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Abstract
Estimation	of	changes	in	abundances	and	densities	is	essential	for	the	research,	man-
agement,	and	conservation	of	animal	populations.	Recently,	technological	advances	
have	facilitated	the	surveillance	of	animal	populations	through	the	adoption	of	passive	
sensors,	such	as	camera	traps	(CT).	Several	methods,	including	the	random	encoun-
ter	model	(REM),	have	been	developed	for	estimating	densities	of	unmarked	popula-
tions	but	require	additional	information.	Hierarchical	abundance	models,	such	as	the	
N-mixture	model	 (NMM),	 can	 estimate	 abundances	without	 performing	 additional	
fieldwork	but	do	not	explicitly	estimate	the	area	effectively	sampled.	This	obscures	
the	 interpretation	of	 its	densities	and	 requires	 its	users	 to	 focus	on	 relative	meas-
ures	of	abundance	instead.	Hence,	the	main	objective	of	our	study	is	to	evaluate	if	
REM	and	NMM	yield	consistent	results	qualitatively.	Therefore,	we	compare	relative	
trends:	 (i)	 between	 species,	 (ii)	 between	 years	 and	 (iii)	 across	 years	 obtained	 from	
annual	density/abundance	estimates	of	three	species	(fox,	wild	boar	and	red	deer)	in	
central	Spain	monitored	by	a	camera	trapping	network	for	five	consecutive	winter	pe-
riods.	We	reveal	that	NMM	and	REM	provided	density	estimates	in	the	same	order	of	
magnitude	for	wild	boar,	but	not	for	foxes	and	red	deer.	Assuming	a	Poisson	detection	
process	in	the	NMM	was	important	to	control	for	inflation	of	abundance	estimates	for	
frequently	detected	species.	Both	methods	consistently	 ranked	density/abundance	
across	species	(between	species	trend),	but	did	not	always	agree	on	relative	ranks	of	
yearly	estimates	within	a	single	population	 (between	years	 trend),	nor	on	 its	 linear	
population	trends	across	years	(across	years	trend).	Our	results	suggest	that	relative	
trends	are	generally	consistent	when	the	range	of	variability	is	large,	but	can	become	
inconsistent	when	the	range	of	variability	is	smaller.

K E Y W O R D S
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1  |  INTRODUC TION

Obtaining	 reliable	 demographic	 parameters,	 including	 (age-spe-
cific)	 survival,	 immigration,	 fecundity,	 and	 population	 size,	 is	
essential	 in	 wildlife	 management	 (Carpio	 et	 al.,	 2021;	 Williams	
et al., 2002).	 Since	 the	 estimation	 of	 population	 size	 over	 time	
enables	population	monitoring	and	 is	 cheap	 in	 terms	of	data	 re-
quirements	 (i.e.,	 counts	 from	 point	 surveys	 replicated	 in	 space	
and	 time	 are	 sufficient),	 it	 is	 the	 (main)	 parameter	 of	 interest	 in	
many	ecological	 studies.	Moreover,	 collecting	population	 counts	
has	become	increasingly	cost-efficient	over	the	last	decades	due	
to	 the	 adoption	 of	 automated	 sensor	 networks,	 such	 as	 camera	
traps	(CT).	Analytical	frameworks	for	counts	can	yield	precise	es-
timates	of	population	size	(Keever	et	al.,	2017;	Palencia,	Rowcliffe,	
et al., 2021)	or	trends	therein	(Kéry	&	Andrew	Royle,	2010).	When	
individuals	 are	 unmarked	 (i.e.,	 they	 cannot	 be	 uniquely	 identi-
fied),	 obtaining	 population	 size	 using	 CTs,	 has	 been	 achieved	
through	 different	 analytical	 frameworks,	 including	 time-	 or	
space-to-event	 models	 (Moeller	 et	 al.,	 2018),	 distance	 sampling	
(Howe et al., 2017),	random	encounter	(and	staying	time)	models	
(Nakashima	et	al.,	2018;	Rowcliffe	et	al.,	2008),	spatial	capture–re-
capture	(Chandler	&	Royle,	2013)	and	site-structured	abundance	
models	(Kéry	&	Royle,	2016).

Broadly,	 these	methods	can	be	divided	 into	 two	groups:	 (G1)	
those	 that	 estimate	 density	 from	 detection	 frequency	 and	 (G2)	
those	that	model	animal	counts	as	a	function	of	an	abundance	and	
a	detection	parameter	(i.e.,	detection	probability	or	distance	from	
an	activity	centre)	that	are	jointly	estimated	(Loonam	et	al.,	2021).	
Importantly,	 the	state	variables	of	 interest	 (density	D,	and	abun-
dance N)	 are	 slightly	 different	 across	methods.	 In	G1,	 density	D 
represents	the	expected	number	of	individuals	N	at	any	instant	in	
time	and	within	the	collective	set	of	camera	viewsheds	(i.e.	areas	
in	 front	 of	 the	 CT	 in	 which	 individuals	 can	 be	 detected)	 with	 a	
total area A. In G2, N	refers	to	local	or	site-abundance	(henceforth	
“abundance”),	 the	 number	 of	 individuals	 available	 for	 detection	
during	a	specific	survey	duration	and	at	a	specific	camera	location.	
In	 this	 study,	 we	 will	 evaluate	 whether	 relative	 trends	 in	 abun-
dance/density	are	consistent	across	these	two	paradigms	of	treat-
ing	 unmarked	 population	 counts.	 Specifically,	 we	 will	 focus	 on	
the	random	encounter	model	(REM)	and	N-mixture	model	(NMM)	
(Royle,	 2004)	 as	 representatives	 of	 G1	 and	 G2,	 respectively.	
We	 choose	 these	models,	 as	 they	 are	 the	most	widely	 adopted	
methods	 for	estimating	unmarked	population	 size	using	CT	data	
(Gilbert	et	al.,	2020).

The	REM	estimates	animal	density	from	trapping	rate	(aggre-
gated	 count	 across	 the	 survey	 period),	 the	 average	 size	 of	 the	
detection	 zone	 of	 the	 camera,	 and	 average	movement	 speed	 of	
the	 population	 under	 study	 (Rowcliffe	 et	 al.,	 2008).	 Obtaining	

speeds	of	movement	can	be	done	by	tagging	individuals	with	GPS	
collars,	 but	 increases	 the	 cost	 of	 the	 study	 and	 usually	 leads	 to	
underestimation	of	movement	(Rowcliffe	et	al.,	2012;	Sennhenn-
Reulen et al., 2017).	However,	a	method	to	estimate	the	average	
speed	of	movement	from	CT	pictures	has	recently	been	developed	
(Palencia,	 Fernández-López,	 et	 al.,	2021;	 Rowcliffe	 et	 al.,	2016).	
REM	makes	the	following	assumptions:	(i)	detections	are	indepen-
dent	of	each	other,	(ii)	cameras	are	placed	randomly	relative	to	an-
imal	movement,	(iii)	individuals	move	independently	of	each	other,	
and	(iv)	the	populations	under	study	are	closed	relative	to	the	en-
tire	 study	area	 (i.e.,	 no	 changes	 in	overall	 population	 size	within	
the	survey	period).	The	REM	was	found	to	be	robust	against	viola-
tions	in	the	independence	of	detections	(Hayashi	&	Iijima,	2022),	
but	not	against	non-random	placement	of	cameras	relative	to	an-
imal	movement	(Cusack	et	al.,	2015).	Moreover,	REM	is	sensitive	
to	biased	movement	speeds,	as	well	as	to	the	method	used	to	es-
timate	 the	 range	of	 the	 camera	 viewsheds	 (Santini	 et	 al.,	2022).	
Nonetheless,	 Palencia,	 Rowcliffe,	 et	 al.	 (2021)	 obtained	 similar	
density	 estimates	 from	REM	compared	 to	other	methods	 repre-
senting	G1.	Finally,	REM	in	its	current	form	does	not	accommodate	
the	modelling	of	spatial	heterogeneity	in	density.

NMMs	 are	 hierarchical	 models	 that	 estimate	 the	 abundance	
at	each	camera	(or	site)	based	on	counts	from	replicated	surveys	
within	 the	 survey	 period	 rather	 than	 directly	 arriving	 at	 animal	
density	for	the	collective	set	of	camera	viewsheds,	as	is	done	by	
REM.	Consequently,	the	NMM	requires	that	the	study	area	is	di-
vided	into	discrete	sites	in	order	to	infer	abundance.	The	model	as-
sumes	that	(i)	false-positive	detections	do	not	occur,	(ii)	detections	
are	 independent	of	each	other,	 (iii)	each	 individual	has	 the	same	
probability	 of	 being	 detected,	 and	 (iv)	 the	 local	 population	 size	
does	 not	 change	 throughout	 the	 survey	 period.	 As	 abundances	
are	typically	biased	when	some	or	all	of	these	model	assumptions	
are	violated	(Barker	et	al.,	2018;	Fogarty	&	Fleishman,	2021;	Kéry	
&	Royle,	2016; Link et al., 2018),	 solutions	 have	 been	 proposed	
that	 involve	 elegant	 ways	 to	 relax	 these	 assumptions	 (Dail	 &	
Madsen,	2011;	Martin	et	al.,	2011).	Here,	we	formulate	an	NMM	
for	open	populations	(Dail	&	Madsen,	2011),	with	a	beta-Poisson	
detection	 process,	 building	 on	 ideas	 in	Gomez	 et	 al.	 (2017)	 and	
Kéry	and	Royle	(2016).	Together,	these	adjustments	accommodate	
changes	in	abundance	between	years	and	to	some	extent	the	oc-
currence	of	double	counts	(i.e.,	counting	an	individual	twice	during	
a	survey).	Furthermore,	they	allow	the	sharing	of	 information	on	
the	detection	process	between	commonly	observed	and	rare	spe-
cies	 in	 a	 community	 (Gomez	 et	 al.,	 2017;	 Yamaura	 et	 al.,	 2011, 
2012, 2016).

Since	the	state	variables	of	interest	(density	D	and	abundance	N )	
are	 different	 between	REM	and	NMM,	 comparing	 these	methods	
based	on	absolute	estimates	of	their	state	variables	would	not	yield	
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valuable	 insights.	Nevertheless,	 relative	 trends	 in	 their	 state	 vari-
ables	 should	be	 largely	 consistent.	However,	 rank-order	 estimates	
between	REM	and	NMM	may	diverge	in	some	circumstances	given	
their	different	treatments	of	animal	counts.	Therefore,	the	objective	
of	this	study	is	to	evaluate	if	REM	and	NMM	yield	consistent	(relative)	
trends:	(i)	between	species,	(ii)	between	years	and	(iii)	across	years	
obtained	from	annual	density/abundance	estimates.	Specifically,	we	
evaluate	i–iii	empirically	by	fitting	REM	and	NMM	to	CT	data	of	fox	
(Vulpes vulpes),	red	deer	(Cervus elaphus),	and	wild	boar	(Sus scrofa)	
from	a	Mediterranean	area	in	central	Spain	collected	during	five	con-
secutive	winter	periods.	We	believe	that	this	comparison	is	relevant	
given	the	 importance	of	population	trends	 in	wildlife	conservation	
and	management	(see	Prowse	et	al.,	2021	for	a	recent	example),	and	
because	it	compares	methods	representing	two	fundamentally	dif-
ferent	paradigms	of	unmarked	abundance	estimation.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The	 study	 area	 (longitudes:	 4.148–4.048°	 W;	 latitudes:	 39.342–
39.460°	N)	is	the	Quintos	de	Mora	National	Reserve.	It	has	a	total	
surface	 area	of	68.64 km2,	 and	 is	 located	 south	of	 the	Montes	de	
Toledo.	The	centre	of	the	area	is	characterised	by	an	open	savanna,	
while	 the	mountain	 ranges	 in	 the	 north	 and	 south	 are	 dominated	
by	Mediterranean	 shrubland	 and	 natural	 forests	 (Figure 1).	 In	 the	
savanna,	the	most	predominant	species	is	Pinus pinea,	while	forests	
and	shrubland	are	mainly	composed	of	a	mixture	of	Quercus coccif-
era, Quercus suber, Quercus ilex, Arbutus unedo, Erica spp, and Cistus 
spp.	 Quintos	 de	 Mora	 has	 altitudes	 ranging	 from	 720	 to	 1050 m	
above	sea	level.	The	climate	is	slightly	continental,	characterised	by	
cold	winters	and	hot	summers.	Quintos	de	Mora	has	an	annual	pre-
cipitation	between	300	and	400 mm.	The	entire	study	area	is	fenced	
with	fences	impermeable	to	ungulates,	such	that	the	movement	of	
wild	boar	and	red	deer	in	and	out	of	the	area	should	be	limited.	While	
these	fences	were	not	explicitly	designed	to	be	a	movement	barrier	
for	fox,	they	may	also	hamper	fox	movement	to	some	extent.

2.2  |  Camera trapping network and data

Within	the	study	area,	a	CT	network	was	deployed	each	winter	from	
2017–18	 to	2021–22.	Each	of	 these	winters,	20	 cameras	were	 in-
stalled	at	the	 intersections	of	a	 lattice	grid	 (with	a	camera	spacing	
of	~2 km),	which	were	fixed	across	years	(Figure 1; Table 1).	During	
winter	2019–20,	eight	additional	cameras	were	placed.	This	resulted	
in	camera	 locations,	which	are,	to	the	best	of	our	knowledge,	ran-
dom	relative	to	the	movements	of	the	three	target	species,	i.e.,	fox,	
red	deer	and	wild	boar.	These	species	were	selected	as	they	were	
the	only	ones	that	generated	sufficient	records	for	analysis	by	REM/
NMM.	As	NMMs	require	data	collected	at	discrete	sites,	we	super-
imposed	a	hexagonal	grid	 layer	on	 the	study	area	 resulting	 in	336	

grid	cells	of	0.2255 km2.	This	grid	cell	size	trades	off	the	possibility	to	
capture	fine-scale	spatial	variation	with	the	possibility	of	detecting	
individuals	 at	multiple	 trapping	 locations.	 The	number	of	 trapping	
days	varied	between	years.	During	the	winters	of	2017–18,	2018–19	
and	2019–20,	we	used	Bushnell	 Trophy	Aggressor	 cameras,	while	
Reconyx	Hyperfire	2	and	Browning	Strike	Force	cameras	were	de-
ployed	 during	 the	winters	 of	 2020–21	 and	 2021–22,	 respectively	
(Table 1).	 All	 cameras	 were	 mounted	 on	 trees	 ~50 cm	 above	 the	
ground,	facing	North	and	parallel	to	the	ground.	None	of	the	cam-
eras	was	baited	to	lure	animals	or	was	placed	preferentially	next	to	
a	trail.	All	cameras	were	set	to	be	operative	all	day,	to	record	a	burst	
of	 consecutive	photos	 (rapid	 fire)	 at	 each	activation,	 and	with	 the	
minimum	triggering	interval	between	activations.	Timely	check-ups	
were	performed	to	determine	battery	 levels	and	to	verify	that	the	
cameras	were	 still	 operating.	 Groups	 of	 consecutive	 photos	were	
aggregated	 into	 sequences,	 which	 were	 manually	 annotated	 and	
used	for	the	analysis	of	density/abundance	by	both	REM	and	NMM	
(Bollen	et	al.,	2023).

F I G U R E  1 Map	of	the	study	area	in	Quintos	de	Mora	with	
hexagonal	grids.	The	colour	scale	represents	the	proportion	
of	forest	in	each	grid	(white:	low	proportion;	dark	brown:	high	
proportion).	Camera	locations	that	had	a	camera	deployed	every	
winter	are	indicated	by	dots,	those	with	deployments	only	in	the	
winter	of	2019–20	by	triangles.	The	inset	map	shows	the	study	area	
within	Spain	and	Castilla-La	Mancha	(red).
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2.3  |  Statistical models

We	analysed	CT	data	for	three	different	species	using	the	REM	and	
an	extension	of	the	NMM.	While	the	REM	was	applied	to	each	of	the	
species	specific	data	independently	for	each	year,	a	single	spatially	
and	 temporally	 explicit	 beta-Poisson	NMM	was	 fitted	 to	 the	 joint	
species	data	of	all	years	in	the	study	period.

2.3.1  |  Random	encounter	model

We	 estimated	 animal	 density	 (individuals/km2)	 for	 each	 target	
species	and	year	in	our	study	period	separately	using	REM.	Fitting	
REM	requires	three	sources	of	information:	(i)	encounter	rate	y ∕ t
,	 the	rate	at	which	 individuals	of	a	population	come	 into	contact	
with	 a	CT,	 (ii)	 the	 radius	 r  and angle �	 of	 the	 camera	 viewsheds	
and	 (iii)	 animal	movement	 speed	v,	which	we	obtained	 following	
Palencia,	Rowcliffe,	et	al.	(2021).	First,	we	obtained	the	encounter	
rate	 of	 a	 target	 species	 by	 dividing	 the	 number	 of	 encounters	y 
(i.e.,	 total	number	of	 individuals	 from	 independent	 sequences	of	
pictures	of	the	species)	by	the	total	survey	effort	 t 	 (i.e.,	the	sum	
of	durations	that	each	camera	was	active	 in	the	field).	Note	that	
we	regarded	pictures	generated	from	each	movement	in	and	out	
of	 the	 camera	 viewshed	 as	 independent.	 Second,	 we	 estimated	
the	effective	radius	 r̂  and angle �̂	by	applying	distance	sampling	
to	recorded	positions	(radial	distance	and	angle)	of	each	individual	
entering	a	camera	viewshed	(Rowcliffe	et	al.,	2011).	Third,	we	ap-
proximated	the	movement	speed	of	each	individual	by	dividing	its	
distance	 travelled	 through	 the	 camera	 viewsheds	 by	 the	 time	 it	
took	(i.e.	time	between	first	and	last	photo).	For	each	target	spe-
cies,	we	then	identified	its	main	behavioural	modes	and	averaged	
across	 all	 speed	 measurements	 of	 the	 corresponding	 mode	 to	
obtain	 behaviour	 specific	 speeds	 for	 the	 population.	 Day	 range	
was	 obtained	 by	 summation	 of	 the	 products	 of	 behaviour	 spe-
cific	speeds	and	the	proportion	of	time	spent	on	each	behaviour	
(Palencia,	Fernández-López,	et	al.,	2021).	After	obtaining	encoun-
ter rate y ∕ t, the radius r  and angle �	 of	 the	 camera	 viewsheds,	
and	the	day	range	(movement	speed)	v	for	each	population,	animal	
densities	were	estimated	by:

Finally,	 we	 calculated	 standard	 errors	 associated	 with	 density	 esti-
mates	for	each	population	using	the	delta	method	(Seber,	1982).

2.3.2  |  N-mixture	model

We	 modelled	 abundances	 for	 all	 target	 species	 and	 years	 in	 our	
study	period	using	a	single	NMM.	The	NMM	uses	species	counts,	
which	are	collected	repeatedly	in	space	and	time,	to	model	the	ex-
pected	number	of	individuals	per	site	during	a	given	survey	period	
(abundance),	knowing	that	some	of	the	individuals	that	are	present	
will	not	be	detected	(i.e.,	they	do	not	show	up	in	the	species	counts).	
However,	 the	discrete	sites	 (0.2255 km2)	as	we	have	defined	them	
in section 2.2	are	smaller	than	the	typical	home	ranges	of	our	target	
species.	Hence,	we	cannot	rule	out	that	some	individuals	have	been	
detected	at	multiple	camera	locations,	violating	the	closure	assump-
tion.	Thus,	we	interpreted	abundances	obtained	from	our	NMM	as	
relative	abundances,	i.e.,	the	number	of	individuals	that	have	used	a	
site	at	least	once	during	the	survey	period	(henceforth	“abundance”	
will	refer	to	relative	abundance).

We	 obtained	 species	 counts	 per	 survey	 day	 (24-h)	 by	 sum-
mation	 across	 all	 the	 individuals	 of	 that	 species	 counted	 on	 se-
quences	 of	 pictures	 from	 that	 day.	 This	 yielded	 counts	 ysijt	 for	
species s = 1, 2, 3	 (fox,	wild	boar,	 red	deer)	 at	 the	 subset	of	 sites	
i = 1, 2, … ,R	that	contained	a	CT	during	day	 j = 1, 2, … , J	in	year	
t = 1, 2, … , T.	To	correct	for	detection	error	NMM	simultaneously	
estimates	 the	 detection	 probability	 (or	 rate)	 and	 the	 abundance	
of	 a	 species	 from	ysijt.	We	 fitted	our	NMM	to	 species	 counts	ysijt 
within	a	Bayesian	estimation	framework	using	Stan (via the R pack-
age cmdstanr),	a	probabilistic	programming	language	that	enables	
Bayesian	estimation	through	a	dynamic	Hamiltonian	Monte	Carlo	
(HMC)	sampler	(Carpenter	et	al.,	2017).	Specifically,	we	assumed	
ysijt	 to	be	 i.i.d.	Poisson	random	variables,	 such	that	 the	detection	
process	is	given	by:

where	the	mean	 is	a	product	of	the	 latent	number	of	 individuals	of	
species s at site i 	during	year	t (Nsit)	and	the	species	specific	detec-
tion/trapping	rate	per	camera	per	day	(psijt).	Note	that	by	assuming	a	
Poisson	detection	process,	our	NMM	accommodates,	to	some	extent,	
for	double	counts	(i.e.,	it	cannot	account	for	individuals	that	are,	on	av-
erage,	being	detected	>1	per	survey	day).	We	assumed	that	the	trap-
ping rate was constant across J	days	of	year	t and across R sites and 
that	species	specific	detection	rates	pst	followed	a	beta	distribution:

where	we	parameterised	Beta(�, �), such that � = pt� and � =
(
1 − pt

)
� .	

Under	 this	 parameterisation,	 pt and �	 have	 a	 clear	 biological	

D =
y

t
⋅

�

v ⋅ r ⋅ (2 + �)

ysijt ∣ Nsit ∼ Poisson
(
Nsitpsijt

)
,

pst ∼ Beta
(
ptτ,

[
1 − pt

]
τ
)
,

TA B L E  1 Description	of	the	yearly	camera	trapping	survey.

Year Winter Start date End date No. of days No. of cams Cam. Type

1 2017–18 28/09/2017 25/10/2017 28 19 Bushnell	Trophy	Aggressor

2 2018–19 29/11/2018 31/12/2018 33 19

3 2019–20 18/09/2019 09/12/2019 83 28

4 2020–21 01/10/2020 08/11/2020 39 19 Reconyx	Hyperfire	2

5 2021–22 20/01/2022 16/02/2022 28 20 Browning	Strike	Force
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    |  5 of 19BOLLEN et al.

interpretation	as	the	mean	detection	rate	of	all	species	in	the	commu-
nity,	and	a	measurement	of	similarity	in	species	specific	detection	rates	
respectively	 (Dorazio	et	al.,	2013).	Furthermore,	we	modelled	abun-
dances Nsit	as	a	Poisson	process	with	mean	�sit:

Without	further	restrictions,	the	likelihood	of	this	model	involves	an	
infinite	 sum	over	Nsit,	which	we	needed	 to	 restrict	 in	 order	 to	 sam-
ple	 from	 it.	 Therefore,	 we	 set	 species	 specific	 finite	 upper	 bounds	
Ks = max

(
ysijt

)
+ 100, ∀ i = 1, 2, … R; j = 1, 2, … , J and t = 1, 2, … , T ,	

which	are	much	larger	than	the	expected	local	population	size	ensur-
ing	 that	 parameter	 estimates	 do	not	 change	 appreciably	 beyond	Ks .	
Moreover,	 we	 constructed	 the	 likelihood	 by	 marginalising	 over	Nsit

's	with	upper	bound	K given that Stan	cannot	sample	discrete	 latent	
variables.

We	defined	two	competing	models,	1 and 2,	 for	which	the	
detection	process	 is	 identical.	Both	models	estimate	the	detection	
rate	of	the	community	as	a	smooth	curve	f 	across	years:

However,	the	abundance	process	has	an	additional	parameter	in	2 
compared	to	1,	capturing	a	linear	trend	in	abundance	across	years	
for	each	species,

where �s,0 and �s,1	 represent	 species	 specific	 intercepts	 and	 slopes	
for	the	trends	across	years,	f ′

s
	models	species	specific	smooth	curves	

(trend	noise),	and	fHSGP
s

	 is	a	spatial	random	effect.	Both	 f  and f ′
s
 use 

an	exact	Gaussian	process	 (GP)	 (Golding	&	Purse,	2016;	Williams	&	
Rasmussen,	2006).	For	computational	efficiency,	we	used	the	Hilbert-
space	reduced	rank	Gaussian	process	(HSGP)	approach	to	model	fHSGP

s
 

(Riutort-Mayol	 et	 al.,	2020;	 Solin	&	Särkkä,	2020).	As	 the	 inclusion	
of	species	specific	random	effects	markedly	increases	the	number	of	
parameters,	possibly	resulting	in	models	that	are	too	difficult	to	fit,	we	
also	tested	non-spatial	versions	of	1 and 2	omitting	fHSGPs

.
Prior	 specifications	 and	 goodness-of-fit	 diagnostics	 are	 de-

tailed	in	Appendix	A.	We	fitted	all	models	using	two	parallel	MCMC	
chains with 10,000 iterations, which included 5000 iterations that 
were	discarded	as	burn-in	iterations;	this	always	resulted	in	satis-
factory	convergence	(Table	A1),	following	the	guidelines	by	Vehtari	
et al. (2021).	 After	 fitting	1 and 2	 (and	 their	 non-spatial	 ver-
sions),	we	performed	a	model	selection	by	comparing	their	approx-
imate	leave-one-out	expected	log	predictive	densities	(LOO-ELPD)	
(Vehtari	 et	 al.,	2017).	 For	a	 comparison	of	 the	 results	 from	a	be-
ta-binomial	NMM	and	beta-Poisson	NMM,	we	refer	to	Appendix	B.

2.4  |  Population trends

After	model	selection,	we	tested	whether	relative	trends	between	
species	 were	 consistent	 across	 the	 models	 by	 fitting	 a	 linear	

regression	for	yearly	density	(REM)	versus	abundance	(NMM)	esti-
mates.	We	 then	 compared	 temporal	 trends	 in	 density/abundance,	
obtained	by	REM	and	NMM	in	three	ways.	First,	we	computed	the	
correlation	between	the	ranks	of	 relative	 trends	between	years	 in	
both	methods	using	Spearman's	rank	correlation	test.	Next,	we	as-
sessed	the	similarity	of	the	trajectories	of	yearly	growth	rates,	 i.e.,	

xst ∕xs(t−1) with x =

⎧⎪⎨⎪⎩

� if NMM

D if REM
	and	also	computed	their	Pearson	cor-

relations.	Lastly,	we	compared	slopes	in	linear	trends	across	yearly	
densities/abundances.	This	is	simply	the	estimated	parameter	�̂s,1	of	
2	for	the	NMM.	However,	to	obtain	this	slope	for	REM,	we	needed	
to	 fit	 a	 linear	 regression	 line	 through	 estimates	 of	 yearly	 density	
post-hoc	 (for	 reference,	we	also	did	 this	 for	 the	NMM).	Finally,	 to	
assess	the	precision	of	parameter	estimates,	we	compared	the	coef-
ficient	of	variation	(CV)	between	yearly	abundance	and	density.

3  |  RESULTS

3.1  |  Trapping effort

Throughout	the	study	period,	we	retain	data	from	4296	24-h	periods	
(fox	 and	wild	boar)	 and	2189	24-h	periods	 (red	deer).	 This	 results	
in	2721,	520	and	226	observations	of	red	deer,	wild	boar,	and	fox,	
respectively.	The	sampling	period	for	fox	and	wild	boar	is	extended	
relative	to	that	of	red	deer,	due	to	lower	sample	sizes	in	those	spe-
cies.	Due	 to	a	defective	camera,	we	 retain	data	 from	only	19	CTs	
during	the	winters	of	2017–18,	2018–19,	and	2020–21.

3.2  |  Random encounter model

Mean	 annual	 densities	 estimated	 through	REM	 lie	 between	0.41–
0.73	 individuals/km2	 for	 fox,	 5.34–7.14	 for	wild	 boar,	 and	 25.06–
46.63	for	red	deer	(Table 2).	We	do	not	observe	a	consistent	increase	
or	decrease	in	yearly	densities	for	any	of	the	target	species.	Relevant	
interannual	 variation	 is	 observed	 in	 the	 encounter	 rate	 and	 day	
range	in	all	of	the	species	(Table 2).	Only	seven	fox	encounters	are	
recorded	during	2020,	hence	we	could	not	estimate	the	fox	density	
for	that	year.

3.3  |  N-mixture model

Model	1	has	the	best	predictive	performance	according	to	LOO-
ELPD,	 closely	 followed	 by	2 (Table 3).	 However,	 the	 standard	
error on the ΔLOO-ELPD	 between	 these	 models	 is	 substantial.	
Furthermore,	 LOO-ELPD	 suggests	 that	 the	 spatial	 models	 are	
more	consistent	with	the	data	than	their	non-spatial	counterparts.	
Both	1 and 2	fit	the	best	to	the	fox	data,	followed	by	those	of	
the	red	deer	and	finally	the	wild	boar	specific	data	(Table	B2).	For	
the	remainder	of	the	paper,	all	results	from	the	NMM	are	gener-
ated	 based	 on	 the	 top-ranking	model	 (1).	 The	 posterior	mean	

Nsit ∼ Poisson
(
�sit

)
.

Logit
(
pt
)
= f(t).

1: Log
(
�sit

)
= �s,0 + f �

s
(t) + fHSGP

s

(
loni , lati

)

2: Log
(
�sit

)
= �s,0 + �s,1t + f �

s
(t) + fHSGP

s

(
loni , lati

)
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6 of 19  |     BOLLEN et al.

detection	 rate	 of	 the	 community	 decreases	 until	 2020–21	 and	
shows	a	slight	increase	from	2020–21	to	2021–22	(Figure	C1).	For	
all	the	years	in	our	analysis,	there	is	a	fair	amount	of	posterior	un-
certainty,	judging	from	the	50%,	80%,	and	95%	Bayesian	credible	
intervals	(BCI)	for	the	community	detection	rate.	The	fox	specific	
detection	rate	mostly	resembles	the	community	detection	rate	in	
terms	of	its	mean	trend	and	posterior	uncertainty	(Figure	C1).	The	
mean	detection	rates	for	both	wild	boar	and	red	deer	are	distinct	
from	 the	 trend	 of	 the	 community.	 BCIs	 are	 narrow	 for	 all	 years	
and species.

Smooth	 temporal	 effects	 reveal	 year-to-year	 fluctuations	 in	
abundance	of	similar	magnitude,	but	different	trends	between	red	
deer	and	wild	boar	(Figure	C2).	The	yearly	variation	in	fox	is	larger	
than	both	of	these	species	and	also	has	a	different	trend.	Smooth	spa-
tial	effects	display	different	magnitudes	for	all	species	(Figure	C3).	
The	trend	of	spatial	effects	for	foxes	 is	not	correlated	with	any	of	
the	spatial	trends	of	other	species	(Figure	C4).	However,	the	spatial	
trends	for	red	deer	and	wild	boar	are	positively	correlated.	Together,	

relevant	 spatiotemporal	 variations	 in	 abundances	 are	 observed	
(Figures	C5–C7).

3.4  |  Population trends

Yearly	densities	 (REM)	and	abundances	 (NMM)	cannot	be	directly	
compared	 on	 their	 absolute	 scales	 (Figure 2c),	 yet	 they	 still	 con-
tain	 important	 information	 on	 the	 consistency	 of	 species	 and/or	
year	rankings	across	REM/NMM.	The	relationship	between	density	
(REM)	and	abundance	(NMM)	for	the	three	species	is	captured	well	
by	a	linear	model	(R-squared:	0.9141;	Figure 2b).	Only	the	ranks	of	
yearly	 densities/abundances	 for	 the	 entire	 community	 are	 signifi-
cantly	 correlated	 between	1	 and	REM	 (Table 4).	However,	 both	
models	produce	similar	trajectories	in	growth	rates	for	fox,	but	not	
for	wild	boar	and	red	deer	(Figure 2c; Table 4).	Interestingly,	1 and 
REM	are	in	agreement	about	the	direction	of	linear	trends	in	density/
abundance	estimates	obtained	post-hoc,	except	for	fox	(Figure 2d).	

TA B L E  2 Values	of	the	parameters	of	the	estimated	random	encounter	model	(REM)	for	each	population,	where	y/t is the encounter rate; 
v,	the	average	distance	travelled	by	an	individual	during	a	day	(day	range);	r,	the	radius	of	detection;	and	Ɵ,	the	angle	of	detection.

Populations Parameters

Sp. Year y/t (ind/(cam·day)) v (km/day) r (km) Ɵ (rad)
Density 
(ind/km2)

Fox 1 0.042	(0.022) 13.920	(5.342) 0.0068	(0.0007) 0.733	(0.037) 0.56	(0.31)

2 0.052	(0.021) 16.713	(5.212) 0.0064	(0.0006) 0.733	(0) 0.57	(0.3)

3 0.075	(0.018) 20.532	(4.961) 0.0057	(0.0004) 0.733	(0) 0.73	(0.25)

4 NAa NAa NAa NAa NAa

5 0.069	(0.010) 21.225	(8.111) 0.0084	(0.0003) 0.960	(0.083) 0.41	(0.23)

Wild	boar 1 0.191	(0.049) 6.840	(1.773) 0.0044	(0.0005) 0.733	(0.075) 7.14	(2.8)

2 0.152	(0.053) 5.033	(1.634) 0.0057	(0.0005) 0.733	(0) 6.19	(1.92)

3 0.177	(0.072) 8.823	(1.334) 0.0043	(0.0004) 0.733	(0.111) 5.34	(1.82)

4 0.205	(0.029) 7.751	(1.483) 0.0048	(0.0003) 0.941	(0.126) 5.84	(3.32)

5 0.158	(0.049) 5.638	(1.614) 0.0049	(0.0004) 0.733	(0) 6.55	(2.83)

Red deer 1 2.026	(1.061) 7.879	(1.279) 0.0059	(0.0002) 0.733	(0) 46.	63	(16.3)

2 0.704	(0.120) 3.834	(0.827) 0.006	(0.0002) 0.733	(0) 34.87	(7.32)

3 1.382	(0.182) 6.462	(0.511) 0.0053	(0.0001) 0.960	(0) 42.99	(9.21)

4 0.670	(0.254) 4.020	(0.420) 0.0046	(0.0001) 0.960	(0) 44.92	(17.82)

5 0.784	(0.117) 6.616	(0.984) 0.0050	(0.0001) 0.960	(0.174) 25.06	(8.48)

Note:	Data	represent	means	(±	standard	error).
aFox	density	in	year	4	(2020–21)	was	not	estimated	due	to	the	low	sample	size.

Model
Eff. No. 
par. ELPD LOO

SE (ELPD 
LOO) ΔELPD LOO

SE (ΔELPD 
LOO)

1	(non-spatial) 36 −5934.84 455.50 −40.04 12.99

2	(non-spatial) 40 −5937.57 455.43 −42.77 12.91

1 77 −5894.79 453.97 0.00 0.00

2 81 −5896.64 453.91 −1.85 1.65

Abbreviation:	Eff.	No.	par.,	effective	number	of	parameters.

TA B L E  3 Model	comparison	according	
to	the	leave-one-out	expected	log-
predictive	densities	(higher	is	better).	
Expected	log-predictive	density,	based	on	
Leave-one-out	(ELPD	LOO).
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    |  7 of 19BOLLEN et al.

The	95%	BCI	of	trend	slopes	from	2 (�s,1)	overlap	zero	in	all	spe-
cies.	We	did	not	attempt	to	compare	the	precisions	of	linear	trends	
as	they	were	obtained	from	values	that	are	on	substantially	different	
scales.

4  |  DISCUSSION

In	 this	 study,	we	compared	 trends	 (i)	between	species,	 (ii)	between	
years	 and	 (iii)	 across	 years	 obtained	 from	 empirical	 populations	 of	
three	target	species	based	on	two	models:	REM	and	NMM.	We	have	
focussed	on	trends	rather	than	absolute	state	variables	(density/abun-
dance)	for	two	main	reasons.	First,	state	variables	are	slightly	different	
across	REM	(density)	and	NMM	(abundance),	and	also	rely	on	differ-
ent	characterisations	of	space	and	time	(Gilbert	et	al.,	2020;	Loonam	
et al., 2021).	Second,	the	use	of	absolute	population	size	in	conserva-
tion	and	management	has	been	challenged	(Morellet	et	al.,	2007),	par-
ticularly	when	these	are	obtained	through	NMMs	(Dennis	et	al.,	2015; 
Gilbert	et	 al.,	2020).	 Since	all	 of	our	 results	 are	based	on	empirical	
data,	i.e.,	the	truth	is	not	known,	we	will	focus	our	discussion	on	the	
consistency	and	precision	of	estimated	trends	rather	than	discussing	
their	accuracy.	Moreover,	we	note	that	in	some	cases	our	study	may	
be	underpowered	to	detect	(small)	differences	in	abundance	given	the	
modest	number	of	cameras	that	we	deploy,	i.e.,	20	(+8	in	2019–20).	
Simulations	may	help	to	determine	the	number	of	cameras	required	to	
characterise	trends	in	abundance	(Ficetola	et	al.,	2018).

F I G U R E  2 Consistency	between	population	trends.	(a)	Mean ± 95%	(B)CI	abundances	(NMM:	closed	circles	±	full	lines)	and	densities	
(REM:	open	circles	±	dashed	lines).	(b)	Linear	trend	±95%	CI	bands	for	density	(REM)	versus	abundance	(NMM)	estimates.	95%	(B)CI	are	
displayed	for	each	pair	of	estimates.	(c)	Mean ± 95%	(B)CI	growth	rates	in	abundance	(NMM:	closed	circles	±	full	lines)	and	in	density	(REM:	
open	circles.	95%	CIs	were	not	obtained	due	to	a	high	error	propagation	using	the	delta	method).	(d)	Mean ± 95%	(B)CI	slope	coefficients	for	
linear	trends	in	yearly	abundance	(NMM)	and	density	(REM)	obtained	by	least	squares	regression.	Linear	trend	in	abundance	captured	by	�s,1 
(2).	No	trend	was	visualised	for	1,	as	this	model	assumed	that	linear	trends	in	abundances	were	absent.	Colour	scale	–	C:	growth	rate > 1	
(red)	or < 1	(blue),	D:	slope > 0	(red)	or < 0	(blue).	Fox	density,	and	hence	growth	rate,	in	year	4	(2020–21)	was	not	estimated	by	REM	due	to	
the	low	sample	size.

TA B L E  4 Correlation	coefficients	ρ	and	their	significance	for	(i)	a	
Spearman	rank	correlation	test	between	yearly	abundances	(NMM)	
and	yearly	densities	(REM)	and	(ii)	a	Pearson	correlation	test	for	
growth	rates	in	density	of	each	species.

Species Type Statistic ρ p-Value

Community Spearman 30 .93 <.001

Pearson 2.43 .63 .038

Fox Spearman 6 .40 .750

Pearson 5.38 .98 .120

Wild	boar Spearman 6 .70 .233

Pearson 0.84 .51 .490

Red deer Spearman 18 .10 .950

Pearson −0.34 −.23 .770
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8 of 19  |     BOLLEN et al.

As	the	NMM	is	very	sensitive	to	model	assumptions,	we	tried	to	
control	 for	 two	 common	 sources	 of	 bias	 in	 abundance:	 accidental	
double	counting	of	unmarked	species	by	a	Poisson	detection	process	
(Kéry	&	Royle,	2016; Link et al., 2018),	and	unmodelled	heterogene-
ity	(Duarte	et	al.,	2018; Link et al., 2018;	Veech	et	al.,	2016)	by	the	
inclusion	of	several	fixed	(Figure 2d)	and	random	effects	(Figures	C2 
and C3).	Our	study	used	different	CT	types	across	years,	which	has	
likely	 induced	variability	 in	 the	probability	of	detecting	 individuals	
that	cross	a	camera	viewshed.	To	account	for	this	source	of	variabil-
ity	and	potentially	other	differences	leading	to	interannual	variation	
in	detectability	(Hofmeester	et	al.,	2019),	we	have	included	temporal	
effects	 in	NMM	and	estimated	 angles	� and radii r	 separately	 for	
each	 year	 when	 applying	 REM.	 Moreover,	 we	 attempted	 to	 con-
trol	 bias	 that	 may	 result	 from	 inaccurate	 estimates	 of	 movement	
speed	in	REM,	by	correcting	for	different	movement	speeds	in	the	
main	 behavioural	modes	 of	 a	 species	 (Palencia,	 Fernández-López,	
et al., 2021).

Although	we	warn	users	against	using	abundances	from	NMMs	
as	absolute	quantities	 (Barker	et	al.,	2018),	 the	yearly	 total	abun-
dances	 and	 densities	 retrieved	 from	 our	 NMM	 can	 be	 found	 in	
Table	C1	 for	comparison	with	REM	densities	 (Table 2).	NMM	and	
REM	 treat	 CT	 data	 differently	 (replicated	 counts	 vs.	 aggregated	
counts	across	the	entire	survey	period).	 It	 is	unclear	how	this	 im-
pacts	quantities	derived	from	their	state	estimates,	including	rela-
tive	trends,	which	is	a	study	limitation.	Regardless	of	the	quantity	of	
interest	(either	abundance	or	density),	reaching	a	CV	<0.25 is con-
sidered	the	minimum	threshold	for	estimates	to	be	useful	for	wild-
life	 management	 (Skalski	 et	 al.,	 2005).	 The	 abundance	 estimates	
of	 our	NMM	meet	 this	 requirement	 across	 all	 species	 and	 years,	
while	REM	fails	 to	deliver	CV ≤ 0.25	for	most	species-year	combi-
nations	(Table	C2).	However,	some	caution	 is	warranted	as	higher	
precisions	could	result	from	overconfidence,	rather	than	from	cor-
rectly	characterised	improvements	(Goldstein	&	De	Valpine,	2022).	
Possibly,	the	absence	of	movement	parameters	in	the	NMM,	or	the	
separation	of	model	uncertainty	over	two	subprocesses	may	lead	to	
overconfidence	in	the	precision	of	its	abundances.	On	the	contrary,	
underestimation	of	movement	speed	can	lead	to	decreased	preci-
sion	of	REM	densities	(Santini	et	al.,	2022).	Finally,	weakly	informa-
tive	priors	may	have	contributed	to	a	lower	CV	(higher	precision)	in	
NMM	 abundances	 compared	 to	 densities	 from	REM,	which	 does	
not use priors.

Relative	trends	between	species,	based	on	species-rankings	of	
density/abundance,	 over	 a	 5-year	 period	 are	 consistent	 between	
NMM	and	REM	(Figure 2b).	A	similar	consistency	in	species-rank-
ings	 based	 on	 relative	 abundance	 indices	 from	 camera	 surveys	
and	 densities	 from	 faeces	 counts	 has	 been	 observed	 (Ferretti	
et al., 2023).	Species	specific	spearman	rank	correlations	between	
yearly	NMM	abundances	and	REM	reveal	that	these	models	cap-
ture	different	relative	trends	between	years.	This	is	reinforced	by	
the	 differential	 progressions	 of	 the	 yearly	 growth	 rates	 for	 wild	
boar	and	 red	deer	 (Figure 2c).	The	 reduced	consistency	 in	yearly	
growth	rates	relative	to	species-rankings	between	NMM	and	REM	
suggest	 that	 camera-based	 estimators	 will	 converge	 on	 similar	

qualitative	 results	 when	 the	 range	 of	 variability	 is	 large	 (i.e.	 be-
tween-species	 variability),	 but	may	 not	 do	 so	when	 the	 range	 of	
variability	 is	 smaller	 (i.e.	 between-year	 variability).	 However,	 fox	
growth	rates	reveal	a	similar	progression	between	the	models	and	
are	highly	 correlated	 showing	 that	 camera-based	estimators	may	
also	yield	consistent	rank-order	patterns	when	variability	is	smaller	
(Figure 2c; Table 4).	 Simulation	 studies	 should	 be	 performed	 to	
identify	the	exact	circumstances	resulting	in	consistent	rank-order	
patterns	between	various	camera-based	estimators,	and	those	re-
sulting	in	a	lack	of	consistency.	Linear	trends	in	density/abundance	
across	years,	obtained	post	hoc,	were	 in	agreement	only	 for	 two	
of	the	three	species	 (Figure 2d).	However,	1	outperforming	2 
in	 terms	of	LOO-ELPD	suggests	 that	 these	 trends	are	stationary.	
This	 is	 supported	by	 the	BCIs	of	�s,1	overlapping	zero.	The	preci-
sion	of	trend	estimates	was	higher	in	NMM	compared	to	REM	for	
all	species.	This	could	be	a	consequence	of	our	NMM,	but	not	our	
REM,	explicitly	modelling	a	temporal	dependency	between	yearly	
abundances.	Modelling	temporal	autocorrelation	can	indeed	shrink	
outlying	observations	 to	 the	mean	 trend	 (Outhwaite	et	al.,	2018; 
Williams	&	Rasmussen,	2006).	The	possibility	to	model	(non)linear	
trends	in	abundance,	rather	than	obtaining	them	post	hoc,	is	a	main	
advantage	of	the	NMM	as	it	allows	for	hypothesis-testing	through	
model	selection	(Table 3).	This	is	also	true	for	trends	in	space,	which	
may	help	managers	gain	insight	into	the	drivers	of	space	use	within	
a	study	area.	 In	Quintos	de	Mora,	 for	example,	 foxes	seem	to	be	
more	abundant	in	the	west	of	the	study	area	(Figure	C5).	Wild	boar	
appear	in	three	clusters,	and	red	deer	are	clearly	more	abundant	in	
the	central	savanna-like	landscape.	All	of	the	species	seem	to	avoid	
the	mountainous,	forested	areas	in	the	north	and	south	of	the	study	
area	to	some	extent.	Regardless	of	the	exact	spatial	ecology	of	the	
target	species	in	Quintos	de	Mora,	being	able	to	capture	meaning-
ful	 information	on	animal	space	use	patterns	 in	general	 is	of	high	
ecological	 importance	 and	 should	 be	 considered	 when	 choosing	
a	modelling	 framework.	Although	REM	 for	 camera	 trapping	 data	
currently	 lacks	 the	 possibility	 to	 model	 spatial	 and/or	 temporal	
trends,	it	holds	the	potential	to	be	extended	to	a	fully	spatiotempo-
ral	analysis	tool	following	ideas	in	Jousimo	and	Ovaskainen	(2016).	
Another	possible	avenue	to	capture	spatial	variation	in	density	with	
REM,	is	to	perform	the	analysis	over	a	number	of	ecologically	rel-
evant	strata.	However,	this	may	rapidly	result	in	sample	sizes	that	
are	 too	 low	 to	 make	 meaningful	 inference	 when	 the	 number	 of	
strata	increases	or	when	the	number	of	cameras	available	is	limited.

In	 summary,	 we	 would	 advise	 practitioners	 against	 the	 use	
of	 NMMs	 when	 absolute	 densities/abundances	 are	 desired	 (al-
though	they	may	produce	sensible	estimates	in	some	settings)	and	
resort	 to	REM	or	other	methods	 instead	 (Efford	&	Fewster,	2013; 
Howe et al., 2017;	 Moeller	 et	 al.,	 2018;	 Nakashima	 et	 al.,	 2018).	
However,	practitioners	 should	be	aware	 that	all	of	 these	methods	
require	 auxiliary	data	 and/or	 field	procedures,	 some	of	which	 can	
be	time-consuming	(Palencia,	Rowcliffe,	et	al.,	2021).	Thus,	when	all	
that	 is	 needed	are	 relative	population	 trends,	 applying	NMM	may	
be	 faster,	 cheaper	 and	 can	 provide	 insight	 in	 spatiotemporal	 dy-
namics	of	abundance.	To	bridge	this	gap	we	encourage	the	further	
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development	and	adoption	of	spatiotemporally	explicit	versions	of	
REM	for	camera	trapping	studies.	Finally,	it	appears	that	NMM	and	
REM	converge	on	similar	relative	trends	when	the	range	of	variabil-
ity	is	large,	but	may	not	do	so	when	the	range	of	variability	is	smaller.	
We	advise	that	researches	take	this	into	account,	when	they	want	to	
directly	compare	the	qualitative	results	from	different	camera-based	
estimators	or	perform	meta-analyses	thereof.	Since	the	truth	in	our	
study	is	unknown,	we	cannot	draw	conclusions	about	the	accuracy	
of	these	trends.	Hence,	we	encourage	future	research	that	evaluates	
the	accuracy	of	relative	trends	in	a	simulation	setting.
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APPENDIX A

PRIOR SPECIFICATION, MODEL CONVERGENCE AND GOODNESS-OF-FIT OF THE N-MIXTURE MODELS

For the beta-Poisson N-mixture models, which are described in the main paper, we used mostly vaguely informative priors of the normal , 
student t or gamma distribution. Only for the length scale parameter of the GPs we used distributions that avoid values near zero (i.e. 
inverse gamma), or that avoid both values near zero and larger values (i.e. generalized inverse Gaussian). More specifically, we specified 
a gamma(5, 0.1) for the dispersion parameter �. For regression parameters �s,0, �s,1, we used student t(3, 0, 5) and normal(0, 1) priors 
respectively. We used half normal(0, 1) priors, and an inverse gamma IG(11, 4) prior for respectively the marginal standard deviations {
�fs , �f ′s

}
 and the length scales 

{
�f , �f ′

s

}
, the hyperparameters of the GPs. For the same hyperparameters of the HSGP, i.e., �fHSGP

s
 and �fHSGP

s
 , 

we used a non-negative student t+(3, 0, 5) and a generalised inverse Gaussian GIG(3, 11, 0.01) prior. For the GPs coefficients 
{
�f , �f ′

s

}
, 

we used normal(0, 1) priors. We specified a multivariate normal distribution for the HSGP coefficients �fHSGP
s

, with a zero-mean and 
variance–covariance matrix Σ. For numerical efficiency, we decomposed Σ into its Cholesky factors (i.e., Σ = L ⋅ �� ⋅ L

�), with L ∼ LKJ(4) and 
�� ∼ half normal(0, 1). Here we also show diagnostics on the convergence of the MCMC and on the exploration of the posterior for the most 
important parameters of 1 (Table A1).

Finally, to check the goodness-of-fit, we calculated �2 – discrepancies, relative to the expected counts under 1 and 2 , for the actual 
data (T) and replicated data (i.e., simulated from the model; T (s)). For a satisfactory model fit, the �2 – discrepancies calculated from 
replicated data should align with those obtained from actual data, i.e., Ĉ = T ∕T (s) ≈ 1 (Table A2).

TA B L E  A 1 Diagnostics	assessing	the	convergence	of	the	MCMC	sampler	(Rhat),	and	the	efficiency	of	the	posterior	exploration	in	the	
bulk	and	tail	of	the	distribution	(ESS	bulk,	ESS	tail)	for	1.

Parameter Rhat
Rhat 
(2.5th)

Rhat 
(97.5th) ESS bulk

ESS bulk 
(2.5th)

ESS bulk 
(97.5th) ESS bulk

ESS tail 
(2.5th)

ESS tail 
(97.5th)

� 1.0002 1.0002 1.0002 3755 3755 3755 2467 2467 2467

�s,0 1.0008 0.9998 1.0017 3091 2221 4279 3296 2827 3583

�fs 1.0018 1.0018 1.0018 2307 2307 2307 2946 2946 2946

�f ′
s

1.0072 1.0003 1.0168 654 383 826 1846 1571 2230

�fHSGP
s

1.0004 1.0000 1.0011 3253 1711 4158 3717 3300 4332

�f 1.0000 1.0000 1.0000 4214 4214 4214 3199 3199 3199

�f ′
s

1.0010 1.0010 1.0010 8007 8007 8007 3455 3455 3455

�fHSGP
s

1.0009 1.0005 1.0012 2628 2016 3263 3048 2653 3346

�f 1.0014 1.0008 1.0022 3842 3324 4225 3541 3127 3901

�f ′
s

1.0009 0.9999 1.0032 5440 1775 6794 3876 2689 4425

�fHSGP
s

1.0006 0.9998 1.0020 6888 4014 8698 3948 3197 4544

�� 1.0004 0.9999 1.0008 3284 1853 4241 3589 3287 4095

Note:	For	each	diagnostic,	the	mean,	2.5th	and	97.5th	percentiles	are	displayed.	Note	that	we	only	display	parameters	that	have	a	prior	distribution	in	1.
Abbreviations:	ESS,	effective	sample	size	(in	the	tail	or	bulk	of	the	distribution);	MCMC,	Markov	chain	Monte	Carlo;	Rhat,	potential	scale	reduction	factor.
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APPENDIX B

RESULTS FOR ALTERNATIVE OBSERVATION MODELS OF 1

In the main paper, we formulated 1 as a beta-Poisson NMM. Here we show the most important findings obtained by changing the 
observation process of 1 to either a Poisson, beta-binomial, or binomial distribution. Note that the beta-binomial NMM models species 
specific data jointly, just like the beta-Poisson NMM, while the Poisson NMM and binomial NMM need to be fitted to data of each species 
separately. In our study, a joint approach using a beta distribution did not qualitatively change the inference from NMM (Figures B1 and 
B2), but yielded speedups in computation time (Table B1). Specifying a (beta-)Poisson instead of a (beta-)binomial model was effective 
against inflation of abundance for wild boar and red deer (Figure B2), and has probably helped to control bias from accidental double 
counting.

TA B L E  A 2 Posterior	means	and	95%	
credible	intervals	for	species	specific	
overdispersion diagnostic 

(
Ĉ

)
	obtained	

from	1 and 2.

Species Model Mean 2.50% 97.50%

Fox 1 0.8454 0.6933 1.0264

2 0.8464 0.697 1.0259

Wild	boar 1 2.3601 2.0432 2.7045

2 2.3615 2.0479 2.7162

Red deer 1 1.5102 1.3825 1.6444

2 1.5118 1.3872 1.6502

TA B L E  B 1 Time	(in	seconds)	needed	
to	fit	1,	a	beta-binomial	version	1, 
and	single-species	versions	of	1 with a 
Poisson	or	a	binomial	observation	process	
for	all	species	in	the	community.

Model Walltime in sec. Fold change

Beta-Poisson 10,472 1.00

Poisson 13,052 1.25

Beta-binomial 19,464 1.86

Binomial 24,068 2.30

TA B L E  B 2 Posterior	means	and	95%	
credible	intervals	for	species-specific	
overdispersion diagnostic 

(
Ĉ

)
	obtained	

from	1 ,	a	beta-binomial	version	1, 
and	single-species	versions	of	1 with a 
Poisson	or	a	binomial	observation	process.

Model Species Mean 2.50% 97.50%

Beta-Poisson Fox 0.8454 0.6933 1.0264

Wild	boar 2.3601 2.0432 2.7045

Red deer 1.5102 1.3825 1.6444

Poisson Fox 0.8554 0.7062 1.0433

Wild	boar 2.3591 2.0544 2.7075

Red deer 1.5041 1.3772 1.6386

Beta-binomial Fox 0.9000 0.7559 1.0724

Red deer 2.4171 2.1126 2.7658

Red deer 1.6648 1.5302 1.8115

Binomial Fox 0.8970 0.7537 1.0667

Wild	boar 2.4155 2.1182 2.7570

Red deer 1.6604 1.5361 1.7965
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    |  13 of 19BOLLEN et al.

F I G U R E  B 1 Posterior	mean	(and	
95%	Bayesian	credible	intervals)	of	
yearly	detection	rate/probability	for	
each	species,	obtained	from	1,	a	beta-
binomial	version	of	1,	and	single-species	
versions	of	1	with	a	Poisson	or	a	
binomial	observation	process.

F I G U R E  B 2 Posterior	mean	(95%	
Bayesian	credible	intervals)	of	yearly	
abundances	for	each	species,	obtained	
from	1 ,	a	beta-binomial	version	of	1

,	and	single-species	versions	of	1 with a 
Poisson	or	a	binomial	observation	process.
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APPENDIX C

ADDITIONAL FIGURES AND TABLES FOR 1

In the main paper, we do not include visualisations for the detection rates, temporal and spatial random effects for the beta-Poisson NMM. 
Here we show these results based on 1 , and we also include maps for the 2.5th and 97.5th percentiles of abundances. Furthermore, 
we give an overview of the posterior total abundance and density per species per year derived from 1 (Table C1). We computed the 
total abundance, and density based on 1 by: (i) calculating the expected number of individuals E

(
Nsit

)
 of species s at site i  during year t, 

(ii) summing these expectations over all sites, such that E
�
Nst

�
=
∑R

i=1
E
�
Nsit

�
, and (iii) scaling them by the total surface area in the grid layer 

(i.e., the product of R , the number of sites, and Ai, the area (in km2) per site), hence E
(
Dst

)
= E

(
Nst

)
∕
(
R ⋅ Ai

)
. Finally, we show comparisons of 

the coefficient of variation (CV) between abundances from 1 and densities from REM (Table C2).

Populations Parameters

Sp. Year Abundance (mean ind/site)
Total abundance 
(ind)

Density 
(ind/km2)

Fox 1 1.02	(0.29) 16.4	(5.51) 3.83	(1.29)

2 1.06	(0.26) 17.8	(4.25) 4.16	(0.99)

3 1.34	(0.36) 44.86	(8.16) 6.86	(1.25)

4 1.09	(0.38) 19.45	(8.21) 4.54	(1.92)

5 1.13	(0.29) 22.12	(5.47) 4.91	(1.21)

Wild	boar 1 1.58	(0.36) 31.39	(5.01) 7.33	(1.17)

2 1.57	(0.36) 29.86	(4.57) 6.97	(1.07)

3 1.55	(0.35) 40.39	(7.74) 6.18	(1.18)

4 1.57	(0.41) 29.88	(5.34) 6.97	(1.25)

5 1.55	(0.37) 27.46	(4.59) 6.09	(1.02)

Red deer 1 4.45	(0.77) 80.3	(9.55) 18.74	(2.23)

2 4.36	(0.76) 73.81	(11.17) 17.23	(2.61)

3 4.41	(0.77) 121.71	(18.03) 18.61	(2.76)

4 4.32	(0.76) 73.13	(11.57) 17.07	(2.7)

5 4.43	(0.77) 84.76	(11.48) 18.79	(2.54)

Note:	Data	represent	posterior	means	(±	posterior	standard	deviations).

TA B L E  C 1 Estimated	beta-Poisson	
N-mixture	model	parameter	values	for	
each	population,	where	the	abundance	
�st	is	estimated	directly,	and	the	total	
abundance	E

(
Nst

)
	and	density	E

(
Dst

)
 are 

derived	from	the	number	of	sites	R, and 
their	respective	surface	area	Ai.
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Populations Parameters

Sp. Year Model Mean (SD) CV 2.5%–97.5% (B)CI width

Fox 1 NMM 1.02	(0.29) 0.29 0.45–1.61 1.16

REM 0.56	(0.31) 0.55 0–1.18 1.18

2 NMM 1.06	(0.26) 0.24 0.58–1.61 1.03

REM 0.57	(0.3) 0.53 0–1.17 1.17

3 NMM 1.34	(0.36) 0.27 0.85–2.22 1.37

REM 0.73	(0.25) 0.34 0.23–1.23 1

4 NMM 1.09	(0.38) 0.35 0.42–1.87 1.45

REM NA NA NA NA

5 NMM 1.13	(0.29) 0.26 0.66–1.78 1.12

REM 0.41	(0.23) 0.56 0–0.87 0.87

Wild	boar 1 NMM 1.58	(0.36) 0.23 1.07–2.42 1.35

REM 7.14	(2.8) 0.39 1.54–12.74 11.2

2 NMM 1.57	(0.36) 0.23 1.06–2.39 1.32

REM 6.19	(1.92) 0.31 2.35–10.03 7.68

3 NMM 1.55	(0.35) 0.23 1.04–2.35 1.31

REM 5.34	(1.82) 0.34 1.7–8.98 7.28

4 NMM 1.57	(0.41) 0.26 1.05–2.38 1.33

REM 5.84	(3.32) 0.57 0–12.48 12.48

5 NMM 1.55	(0.37) 0.24 1.02–2.33 1.31

REM 6.06	(2.57) 0.42 0.92–11.2 10.28

Red deer 1 NMM 4.45	(0.77) 0.17 3.26–6.28 3.01

REM 46.63	(16.3) 0.35 14.03–79.23 65.2

2 NMM 4.36	(0.76) 0.17 3.14–6.12 2.98

REM 34.87	(7.32) 0.21 20.23–49.51 29.28

3 NMM 4.41	(0.77) 0.17 3.23–6.24 3

REM 42.99	(9.21) 0.21 24.57–61.41 36.84

4 NMM 4.32	(0.76) 0.18 3.06–6.05 2.99

REM 44.92	(17.82) 0.4 9.28–80.56 71.28

5 NMM 4.43	(0.77) 0.17 3.23–6.29 3.05

REM 25.06	(8.48) 0.34 8.1–42.02 33.92

Note:	Means ± standard	deviations	in	abundance	�st	for	NMM,	and	in	density	abundance	Dst	for	
REM.

TA B L E  C 2 Estimated	model	parameter	
values	for	each	population.
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F I G U R E  C 1 Posterior	mean	(and	50,	
80	and	95%	Bayesian	credible	intervals)	
of	yearly	detection	rates	for	each	species,	
obtained	from	1.

F I G U R E  C 2 Posterior	mean	(and	50,	
80	and	95%	Bayesian	credible	intervals)	of	
the	smooth	temporal	variation	(log-scale)	
in	abundance	of	each	species,	obtained	
from	1.
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F I G U R E  C 3 Posterior	mean	of	the	
smooth	spatial	variation	(log-scale)	in	
abundance	of	each	species,	obtained	from	
1.	For	visual	clarity,	different	scales	are	
applied	to	each	of	the	panels.

F I G U R E  C 4 Correlations	between	the	species	specific	HSGP	coefficients	
(
�sm

)
,	obtained	from	1.
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F I G U R E  C 6 2.5th	Percentile	of	
posterior	yearly	abundance	for	each	
species,	obtained	from	1. Regions 
with	more	than	35%	of	forest	cover	are	
enclosed	by	the	black	lines.	Heat	scale:	
abundance	–	number	of	individuals	that	
have used a grid cell at least once during 
the	survey	period.

F I G U R E  C 5 Posterior	mean	of	yearly	
abundance	for	each	species	and	each	
grid	cell	(0.2255 km2),	obtained	from	1. 
Regions	with	more	than	35%	forest	cover	
are	enclosed	by	black	lines.	Heat	scale:	
abundance	–	number	of	individuals	that	
have used a grid cell at least once during 
the	survey	period.
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F I G U R E  C 7 97.5th	Percentile	of	
posterior	yearly	abundance	for	each	
species,	obtained	from	1. Regions 
with	more	than	35%	of	forest	cover	are	
enclosed	by	the	black	lines.	Heat	scale:	
abundance	–	number	of	individuals	that	
have used a grid cell at least once during 
the	annual	survey	period.
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