//G exists. We show that the derived category of a noncom-
mutative crepant resolution (NCCR) of X//G, obtained from a G-equivariant
vector bundle on X, can be embedded in the derived category of the (canonical,
stacky) Kirwan resolution of X//G. In fact the embedding can be completed
to a semi-orthogonal decomposition in which the other parts are all derived
categories of Azumaya algebras over smooth Deligne-Mumford stacks.
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1. Introduction

1.1. Preliminaries. We fix an algebraically closed ground field k of characteris-
tic 0. Everything is linear over k. Here and below, if X is an Artin stack and Λ is a
quasi-coherent sheaf of rings on X then D(Λ) is the unbounded derived categories
of right Λ-modules with quasi-coherent cohomology. We also put D(X ) := D(OX ).

We recall the following definition.

Definition 1.1. [VdB04a] Let R be a normal Gorenstein domain. A noncommu-
tative crepant resolution (NCCR) of R is an R-algebra of finite global dimension
of the form Λ = EndR(M) which in addition is Cohen-Macaulay as R-module and
where M is a non-zero finitely generated reflexive R-module.

In this paper we will say that a sheaf of k-algebras Λ on a scheme X is a NCCR
of X if Λ(U) is a NCCR of Γ(U) for every connected affine open U ⊂ X .

The derived categories of NCCRs are particular instances of “categorical strongly
crepant resolutions” and the latter are conjectured to be minimal among all “cat-
egorical resolutions” [Kuz08]. In the current paper we provide new evidence for
this conjecture. Namely we will show that the NCCRs of quotient singularities
for reductive groups, of the type constructed in [ŠVdB17], embed in a particular
canonical (stacky) resolution of singularities, constructed by Kirwan in [Kir85].

Remark 1.2. The correct interpretation of the conjecture requires some care since
for example if X is a noetherian scheme and π : Y → X is a commutative resolution
of singularities (where Y can be a smooth Deligne-Mumford stack) then D(Y )
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is only a categorical resolution of D(X) if X has rational singularities [Lun10,
Example 5.1].1

To be able to state our main results we introduce some more notation. Let G
be a reductive group and let X be a smooth G-variety such that a good quotient2

π : X → X//G exists. In [Kir85], Kirwan constructed (for projective X) a partial
resolution of X//G by an inductive procedure involving GIT quotients of repeated
G-equivariant blowups of X (see §6). The final quotient variety X//G is then a
partial resolution of singularities of X//G (finite quotient singularities may remain).
We may also view the end result as a smooth Deligne Mumford stack X/G and
therefore we say that X/G is the Kirwan (stacky) resolution of X//G. In [ER17],
Edidin and Rydh generalised the Kirwan (and also Reichstein [Rei89]) procedure to
irreducible Artin stacks with stable good moduli spaces. We will heavily use their
technical results.

1.2. Assumptions. Let Xu ⊂ X be the locus of points whose stabilizer is not
finite or whose orbit is not closed (see §4). Throughout the introduction (and in
various parts of the paper) we assume

(H2) codim(Xu, X) ≥ 2.

Occasionally we will impose the slightly stronger condition that X is generic in the
sense of [ŠVdB17]; i.e. that G acts in addition freely on an open subset of X −Xu

whose complement has codimension ≥ 2 (see §7.2).

1.3. The embedding of a noncommutative resolution in D(X/G). In this
paper we consider noncommutative resolutions of X//G of the form

(1.1) Λ = EndX(U)G

where U is a G-equivariant vector bundle on X . This is a minor generalization with
respect to [ŠVdB17] where we exclusively considered the case U = U⊗OX where U
is a finite dimensional representation of G.3

A feature of a resolution like (1.1) is that there is an embedding

−
L
⊗Λ U : D(Λ) →֒ D(X/G).

Now let X/G be the Kirwan resolution of X//G which we factor as

X/G
Ξ
−→ X/G→ X//G.

As X//G has rational singularities [Bou87], D(X/G) is a categorical resolution of
D(X//G) by Remark 1.2, which implies in particular that pullback provides an
embedding

D(X//G) →֒ D(X/G).

1On the other hand in [KL15] it is shown that an arbitrary commutative resolution can always
be suitably modified to yield a categorical resolution.

2A good quotient of X is a map X → Y which is locally (on Y ) of the form SpecR → SpecRG.
If Y exists then it is unique and we write X//G := Y .

3In the context of the current paper the restriction U = U ⊗ OX is unnatural as we will, in
any case, forcibly encounter more general equivariant vector bundles when iterating Reichstein
transforms.
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It is important to observe however that we do not have an embedding of D(X/G)
in D(X/G); an indication for this is given in §10 where we provide an example with
rkK0(X/G) = ∞ but rkK0(X/G) = 8.

The following is our first main result.

Proposition 1.3 (Proposition 6.5). Let G be a reductive group acting on a smooth
variety X such that a good quotient π : X → X//G exists. Assume (H2). Let X/G
be the Kirwan resolution of X//G discussed above.

Let U be a G-equivariant vector bundle on X and assume that Λ = EndX(U)G is
(locally) Cohen-Macaulay as a sheaf of algebras on X//G (e.g. if Λ is an NCCR).
Then the composition

D(Λ) →֒ D(X/G)
LΞ∗

−−−→ D(X/G)

is fully faithful.

1.4. The Reichstein transform and a naive embedding. One establishes
Proposition 1.3 inductively, following the Edidin and Rydh procedure discussed
above. Let us describe the procedure more precisely.

For a point x ∈ X let Gx be its stabilizer and set µ(X) = maxx∈X dimGx. Put

Z = {x ∈ X | dimGx = µ(X)},

Z̄ = {x ∈ X | Gx ∩ Z 6= 0}.

Both Z and Z̄ are closed in X (see §5.1). Denote by (−)′ the strict transform of a
closed subset under a blowup. Put

XR = BlZ X − Z̄ ′.

The resulting map ξR : XR/G→ X/G is called the Reichstein transform of X/G.
One has µ(XR) < µ(X) and hence by performing a sequence of such transforms the
maximal stabilizer dimension becomes zero, yielding X and the Kirwan resolution
X/G.

Let U ′ = ξR∗U be a vector bundle on XR/G and let Λ′ = End(U ′)G, viewed as
a sheaf of algebras on XR//G.

We first obtain a naive embedding.

Proposition 1.4 (Corollary 5.3, Lemma 5.4). Assume (H2). If Λ is Cohen-
Macaulay, then so is Λ′. Moreover, pullback for the morphism of ringed spaces
(XR//G,Λ′) → (X//G,Λ) induces an embedding of derived categories D(Λ) →֒
D(Λ′).

We obtain Proposition 1.3 by successive application of Proposition 1.4.

1.5. Semi-orthogonal decomposition of D(X/G). In the case that Λ in the
statement of Proposition 1.3 is actually a noncommutative crepant resolution of
X (and X is generic), another main result of this paper is that the embedding
D(Λ) →֒ D(X/G) can be completed to a semi-orthogonal decomposition.

Here we first encounter an impediment, wishing to proceed in the inductive way
using the “naive” embedding given by Proposition 1.4. The hindrance is that the
NCCR property is not preserved when passing from Λ to Λ′ (see Example 8.5).
Therefore we would not be able to proceed inductively, even if we could enhance
the embedding in Proposition 1.4 to a semi-orthogonal decomposition.
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The most serious issue is that finite global dimension is not preserved. This
obstacle we overcome by slightly tweaking U ′, and hence Λ′. Let OBlZ X(1) be the
tautological relatively ample line bundle on BlZ X and let OXR(1) be its restriction
to XR. For some N > 0, OXR(N) is the pullback of a line bundle (πR

∗ OXR(N))G

on the quotient πR : XR → XR//G (see Proposition 5.2(6)). From a vector bundle
U on X/G we produce the vector bundle UR on XR/G as

UR =

N−1⊕

i=0

(ξR∗U)(i).

We obtain an Orlov’s type (blow-up) semi-orthogonal decomposition for ΛR =
EndXR(UR) with one component corresponding to Λ and the other components
corresponding to representatives Zi for the orbits of the G-action on the connected
components of the center Z of the blow-up. Let Gi ⊂ G be the stabilizer of Zi, as
a connected component.

Proposition 1.5 (Corollary 8.10). Assume (H2) and that Λ is Cohen-Macaulay.
Let UZi

be the restriction of U to Zi and let ΛZi
= EndZi

(UZi
)Gi . There is a

semi-orthogonal decomposition

D(ΛR) ∼= 〈D(Λ), D(ΛZ1
), . . . , D(ΛZ1

)
︸ ︷︷ ︸

c1−1

, . . . , D(ΛZt
), . . . , D(ΛZt

)
︸ ︷︷ ︸

ct−1

〉

where ci = codim(Zi, X). Moreover, the components corresponding to different Zi

are orthogonal.

Unfortunately it turns out that the NCCR property is still not preserved by the
passage Λ 7→ ΛR; the culprit being that the Reichstein transform may produce non-
trivial stabilizers in codimension one. We solve this by introducing the following
two technical conditions.

(α) Λ is homologically homogeneous (see Definition 7.3).
(β) U is a generator in codimension one (see Definition 7.5).

Both of these conditions are satisfied if X is generic and Λ is a NCCR (see Propo-
sition 7.7). Moreover we prove that both properties, along with the (H2) property,
are preserved under the passage X 7→ XR (see Propositions 5.2,8.13).

The successive applications of semi-orthogonal decompositions as in Proposition
1.5 following successive Reichstein transforms yield a semi-orthogonal decomposi-
tion of D(Λ) where Λ is obtained on the final step. We will show that if (α, β)
hold for Λ then in fact D(Λ) ∼= D(X/G). So by the above discussion we conclude
that it is enough to assume (α, β) hold for the initial Λ to obtain a semi-orthogonal
decomposition of D(X/G). This semi-orthogonal decomposition is stated in Theo-
rem 8.15. We will not restate it here as we prefer to give a more geometric version
in the next section.

1.6. Geometric description of the semi-orthogonal decomposition. We fur-
ther proceed to give a geometric description of the D(ΛZi

) appearing in Proposi-
tion 1.5. For simplicity we here state our final result only in the abelian case. For
the general case see Theorem 8.15, Corollary 9.9.

Let us assume the Kirwan resolution is obtained by performing n successive
Reichstein transforms with Zj being blown up at the j-th step. Let Zji, 1 ≤ i ≤ tj ,
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be representatives for the orbits of the G-action on the connected components of
Zj. Let Hji be the stabilizer of Zji.

Theorem 1.6 (Theorem 8.15, Remark 8.18, Corollary 9.9). Assume (H2). Assume
that Λ is homologically homogeneous and that U is a generator in codimension 1.
Let G be abelian (for general G see Theorem 8.15, Corollary 9.9). There is a
semi-orthogonal decomposition

D(X/G) ∼= 〈D(Λ), D(Zji/(G/Hji))
⊕Nji

1≤j≤n,1≤i≤tj ,0≤k≤cji−2〉

for some Nji ∈ N>0, where cji := codim(Zji, Xj), and the terms appear in lexico-
graphic order (according to the label (j, i, k)).

As we have already mentioned in §1.5, by Proposition 7.7 the conditions for this
theorem are satisfied if X is generic and Λ is a NCCR of X//G.

For general G, Zji will not have a global stabilizer group, however the generic
stabilizer is conjugate to a fixed groupHji. Thus, instead of Zji/(G/Hji) we should

take Z
〈Hji〉
ji /(NV (Hji)/Hji) where Z

〈Hji〉
ji is a suitable (smooth) subscheme of Z

Hji

ji

and NV (Hji) is a subgroup of the normalizer group N(Hji), and adorn it with a
sheaf of (equivariant) Azumaya algebras (see Corollary 9.9).

2. Acknowledgement

A significant part of this work was done during a research in pairs program at the
“Centro Internazionale per la Ricerca Matematica” in Trento. Further work was
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thank both institutes for the excellent working conditions and invigorating atmo-
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3. Notation and conventions

We fix an algebraically closed field k of characteristic 0. Everything is linear
over k. In particular Spec k is the base scheme and unadorned tensor products are
over k.

All schemes are separated. The stacks we will use are global quotients stacks
X/G for which X is at least separated. We will silently identify G-equivariant
sheaves on X and sheaves on X/G. If a good quotient π : X → X//G exists we
write πs : X/G→ X//G for the corresponding stack morphism. On some occasions
we sloppily write (−)G for πs∗. We sometimes silently globalize results for X , X/G,
X//G, . . . which are available in the literature for X affine and which are seen to be
trivially local over X//G.

All modules are right modules. If Λ is ring then D(Λ) is the unbounded derived
category of Λ. If X is an Artin stack and Λ is a quasi-coherent sheaf of rings on X
then D(Λ) is the unbounded derived categories of Λ-modules with quasi-coherent
cohomology. We also put D(X ) := D(OX ).

For an affine algebraic group H we denote by He the identity component of H .
and we let rep(H) be the set of isomorphism classes of irreducibleH-representations.

For U,U ′ ∈ Ob(a) where a is a Karoubian category we write U :=: U ′ to indicate
U ∈ Ob(add(U ′)) and U ′ ∈ Ob(add(U)).

Unless otherwise specified, “graded” means Z-graded and elements of a graded
ring are automatically assumed to be homogeneous.
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4. Generalities

Unless otherwise specified X is a smooth variety and G is a reductive group
acting on X such that a good quotient π : X → X//G exists (see e.g. [ŠVdB16,
Definition 3.3.1] for the definition of good quotient).

4.1. (Semi-)stability. A point in X is stable if it has closed orbit and finite sta-
bilizer. We write Xs for the stable locus of X and Xu for its complement. If L
is a line bundle on X which linearises the G-action then by [MFK94, §4] x ∈ X is
(L-)semi-stable if there is f ∈ H0(X,L⊗n)G for n > 0 such that f(x) 6= 0 and Xf

is affine. We denote the set of L-semi-stable points by Xss,L.

Remark 4.1. By [MFK94, Theorem 1.10], a good quotient π : Xss,L → Xss,L//G
exists. Moreover, there is an N > 0 such that the restriction of L⊗N to Xss,L

is the pullback of a line bundle on Xss,L//G. It follows in particular that any L-
semi-stable point x has a G-equivariant saturated4 neighbourhood on which L is
torsion.

A particular example of a linearisation is given by a line bundle of the form
L = χ ⊗OX for χ ∈ X(G). We can sometimes reduce to this case by Lemma 4.6
below.

4.2. (Semi-)stability and étale maps.

Lemma 4.2. Assume that φ : Y → X is a G-equivariant étale map. Let x ∈ X
and let y ∈ Y be a preimage of x. Then the following holds true:

(1) Gy ⊂ Gx and dimGy = dimGx.
(2) If Gx is closed then so is Gy.
(3) If x is stable then so is y.

In addition, if φ is strongly étale5 then Gx = Gy and the converse of (2) and (3)
holds.

Proof. (1) is clear since φ is quasi-finite. For (2) assume that Gx is closed and Gy
is not closed. Since the action of G on Gx is transitive and Gy ⊂ φ−1(Gx), we have
φ(Gy \Gy) = Gx. Hence dim(Gy \Gy) = dimGx = dimGy (as φ is quasi-finite),
which is a contradiction. (3) follows by combining (1) and (2).

Now assume φ is strongly étale. By definition, Y = V ×X//G X with V → X//G
étale. Let ȳ, x̄ be the images of y, x in V , X//G, respectively, and let Yȳ, Xx̄

be the corresponding fibers. Then φ induces an isomorphism Yȳ ∼= Xx̄ and hence
Gx = Gy . If Gy is closed then it is closed in Yȳ, and hence Gx is closed in Xx̄, and
therefore closed in X . This proves the converse of (2). The converse of (3) is again
a combination of (1) and the converse of (2). �

Lemma 4.3. Assume that φ : Y → X is a G-equivariant étale map which is
moreover affine. Let x ∈ X and let y ∈ Y be a preimage of x. Assume L is a
linearisation of the G-action on X and let M = φ∗L. If x is L-semi-stable then y
is M-semi-stable. If φ is strongly étale and Y and X are affine then the converse
also holds.

4A G-invariant open subset in X is saturated if it is a pullback of an open subset in X//G.
5A G-equivariant map φ : Y → X is strongly étale if it is induced by pullback from an étale

map V → X//G. In particular the inclusion of a saturated open subset is strongly étale.
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Proof. The first part follows by pulling back the section nonvanishing on x to Y .
The converse follows by considering the restriction of L and M = Spec SymM to
Xx̄ and Yȳ, respectively (with notation as in the proof of Lemma 4.2). �

4.3. Genericity conditions. Let i ∈ N. Below we write (Hi) for the condition
codim(Xu, X) ≥ i. Note that (H1) is equivalent to Xs 6= ∅. Furthermore (Hi) ⇒
(Hj) for j ≤ i.

4.4. Reduction to the linear case. We will often reduce to the linear case using
the Luna slice theorem [Lun73]. Assume that x is a point in X with closed orbit.
There there is a smooth affine slice S at x such that there is a strongly étale map
φ : G×Gx S → X . Furthermore we may assume that there is a strongly étale map
γ : S → TxS, sending x to 0. We will usually abuse terminology by simply calling
S a slice as x and by calling (Gx, TxS) the linearised slice at x.

Lemma 4.4. The hypothesis (Hi) holds for (G,X) if and only it holds for (Gx, TxS)
for all points x ∈ X with closed orbit.

Proof. Let x be a point in X with closed orbit. We first show that codim(Xu, X) ≤
codim((TxS)

u, TxS), so that if (Hi) holds for (G,X) it holds for (Gx, TxS).
If x 6∈ Xu then Gx is finite and hence (TxS)

u is empty so that there is nothing
to prove.

Now assume x ∈ Xu and let φ : G ×Gx S → X , γ : S → TxS be as above.
By Lemma 4.2, φ−1(Xu) = (G ×Gx S)u. In addition one can verify that (G ×Gx

S)u = G ×Gx Su. We deduce codim(Xu, X) ≤ codim(G ×Gx S, (G ×Gx S)u)) =
codim(Su, S) (as φ is étale). Let codimx(S

u, S) := dimS − dimSpecOSu,x be the
local codimension at x. Then we compute

codim(Su, S) ≤ codimx(S
u, S)

= codim0((TxS)
u, TxS)

= codim((TxS)
u, TxS).

For the first equality we use that γ is strongly étale and hence a local homeomor-
phism, and moreover Su = γ−1((TxS)

u) by Lemma 4.2. For the second equality we
use that TxS is a Gx-representation and that (TxS)

u is defined by a homogeneous
ideal.

To prove the converse we have to show that codim(Xu, X) = codim((TxS)
u, TxS)

for at least one x. By reversing the above arguments it follows that we may take
x to be a point with closed orbit in an irreducible component of Xu of maximal
dimension (guaranteeing codim(Su, S) = codimx(S

u, S)). �

4.5. Equivariant vector bundles.

Lemma 4.5. If V is a G-equivariant vector bundle on X and x ∈ X is G-invariant
point then x has a saturated affine G-invariant neighborhood on which V is of the
form V ⊗ OX for the G-representation V which is the fiber of V in x, i.e. V =
V ⊗X k(x).

Proof. By taking the pullback of an affine neighborhood of the image of x in
X//G we may reduce to the case that X is affine. Choose a G-invariant splitting
Γ(X,V) → V (since X is affine V = Γ(X,V)⊗k(x)). This gives us an G-equivariant
map V ⊗OX → V which is an isomorphism in a neighborhood of x. The maximal
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neighborhood U on which this is the case must be G-equivariant and open. Then
π(X \ U) = (X \ U)//G and {π(x)} = {x}//G are disjoint closed subsets of X//G
(see [Bri, Theorem 1.24(iv)]). Finally the saturated neigbourhood of x we want is
X \ π−1(π(X \ U)) = π−1(X//G \ π(X \ U)); i.e. the maximal saturated subset of
U . �

Lemma 4.6. Let V be a G-equivariant vector bundle on X. We may choose the
slice S as in §4.4 in such a way that the pullback of V to G ×Gx S coincides with
G×Gx (V ⊗OS) for V = V ⊗ k(x).

Proof. First take an arbitrary slice S at x. We pull back V to G×Gx S and replace
X by G×Gx S. Now the G-equivariant vector bundle V on G×Gx S restricts to a
Gx-equivariant vector bundle VS on S, such that V = G ×Gx VS . We then apply
Lemma 4.5 to obtain a saturated affine Gx-invariant open subset x ∈ S′ ⊂ S such
that VS | S′ ∼= V ⊗ OS′ . Since a saturated open immersion is a special case of a
strongly étale map, G ×Gx S′ →֒ G ×Gx S → X is strongly étale and so we may
replace S by S′. �

4.6. The canonical sheaf on Xs/G. The following lemma gives the precise re-
lation between the canonical sheaf of the stack Xs/G and ωXs considered as a
G-equivariant sheaf.

Lemma 4.7. There is an isomorphism ωXs/G
∼= ∧dimG

g⊗ ωXs .

Proof. The lemma follows from the fact that the cotangent complex on X/G is
given by the complex ΩX → g

∗ ⊗ OX with ΩX in degree zero. Since the map is
surjective on Xs by the definition of Xs, we get the exact sequence 0 → ΩXs/G →
ΩXs → g

∗ ⊗OXs → 0. Taking determinants we get the desired equality. �

Remark 4.8. Note that α = ∧dimG
g can only be nontrivial in the case when G is

nonconnected. Furthermore α2 is always trivial (see e.g. [Kno89, p.41]).

5. The Kirwan resolution

Let X be as in §4. We assume in addition that X satisfies (H1), i.e. Xs 6= ∅.

5.1. The Reichstein transform. The steps in the partial resolution of X//G
described in [Kir85] were reinterpreted by Reichstein [Rei89], and generalized by
Edidin and More [EM12] and Edidin and Rydh [ER17]. They are now known as
“Reichstein transforms” [EM12]. We will use (−)R for notations related to the
Reichstein transform.

Let µ be the maximal dimension of the stabilizers of the G-action on X and for
simplicity we put Z = Xµ := {x ∈ X | dimGx = µ}, which is closed and smooth
(see e.g. [ER17, Proposition B.2]). Assume µ > 0. Put

Z̄ = {x ∈ X | Gx ∩ Z 6= 0}.

Then Z̄ = π−1(Z//G), so it is closed as well. Let ξ : X̃ → X be the blowup of X

in Z and let Z̃ ⊂ X̃ be the strict transform of Z̄. Let ξR be the restriction of ξ
to XR := X̃ − Z̃. The resulting map ξRs : XR/G → X/G is called the Reichstein
transform of X/G.

Remark 5.1. In [ER17], XR/G is denoted by RG(X,Z).
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Let OX̃(1) be the tautological relatively ample line bundle on X̃ and let OXR(1)
be its restriction to XR. Let ER denote the exceptional divisor in XR. The
following can be extracted from [ER17].

Proposition 5.2. The following properties hold for XR:

(1) XR has a good quotient πR : XR → XR//G.
(2) The induced map XR//G→ X//G is proper.
(3) XR satisfies (H1).
(4) If X satisfies (H2) then XR also satisfies (H2).
(5) We have µ(XR) < µ(X).
(6) For some N > 0, OXR(N) is the pullback of the line bundle (πR

∗ OXR(N))G

on XR//G.

Proof. (1), (2), (5) follow from [ER17, Theorem 2.11 (2a),(2c),(3)]. (6) follows by
Remark 4.1. The fact that (H1) is true (asserted in (3)) follows from the assumption
that X satisfies (H1) and the fact that ξR : XR − ER = (ξR)−1(X − Z) → X − Z
is an isomorphism. For (4) we observe that X and XR differ in codimension 1
by the exceptional divisor ER. We have to prove that a generic point of ER is
stable. To this end we use reduction to the linear case made possible by Lemma
4.4 and Lemma 5.3 below, see Lemma 5.4. As we will now switch to the notations
introduced in those lemmas, the reader is advised to consult §5.3 first.

Note that G-stability and Ge-stability are equivalent. The exceptional divisor
ER is given by W0 × P(W1)

ss (see Lemma 5.4). Let (w0, w1) ∈ W0 × W1 be a
generic point. It is Ge-stable by (H1). Since Ge acts trivially on W0 this implies in
particular that w1 is Ge-stable. By [Bri, Proposition 1.31], P(W1)

s = P(W s
1 ) and

hence [w1] is Ge-stable. Thus, (w0, [w1]) is Ge-stable as well. �

In the following commutative diagram we summarize the notations that have
been introduced up to now and we also introduce some additional ones which should
be self explanatory.

(5.1) XR

πR

''

ξR

��

// XR/G
πR
s //

ξRs
��

XR//G

ξR

��
X

π

88
// X/G πs

// X//G

5.2. The Kirwan resolution. By repeatedly applying the Reichstein transform,
the maximal stabilizer dimension ultimately becomes 0 by Proposition 5.2(5). Hence
we arrive at a commutative diagram

X/G
π′
s //

Ξ

��

X//G

Ξ̄

��
X/G πs

// X//G

where X/G is a DM stack and hence X//G has finite quotient singularities. We call
X//G (or perhaps X/G) the Kirwan (partial) resolution of X//G.
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5.3. Reduction of the Reichstein transform to the linear case. Let H be
a reductive group. For a H-representation W we choose a decomposition W =
W0 ⊕W1 of H-representations, where W0 =WHe .

Lemma 5.3. With notation as in §4.4, 5.1, let x be a point with maximal stabilizer
dimension. Let S be a smooth affine slice at x. We have (G×GxS)R = G×GxSR,Gx ,
where SR,Gx is the Reichstein transform of S with respect to Gx, and there is a G-
equivariant cartesian diagram

G×Gx SR,Gx //

��

XR

��
G×Gx S // X

in which the horizontal arrows are strongly étale.
We have Xµ ∩ S = SGx,e. Denote W = TxS. Then Wµ = W0 and there is a

Gx-equivariant cartesian diagram

SR,Gx //

��

WR,Gx

��
S // W

in which the horizontal maps are strongly étale.

Proof. The equality (G ×Gx S)R = G ×Gx SR,Gx is an easy verification using the
equivalence between the categories of G-equivariant schemes over G/Gx and Gx-
equivariant schemes.

Both diagrams follow from [ER17, Proposition 6.6, Diagram (6.6.1)] and the
Luna slice theorem §4.4 (as strongly étale morphism is strong [ER17, Definition
6.4]). The observation that both strong morphisms and étale morphisms are pre-
served under pullback yields that the upper arrows in the diagrams are strongly
étale. �

In the case of a representation the Reichstein transform has a more concrete
description recorded in the following lemma.

Let P(W1)
ss, P(W1)

ns be respectively the semi-stable part of P(W1) and its com-
plement, corresponding to the G-linearisation O(1). As P(W1) = (W1 − {0})/Gm

we alternatively have P(W1)
ss =W ss,1

1 /Gm, where 1 ∈ X(Gm) = Z is the identity

character. If W null
1 is the G-nullcone in W1 then W ss,1

1 =W1 \W null
1 .

Lemma 5.4. If X =W is a representation, XR = Spec(SymW0×P(W1)ss(O(1))).

Proof. We have X̃ = Spec(SymW0×P(W1)(O(1))), Z̄ = W0 × W null
1 and Z̃ =

Spec(SymW0×P(W1)ns(O(1))), which implies the claim. �

We obtain the following diagram

(5.2) ER/G
s

11

πR
E,s

��

XR/G
ξR

//
θ

qq

πR
s

��

X/G

πs

��
ER//G

s̄

11 XR//G
ξR

//
θ̄

qq
X//G
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where s, s̄ are obtained from the inclusion of ER in XR and where θ and θ̄ only
exist in the linear case and are obtained from the projection of the line bundle
WR = Spec(SymW0×P(W1)ss(O(1))) to the base W0 × P(W1)

ss.

From Lemma 5.4 we obtain a very concrete description of the Reichstein trans-
form in the linear case.

Lemma 5.5. Put S = SymW∨ considered as a graded ring by giving W∨
i degree i,

i ∈ {0, 1}. Then WR//G is covered by affine charts of the form Spec((SG
f )≥0) for

homogeneous f ∈ SG
>0.

Proof. It follows from Lemma 5.4 thatWR is covered by affine charts Spec((Sf )≥0)
for homogeneous f ∈ SG

>0 (by the definition of semi-stable points), and hence
WR//G is covered by affine charts as stated. �

Remark 5.6. Elaborating on Lemma 5.5 we obtain yet another concrete description
of the Reichstein transform in the linear case as a weighted blowup. Let R be a
Z-graded ring and put R† = ⊕n≥0R≥n, where the right-hand side is N-graded by
the index n. Then the weighted blowup of SpecR is defined as ProjR†. One easily
checks that WR//G is given by the weighted blowup of SpecSG =W//G.

6. The embedding of an NCCR in the Kirwan resolution

Let X be as in §4 and assume that X moreover satisfies (H2). Assume we are
in the setting of §5.1. Let U be a G-equivariant vector bundle on X and define

Λ := πs∗ EndX(U), Λ′ := πR
s∗ EndXR(ξR∗U).

Lemma 6.1. If Λ is Cohen-Macaulay (as a sheaf of OX//G-algebras) then the
canonical morphism

Λ → RξR∗ Λ
′

is an isomorphism.

Proof. This statement is local for the étale topology and hence Lemma 5.3 allows
us to reduce to the case that X = W is a representation of G. Moreover we
may assume by Lemma 4.6 that U = U ⊗ OW . By Lemma 5.4 we then have
WR = Spec(SymW0×P(W1)ss(O(1))). Using the diagram (5.1) we see that

RξR∗ Λ
′ = πs∗Rξ

R
s∗(End(U)⊗OWR) .

Write ξs : W̃/G→W/G for the map induced from ξ : W̃ →W and similarly js for

the inclusion WR/G→ W̃/G. Then we have

πs∗Rξ
R
s∗(End(U)⊗OWR) = πs∗R(ξsjs)∗(End(U)⊗OWR)

= πs∗(End(U)⊗Rξs∗Rjs∗OWR).

We will use the standard distinguished triangle for cohomology with support

RΓW̃−WR(W̃ ,OW̃ ) → OW̃ → Rjs∗OWR →

which after applying πs∗(End(U)⊗Rξs∗(−)) yields a distinguished triangle

πs∗(End(U)⊗Rξs∗RΓW̃−WR(W̃ ,OW̃ )) → Λ → RξR∗ Λ
′ → .

It follows that we need to show

(6.1) πs∗(End(U)⊗Rξs∗RΓW̃−WR(W̃ ,OW̃ )) = 0.
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We may as well compute Γ(W//G, πs∗(End(U) ⊗ Rξs∗RΓW̃−WR(W̃ ,OW̃ ))) since
W//G is affine. We have

(6.2) Γ(W//G, πs∗(End(U)⊗Rξs∗RΓW̃−WR(W̃ ,OW̃ ))) =

(End(U)⊗RΓ(W̃ ,RΓW̃−WR(W̃ ,OW̃ )))G.

Let Ens = W0 × P(W1)
ns, Ẽ = W0 × P(W1). Since W̃ −WR = θ−1(Ens) we

have

(6.3) RΓ(W̃ ,RΓW̃−WR(W̃ ,OW̃ )) =
⊕

n≥0

RΓ(Ẽ,RΓEns(Ẽ,OẼ(n))).

Put S = Sym(W∨) = Γ(W,OW ). We put a grading on S by giving W∨
i degree

i for i ∈ {0, 1}. Let ω denote the composition

Gr(S)
?̃
−→ Qch(Ẽ)

Γ∗−→ Gr(S)

where Γ∗(Ẽ,M) =
⊕

n∈Z
Γ(Ẽ,M(n)) and the first (exact) functor is the usual

correspondence between graded S-modules and quasi-coherent sheaves on Ẽ. It is
easy to see that ?̃ preserves injectives and hence Rω = RΓ∗ ◦ ?̃. We have

RΓEns(Ẽ,OẼ(n)) = RΓW0×Wnull
1

(W,OW )(n)̃ .

Hence the part of degree n of the right-hand side of (6.3) equals

(RΓ∗((RΓW0×Wnull
1

(W,OW )(n))̃ ))0 = (Rω(RΓW0×Wnull
1

(W,OW )(n)))0(6.4)

= (RωRΓW0×Wnull
1

(W,OW ))n.

There is a distinguished triangle in D(Gr(S))

RΓS>0
(M) →M → Rω(M) →,

for every M ∈ D(Gr(S)), which applied to M = RΓW0×Wnull
1

(W,OW ) gives the

distinguished triangle

RΓW0
RΓW0×Wnull

1
(W,OW ) → RΓW0×Wnull

1
(W,OW )

→ RωRΓW0×Wnull
1

(W,OW ) → .

Since W0 ⊂W0 ×W null
1 the first term equals

(6.5) RΓW0
RΓW0×Wnull

1

(W,OW ) = RΓW0
(W,OW )

which is 0 in degrees ≥ 0. Thus, the right-hand side of (6.3) equals (using (6.4))
(RΓW0×Wnull

1
(W,OW ))≥0. So (6.1) translates (via (6.2)) into

(End(U)⊗RΓW0×Wnull
1

(W,OW ))G≥0 = 0

which by e.g. [VdB89, Lemma 4.1] is equivalent to

(RΓW0//GΛ)≥0 = 0.

By local duality (see Corollary A.3) and Cohen-Macaulayness of Λ this reduces
to showing H≤0 = 0 for H := HomW//G(Λ, ωW//G). Note that H is reflexive and
localization commutes with Hom, so we may reduce to codimension 1 and replace
W by W s due to (H2). As W s/G → W s//G is finite, it is also proper. Therefore
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we can apply Grothendieck duality for DM stacks [Nir08, Corollary 2.10]. Setting
d1 = dimW1, d = dimW we obtain

(6.6)

H = HomW s//G(πs∗(End(U)⊗OW ), ωW s//G)

= HomW s/G(End(U)⊗OW s , π!
sωW s//G)

= HomW s/G(End(U)⊗OW s , ωW s/G)

= HomW s/G(End(U)⊗OW s ,∧dimG
g⊗ ∧dW ⊗OW s(−d1))

= (End(U)⊗ ∧dimG
g⊗ ∧dW ⊗ S)G(−d1)

where the third equality is [Nir08, Theorem 2.22]6, the fourth equality follows
from Lemma 4.7, and the fifth equality from the hypothesis (H2). Hence H≤0 =
(End(U)⊗∧dimG

g⊗∧dW ⊗ S)G≤−d1
. Since (End(U)⊗∧dimG

g⊗∧dW ⊗ S)G lives
in nonnegative degrees, the conclusion follows. �

Below we let ξ̂ be the morphism of ringed spaces

ξ̂ : (XR//G,Λ′) → (X//G,Λ)

obtained from ξR.

Corollary 6.2. Assume Λ is Cohen-Macaulay. Then Lξ̂∗ : D(Λ) → D(Λ′) is a
full faithful embedding.

Proof. Note that on the level of OXR -modules, Rξ̂∗ is just RξR∗ . It is sufficient

to prove that for any F ∈ D(Λ) the canonical morphism F → Rξ̂∗Lξ̂
∗F is an

isomorphism.
This is a local statement and hence we may assume thatX is affine. We may then

replace F by a K-projective resolution P• with projective terms. Then Lξ̂∗F =

ξ̂∗P• and moreover by Lemma 6.1 ξ̂∗P• consists of objects acyclic for ξR∗ . Since ξ
R
∗

has finite homological dimension we obtain RξR∗ Lξ̂
∗F = ξR∗ ξ̂

∗P• = P• where for
the last equality we use again Lemma 6.1. �

As an immediate corollary of Corollary 6.2 we get the following embedding of
D(Λ) to D(XR/G).

Corollary 6.3. Assume that Λ is Cohen-Macaulay. There is a commutative dia-
gram of derived categories

(6.7) D(Λ)
� � −

L

⊗ΛU
//

� _

Lξ̂∗

��

D(X/G)

LξR∗

��
D(Λ′)

� �

−
L

⊗Λ′ξR∗U

// D(XR/G)

Lemma 6.4. If Λ is Cohen-Macaulay then Λ′ is Cohen-Macaulay.

6[Nir08, Theorem 2.22] is strictly speaking for proper DM stacks. However, this assumption
can be circumvented by first applying compactification (with smooth DM stacks). See the first
paragraph of the proof of [Ber18, Theorem 1.1].
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Proof. Since we may check Cohen-Macaulayness étale locally, we can reduce by
Lemma 5.3 to the linear case. We use the same notations as in the proof of Lemma
6.1. Using Lemmas 5.5, Lemma 4.6, locally Λ′ is of the form (Λf )≥0 for homoge-
neous f ∈ (SG)>0.

We then need to prove that (Λf )≥0 is Cohen-Macaulay. Let m = deg f . We
put A = Λf . A is Cohen-Macaulay since it is localization of Λ which is Cohen-
Macaulay. Note that A contains a Laurent polynomial ring A′ = A0[f, f

−1] as a
direct summand. As an ascending chain of one sided ideals in A′ may be extended
to an ascending chain of one sided ideals in A we see that A′ is noetherian. A
similar argument shows that the Ai[f, f

−1], for 0 ≤ i < m, are noetherian A′-
modules and so they are finitely generated. In particular, A = ⊕0≤i<mAi[f, f

−1]
is finitely generated as an A′-module.

Since A is Cohen-Macaulay over A, it is Cohen-Macaulay over A′. As A =
⊕0≤i<mAi[f, f

−1] the A′-summands Ai[f, f
−1] of A are also Cohen-Macaulay A′-

modules. Quotienting by the nonzero divisor f − 1 we see that Ai is a Cohen-
Macaulay A0-module for 0 ≤ i < m. Thus, Ai[f ] is a Cohen-Macaulay A0[f ]-
module for 0 ≤ i < m. Therefore A≥0 = ⊕0≤i<mAi[f ] is Cohen-Macaulay A0[f ]-
module and thus A≥0 is Cohen-Macaulay (as it is a finitely generated A0[f ]-
module). �

In the following proposition we show that Λ as in Lemma 6.4 can be embedded
in the smooth Deligne-Mumford stack obtained by the Kirwan resolution.

Proposition 6.5. Let X be a smooth G-scheme with a good quotient π : X → X//G
which satisfies in addition (H2).7 Let Ξ : X/G → X/G be the Kirwan resolution
(see §5.2).

Let U be a G-equivariant vector bundle on X and assume that Λ = πs∗ EndX(U)
is Cohen-Macaulay on X//G. Put U ′ = Ξ∗U , Σ = π′

s∗ EndX(U ′). There is a
commutative diagram of derived categories

(6.8) D(Λ)
� � −

L

⊗ΛU
//

� _

LΞ̂∗

��

D(X/G)

LΞ∗

��
D(Σ)

� �

−
L

⊗ΣU ′

// D(X/G)

where Ξ̂ is the induced morphism of ringed spaces (X//G,Σ) → (X//G,Λ).

Proof. The commutativity of the diagram and full faithfulness of the horizontal
arrows are straightforward. It remains to show full faithfulness of the left most

vertical arrow. By construction, LΞ̂∗ is the composition of Lξ̂∗’s which correspond
to a single Reichstein transform. By Lemma 6.4 we are reduced to showing full
faithfulness for a single Reichstein transform. In that case the conclusion follows
by Corollary 6.2. �

Remark 6.6. Note that the rightmost vertical map in the diagram (6.8) is in general
not fully faithful.

7(H2) was imposed on in the beginning of §6 and it was used explicitly in the proof of Lemma
6.1 and implicitly (via Lemma 6.1) in Corollaries 6.2, 6.3.
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6.1. Embedding of D(ΛZ) in D(XR/G). In this subsection for use below (c.f.
§8) we extract some consequences of the above results and their proofs.

From the proof of Lemma 6.1 we can extract the following.

Lemma 6.7. Assume that Λ is Cohen-Macaulay. Let UZ , UER denote the restric-
tions of U , ξR∗U to Z, ER, respectively. Let πZ,s : Z/G → Z//G be the quotient

map and denote the restriction/ corestriction of ξR to a map ER//G→ Z//G by ξRE
so that we have a commutative diagram

ER//G

ξR
E

��

� � s̄ // XR//G

ξR

��
Z//G // X//G

Put
ΛZ := πZ,s,∗ EndZ(UZ), Λ′

Z := πR
E,s,∗ EndER(UER).

Then
RξRE∗Λ

′
Z = ΛZ ,

and moreover on every connected component Zi of Z

(6.9) RξRE∗π
R
E,s,∗(EndER(UER)(l)) |Zi//Gi

= 0

for −ci < l < 0 with ci = codim(Zi, X) and where Gi is the stabilizer of Zi for the
action of G on the connected components of Z.

Proof. This is proved in a similar (but easier) way as Lemma 6.1. We pass to
the linear case for a point x ∈ Zi. In this case ci = d1 = dimW1 (with the
notation as in §5.3). Following the steps of the proof one is reduced to showing
that (End(U) ⊗ RωRΓW0×Wnull

1
(W,OW ))Gl = 0 for −d1 < l ≤ 0. Then we use the

extra fact (after (6.5)) that RΓW0
(W,OW ) is zero in degrees > −d1 (in the proof of

Lemma 6.1 it was only needed that it is 0 in degrees ≥ 0). The proof then further
proceeds as the proof of the lemma, where the bound on l again comes in at the
end of the proof. �

Lemma 6.7 (together with the proof of Corollary 6.2) makes it possible to con-
struct an embedding of D(ΛZ) in D(XR/G). Let

ΛER = πR
s∗ REndXR(s∗UER).

Let ξRE : ER → Z denote the restriction/corestriction of ξR : XR → X .

Corollary 6.8. Assume Λ is Cohen-Macaulay. Then RξR∗ ΛER
∼= ΛZ . Denote by

ξ̂E the following morphism of DG-ringed spaces8 (obtained for ξR)9

ξ̂E : (XR//G,ΛER) → (X//G,ΛZ).

8Λ
ER is a sheaf of DG-algebras.

9We silently identify ΛZ with i∗ΛZ for i : Z//G →֒ X//G.
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Then there is a commutative diagram of derived categories

(6.10) D(ΛZ)
� �

−
L

⊗ΛZ
UZ

//
� _

Lξ̂∗E
��

D(Z/G)

Rs∗LξR∗
E

��
D(ΛER) �

�

−
L

⊗Λ
ER

s∗UER

// D(XR/G)

Proof. As in Corollary 6.2, it follows from RξR∗ ΛER
∼= ΛZ that Lξ̂∗E is fully faithful.

Moreover, the horizontal arrows are fully faithful and the diagram commutes. Thus,

it suffices to prove that RξR∗ ΛER
∼= ΛZ .

There is a standard exact sequence on XR/G

(6.11) 0 → ξR∗U(1)
t
−→ ξR∗U → s∗UER → 0

obtained by restriction to XR of a similar sequence valid for any blowup.
Applying RHomXR(−, s∗UER) to (6.11) we get the distinguished triangle

(6.12) REndXR(s∗UER) → RHomXR(ξR∗U , s∗UER) →

RHomXR(ξR∗U , s∗UER)(−1) → .

By adjointness,

(6.13) RHomXR(ξR∗U , s∗UER) = s∗ RHomER(UER ,UER).

Applying RξR∗ π
R
s∗ to (6.12) we obtain by Lemma 6.7 that RξR∗ ΛER

∼= ΛZ as desired.
�

7. Homologically homogeneous endomorphism sheaves

Endomorphism sheaves of vector bundles appeared in §6 above. In this sec-
tion we discuss the local properties of vector bundles whose endomorphism sheaves
have good homological properties. This will be used in subsequent sections. More
precisely the “fullness” property will be used in the proof of semi-orthogonal de-
composition for the Kirwan resolution given in Theorem 8.15 and the “saturation”
property will be important for the associated geometric interpretation obtained in
Corollary 9.9.

7.1. Equivariant vector bundles in the case of constant stabilizer dimen-
sion. Let Z be a G-equivariant smooth k-scheme with a good quotient π : Z →
Z//G. We assume that the stabilizers (Gx)x∈Z have dimension independent of x.
In particular all orbits in Z are closed (as otherwise the closure of a nonclosed orbit
would contain a (closed) point with higher dimensional stabilizer) and hence all Gx

are reductive.

For x ∈ Z we let Hx ⊂ Gx be the pointwise stabilizer of TxZ/Tx(Gx). This is
a normal subgroup of Gx. Using the Luna slice theorem one checks that Hx has
finite index in Gx and in particular is reductive.

Definition 7.1. Let U be a G-equivariant vector bundle on Z.

(1) U is saturated if for every x ∈ Z we have that the Gx-representation Ux is
up to nonzero multiplicities induced from Hx.
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(2) Assume that G acts with finite stabilizers. Then we say that U is full if for
all x ∈ Z, Ux contains all irreducible Gx-representations.

Lemma 7.2. Assume that G acts with finite stabilizers and that U is full. Then U
is a projective generator of Qch(Z/G), locally over Z//G,10 and hence in particular

Qch(Z/G) ∼= Qch(Λ)

for Λ = πs∗ EndZ(U).

Proof. We may check this on strong étale neighbourhoods of x ∈ Z. Therefore
we may assume by Luna slice theorem that Z/G = S/Gx where S is a smooth
connected affine slice at x, Gx is finite, and that U = U ⊗ S, where U = Ux by
Lemma 4.5. Since U is full, U contains all irreducible representations of Gx, hence
U is projective generator. �

7.2. Homologically homogeneous sheaves of algebras.

Definition 7.3 ([BH84, SVdB08]). A prime affine k-algebra Λ is homologically
homogeneous if it is finitely generated as a module over its centre R and if all
simple Λ-modules have the same (finite) projective dimension.

A coherent sheaf A of algebras on a k-scheme X is homologically homogeneous
if A(U) is homologically homogeneous for every connected affine U ⊂ X .

We refer to the foundational paper [BH84] as a general reference for homologi-
cally homogeneous rings. We also recall from [VdB04a, Lemma 4.2]

Lemma 7.4. Assume that X is normal with Gorenstein singularities. A NCCR
on X is homologically homogeneous.

We now assume that X is a smooth k-scheme, G is a reductive group acting with
a good quotient π : X → X//G. We do not assume that X satisfies (H1).

Definition 7.5. Let U be a G-equivariant vector bundle on X . U is generator in
codimension one of Qch(X/G) if πs∗ HomX(U ,M) = 0 for M ∈ Qch(X/G) implies
codimSuppX M ≥ 2.

Theorem 7.6. Let Z ⊂ X is the locus of maximal stabilizer dimension. Let U
be a G-equivariant vector bundle on X such that πs∗ EndX(U) is homologically
homogeneous on X//G. Assume that U is a generator in codimension one. Then

(1) U | Z is saturated.
(2) If G acts with finite stabilizers (and hence Z = X) then U is full.

Proof. Using Lemmas 4.4, 4.5 we may reduce to the linear case. The result then
follows from Lemma 7.9 below. �

The next proposition says that generation in codimension one is automatic if X
is particularly nice. We say that X is generic [ŠVdB17], if the set Xs of stable
points with trivial stabilizers satisfies codim(X \Xs, X) > 1.

Proposition 7.7. If X is generic then the following holds true.

(1) Every nonzero G-equivariant vector bundle U on X is a generator in codi-
mension 1.

10πs∗ HomZ(U ,M) = 0 for M ∈ Qch(Z/G) implies M = 0 (see e.g. [VdB04b]).
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(2) Λ = πs∗ EndX(U) is an NCCR if and only if Λ is homologically homoge-
neous and X//G is Gorenstein.

Proof. (1) By definition G acts freely on Xs. If πs∗ HomX(U ,M) = 0 then we
may restrict to obtain πs∗(HomX(U ,M) | Xs) = 0 and by descent we get
M | Xs = 0. We now use codim(X \Xs, X) ≥ 2.

(2) For (⇒) we use Lemma 7.4 and the fact that an NCCR (in [VdB04a]) is
defined for Gorenstein schemes. For (⇐) we moreover use that X is generic
and therefore Λ ∼= EndX//G(πs∗U) and πs∗U is reflexive (see e.g. [ŠVdB17,
Lemma 4.1.3]). Then Λ is an NCCR by definition. �

7.3. The linear case. We fix some notation that will be in use throughout this
section. Let W = W0 ⊕ W1, W0 = WGe and U be representations of G as in
§5.3. Put S = k[W ], graded by giving the elements of W∨

i degree i. We define
H ⊃ Ge as the pointwise stabilizer of W0 (this is a normal subgroup of G). Let
Λ = EndG,S(U ⊗ S), graded with the grading induced from S.

For arbitrary representations V, U of G we denote MG,V (U) := (U ⊗k[V ])G. We
may omit V or G in the notation if they are clear from the context. The following
lemma may be of independent interest.

Lemma 7.8. M(U) is Cohen-Macaulay SG-module if and only ifMH(U) is Cohen-
Macaulay SH-module.

Proof. The if direction follows by applying (−)G/H so we concentrate on the only
if direction and assume that M(U) is a Cohen-Macaulay SG-module.

We have as G/H-representations

(7.1)

MH(U) = k[W0]⊗MH,W1
(U)

=
⊕

V,V ′∈rep(G/H)

(MW0
(V ∗)⊗ V )⊗ (MW1

(U ⊗ V ′)⊗ V ′∗),

where in the second line we use e.g.

MH,W1
(U) = (U ⊗ k[W1])

H

=
⊕

V ′∈rep(G/H)

((U ⊗ k[W1])
H ⊗ V ′)G/H ⊗ V ′∗

=
⊕

V ′∈rep(G/H)

((U ⊗ V ′ ⊗ k[W1])
H)G/H ⊗ V ′∗

=
⊕

V ′∈rep(G/H)

(U ⊗ V ′ ⊗ k[W1])
G ⊗ V ′∗.

Applying G/H to (7.1) we obtain as SG-modules

(7.2) M(U) =
⊕

V ∈rep(G/H)

MW0
(V ∗)⊗MW1

(U ⊗ V ).

As k[W0]
G/H ⊗ k[W1]

G = k[W0]
G/H ⊗ (k[W1]

H)G/H ⊂ (k[W0] ⊗ k[W1]
H)G/H =

k[W ]G is a finite extension of rings and by hypotheses M(U) is a Cohen-Macaulay
k[W ]G-module, M(U) is also a Cohen-Macaulay k[W0]

G/H ⊗ k[W1]
G-module. By

(7.2), MW0
(V ∗) ⊗MW1

(U ⊗ V ) is then a Cohen-Macaulay k[W0]
G/H ⊗ k[W1]

G-
module.
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Consequently,MW1
(U⊗V ) is a Cohen-Macaulay k[W1]

G-module ifMW0
(V ∗) 6= 0

by [GW78, Theorem (2.2.5)]. Since G/H acts faithfully on W0 (this is the point
where the definition of H is used) it follows (e.g by the proof of [Alp86, Theorem
II.7.1]) that MW0

(V ∗) =MG/H,W0
(V ∗) 6= 0 for every V ∈ rep(G/H). Thus,

MH,W1
(U) =

⊕

V ∈rep(G/H)

MW1
(U ⊗ V )⊗ V ∗

is a Cohen-Macaulay k[W1]
G-module. Hence MH(U) = k[W0] ⊗MH,W1

(U) is a
Cohen-Macaulay k[W0] ⊗ k[W1]

G-module. Since k[W0] ⊗ k[W1]
G ⊂ k[W ]H is a

finite ring extension, MH(U) is a Cohen-Macaulay k[W ]H -module. �

The following lemma gives a necessary condition for Λ = EndG,S(U ⊗ S) to be
homologically homogeneous.

Lemma 7.9. Assume that Λ = EndG,S(U ⊗ S) is homologically homogeneous
and that U ⊗ OW is a generator of Qch(W/G) in codimension 1. Then U and

IndGH ResGH U contain the same irreducible G-representations. Moreover, if G is
finite then U contains all irreducible G-representations.

Proof. Let P = IndG
K ResGK U ⊗ S for K = H , or alternatively K may be the

trivial group if G is finite, and put Q = U ⊗ S. Consider the evaluation map of
(G,S)-modules

φ : HomG,S(Q,P )⊗Λ Q→ P.

We will prove below that φ is an isomorphism and hence in particular surjective.
Assuming this is the case then by writing HomG,S(Q,P ) as a quotient of Λ⊕N as
right Λ-module we find that P is a quotient of Q⊕N as (G,S)-module. Tensor-

ing with S/S>0 we obtain that IndGK ResGK U is a quotient of U⊕N . Since U is a

summand of IndG
K ResGK U this proves that U and IndGK ResGK U contain the same

irreducible G-representation.

Now we turn to proving that φ is an isomorphism. If G is finite then Q is
a projective Λ-module by the Auslander-Buchsbaum formula [IR08, Proposition
2.3] and if K = H then we show in the next paragraph that HomG,S(Q,P ) is a
projective Λ-module. Hence in both cases (G finite or K = H) φ is a map between
reflexive (G,S)-modules. Now the kernel and the cokernel of the evaluation map
are supported in codimension 2 as Q is by assumption a generator in codimension 1.
Hence φ is an isomorphism.

Suppose now K = H . Let V = Hom(U, IndGH ResGH U). Then HomG,S(Q,P ) =
M(V ) and as promised we have to show that M(V ) is a projective Λ-module. Now

note that ResGH IndGH ResGH U and ResGH U are equal up to multiplicities (see e.g.
the proof of [ŠVdB17, Lemma 4.5.1]). Using the definition of V it then follows

easily that ResGH V and ResGH End(U) are equal up to multiplicities. Since Λ =
M(End(U)) is assumed to be homologically homogeneous, it is in particular a
Cohen-Macaulay SG-module (e.g. [SVdB08, Theorem 2.3]) and hence it follows by
Lemma 7.8 that MH(End(U)) is a Cohen-Macaulay SH -module. Thus the same is
true for MH(V ). Using Lemma 7.8 again we obtain that M(V ) is Cohen-Macaulay
SG-module. Hence M(V ) is a projective Λ-module, using [IR08, Proposition 2.3]
again. �
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8. Semi-orthogonal decomposition

We assume that X is as §4 and that X in addition satisfies (H2). Assume we
are in the setting of §5, in particular §5.1.

In §6 we embedded D(Λ) for Λ = πs∗ EndX(U) in D(XR/G) via D(Λ′) for
Λ′ = πR

s∗ EndXR(ξR∗U). If Λ is Cohen-Macaulay then so is Λ′ by Lemma 6.4, and
this enabled us to embed D(Λ) in D(X/G). However, a similar statement for finite
global dimension is not true. The reader may consult §8.5 for an explicit counterex-
ample. This hampers the inductive construction of semi-orthogonal decomposition
of D(X/G) with D(Λ) as a component. In order to remediate the situation we need
to tweak the vector bundle ξR∗U by adding suitable twists.

Let U be a vector bundle on X/G and let N be as in Proposition 5.2(6). Put

(8.1) UR =

N−1⊕

i=0

(ξR∗U)(i), ΛR = πR
s∗ EndXR(UR).

Remark 8.1. The most important property of UR is that UR(1) ∼= UR locally over
XR//G. This follows by the definition of N .

The advantage of UR,ΛR (in contrast to U ′,Λ′) is that they inherit more favor-
able properties from U , Λ.

8.1. Some subcategories of D(XR/G).

8.1.1. Local generators. We slightly generalise some definitions and results from
[ŠVdB16, §3.5]. Let Y , Y ′ be smooth G-varieties such that good quotients Y →
Y//G, Y ′ → Y ′//G, respectively, exist. Let φ : Y ′ → Y be a G-equivariant map,
denote by φ̄ : Y ′//G → Y//G the corresponding quotient map. (In our application

below φ̄ will be proper.) For open U ⊂ Y//G we write Ũ = U ×Y//G Y
′ ⊂ Y ′.

Definition 8.2. Let (Ei)i∈I be a collection of objects in D(Y ′/G). The category D
locally generated over Y//G by (Ei)i∈I is the full subcategory of D(Y ′/G) spanned

by all objects F such that for every affine open U ⊂ Y//G the object F|Ũ is in the

subcategory of D(Ũ/G) generated11 by (Ei|Ũ)i. We use the notation D = 〈Ei | i ∈
I〉locY//G.

The objects F,H ∈ D(Y ′/G) are locally isomorphic over Y//G if there exists a

covering Y//G =
⋃

i∈I Ui such that F |Ũi
∼= H |Ũi for all i.

In loc. cit. we only considered the case Y ′ = Y , φ = id (so there was no
“over Y//G”). The proofs of the following analogues of the results from loc. cit.
remain valid in this slightly more general setting; note only that instead of πs∗
for πs : Y ′/G → Y ′//G we use Rφ̄∗πs∗ (taking into account that φ is now not
the identity) and that in loc. cit. we used small categories, instead of the large,
cocomplete, categories we are using here.

Lemma 8.3. [ŠVdB16, Lemma 3.5.3] Let (Ei)i∈I be a collection of perfect objects
in D(Y ′/G) and let F ∈ D(Y ′/G). Let Y//G =

⋃n
j=1 Uj be a finite open affine

covering of Y//G. If for all j one has that F|Ũj is in the subcategory of D(Ũj/G)

11Assume T is a triangulated category closed under coproduct. Let S = (Ti)i∈I be a set of
objects in T . Then the subcategory of T generated by S is the smallest triangulated subcategory
of T closed under isomorphism and coproduct which contains S.
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generated by (Ei|Ũj)i then F is in the subcategory of D(Y ′/G) locally generated
over Y//G by (Ei)i∈I .

The following result shows that semi-orthogonal decompositions can be con-
structed locally.

Proposition 8.4. [ŠVdB16, Proposition 3.5.8] Let I be a totally ordered set.
Assume D ⊂ D(Y ′/G) is locally generated over Y//G by a collection of subcate-
gories Di closed under coproduct and local isomorphism over Y//G. Assume that
Rφ̄∗πs∗ RHomY ′(Di,Dj) = 0 for i > j. Then D is generated by (Di)i and in
particular we have a semi-orthogonal decomposition D = 〈Di | i ∈ I〉.

It is convenient to pick for every E ∈ D(Y ′/G) a K-injective resolution (with
injective terms) E → IE and to represent Rφ̄∗πs∗ RHomY ′(E,F ) on Y//G by the

complex of sheaves U 7→ φ̄∗ HomŨ (IE |Ũ , IF |Ũ)G.12 With this representation

Λ := Rφ̄∗πs∗ REndY ′(E) := Rφ̄∗πs∗ RHomY ′(E,E)

is a sheaf of DG-algebras on Y//G and Rφ̄∗πs∗ RHomY ′(E,F ) is a sheaf of right
Λ-DG-modules.

Lemma 8.5. [ŠVdB16, Lemma 3.5.6] Assume that D ⊂ D(Y ′/G) is locally gener-
ated over Y//G by the perfect complex E. Let Λ = Rφ̄∗πs∗ REndY ′(E) be the sheaf
of DG-algebras on Y//G as defined above. The functors

D → D(Λ) : F 7→ Rφ̄∗πs∗ RHomY ′(E,F ),

D(Λ) → D : H 7→ φ̄−1H
L
⊗φ̄−1Λ E

are well-defined (the second functor is computed starting from a K-flat resolution13

of H) and yield inverse equivalences between D and D(Λ).

8.1.2. Locally generated subcategories. We define some locally generated subcate-
gories of D(XR/G) which we will need for the semi-orthogonal decomposition of
D(ΛR).

Let
CXR := 〈UR〉locXR//G ⊂ D(XR/G).

Our aim will be to define a semi-orthogonal decomposition of CXR .
Let

(8.2) C̃X := 〈ξR∗U〉locX//G ⊂ C′
XR := 〈ξR∗U〉locXR//G ⊂ CXR .

Let Y be a connected component of Z, GY be the stabilizer of Y in Z (not
pointwise), let ER

Y = (ξR)−1(Y ) and let sY : ER
Y /GY → XR/G be the inclu-

sion. Let UY , UER
Y

be the restrictions of U , ξR∗U to Y , ER
Y , respectively. Let

12It is enough to show that each term in HomY ′ (IE , IF ), and consequently in
HomY ′ (IE , IF )G, is flabby, since flabby sheaves are acyclic for φ̄∗ and φ̄∗ has finite coho-
mological dimension. Let F ,I ∈ Qch(Y ′/G) with I injective. Let j : U →֒ Y ′ be an
open immersion. As j!j

∗F →֒ F and I is injective in Mod(Y ′/G) (as Y ′ is noetherian),
HomY ′ (F ,I) ։ HomX(j!j

∗F , I) = HomU′ (j∗F , j∗I) = HomU′ (F |U′ ,I |U′).
13Such a K-flat resolution is constructed in the same way as for DG-algebras (see [Kel94,

Theorem 3.1.b]). One starts from the observation that for every M ∈ D(Λ) there is a morphism⊕
i∈I

ji!(Λ|Ui) → M with open immersions (ji : Ui → X//G)i∈I , which is an epimorphism on the

level of cohomology.
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πY,s : Y/GY → Y//GY , πER
Y
,s : E

R
Y /GY → ER

Y //GY , be the quotient maps. Let

CY,n = 〈sY ∗UER
Y
(n)〉locX//G.

Lemma 8.6. We have CY,n ⊂ CXR for all n ∈ Z.

Proof. Recall the standard exact sequence (6.11) on XR/G

(8.3) 0 → ξR∗U(1)
t
−→ ξR∗U → s∗UER → 0.

Let n ∈ Z. Since ξR∗U(n) belongs to CXR by Remark 8.1 (and the definition of
UR), it follows from (twisting) (8.3) that s∗UER(n) ∈ CXR . As the (local) gener-
ator sY ∗UER

Y
(n) of CY,n is its direct summand (identifying Y/GY = (∪g∈GgY )/G,

ER
Y /GY = ER

∪g∈GgY /G) the lemma follows. �

Proposition 8.7. Assume that Λ is Cohen-Macaulay. Let Z1, . . . , Zt be represen-
tatives for the orbits of the G-action on the connected components of Z. There is
a semi-orthogonal decomposition

CXR = 〈C̃X , CZ1,0, . . . , CZ1,c1−2, . . . , CZt,0, . . . , CZt,ct−2〉,

where ci = codim(Zi, X). Moreover, the components corresponding to different Zi

are orthogonal.

Proof. By (8.2), Lemma 8.6, we have C̃X , CZi,n ⊂ CXR , respectively. We apply
Proposition 8.4.

By definition of CZi,n it is clear that the components corresponding to different
i are orthogonal. To obtain the orthogonality for CZi,n for fixed i, let us first recall
(6.13) for an easier reference

(8.4) RHomXR(ξR∗U , s∗UER) = s∗ RHomER(UER ,UER).

Applying RHomXR(−, s∗UER(n)) to (8.3)14 and using (8.4) it is then enough to
show that

RξR∗ πs∗(sZi∗ RHomER
Zi

(UER
Zi

,UER
Zi

(l))) = 0

for −(ci − 2)− 1 ≤ l < 0. This holds by Lemma 6.7.

To obtain the orthogonality of CZi,n for n = 0, . . . , ci − 2 and C̃X we need

(8.5) RξR∗ πs∗ RHomXR(sZi∗UER
Zi

(n), ξR∗U) = 0

for l in the indicated range.
We first apply RHomXR/G(−, ξ

R∗U) to (8.3) and obtain the distinguished tri-
angle

RHomXR(s∗UR, ξ
R∗U) → RHomXR(ξR∗U , ξR∗U)

RHom
XR (ξR∗U⊗t,ξR∗U)

−−−−−−−−−−−−−−−−→ RHomXR(ξR∗U(1), ξR∗U) →

where t : OXR/G(1) → OXR/G denotes the canonical map. By Lemma 8.8 below
this may be rewritten as

RHomXR(s∗UR, ξ
R∗U) → RHomXR(ξR∗U , ξR∗U)

RHom
XR (ξR∗U ,ξR∗U⊗t)

−−−−−−−−−−−−−−−−→ RHomXR(ξR∗U , ξR∗U(−1)) → .

14We obtain an analogue of (6.12).
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By applying RHomXR/G(ξ
R∗U ,−(−1)) to (8.3) we then deduce that

RHomXR(s∗UER , ξR∗U) ∼= RHomXR(ξR∗U , s∗UER(−1))[−1].

Twisting and applying (8.4) we moreover have

RHomXR(s∗UER(n), ξR∗U) ∼= s∗ RHomER(UER ,UER(−1− n))[−1].

Applying RξR∗πs∗ and using Lemma 6.7, we obtain (8.5).
We now prove the generation property. We reduce to the affine X containing one

representative Zj of connected components of Z by Proposition 8.4 (and Lemma

8.3). By (8.3), it follows that 〈C̃X , CZj,0, . . . , CZj ,cj−2〉 contains ξ
R∗U(i) for 0 ≤ i ≤

cj − 1. By the proof of [VdB04b, Lemma 3.2.2] (which applies in the G-equivariant
setting) it follows that CXR contains ξR∗U(i) for all i ∈ Z. We now show that
(ξR∗U(i))i∈Z generate CXR . Let 0 6= F ∈ D(XR/G). We need to show that

(RHomXR/G(ξ
R∗U(i),F) = 0 for all i ∈ Z) =⇒

πR
s∗ RHomXR(UR,F) = πR

s∗((U
R)∨ ⊗F) = 0

or equivalently

(πR
s∗ RHomXR(UR,F) = πR

s∗((U
R)∨ ⊗F) 6= 0) =⇒

RHomXR/G(ξ
R∗U(i),F) 6= 0 for some i ∈ Z.

We assume that πR
s∗((U

R)∨⊗F) 6= 0. Recall that O(N) = πR∗
s M for an ample line

bundle M on XR//G by Proposition 5.2(6). Then HomXR//G(M(m), πR
s∗((U

R)∨ ⊗

F)) 6= 0 for m≪ 0 (since XR//G is proper over affine X//G by Proposition 5.2(2)).
Thus

0 6= RHomXR//G(M(m), πR
s∗((U

R)∨ ⊗F)) = RHomXR/G(O(mN), (UR)∨ ⊗F) =

⊕0≤i<N RHomXR/G(ξ
R∗U(i+mN),F)

and the generation follows. �

We have used the following lemma.

Lemma 8.8. Let F , G ∈ Qch(XR/G) and t : OXR/G(1) → OXR/G the canonical
map. Then the following diagram is commutative

RHomXR(F ,G)

RHom
XR (F ,t)

��

RHomXR(F ,G)

RHom
XR (t,G)

��
RHomXR(F ,G(−1)) ∼=

// RHomXR(F(1),G)

8.2. Orlov’s semi-orthogonal decomposition for the Reichstein transform.
We are now ready to formulate our next main result which is an analogue for the
Reichstein transform of Orlov’s semi-orthogonal decomposition for a blowup [Orl93].

Theorem 8.9. Let X be a smooth G-scheme such that a good quotient π : X →
X//G exists. Assume furthermore that (X,G) satisfies (H2).15 Let Z ⊂ X be the
locus of maximal stabilizer dimension and let Z1, . . . , Zt be representatives for the

15(H2) was imposed at the beginning of §8 and has been used throughout §8.1.2 implicitly via
results in §6.
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orbits of the G-action on the connected components of Z. Let Gi be the stabilizer
of Zi.

Let U be a G-equivariant vector bundle on X such that πs∗ EndX(U) is Cohen-
Macaulay, and put

CXR := 〈UR〉locXR//G ⊂ D(XR/G),

CX := 〈U〉locX//G ⊂ D(X/G),

CZi
:= 〈UZi

〉locZi//Gi
⊂ D(Zi/Gi).

Let ξRE : ER → Z denote the restriction/corestriction of ξR : XR → X.

The following holds.

(1) LξR∗ : D(X/G) → D(XR/G) is fully faithful when restricted to CX .
(2) The composition

Fi : D(Zi/Gi) →֒ D(Z/G)
LξR∗

E−−−→ D(ER/G)
Rs∗−−→ D(XR/G)

is fully faithful when restricted to CZi
.

(3) There is a semi-orthogonal decomposition of CXR

〈LξR∗CX , (F1CZ1
)(0), . . . , (F1CZ1

)(c1 − 2), . . . , (FtCZt
)(0), . . . , (FtCZt

)(ct − 2)〉

where ci = codim(Zi, X). Moreover, the components corresponding to dif-
ferent Zi are orthogonal.

Proof. (1) This follows from Corollary 6.3.
(2) This follows from Corollary 6.8.

(3) In the notation of §8.1.2, FiCZi
(n) = CZi,n, Lξ

R∗CX = C̃X . The claim then
follows immediately from Proposition 8.7. �

Corollary 8.10. Let the notations and assumptions be as in the previous theorem
and define in addition sheaves of algebras on XR//G, X//G, Zi//Gi via:

ΛR := πR
s∗ EndXR(UR), Λ := πs∗ EndX(U), ΛZi

:= πZi,s,∗ End
R
X(UZi

)

where πZi
: Zi → Zi//Gi is the good quotient.

There is a semi-orthogonal decomposition

D(ΛR) ∼= 〈D(Λ), D(ΛZ1
), . . . , D(ΛZ1

)
︸ ︷︷ ︸

c1−1

, . . . , D(ΛZt
), . . . , D(ΛZt

)
︸ ︷︷ ︸

ct−1

〉

where ci = codim(Zi, X). Moreover, the components corresponding to different Zi

are orthogonal.

Proof. This is an immediate consequence of Theorem 8.9 using Lemma 8.5.
Note that we could also deduce this corollary from Proposition 8.7 and Lemma

8.5 together with results from §6; i.e. for CXR , CZi,n we could apply the lemma with
Y ′ = Y = XR, φ = id, and then use Corollary 6.8 to further describe the latter,
and for C̃X with Y ′ = XR, Y = X,φ = ξR followed by Lemma 6.1. �



26 ŠPELA ŠPENKO AND MICHEL VAN DEN BERGH

8.3. Properties of UR,ΛR inherited from U ,Λ. For use below we recall that
UER was defined as the restrictions of ξR∗U to the exceptional divisor ER/G for
the morphism ξR : XR/G → X/G. We similarly let UR

ER be the restriction of UR

to ER/G.

Lemma 8.11. The sheaf of rings on ER//G

Λ̄ := ⊕∞
n=−∞π

R
E,s,∗ HomER(UR

ER ,UR
ER(n))

is strongly graded. If in the linear case as in Lemmas 5.4, 4.6 then on ER//G

θ̄∗Λ
R ∼= Λ̄≥0.

Proof. We start by proving that Λ̄ is strongly graded. Since UR
ER(1) ∼= UR

ER locally

over ER//G (restricting the local isomorphism UR(1) ∼= UR over XR//G in Remark
8.1 to ER/G), Λ̄ has a unit in degree 1 and it is thus strongly graded.

We now prove the second statement. We have UR = θ∗UR
ER (using the linearity

assumption U = U ⊗OW ). We compute

θ̄∗Λ
R = θ̄∗π

R
s∗ EndXR(θ∗UR

ER)

∼= πR
E,s,∗ HomER(UR

ER , θ∗θ
∗UR

ER)

∼= ⊕∞
n=0π

R
E,s,∗ HomER(UR

ER ,UR
ER(n)). �

Lemma 8.12. Let X be a scheme and let A be a strongly graded sheaf of algebras
on X. If A is homologically homogeneous then A0 and A≥0 are homologically
homogeneous on X.

Proof. This is a local statement so we may assume that A is a strongly graded ring.
It is clear that A[t] for |t| = −1 is also strongly graded. Since A≥0

∼= A[t]0 we need
two facts:

(1) If A is homologically homogeneous then so is A[t].
(2) If A is strongly graded and homologically homogeneous then so is A0.

The first fact is [BH84, Theorem 7.3]. The second follows since the categories of
A0-modules and graded A-modules are in this case equivalent [NvO82, Theorem
I.3.4], and by [SVdB08, Proposition 2.9]. �

The next proposition exhibits some properties of the pair (X,U) which lift to
the pair (XR,UR).

Proposition 8.13. (1) If Λ = πs∗ EndX(U) is homologically homogeneous on
X//G then the same is true for ΛR = πR

s∗ EndXR(UR).
(2) If U is generator in codimension one then the same is true for UR.

Proof. (1) We reduce to the linear case by Lemmas 5.3, 4.6. Let Λ̌ be the sheaf of
rings on XR//G defined by

θ̄∗Λ̌ = Λ̄ = ⊕∞
n=−∞π

R
E,s,∗ HomER/G(U

R
ER ,UR

ER(n))

where the right-hand side is to be viewed as a sheaf of θ̄∗OXR//G algebras. Let

Γ = ⊕∞
n=−∞π

R
E,s,∗ HomER/G(UER ,UER(n)).
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Using the definition of N we get

θ̄∗Λ̌ ∼=









Γ Γ(1) · · · Γ(N − 1)

Γ(−1)
. . .

...
...

Γ(−N + 1) · · · Γ









as sheaves of Z-graded algebras on ER//G, where ?(i) denotes the grading shift.
Let R = k[W ]G with W graded as in Lemma 5.5. Note that ProjR ∼= ER//G.

Let Λ̂ be the sheaf of graded OER//G-algebras associated to the k[W ]G-algebra Λ,

defined by Λ̂(Uf ) = Λf , where Uf = Spec((Rf )0) for f ∈ R>0.

We claim that Λ̂ ∼= Γ. We will now confuse quasi-coherent sheaves on affine
schemes with their global sections. First note that Λ = (End(U)⊗ k[W ])G. Hence

Λ̂(Uf ) = Λf = (End(U)⊗ k[W ]f )
G. On the other hand,

Γ(Uf) = ⊕∞
n=−∞π

R
E,s,∗ HomER/G(U ⊗OER , U ⊗OER(n))(Uf )

= (End(U)⊗⊕∞
n=−∞Γ(ER

f ,O(ER)(n)))G

= (End(U)⊗⊕∞
n=−∞(k[W ]f )n)

G

= (End(U)⊗ k[W ]f )
G.

Since Λ is homologically homogeneous, so is Λ̂ and therefore Γ. Thus, θ̄∗Λ̌ is
homologically homogeneous. Since θ̄∗Λ̌ is strongly graded by Lemma 8.11 and
θ̄∗Λ

R = (θ̄∗Λ̌)≥0 by Lemma 8.11, ΛR is homologically homogeneous by Lemma
8.12.

(2) Also (2) can be checked étale locally, so we can reduce to the linear case by
Lemmas 5.3, 4.6. Since X andXR differ in codimension 1 by the exceptional divisor
ER, we need to show that, generically on ER, UR generates D(ER/G). It is enough
to check that UR

y = UR ⊗ k(y) contains all the irreducible representations of Gy for

a generic point y ∈ ER. Denote H = Gy and let x a generic point in W such that
y = [x]. Then H (not necessarily pointwise) stabilizes the line ℓ passing through 0,
x, and the action of H on ℓ is then given by a character α ∈ X(H). Let K = kerα,
which is the (finite) stabilizer of x. Thus, H/K can be considered as a subgroup of
Gm, and it is therefore cyclic or Gm. However, if the H/K were Gm then 0 would
be in the closure of the orbit of x. This is a contradiction since x is generic in W
and W satisfies (H2). Thus, H/K is a finite cyclic group and it acts on the line

ℓ by a generator of X(H/K). Since UR
y = ⊕N−1

i=0 U ⊗ (ℓ∗)⊗i as H-representations

and (ℓ∗)⊗N is trivial by the definition of N (see Proposition 5.2(6)), and by the
assumption U contains all irreducible representations of K, Lemma 8.14 below
implies that all irreducible representations of H = Gy are contained in UR

y . �

The following lemma was used in the proof of Proposition 8.13(2), which might
also be of independent interest when viewed as a recognition criterion for induced
representations.

Lemma 8.14 (Recognition criterion). Let K be a normal subgroup of H such that
H/K is finite and let V be a representation of H. If V ⊗ V ′ :=: V for every

representation V ′ of H/K, then V :=: IndHK ResHK V (see §3).
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Proof. Ṽ := IndHK ResHK V ∼= k[H/K] ⊗ V as H-representations, where the action
on the right-hand side is diagonal. Since by the assumption k[H/K]⊗ V :=: V , we

obtain Ṽ :=: V as desired. �

8.4. Semi-orthogonal decomposition of the Kirwan resolution. In the next
theorem we collect the results we have obtained.

Theorem 8.15. Let X be a smooth G-scheme such that a good quotient π : X →
X//G exists. Assume furthermore that (X,G) satisfies (H2).16 Let U be a G-
equivariant vector bundle on X. Assume that Λ := πs∗ EndX(U) is homologically
homogeneous on X//G and that U is a generator in codimension 1 (see Definitions
7.3, 7.2).

Let us assume that the Kirwan resolution X/G is obtained by performing n
successive Reichstein transforms and Zj is blown-up at the j-th step in Xj. Let
Zj1, . . . , Zjtj be representatives for the orbits of the G-action on the connected com-
ponents of Z and let GZji

be the stabilizer of Zji (as a connected component). De-

note by πZji
: Zji → Zji//Gji the quotient map. Let U0 = U and let Ui = UR

i−1,

1 ≤ i ≤ n where (−)R is as in (8.1). Let Uj,Zji
be the restriction of Uj to Zji and

set ΛZji
= πZji,s,∗ EndZji

(Uj,Zji
).

There exists a semi-orthogonal decomposition

(8.6) 〈D(Λ), D(ΛZji
)1≤j≤n,1≤i≤tj ,0≤k≤cji−2〉

of D(X/G), where cji := codim(Zji, Xj), and the terms appear in the lexicographic
order (according to the label (j, i, k)).

Remark 8.16. The assumptions on U and Λ are satisfied if we assume that Λ is an
NCCR of X//G and X is “generic”. See Proposition 7.7.

Proof of Theorem 8.15. The theorem follows from Corollary 8.10, once we prove
that when we perform the last Reichstein transform we get D(ΛR) ∼= D(X/G).

Assume thus that we are at the last step of the Kirwan resolution. We have
ΛR = πR

s∗ EndX(Un). Moreover, X/G is a smooth Deligne-Mumford stack, Un is
generator in codimension 1 by Proposition 8.13(2) (and the assumption on U), and
ΛR is homologically homogeneous by Proposition 8.13(1) (and the assumption on
Λ). Hence, by Theorem 7.6, Un is full. Consequently, Lemma 7.2 implies that
Qch(X/G) ∼= Qch(ΛR). Then, D(ΛR) ∼= D(X/G) as DQch(−) = D(Qch(−)) in our
case by (the proof of) [HNR19, Theorem 1.2]. �

Remark 8.17. The embedding D(Λ) →֒ D(X/G) obtained from (8.6) is the same
one as the one obtained from the diagonal in (6.8). Indeed tracing through the
various constructions we find that both embeddings are obtained as the composition
of D(Λ) ∼= 〈U〉locX//G ⊂ D(X/G) with the pullback D(X/G) → D(X/G).

Remark 8.18. Theorem 8.15 will not be the end of our story as we will show in §9
that the components D(ΛZji

) of the semi-orthogonal decomposition (8.6) can be
decomposed further as sums of derived categories of Azumaya algebras on smooth
Deligne-Mumford stacks. In other words the “extra” components to be added to
the noncommutative resolution to obtain the Kirwan resolution are very close to
commutative (they are “gerby”). The precise statement, which is given in Corollary

16(H2) was imposed at the beginning of §8 and has been used throughout the section explicitly
or implicitly via results in §6.
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9.9, is a bit technical but it becomes very easy in the case that G is abelian. In
that case we have

D(ΛZji
) ∼= D(Zji/(G/Hji))

⊕Nji

where Hji is the stabilizer of Zji and Nji is the number of distinct Hji-characters
occurring in Uj,Zji,x for some x ∈ Zji. Thus in the abelian case the extra compo-
nents are truly commutative.

8.5. A counterexample. Here we give an explicit example of a Cohen-Macaulay Λ
such that gl dimΛ < ∞, gl dimΛ′ = ∞. This was announced in the beginning of
§8, from where we borrow the notations.

Example 8.19. Assume that Λ is homologically homogeneous graded algebra and
let R be the center of Λ. We note that (Λf )≥0 and (Λf )0 for a homogeneous
f ∈ R>0 need not have finite global dimension. As explained in the first paragraph
of the proof of Lemma 6.4, Λ′ is locally of the form (Λf )≥0.

For example, let G = Gm act on a 4-dimensional vector space W with weights
−2,−1, 1, 2. Let U be another G-representation with weights 0, 1, 2. Let S =
SymW∨, R = SG, Λ = (End(U) ⊗ S)G. Then Λ is an NCCR of R [VdB04a,
Theorem 8.9], and thus in particular homologically homogeneous. We let f be
the product of the weight vectors in W∨ ⊂ S with weights −2, 2 (which is G-
invariant and thus belongs to R), and claim that gl dim(Λf )0 = ∞, which implies

gl dim(Λf )≥0 = ∞ by [ŠVdB17, Lemma 4.3.2].

Note that B := (Λf )0 = (End(U) ⊗ (Sf )0)
G = MG,(Sf)0(EndU). By [ŠVdB17,

Lemma 4.2.1], it is enough to show that the global dimension of (End(U)⊗k[Nx])
Gx

is infinite for some closed point x ∈ Spec((Sf )0) with closed Gm-orbit and with
(linear) slice Nx. To compute the slice Nx we observe that Spec((Sf )0) is an open
subset in P(W ) = (W \ {0})/Gm. Hence we may compute the slice in P(W ). Let
x∗ in W be a lift of x and let Nx∗ be the slice in W of x∗ for the G ×Gm-action.
Then it is easy to see that Nx//Gx is the same as Nx∗//(G × Gm)x∗ . The weights
of W , U as G×Gm-representation are respectively (−2, 1), (−1, 1), (1, 1), (2, 1) and
(0, 0), (1, 0), (2, 0). We take the point x = [a : 0 : 0 : b] ∈ Spec(Sf )0 ⊂ P(W ). The
stabilizer of x∗ is Z4, embedded in G ×Gm via (ǫ, ǫ2), where ǫ is a primitive 4-th
root of unity. The actions of Z4 on Nx∗ , U have weights 1/4, 3/4 and 0, 1/4, 2/4,
respectively. Thus, Nx//Gx

∼= Nx∗//Z4 is a Gorenstein singularity. We moreover
have (End(U) ⊗ k[Nx])

Gx = (End(U) ⊗ k[Nx∗ ])Z4 = Endk[Nx∗ ]Z4 ((U ⊗ k[Nx∗ ])Z4),

where the last equality follows by [ŠVdB17, Lemma 4.1.3] because Nx∗ is a generic
Z4-representation (see [ŠVdB17, Definition 1.3.4]). If B would have finite global
dimension it would be an NCCR. However this is impossible by [IW14, Proposition
4.5] since (U ⊗ k[Nx∗ ])Z4 is not an “MM-module” (see loc.cit.) as U ⊂ kZ4 (as Z4-
representation) and Endk[Nx∗ ]Z4 (kZ4 ⊗ k[Nx∗ ])Z4) is a Cohen-Macaulay k[Nx∗ ]Z4 -
module.

9. Endomorphism sheaves in the case of constant stabilizer dimension

In this section, on smooth quotients stacks with constant stabilizer dimension,
we give a geometric (“gerby”) interpretation of sheaves of endomorphism algebras
of vector bundles. In particular, this applies to ΛZji

appearing in Theorem 8.15.
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9.1. Normalizer of a representation. We discuss some technical results we need
later on. Let H ⊂ G be an inclusion of reductive groups. We recall the following
result for further reference.

Lemma 9.1. [LR79, Lemma 1.1] N(H) is reductive.

Let V be an irreducible representation of H . Let g ∈ N(H). Denote by σg =
g−1 · g : H → H and by σg

V the corresponding twisted H-representation (i.e. the

action of h ∈ H on σg
Vi is h.v := (g−1hg)v). We set

NV (H) := {u ∈ N(H) | σu
V ∼=

H
V }

so that we have inclusions

H ⊂ NV (H) ⊂ N(H).

Lemma 9.2. The index of NV (H) in N(H) is finite.

Proof. We claim that if a reductive group H is a normal subgroup in a reductive
group K, then the image of the map

(9.1) K → Out(H) = Aut(H)/ Inn(H), k 7→ (h 7→ khk−1)

is finite. We apply this with K = N(H), which is reductive by Lemma 9.1. If
u ∈ N(H) is in the kernel of (9.1) then σu is an inner automorphism of H and then

σu
V ∼= V . Hence u ∈ NV (H). So the kernel of (9.1) is contained in NV (H), which

is therefore of finite index.

We now prove the claim. Note that we can assume that H is connected. Indeed
He is a normal subgroup of K and furthermore Out(H) → Aut(He)/ Inn(H) has
finite kernel (since the kernel is a subquotient of Aut(H/He) which is finite asH/He

is finite), and Aut(He)/ Inn(H) is a quotient of Out(He).
Assuming H connected we have H ⊂ Ke. As K/Ke is finite we may then also

assume that K is connected. Then K = HQ for a subgroup Q of K such that Q
and H commute [Spr98, Theorem 8.1.5, Corollary 8.1.6]. Thus, the image of K is
trivial in this case. �

For use below we write V ∼ V ′ for V, V ′ ∈ rep(H) if there is some g ∈ N(H) such

that V ′
H
∼= σg

V . This defines an equivalence relation on rep(H) and the equivalence
classes are in bijection with N(H)/NV (H). In particular by Lemma 9.2 they are
finite.

9.2. Actions with stabilizers of constant dimension. Now we assume that Z
is a G-equivariant connected17 smooth k-scheme with a good quotient π : Z →
Z//G. Moreover we assume that the stabilizers (Gx)x∈Z have dimension indepen-
dent of x. As explained in §7.1 all orbits in Z are closed and all Gx are reductive.

Let H be the stabilizer of a point in the open (“principal”) stratum of the Luna
stratification [Lun73] (we call H a generic stabilizer). By the properties of the Luna
stratification, H is uniquely determined up to conjugacy.

17The connectedness assumption is purely to simplify the notation. It is not a serious restriction
as in general X/G ∼=

∐
i
Xi/Gi where the Xi are representatives of the orbits of the connected

components of X and the Gi are their stabilizers.
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Proposition 9.3. Let Z〈H〉 be the union of connected components of ZH which
contain a point whose stabilizer is exactly H. Then Z〈H〉 is smooth and the canon-
ical map

φ : G×N(H) Z〈H〉 ∼=
→ Z

is an isomorphism.

Proof. Since ZH is smooth [CGP15, Proposition A.8.10(2)], Z〈H〉 is smooth. By
[LR79], [PV94, Theorem 7.14], Z〈H〉//N(H) ∼= Z//G. It thus follows that φ is
surjective since Z → Z//G, Z〈H〉 → Z〈H〉//N(H) separate orbits (as all orbits are
closed as mentioned in the beginning of this subsection). Moreover φ defines an
isomorphism between the principal strata for the Luna stratification. Globally φ
is quasi-finite since G acts with constant stabilizer dimension. As Z is normal, by
Zariski’s main theorem φ is an isomorphism. �

Remark 9.4. Assume that (Z,L) is a linearized connected smooth G-scheme. A
point x ∈ Zss := Xss,L is stable in Mumford’s sense [MFK94] if Gx has maximal
dimension and is closed in Zss. Let Zms ⊂ Zss be the set of Mumford stable points.
Proposition 9.3 applies to Zms and so gives a structure theorem for Zms. We have
not been able to find this result in the literature.

For use below we introduce some associated notations. For V ∈ rep(H) we put
ZV := Z〈H〉/(NV (H)/H). For convenience we list some easily verified properties
of ZV .

• ZV is a smooth Deligne-Mumford stack.
• The natural quotient map ZV → Z〈H〉//(N(H)/H) ∼= Z//G is finite.
• ZV may however be non-connected.
• If G is abelian then ZV = Z/(G/H), independently of V .

9.3. Equivariant vector bundles and Azumaya algebras. In this section we
assume as in §9.2 that Z has constant stabilizer dimension. We discuss some prop-
erties of equivariant vector bundles on Z. For simplicity we will phrase them for a
fixed choice of H (within its conjugacy class) but it is easy to see that they are in
fact independent of this choice.

If U is an N(H)-representation (possibly infinite dimensional) and V is an ir-
reducible H-representation then we let U(V ) be the V -isotypical part of U ; i.e. if
UV := Hom(V, U)H then U(V ) is the image of the evaluation map

V ⊗ UV → U.

The evaluation map is injective so it yields in particular an isomorphism as H-
representations

(9.2) V ⊗ UV
∼= U(V )

where the H-action on UH is trivial. Moreover there is an internal direct sum
decomposition

(9.3) U =
⊕

V ∈rep(H)

U(V ).

One checks that if g ∈ N(H) then inside U

(9.4) g(U(V )) = U(σg
V ).

It follows that U(V ) is in fact a NV (H)-subrepresentation of U .
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Let U be a G-equivariant vector bundle on Z. We write

U 〈H〉 := U | Z〈H〉.

Since U 〈H〉, locally over Z〈H〉//N(H), is in particular an N(H)-representation it
makes sense to use the notation U 〈H〉(V ).

We will also put

U
〈H〉
V := Hom(V,U 〈H〉)H .

From (9.2) (checking locally over Z〈H〉//N(H)) we get

(9.5) U 〈H〉(V ) ∼= V ⊗ U
〈H〉
V

as H-equivariant coherent sheaves on Z〈H〉.

Lemma 9.5. U 〈H〉(V ) and U
〈H〉
V are vector bundles on Z〈H〉. Moreover U 〈H〉(V )

is in fact a NV (H)/H-equivariant subbundle of U 〈H〉.

Proof. By (9.5) it suffices to consider U 〈H〉(V ) for the first claim. We have a
decomposition of coherent sheaves on Z〈H〉:

(9.6) U 〈H〉 =
⊕

V ∈rep(H)

U 〈H〉(V ).

This can be checked locally over Z〈H〉//N(H) so that we may assume that Z〈H〉 is
affine. Then it follows from (9.3). In particular U 〈H〉(V ) is a direct summand of
U 〈H〉. So it is a vector bundle.

The fact that U 〈H〉(V ) is NV (H)/H-equivariant may again be checked in the
case that Z is affine where it follows from the above discussed fact that U(V ) is
NV (H)/H-invariant. �

Lemma 9.6. Let x ∈ Z〈H〉. Then U 〈H〉(V ) 6= 0 (which is equivalent to U
〈H〉
V 6= 0)

if and only if there exists V ′ ∼ V such that V ′ appears in U
〈H〉
x .

Proof. We first collect some easy facts. From (9.4) one may deduce that if y ∈ Z〈H〉

and g ∈ N(H) then

(9.7) U 〈H〉(V )g−1y

H
∼= U 〈H〉(σg

V )y .

Moreover if y, y′ are in the same connected component of Z〈H〉 then by semi-
continuity

(9.8) U 〈H〉(V )y′

H
∼= U 〈H〉(V )y.

Now we prove the lemma.

(⇒) If U 〈H〉(V ) 6= 0 then there is some y ∈ Z〈H〉 such that U 〈H〉(V )y 6= 0. y
may be in a different component than x, but by combining (9.7)(9.8) we
find that there exists V ′ ∼ V such that U 〈H〉(V ′)x 6= 0 (as N(H) acts
transitively on the connected components by using the assumption that Z
is connected).

(⇐) This is proved by reversing the argument in (⇒). �

For use below we will write 〈U〉 ⊂ rep(H)/ ∼ for the set of equivalence classes

that contain a representation that appears in U
〈H〉
x for some x ∈ Z〈H〉. It follows

from (9.7) that 〈U〉 is well-defined.
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It follows from Lemma 9.5 that

AV := EndZ〈H〉(U 〈H〉(V ))H

(9.5)
∼= EndZ〈H〉(U

〈H〉
V )

is a NV (H)/H-equivariant sheaf of Azumaya algebras on Z〈H〉 which is trivial if
we forget the NV (H)/H-action. Below we consider AV as living on the quotient
stack ZV = Z〈H〉/(NV (H)/H) which was introduced in §9.2. Our main result in
this section is the following.

Proposition 9.7. Assume that U is a saturated G-equivariant vector bundle on Z.
Put

Λ = πs∗ EndZ(U)

where πs : Z/G → Z//G is the quotient map. Then we have an equivalence of
abelian categories

(9.9) Qch(Z//G,Λ) ∼=
⊕

V ∈〈U〉/∼

Qch(ZV ,AV ).

If G is abelian then each class in rep(H)/∼ is a singleton and Qch(ZV ,AV ) ∼=
Qch(Z/(G/H)) for {V } ∈ 〈U〉.

Proof. The part about general G follows by combining Lemmas 9.10 and 9.12 below
where we use Lemma 9.6 to restrict the sum.

Let us now assume that G is abelian. Then Z〈H〉 = Z and we may drop (−)〈H〉

superscripts. It is obvious that every class in rep(H)/∼ is a singleton. Furthermore
we may extend the H-action on V to a G-action (non-canonically). It follows
that UV is G/H-equivariant and AV = EndZ(UV ) as G/H-equivariant sheaves of
algebras. In other words AV is a trivial Azumaya algebra on Z/(G/H) and the
result follows. �

Corollary 9.8. With notations and hypotheses as in Proposition 9.7 we have a
decomposition

(9.10) D(Λ) ∼=
⊕

V ∈〈U〉/∼

D(AV ).

Proof. We only need to note that in DQch(−) = D(Qch(−)) in our case by (the
proof of) [HNR19, Theorem 1.2]. �

9.4. Geometric interpretation of ΛZji
. In particular, Proposition 9.7 and Corol-

lary 9.8 apply to the setting of Theorem 8.15, and thus allow us to give a more
geometric description of ΛZji

appearing there. For the convenience of the reader
we repeat the statements in that setting.

We use the notation introduced in Theorem 8.15, moreover we set Hji for the

principal stabilizer of the action ofGji on Zji, AZji,V = End
Z〈Hji〉(U

〈Hji〉
j,Zji,V

) Zji,V =

Z
〈Hji〉
ji /(NV (Hji)/Hji).
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Corollary 9.9. Let the setting be as in Theorem 8.15. Then

Qch(Zji//Gji,ΛZji
) ∼=

⊕

V ∈〈Uj,Zji
〉/∼

Qch(Zji,V ,AZji,V ),

D(ΛZji
) ∼=

⊕

V ∈〈Uj,Zji
〉/∼

D(AZji,V ).

Proof. We need to check that the hypotheses for Proposition 9.7 with (Z,G,U) =
(Zji, Gji,Uj,Zji

) apply.
Recall that Zji is Gji-equivariant smooth connected k-scheme, and by definition

Zji has stabilizers of constant dimension. Let us denote Uji := Uj,Zji
. We only

need to observe that the hypothesis on U imply that Uji is saturated. This follows
by Theorem 7.6 as its hypotheses are satisfied by Proposition 8.13 (and the initial
hypothesis on Λ, U). �

9.5. A decomposition result. In this section we assume as in §9.2 that Z has
constant stabilizer dimension. We keep the notations introduced in the previous
sections.

Lemma 9.10. For V ∈ rep(H) consider the morphism

ψV : Z〈H〉//(NV (H)/H) → Z〈H〉//(N(H)/H) ∼= Z//G.

Let U be a G-equivariant vector bundle on Z. Then we have

πs∗ EndZ(U) ∼=
⊕

V ∈rep(H)/∼

ψV,∗πV,s,∗AV

where πs : Z/G→ Z//G, πV,s : ZV = Z〈H〉/(NV (H)/H) → Z〈H〉//(NV (H)/H) are
the quotient maps.

Proof. We consider the corresponding quotient map

π
〈H〉
s∗ : Z〈H〉/N(H) → Z〈H〉//N(H) ∼= Z//G.

Using Z//G = Z〈H〉/N(H) we obtain

πs∗ EndZ(U) = π
〈H〉
s∗ EndZ〈H〉(U 〈H〉).

We may now restrict to the case18 Z = Z〈H〉, G = N(H). We drop all superscripts
(−)〈H〉 from the notation.

Using (9.6) and Lemma 9.5 we obtain a G-equivariant decomposition of U ,

U =
⊕

V ∈rep(H)/∼

⊕

V ′∼V

U(V ′)

so that

πs∗ EndZ(U) =
⊕

V ∈rep(H)/∼

π′
s∗

(
⊕

V ′∼V

EndZ(U(V
′))H

)

where π′
s∗ is the modified quotient map

Z/(G/H) → Z//(G/H).

18Note that Z〈H〉 may be nonconnected. So we are stepping out of our original context.
However we will be careful not to use any results depending on connectedness.
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Using the definition of AV it is now sufficient to prove that the projection

π′
s∗

(
⊕

V ′∼V

EndZ(U(V
′))H

)

→ ψV,∗πV,s,∗ EndZ(U(V ))H

is an isomorphism. This can be checked locally over Z//(G/H) and hence we may
assume that Z is affine. Then it reduces to the algebraic statement in Lemma 9.11
below (with G = G/H , K = NV (H)/H). �

Lemma 9.11. Let K ⊂ G be groups. Let A =
⊕

u∈G/K Au be an algebra equipped

with a G-action such that g(Ak) = Agk. Then projection induces an algebra iso-
morphism

( ⊕

u∈G/K

Au

)G
→ AK

e .

Proof. Left to the reader. �

9.6. Morita theory of AV . In this section we assume as in §9.2 that Z has
constant stabilizer dimension. We keep the notations introduced in the previous
section. Consider the quotient map

πV,s : ZV → Z〈H〉//(NV (H)/H) = Z〈H〉//NV (H)

as well as the associated morphism of ringed stacks

π̄V,s : (ZV ,AV ) → (Z〈H〉//NV (H), πV,s,∗AV ).

Lemma 9.12. Assume that U is a G-equivariant saturated vector bundle on Z.
Then for every V ∈ rep(H) there is an equivalence of categories

π̄V,s,∗ : Qch(ZV ,AV ) → Qch(Z〈H〉//NV (H), πV,s,∗AV ).

Proof. To simplify the notation we first replace Z by Z〈H〉 and G by N(H) and
drop all (−)〈H〉 superscripts. Since X/G ∼= X〈H〉/N(H) it is easy to see that this
does not affect the saturation property of U .

Next we further replace G by NV (H) which by Lemma 9.13 below also does not
affect the saturation property.

As π̄V,s,∗π̄
∗
V,s is easily seen to be the identity, we have to prove that π̄∗

V,sπ̄V,s,∗ is
the identity.

This may be checked strongly étale locally on Z. Hence we may replace Z by
G×Gx S for S a smooth connected affine slice at x ∈ Z. Using (G×Gx S)/(G/H) ∼=
S/(Gx/H) we may reduce do Z = S, G = Gx; i.e. x ∈ Z is now a fixed point for G
and we have to show that π̄∗

V,sπ̄V,s,∗ is the identity on a neighborhood of x. Note

that G/H is now a finite group.
Since π̄V,s,∗ is exact and π̄∗

V,s is right exact it is sufficient to prove that for every

M ∈ coh(AV ) there is a map A⊕N
V → M in coh(AV ), whose cokernel is zero on a

neighborhood of x. By lifting generators ofM we may reduce to the case Z = x and
we have to show that AV is a projective generator for coh(AV ). As U is saturated
this follows from Lemma 9.14 below (using that Hx = H). �

Lemma 9.13. Assume that U is a saturated G-equivariant vector bundle on Z
and K is a subgroup of G of finite index which contains Hx for all x ∈ H. Then
the pullback of U to Z/K is also saturated.
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Proof. Let x ∈ Z. As G/K is finite we have Tx(X)/Tx(Kx) = Tx(X)/Tx(Gx) =
Hx. As Gx/Kx is finite, the lemma follows from Mackey’s restriction formula. �

Lemma 9.14. Let H be a normal subgroup of finite index in G. Assume that U is
a finite dimensional G-representation which is up to nonzero multiplicities induced
from H. If for V ∈ rep(H), σg

V ∼= V for all g ∈ G, then EndH(U(V )) is a
projective generator for mod(G/H,EndH(U(V )).

Proof. Note that ResGH IndGH W :=:
⊕

W ′∼W W ′ for W ∈ rep(H) (see e.g. the

proof of [ŠVdB17, Lemma 4.5.1]). Hence up to Morita equivalence we may assume

U =
⊕n

i=1 Ind
G
H Vi with Vi ∈ rep(H) and V1 = V , V2, . . . , Vn 6∼ V (as IndG

H W ∼=
IndGH W ′ if W ∼ W ′), so that IndGH V1 and

⊕n
i=2 Ind

G
H Vi have no common H-

summands. Thus U(V ) = IndGH V (as σg
V ∼= V ). We now put U = U(V ).

As G-representations we have

(9.11) U ⊗ k[G/H ] ∼= IndGH V ⊗ k[G/H ] = IndGH(V ⊗ k[G/H ]) :=: IndGH V = U

where we used the projection formula (i.e. the tensor identity, [Jan87, Proposition
I.3.6]) for the second equality, and the fact V :=: V ⊗ k[G/H ] as H-representations
(since k[G/H ] is the trivial H-representation) for the :=:-relation.

Consider the functor

F : mod(G) → mod(G/H,EndH(U)) :M 7→ HomH(U,M).

One checks that if T ∈ mod(G), W ∈ mod(G/H) then

(9.12) F (T ⊗W ) = F (T )⊗k W

in mod(G/H,EndH(U)). Applying F to (9.11) and using (9.12) with W = k[G/H ]
we obtain

(9.13) EndH(U)⊗ k[G/H ] :=: EndH(U)

in mod(G/H,EndH(U)). As EndH(U) ⊗ k[G/H ] is tautologically a generator
for mod(G/H,EndH(U)) it follows from (9.13) that EndH(U) is a generator for
mod(G/H,EndH(U)). �

10. Example

We demonstrate the above results on a simple example of the conifold singularity.

Assume that X = W is a 4-dimensional vector space on which G = Gm acts
with weights −1,−1, 1, 1. Then X//G is a conifold singularity. In this case Z is the
origin, and the Kirwan resolution X/G is obtained by one Reichstein transform.

A noncommutative crepant resolution Λ of X//G, is given by a vector bundle
U = OX ⊕χ1 ⊗OX , where χi denotes 1-dimensional G-representation with weight
i, i.e. Λ = (End(χ0 ⊕ χ1) ⊗ k[W∨])G ∼= Endk[W∨]G(k[W

∨]G ⊕ (χ1 ⊗ k[W∨])G)
[VdB04a, Theorem 8.9].

Note that ΛZ = End(χ0 ⊕ χ1)
G = k⊕2 and codim(Z,X) = 4. By Theorem 8.15

we then obtain

(10.1) D(X/G) = 〈D(Λ), D(k), D(k), D(k), D(k), D(k), D(k)〉.

Remark 10.1. Note that X//G is as a toric variety given by a fan with a single cone
σ generated by (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1). Let Σ = σ ∪ R≥0(1, 1, 2). Then
X/G is a toric stack given by the stacky fan

Σ = (Σ, {(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), (2, 2, 4)})
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(representing the stacky blow up of X//G in the origin) and X//G is a toric variety
given by Σ (which is a blow-up of X//G in the origin) [EM12, Theorem 4.7]. Using
[BCS05, Proposition 4.5] one can (alternatively) check that rkK0(X/G) = 8, which
agrees with (10.1).

Appendix A. Local duality for graded rings

Let Λ be an N-graded ring which is finitely generated as a module over its
center R which in turn is a N-graded k-algebra such that Rn is a finitely generated
R0-module. For convenience reasons we use left modules in this appendix. This
allows us to literally use some results from [VdB97]. Needless to say this is only a
notational issue and moreover in the rest of the paper we only use Corollary A.3
which is left right agnostic.

Below we write D(Λ) for D(GrΛ) and this convention extends to all related
notations. Let DR, DR0

be the Grothendieck dualizing complexes of R, R0 respec-
tively and let DΛ, DΛ0

be the corresponding dualizing complexes of Λ, Λ0; i.e. we
have

DΛ = RHomR(Λ, DR),

DΛ0
= RHomR0

(Λ0, DR0
).

Let C be an arbitrary graded k-algebra. For M a complex of left graded C ⊗Σ-
modules, where Σ ∈ {Λ,Λ0}, we put

M∨ = RHomR0
(M,DR0

) ∈ D(C◦ ⊗ Σ◦).

Let Df (Λ0) be the full subcategory of D(Λ0) consisting of complexes which have
finitely generated cohomology. Then (−)∨ defines a duality between Df (Λ0) and
Df(Λ

◦
0) (recall that DR0

is bounded and has finite injective dimension).
Similarly, let Db

f(Λ) be the full subcategory of Db(Λ) consisting of complexes

with cohomology which is finitely generated as Λ0-module (or equivalently as R0-
module) in every degree. Then (−)∨ defines a duality between Db

f (Λ) and D
b
f (Λ

◦)

(recall that DR0
has finite injective dimension).

Remark A.1. If M ∈ D(Λ0) then by change of rings we have

M∨ = RHomΛ0
(M,DΛ0

).

The same formula holds if M ∈ D(Λ), but unfortunately in that case the formula
obscures the Λ-action on M∨.

Let RΓΛ≥1
be the right derived functor of lim

−→n
RHomΛ(Λ/Λ≥n,−).

Proposition A.2. Let M ∈ D(C ⊗ Λ). Then there is a local duality formula in
D(C◦ ⊗ Λ◦)

RΓΛ>0
(M)∨ ∼= RHomΛ(M,RΓΛ>0

(Λ)∨).

Proof. If C is absent then the formula is true on the level of complexes for M = Λ.
One then proceeds as in the proof of [VdB97, Proposition 5.1] by replacing M by
a free C ⊗ Λ-resolution. �

Corollary A.3. We have DΛ
∼= RΓΛ>0

(Λ)∨ in D(Λe).
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Proof. We first check that the right-hand side is a dualizing complex. Note that
RΓΛ>0

(Λ)∨ = RΓR>0
(Λ)∨ so that we do not need to worry about the distinction

between left and right. Following the proof of [VdB97, Theorem 6.3] we only need
to check that Hi(RΓΛ>0

(Λ)∨) is finitely generated. Following Lemma A.4 below it

is enough to verify that Λ0

L
⊗Λ H

i(RΓΛ>0
(Λ)∨) has finitely generated cohomology

as Λ0-modules. We have the following formula as right Λ0-modules

RHomΛ◦
0
(Λ0

L
⊗Λ RΓΛ>0

(Λ)∨, DΛ0
) = RHomΛ◦(Λ0,RHomΛ0

(RΓΛ>0
(Λ)∨, DΛ0

))

= RHomΛ◦(Λ0, RΓΛ>0
(Λ))

= RHomΛ◦(Λ0,Λ)

where in the first line we have considered Λ0

L
⊗Λ RΓΛ>0

(Λ)∨ as the complex of
(Λ,Λ0)-bimodules, and the third line follows by replacing Λ as a right Λ-module by
an injective resolution. It follows that as left Λ0-modules

Λ0

L
⊗Λ RΓΛ>0

(Λ)∨ = RHomΛ◦(Λ0,Λ)
∨,

which implies that Λ0

L
⊗ΛH

i(RΓΛ>0
(Λ)∨) indeed has finitely generated cohomology

as Λ0-modules.
The isomorphism DΛ

∼= RΓΛ>0
(Λ)∨ is a consequence of the uniqueness of “rigid”

dualizing complexes [VdB97, Definition 6.1, Proposition 8.2(1)]. The fact that the
right-hand side is rigid follows as in the proof of [VdB97, Proposition 8.2(2)], as for
DΛ this follows from the proof of [Yek99, Proposition 5.7]. �

Lemma A.4. Let Λ be a left noetherian N-graded ring. Assume that M is a
right bounded complex of graded left Λ-modules with left bounded cohomology. Then
the cohomology modules of M are finitely generated Λ-modules if and only if the

cohomology modules of Λ0

L
⊗Λ M are finitely generated Λ0-modules.

Proof. We concentrate on the nonobvious direction.

Step 1. Assume that M ∈ Gr(Λ) has left bounded grading. By the graded
Nakayama lemma,M is finitely generated if and only if Λ0⊗ΛM is finitely generated
(see e.g. [ATVdB90, Proposition 2.2]).

Step 2. Let now M be as in the statement of the lemma and assume that the

cohomology modules of Λ0

L
⊗Λ M are finitely generated Λ0-modules. Let m be

maximal such that Hm(M) 6= 0. Then Hm(Λ0

L
⊗Λ M) = Λ0 ⊗Λ H

m(M). This
follows by the appropriate hypercohomology spectral sequence. Hence by Step 1,
Hm(M) is finitely generated.

Step 3. Tensoring the distinguished triangle

τ≤m−1M →M → Hm(M)[−m] →

with Λ0 yields the distinguished triangle

Λ0

L
⊗Λ τ≤m−1M → Λ0

L
⊗Λ M → Λ0

L
⊗Λ H

m(M)[−m] → .

It now follows by Step 2 that Λ0

L
⊗Λ τ≤m−1M has finitely generated cohomology.

Now we repeat Steps 2,3 with τ≤m−1M replacing M . �
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Remark A.5. If Λ is homologically homogeneous (c.f. Definition 7.3) of dimension
d then DΛ = ωΛ[d], where ωΛ := HomR(Λ, ωR), by [SVdB08, Proposition 2.9].
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