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Abstract
Estimation of changes in abundances and densities is essential for the research, man-
agement, and conservation of animal populations. Recently, technological advances 
have facilitated the surveillance of animal populations through the adoption of passive 
sensors, such as camera traps (CT). Several methods, including the random encoun-
ter model (REM), have been developed for estimating densities of unmarked popula-
tions but require additional information. Hierarchical abundance models, such as the 
N-mixture model (NMM), can estimate abundances without performing additional 
fieldwork but do not explicitly estimate the area effectively sampled. This obscures 
the interpretation of its densities and requires its users to focus on relative meas-
ures of abundance instead. Hence, the main objective of our study is to evaluate if 
REM and NMM yield consistent results qualitatively. Therefore, we compare relative 
trends: (i) between species, (ii) between years and (iii) across years obtained from 
annual density/abundance estimates of three species (fox, wild boar and red deer) in 
central Spain monitored by a camera trapping network for five consecutive winter pe-
riods. We reveal that NMM and REM provided density estimates in the same order of 
magnitude for wild boar, but not for foxes and red deer. Assuming a Poisson detection 
process in the NMM was important to control for inflation of abundance estimates for 
frequently detected species. Both methods consistently ranked density/abundance 
across species (between species trend), but did not always agree on relative ranks of 
yearly estimates within a single population (between years trend), nor on its linear 
population trends across years (across years trend). Our results suggest that relative 
trends are generally consistent when the range of variability is large, but can become 
inconsistent when the range of variability is smaller.
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1  |  INTRODUC TION

Obtaining reliable demographic parameters, including (age-spe-
cific) survival, immigration, fecundity, and population size, is 
essential in wildlife management (Carpio et  al.,  2021; Williams 
et  al.,  2002). Since the estimation of population size over time 
enables population monitoring and is cheap in terms of data re-
quirements (i.e., counts from point surveys replicated in space 
and time are sufficient), it is the (main) parameter of interest in 
many ecological studies. Moreover, collecting population counts 
has become increasingly cost-efficient over the last decades due 
to the adoption of automated sensor networks, such as camera 
traps (CT). Analytical frameworks for counts can yield precise es-
timates of population size (Keever et al., 2017; Palencia, Rowcliffe, 
et al., 2021) or trends therein (Kéry & Andrew Royle, 2010). When 
individuals are unmarked (i.e., they cannot be uniquely identi-
fied), obtaining population size using CTs, has been achieved 
through different analytical frameworks, including time- or 
space-to-event models (Moeller et  al.,  2018), distance sampling 
(Howe et al., 2017), random encounter (and staying time) models 
(Nakashima et al., 2018; Rowcliffe et al., 2008), spatial capture–re-
capture (Chandler & Royle, 2013) and site-structured abundance 
models (Kéry & Royle, 2016).

Broadly, these methods can be divided into two groups: (G1) 
those that estimate density from detection frequency and (G2) 
those that model animal counts as a function of an abundance and 
a detection parameter (i.e., detection probability or distance from 
an activity centre) that are jointly estimated (Loonam et al., 2021). 
Importantly, the state variables of interest (density D, and abun-
dance N) are slightly different across methods. In G1, density D 
represents the expected number of individuals N at any instant in 
time and within the collective set of camera viewsheds (i.e. areas 
in front of the CT in which individuals can be detected) with a 
total area A. In G2, N refers to local or site-abundance (henceforth 
“abundance”), the number of individuals available for detection 
during a specific survey duration and at a specific camera location. 
In this study, we will evaluate whether relative trends in abun-
dance/density are consistent across these two paradigms of treat-
ing unmarked population counts. Specifically, we will focus on 
the random encounter model (REM) and N-mixture model (NMM) 
(Royle,  2004) as representatives of G1 and G2, respectively. 
We choose these models, as they are the most widely adopted 
methods for estimating unmarked population size using CT data 
(Gilbert et al., 2020).

The REM estimates animal density from trapping rate (aggre-
gated count across the survey period), the average size of the 
detection zone of the camera, and average movement speed of 
the population under study (Rowcliffe et  al.,  2008). Obtaining 

speeds of movement can be done by tagging individuals with GPS 
collars, but increases the cost of the study and usually leads to 
underestimation of movement (Rowcliffe et al., 2012; Sennhenn-
Reulen et al., 2017). However, a method to estimate the average 
speed of movement from CT pictures has recently been developed 
(Palencia, Fernández-López, et  al.,  2021; Rowcliffe et  al.,  2016). 
REM makes the following assumptions: (i) detections are indepen-
dent of each other, (ii) cameras are placed randomly relative to an-
imal movement, (iii) individuals move independently of each other, 
and (iv) the populations under study are closed relative to the en-
tire study area (i.e., no changes in overall population size within 
the survey period). The REM was found to be robust against viola-
tions in the independence of detections (Hayashi & Iijima, 2022), 
but not against non-random placement of cameras relative to an-
imal movement (Cusack et al., 2015). Moreover, REM is sensitive 
to biased movement speeds, as well as to the method used to es-
timate the range of the camera viewsheds (Santini et  al.,  2022). 
Nonetheless, Palencia, Rowcliffe, et  al.  (2021) obtained similar 
density estimates from REM compared to other methods repre-
senting G1. Finally, REM in its current form does not accommodate 
the modelling of spatial heterogeneity in density.

NMMs are hierarchical models that estimate the abundance 
at each camera (or site) based on counts from replicated surveys 
within the survey period rather than directly arriving at animal 
density for the collective set of camera viewsheds, as is done by 
REM. Consequently, the NMM requires that the study area is di-
vided into discrete sites in order to infer abundance. The model as-
sumes that (i) false-positive detections do not occur, (ii) detections 
are independent of each other, (iii) each individual has the same 
probability of being detected, and (iv) the local population size 
does not change throughout the survey period. As abundances 
are typically biased when some or all of these model assumptions 
are violated (Barker et al., 2018; Fogarty & Fleishman, 2021; Kéry 
& Royle,  2016; Link et  al.,  2018), solutions have been proposed 
that involve elegant ways to relax these assumptions (Dail & 
Madsen, 2011; Martin et al., 2011). Here, we formulate an NMM 
for open populations (Dail & Madsen, 2011), with a beta-Poisson 
detection process, building on ideas in Gomez et  al.  (2017) and 
Kéry and Royle (2016). Together, these adjustments accommodate 
changes in abundance between years and to some extent the oc-
currence of double counts (i.e., counting an individual twice during 
a survey). Furthermore, they allow the sharing of information on 
the detection process between commonly observed and rare spe-
cies in a community (Gomez et  al.,  2017; Yamaura et  al.,  2011, 
2012, 2016).

Since the state variables of interest (density D and abundance N ) 
are different between REM and NMM, comparing these methods 
based on absolute estimates of their state variables would not yield 

T A X O N O M Y  C L A S S I F I C A T I O N
Population ecology, Spatial ecology

 20457758, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10595 by U

niversiteit H
asselt, W

iley O
nline L

ibrary on [13/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  3 of 19BOLLEN et al.

valuable insights. Nevertheless, relative trends in their state vari-
ables should be largely consistent. However, rank-order estimates 
between REM and NMM may diverge in some circumstances given 
their different treatments of animal counts. Therefore, the objective 
of this study is to evaluate if REM and NMM yield consistent (relative) 
trends: (i) between species, (ii) between years and (iii) across years 
obtained from annual density/abundance estimates. Specifically, we 
evaluate i–iii empirically by fitting REM and NMM to CT data of fox 
(Vulpes vulpes), red deer (Cervus elaphus), and wild boar (Sus scrofa) 
from a Mediterranean area in central Spain collected during five con-
secutive winter periods. We believe that this comparison is relevant 
given the importance of population trends in wildlife conservation 
and management (see Prowse et al., 2021 for a recent example), and 
because it compares methods representing two fundamentally dif-
ferent paradigms of unmarked abundance estimation.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study area (longitudes: 4.148–4.048° W; latitudes: 39.342–
39.460° N) is the Quintos de Mora National Reserve. It has a total 
surface area of 68.64 km2, and is located south of the Montes de 
Toledo. The centre of the area is characterised by an open savanna, 
while the mountain ranges in the north and south are dominated 
by Mediterranean shrubland and natural forests (Figure  1). In the 
savanna, the most predominant species is Pinus pinea, while forests 
and shrubland are mainly composed of a mixture of Quercus coccif-
era, Quercus suber, Quercus ilex, Arbutus unedo, Erica spp, and Cistus 
spp. Quintos de Mora has altitudes ranging from 720 to 1050 m 
above sea level. The climate is slightly continental, characterised by 
cold winters and hot summers. Quintos de Mora has an annual pre-
cipitation between 300 and 400 mm. The entire study area is fenced 
with fences impermeable to ungulates, such that the movement of 
wild boar and red deer in and out of the area should be limited. While 
these fences were not explicitly designed to be a movement barrier 
for fox, they may also hamper fox movement to some extent.

2.2  |  Camera trapping network and data

Within the study area, a CT network was deployed each winter from 
2017–18 to 2021–22. Each of these winters, 20 cameras were in-
stalled at the intersections of a lattice grid (with a camera spacing 
of ~2 km), which were fixed across years (Figure 1; Table 1). During 
winter 2019–20, eight additional cameras were placed. This resulted 
in camera locations, which are, to the best of our knowledge, ran-
dom relative to the movements of the three target species, i.e., fox, 
red deer and wild boar. These species were selected as they were 
the only ones that generated sufficient records for analysis by REM/
NMM. As NMMs require data collected at discrete sites, we super-
imposed a hexagonal grid layer on the study area resulting in 336 

grid cells of 0.2255 km2. This grid cell size trades off the possibility to 
capture fine-scale spatial variation with the possibility of detecting 
individuals at multiple trapping locations. The number of trapping 
days varied between years. During the winters of 2017–18, 2018–19 
and 2019–20, we used Bushnell Trophy Aggressor cameras, while 
Reconyx Hyperfire 2 and Browning Strike Force cameras were de-
ployed during the winters of 2020–21 and 2021–22, respectively 
(Table  1). All cameras were mounted on trees ~50 cm above the 
ground, facing North and parallel to the ground. None of the cam-
eras was baited to lure animals or was placed preferentially next to 
a trail. All cameras were set to be operative all day, to record a burst 
of consecutive photos (rapid fire) at each activation, and with the 
minimum triggering interval between activations. Timely check-ups 
were performed to determine battery levels and to verify that the 
cameras were still operating. Groups of consecutive photos were 
aggregated into sequences, which were manually annotated and 
used for the analysis of density/abundance by both REM and NMM 
(Bollen et al., 2023).

F I G U R E  1 Map of the study area in Quintos de Mora with 
hexagonal grids. The colour scale represents the proportion 
of forest in each grid (white: low proportion; dark brown: high 
proportion). Camera locations that had a camera deployed every 
winter are indicated by dots, those with deployments only in the 
winter of 2019–20 by triangles. The inset map shows the study area 
within Spain and Castilla-La Mancha (red).
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2.3  |  Statistical models

We analysed CT data for three different species using the REM and 
an extension of the NMM. While the REM was applied to each of the 
species specific data independently for each year, a single spatially 
and temporally explicit beta-Poisson NMM was fitted to the joint 
species data of all years in the study period.

2.3.1  |  Random encounter model

We estimated animal density (individuals/km2) for each target 
species and year in our study period separately using REM. Fitting 
REM requires three sources of information: (i) encounter rate y ∕ t
, the rate at which individuals of a population come into contact 
with a CT, (ii) the radius r  and angle � of the camera viewsheds 
and (iii) animal movement speed v, which we obtained following 
Palencia, Rowcliffe, et al. (2021). First, we obtained the encounter 
rate of a target species by dividing the number of encounters y 
(i.e., total number of individuals from independent sequences of 
pictures of the species) by the total survey effort t  (i.e., the sum 
of durations that each camera was active in the field). Note that 
we regarded pictures generated from each movement in and out 
of the camera viewshed as independent. Second, we estimated 
the effective radius r̂  and angle �̂ by applying distance sampling 
to recorded positions (radial distance and angle) of each individual 
entering a camera viewshed (Rowcliffe et al., 2011). Third, we ap-
proximated the movement speed of each individual by dividing its 
distance travelled through the camera viewsheds by the time it 
took (i.e. time between first and last photo). For each target spe-
cies, we then identified its main behavioural modes and averaged 
across all speed measurements of the corresponding mode to 
obtain behaviour specific speeds for the population. Day range 
was obtained by summation of the products of behaviour spe-
cific speeds and the proportion of time spent on each behaviour 
(Palencia, Fernández-López, et al., 2021). After obtaining encoun-
ter rate y ∕ t, the radius r  and angle � of the camera viewsheds, 
and the day range (movement speed) v for each population, animal 
densities were estimated by:

Finally, we calculated standard errors associated with density esti-
mates for each population using the delta method (Seber, 1982).

2.3.2  |  N-mixture model

We modelled abundances for all target species and years in our 
study period using a single NMM. The NMM uses species counts, 
which are collected repeatedly in space and time, to model the ex-
pected number of individuals per site during a given survey period 
(abundance), knowing that some of the individuals that are present 
will not be detected (i.e., they do not show up in the species counts). 
However, the discrete sites (0.2255 km2) as we have defined them 
in section 2.2 are smaller than the typical home ranges of our target 
species. Hence, we cannot rule out that some individuals have been 
detected at multiple camera locations, violating the closure assump-
tion. Thus, we interpreted abundances obtained from our NMM as 
relative abundances, i.e., the number of individuals that have used a 
site at least once during the survey period (henceforth “abundance” 
will refer to relative abundance).

We obtained species counts per survey day (24-h) by sum-
mation across all the individuals of that species counted on se-
quences of pictures from that day. This yielded counts ysijt for 
species s = 1, 2, 3 (fox, wild boar, red deer) at the subset of sites 
i = 1, 2, … ,R that contained a CT during day j = 1, 2, … , J in year 
t = 1, 2, … , T. To correct for detection error NMM simultaneously 
estimates the detection probability (or rate) and the abundance 
of a species from ysijt. We fitted our NMM to species counts ysijt 
within a Bayesian estimation framework using Stan (via the R pack-
age cmdstanr), a probabilistic programming language that enables 
Bayesian estimation through a dynamic Hamiltonian Monte Carlo 
(HMC) sampler (Carpenter et al., 2017). Specifically, we assumed 
ysijt to be i.i.d. Poisson random variables, such that the detection 
process is given by:

where the mean is a product of the latent number of individuals of 
species s at site i  during year t (Nsit) and the species specific detec-
tion/trapping rate per camera per day (psijt). Note that by assuming a 
Poisson detection process, our NMM accommodates, to some extent, 
for double counts (i.e., it cannot account for individuals that are, on av-
erage, being detected >1 per survey day). We assumed that the trap-
ping rate was constant across J days of year t and across R sites and 
that species specific detection rates pst followed a beta distribution:

where we parameterised Beta(�, �), such that � = pt� and � =
(
1 − pt

)
� . 

Under this parameterisation, pt and � have a clear biological 

D =
y

t
⋅

�

v ⋅ r ⋅ (2 + �)

ysijt ∣ Nsit ∼ Poisson
(
Nsitpsijt

)
,

pst ∼ Beta
(
ptτ,

[
1 − pt

]
τ
)
,

TA B L E  1 Description of the yearly camera trapping survey.

Year Winter Start date End date No. of days No. of cams Cam. Type

1 2017–18 28/09/2017 25/10/2017 28 19 Bushnell Trophy Aggressor

2 2018–19 29/11/2018 31/12/2018 33 19

3 2019–20 18/09/2019 09/12/2019 83 28

4 2020–21 01/10/2020 08/11/2020 39 19 Reconyx Hyperfire 2

5 2021–22 20/01/2022 16/02/2022 28 20 Browning Strike Force
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interpretation as the mean detection rate of all species in the commu-
nity, and a measurement of similarity in species specific detection rates 
respectively (Dorazio et al., 2013). Furthermore, we modelled abun-
dances Nsit as a Poisson process with mean �sit:

Without further restrictions, the likelihood of this model involves an 
infinite sum over Nsit, which we needed to restrict in order to sam-
ple from it. Therefore, we set species specific finite upper bounds 
Ks = max

(
ysijt

)
+ 100, ∀ i = 1, 2, … R; j = 1, 2, … , J and t = 1, 2, … , T , 

which are much larger than the expected local population size ensur-
ing that parameter estimates do not change appreciably beyond Ks . 
Moreover, we constructed the likelihood by marginalising over Nsit

's with upper bound K given that Stan cannot sample discrete latent 
variables.

We defined two competing models, 1 and 2, for which the 
detection process is identical. Both models estimate the detection 
rate of the community as a smooth curve f  across years:

However, the abundance process has an additional parameter in 2 
compared to 1, capturing a linear trend in abundance across years 
for each species,

where �s,0 and �s,1 represent species specific intercepts and slopes 
for the trends across years, f ′

s
 models species specific smooth curves 

(trend noise), and fHSGP
s

 is a spatial random effect. Both f  and f ′
s
 use 

an exact Gaussian process (GP) (Golding & Purse, 2016; Williams & 
Rasmussen, 2006). For computational efficiency, we used the Hilbert-
space reduced rank Gaussian process (HSGP) approach to model fHSGP

s
 

(Riutort-Mayol et  al.,  2020; Solin & Särkkä, 2020). As the inclusion 
of species specific random effects markedly increases the number of 
parameters, possibly resulting in models that are too difficult to fit, we 
also tested non-spatial versions of 1 and 2 omitting fHSGPs

.
Prior specifications and goodness-of-fit diagnostics are de-

tailed in Appendix A. We fitted all models using two parallel MCMC 
chains with 10,000 iterations, which included 5000 iterations that 
were discarded as burn-in iterations; this always resulted in satis-
factory convergence (Table A1), following the guidelines by Vehtari 
et  al.  (2021). After fitting 1 and 2 (and their non-spatial ver-
sions), we performed a model selection by comparing their approx-
imate leave-one-out expected log predictive densities (LOO-ELPD) 
(Vehtari et  al., 2017). For a comparison of the results from a be-
ta-binomial NMM and beta-Poisson NMM, we refer to Appendix B.

2.4  |  Population trends

After model selection, we tested whether relative trends between 
species were consistent across the models by fitting a linear 

regression for yearly density (REM) versus abundance (NMM) esti-
mates. We then compared temporal trends in density/abundance, 
obtained by REM and NMM in three ways. First, we computed the 
correlation between the ranks of relative trends between years in 
both methods using Spearman's rank correlation test. Next, we as-
sessed the similarity of the trajectories of yearly growth rates, i.e., 

xst ∕xs(t−1) with x =

⎧⎪⎨⎪⎩

� if NMM

D if REM
 and also computed their Pearson cor-

relations. Lastly, we compared slopes in linear trends across yearly 
densities/abundances. This is simply the estimated parameter �̂s,1 of 
2 for the NMM. However, to obtain this slope for REM, we needed 
to fit a linear regression line through estimates of yearly density 
post-hoc (for reference, we also did this for the NMM). Finally, to 
assess the precision of parameter estimates, we compared the coef-
ficient of variation (CV) between yearly abundance and density.

3  |  RESULTS

3.1  |  Trapping effort

Throughout the study period, we retain data from 4296 24-h periods 
(fox and wild boar) and 2189 24-h periods (red deer). This results 
in 2721, 520 and 226 observations of red deer, wild boar, and fox, 
respectively. The sampling period for fox and wild boar is extended 
relative to that of red deer, due to lower sample sizes in those spe-
cies. Due to a defective camera, we retain data from only 19 CTs 
during the winters of 2017–18, 2018–19, and 2020–21.

3.2  |  Random encounter model

Mean annual densities estimated through REM lie between 0.41–
0.73 individuals/km2 for fox, 5.34–7.14 for wild boar, and 25.06–
46.63 for red deer (Table 2). We do not observe a consistent increase 
or decrease in yearly densities for any of the target species. Relevant 
interannual variation is observed in the encounter rate and day 
range in all of the species (Table 2). Only seven fox encounters are 
recorded during 2020, hence we could not estimate the fox density 
for that year.

3.3  |  N-mixture model

Model 1 has the best predictive performance according to LOO-
ELPD, closely followed by 2 (Table  3). However, the standard 
error on the ΔLOO-ELPD between these models is substantial. 
Furthermore, LOO-ELPD suggests that the spatial models are 
more consistent with the data than their non-spatial counterparts. 
Both 1 and 2 fit the best to the fox data, followed by those of 
the red deer and finally the wild boar specific data (Table B2). For 
the remainder of the paper, all results from the NMM are gener-
ated based on the top-ranking model (1). The posterior mean 

Nsit ∼ Poisson
(
�sit

)
.

Logit
(
pt
)
= f(t).

1: Log
(
�sit

)
= �s,0 + f �

s
(t) + fHSGP

s

(
loni , lati

)

2: Log
(
�sit

)
= �s,0 + �s,1t + f �

s
(t) + fHSGP

s

(
loni , lati

)
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detection rate of the community decreases until 2020–21 and 
shows a slight increase from 2020–21 to 2021–22 (Figure C1). For 
all the years in our analysis, there is a fair amount of posterior un-
certainty, judging from the 50%, 80%, and 95% Bayesian credible 
intervals (BCI) for the community detection rate. The fox specific 
detection rate mostly resembles the community detection rate in 
terms of its mean trend and posterior uncertainty (Figure C1). The 
mean detection rates for both wild boar and red deer are distinct 
from the trend of the community. BCIs are narrow for all years 
and species.

Smooth temporal effects reveal year-to-year fluctuations in 
abundance of similar magnitude, but different trends between red 
deer and wild boar (Figure C2). The yearly variation in fox is larger 
than both of these species and also has a different trend. Smooth spa-
tial effects display different magnitudes for all species (Figure C3). 
The trend of spatial effects for foxes is not correlated with any of 
the spatial trends of other species (Figure C4). However, the spatial 
trends for red deer and wild boar are positively correlated. Together, 

relevant spatiotemporal variations in abundances are observed 
(Figures C5–C7).

3.4  |  Population trends

Yearly densities (REM) and abundances (NMM) cannot be directly 
compared on their absolute scales (Figure  2c), yet they still con-
tain important information on the consistency of species and/or 
year rankings across REM/NMM. The relationship between density 
(REM) and abundance (NMM) for the three species is captured well 
by a linear model (R-squared: 0.9141; Figure 2b). Only the ranks of 
yearly densities/abundances for the entire community are signifi-
cantly correlated between 1 and REM (Table  4). However, both 
models produce similar trajectories in growth rates for fox, but not 
for wild boar and red deer (Figure 2c; Table 4). Interestingly, 1 and 
REM are in agreement about the direction of linear trends in density/
abundance estimates obtained post-hoc, except for fox (Figure 2d). 

TA B L E  2 Values of the parameters of the estimated random encounter model (REM) for each population, where y/t is the encounter rate; 
v, the average distance travelled by an individual during a day (day range); r, the radius of detection; and Ɵ, the angle of detection.

Populations Parameters

Sp. Year y/t (ind/(cam·day)) v (km/day) r (km) Ɵ (rad)
Density 
(ind/km2)

Fox 1 0.042 (0.022) 13.920 (5.342) 0.0068 (0.0007) 0.733 (0.037) 0.56 (0.31)

2 0.052 (0.021) 16.713 (5.212) 0.0064 (0.0006) 0.733 (0) 0.57 (0.3)

3 0.075 (0.018) 20.532 (4.961) 0.0057 (0.0004) 0.733 (0) 0.73 (0.25)

4 NAa NAa NAa NAa NAa

5 0.069 (0.010) 21.225 (8.111) 0.0084 (0.0003) 0.960 (0.083) 0.41 (0.23)

Wild boar 1 0.191 (0.049) 6.840 (1.773) 0.0044 (0.0005) 0.733 (0.075) 7.14 (2.8)

2 0.152 (0.053) 5.033 (1.634) 0.0057 (0.0005) 0.733 (0) 6.19 (1.92)

3 0.177 (0.072) 8.823 (1.334) 0.0043 (0.0004) 0.733 (0.111) 5.34 (1.82)

4 0.205 (0.029) 7.751 (1.483) 0.0048 (0.0003) 0.941 (0.126) 5.84 (3.32)

5 0.158 (0.049) 5.638 (1.614) 0.0049 (0.0004) 0.733 (0) 6.55 (2.83)

Red deer 1 2.026 (1.061) 7.879 (1.279) 0.0059 (0.0002) 0.733 (0) 46. 63 (16.3)

2 0.704 (0.120) 3.834 (0.827) 0.006 (0.0002) 0.733 (0) 34.87 (7.32)

3 1.382 (0.182) 6.462 (0.511) 0.0053 (0.0001) 0.960 (0) 42.99 (9.21)

4 0.670 (0.254) 4.020 (0.420) 0.0046 (0.0001) 0.960 (0) 44.92 (17.82)

5 0.784 (0.117) 6.616 (0.984) 0.0050 (0.0001) 0.960 (0.174) 25.06 (8.48)

Note: Data represent means (± standard error).
aFox density in year 4 (2020–21) was not estimated due to the low sample size.

Model
Eff. No. 
par. ELPD LOO

SE (ELPD 
LOO) ΔELPD LOO

SE (ΔELPD 
LOO)

1 (non-spatial) 36 −5934.84 455.50 −40.04 12.99

2 (non-spatial) 40 −5937.57 455.43 −42.77 12.91

1 77 −5894.79 453.97 0.00 0.00

2 81 −5896.64 453.91 −1.85 1.65

Abbreviation: Eff. No. par., effective number of parameters.

TA B L E  3 Model comparison according 
to the leave-one-out expected log-
predictive densities (higher is better). 
Expected log-predictive density, based on 
Leave-one-out (ELPD LOO).
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The 95% BCI of trend slopes from 2 (�s,1) overlap zero in all spe-
cies. We did not attempt to compare the precisions of linear trends 
as they were obtained from values that are on substantially different 
scales.

4  |  DISCUSSION

In this study, we compared trends (i) between species, (ii) between 
years and (iii) across years obtained from empirical populations of 
three target species based on two models: REM and NMM. We have 
focussed on trends rather than absolute state variables (density/abun-
dance) for two main reasons. First, state variables are slightly different 
across REM (density) and NMM (abundance), and also rely on differ-
ent characterisations of space and time (Gilbert et al., 2020; Loonam 
et al., 2021). Second, the use of absolute population size in conserva-
tion and management has been challenged (Morellet et al., 2007), par-
ticularly when these are obtained through NMMs (Dennis et al., 2015; 
Gilbert et  al.,  2020). Since all of our results are based on empirical 
data, i.e., the truth is not known, we will focus our discussion on the 
consistency and precision of estimated trends rather than discussing 
their accuracy. Moreover, we note that in some cases our study may 
be underpowered to detect (small) differences in abundance given the 
modest number of cameras that we deploy, i.e., 20 (+8 in 2019–20). 
Simulations may help to determine the number of cameras required to 
characterise trends in abundance (Ficetola et al., 2018).

F I G U R E  2 Consistency between population trends. (a) Mean ± 95% (B)CI abundances (NMM: closed circles ± full lines) and densities 
(REM: open circles ± dashed lines). (b) Linear trend ±95% CI bands for density (REM) versus abundance (NMM) estimates. 95% (B)CI are 
displayed for each pair of estimates. (c) Mean ± 95% (B)CI growth rates in abundance (NMM: closed circles ± full lines) and in density (REM: 
open circles. 95% CIs were not obtained due to a high error propagation using the delta method). (d) Mean ± 95% (B)CI slope coefficients for 
linear trends in yearly abundance (NMM) and density (REM) obtained by least squares regression. Linear trend in abundance captured by �s,1 
(2). No trend was visualised for 1, as this model assumed that linear trends in abundances were absent. Colour scale – C: growth rate > 1 
(red) or < 1 (blue), D: slope > 0 (red) or < 0 (blue). Fox density, and hence growth rate, in year 4 (2020–21) was not estimated by REM due to 
the low sample size.

TA B L E  4 Correlation coefficients ρ and their significance for (i) a 
Spearman rank correlation test between yearly abundances (NMM) 
and yearly densities (REM) and (ii) a Pearson correlation test for 
growth rates in density of each species.

Species Type Statistic ρ p-Value

Community Spearman 30 .93 <.001

Pearson 2.43 .63 .038

Fox Spearman 6 .40 .750

Pearson 5.38 .98 .120

Wild boar Spearman 6 .70 .233

Pearson 0.84 .51 .490

Red deer Spearman 18 .10 .950

Pearson −0.34 −.23 .770
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As the NMM is very sensitive to model assumptions, we tried to 
control for two common sources of bias in abundance: accidental 
double counting of unmarked species by a Poisson detection process 
(Kéry & Royle, 2016; Link et al., 2018), and unmodelled heterogene-
ity (Duarte et al., 2018; Link et al., 2018; Veech et al., 2016) by the 
inclusion of several fixed (Figure 2d) and random effects (Figures C2 
and C3). Our study used different CT types across years, which has 
likely induced variability in the probability of detecting individuals 
that cross a camera viewshed. To account for this source of variabil-
ity and potentially other differences leading to interannual variation 
in detectability (Hofmeester et al., 2019), we have included temporal 
effects in NMM and estimated angles � and radii r separately for 
each year when applying REM. Moreover, we attempted to con-
trol bias that may result from inaccurate estimates of movement 
speed in REM, by correcting for different movement speeds in the 
main behavioural modes of a species (Palencia, Fernández-López, 
et al., 2021).

Although we warn users against using abundances from NMMs 
as absolute quantities (Barker et al., 2018), the yearly total abun-
dances and densities retrieved from our NMM can be found in 
Table C1 for comparison with REM densities (Table 2). NMM and 
REM treat CT data differently (replicated counts vs. aggregated 
counts across the entire survey period). It is unclear how this im-
pacts quantities derived from their state estimates, including rela-
tive trends, which is a study limitation. Regardless of the quantity of 
interest (either abundance or density), reaching a CV <0.25 is con-
sidered the minimum threshold for estimates to be useful for wild-
life management (Skalski et  al.,  2005). The abundance estimates 
of our NMM meet this requirement across all species and years, 
while REM fails to deliver CV ≤ 0.25 for most species-year combi-
nations (Table C2). However, some caution is warranted as higher 
precisions could result from overconfidence, rather than from cor-
rectly characterised improvements (Goldstein & De Valpine, 2022). 
Possibly, the absence of movement parameters in the NMM, or the 
separation of model uncertainty over two subprocesses may lead to 
overconfidence in the precision of its abundances. On the contrary, 
underestimation of movement speed can lead to decreased preci-
sion of REM densities (Santini et al., 2022). Finally, weakly informa-
tive priors may have contributed to a lower CV (higher precision) in 
NMM abundances compared to densities from REM, which does 
not use priors.

Relative trends between species, based on species-rankings of 
density/abundance, over a 5-year period are consistent between 
NMM and REM (Figure 2b). A similar consistency in species-rank-
ings based on relative abundance indices from camera surveys 
and densities from faeces counts has been observed (Ferretti 
et al., 2023). Species specific spearman rank correlations between 
yearly NMM abundances and REM reveal that these models cap-
ture different relative trends between years. This is reinforced by 
the differential progressions of the yearly growth rates for wild 
boar and red deer (Figure 2c). The reduced consistency in yearly 
growth rates relative to species-rankings between NMM and REM 
suggest that camera-based estimators will converge on similar 

qualitative results when the range of variability is large (i.e. be-
tween-species variability), but may not do so when the range of 
variability is smaller (i.e. between-year variability). However, fox 
growth rates reveal a similar progression between the models and 
are highly correlated showing that camera-based estimators may 
also yield consistent rank-order patterns when variability is smaller 
(Figure  2c; Table  4). Simulation studies should be performed to 
identify the exact circumstances resulting in consistent rank-order 
patterns between various camera-based estimators, and those re-
sulting in a lack of consistency. Linear trends in density/abundance 
across years, obtained post hoc, were in agreement only for two 
of the three species (Figure 2d). However, 1 outperforming 2 
in terms of LOO-ELPD suggests that these trends are stationary. 
This is supported by the BCIs of �s,1 overlapping zero. The preci-
sion of trend estimates was higher in NMM compared to REM for 
all species. This could be a consequence of our NMM, but not our 
REM, explicitly modelling a temporal dependency between yearly 
abundances. Modelling temporal autocorrelation can indeed shrink 
outlying observations to the mean trend (Outhwaite et al., 2018; 
Williams & Rasmussen, 2006). The possibility to model (non)linear 
trends in abundance, rather than obtaining them post hoc, is a main 
advantage of the NMM as it allows for hypothesis-testing through 
model selection (Table 3). This is also true for trends in space, which 
may help managers gain insight into the drivers of space use within 
a study area. In Quintos de Mora, for example, foxes seem to be 
more abundant in the west of the study area (Figure C5). Wild boar 
appear in three clusters, and red deer are clearly more abundant in 
the central savanna-like landscape. All of the species seem to avoid 
the mountainous, forested areas in the north and south of the study 
area to some extent. Regardless of the exact spatial ecology of the 
target species in Quintos de Mora, being able to capture meaning-
ful information on animal space use patterns in general is of high 
ecological importance and should be considered when choosing 
a modelling framework. Although REM for camera trapping data 
currently lacks the possibility to model spatial and/or temporal 
trends, it holds the potential to be extended to a fully spatiotempo-
ral analysis tool following ideas in Jousimo and Ovaskainen (2016). 
Another possible avenue to capture spatial variation in density with 
REM, is to perform the analysis over a number of ecologically rel-
evant strata. However, this may rapidly result in sample sizes that 
are too low to make meaningful inference when the number of 
strata increases or when the number of cameras available is limited.

In summary, we would advise practitioners against the use 
of NMMs when absolute densities/abundances are desired (al-
though they may produce sensible estimates in some settings) and 
resort to REM or other methods instead (Efford & Fewster, 2013; 
Howe et  al.,  2017; Moeller et  al.,  2018; Nakashima et  al.,  2018). 
However, practitioners should be aware that all of these methods 
require auxiliary data and/or field procedures, some of which can 
be time-consuming (Palencia, Rowcliffe, et al., 2021). Thus, when all 
that is needed are relative population trends, applying NMM may 
be faster, cheaper and can provide insight in spatiotemporal dy-
namics of abundance. To bridge this gap we encourage the further 
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development and adoption of spatiotemporally explicit versions of 
REM for camera trapping studies. Finally, it appears that NMM and 
REM converge on similar relative trends when the range of variabil-
ity is large, but may not do so when the range of variability is smaller. 
We advise that researches take this into account, when they want to 
directly compare the qualitative results from different camera-based 
estimators or perform meta-analyses thereof. Since the truth in our 
study is unknown, we cannot draw conclusions about the accuracy 
of these trends. Hence, we encourage future research that evaluates 
the accuracy of relative trends in a simulation setting.
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APPENDIX A

PRIOR SPECIFICATION, MODEL CONVERGENCE AND GOODNESS-OF-FIT OF THE N-MIXTURE MODELS

For the beta-Poisson N-mixture models, which are described in the main paper, we used mostly vaguely informative priors of the normal , 
student t or gamma distribution. Only for the length scale parameter of the GPs we used distributions that avoid values near zero (i.e. 
inverse gamma), or that avoid both values near zero and larger values (i.e. generalized inverse Gaussian). More specifically, we specified 
a gamma(5, 0.1) for the dispersion parameter �. For regression parameters �s,0, �s,1, we used student t(3, 0, 5) and normal(0, 1) priors 
respectively. We used half normal(0, 1) priors, and an inverse gamma IG(11, 4) prior for respectively the marginal standard deviations {
�fs , �f ′s

}
 and the length scales 

{
�f , �f ′

s

}
, the hyperparameters of the GPs. For the same hyperparameters of the HSGP, i.e., �fHSGP

s
 and �fHSGP

s
 , 

we used a non-negative student t+(3, 0, 5) and a generalised inverse Gaussian GIG(3, 11, 0.01) prior. For the GPs coefficients 
{
�f , �f ′

s

}
, 

we used normal(0, 1) priors. We specified a multivariate normal distribution for the HSGP coefficients �fHSGP
s

, with a zero-mean and 
variance–covariance matrix Σ. For numerical efficiency, we decomposed Σ into its Cholesky factors (i.e., Σ = L ⋅ �� ⋅ L

�), with L ∼ LKJ(4) and 
�� ∼ half normal(0, 1). Here we also show diagnostics on the convergence of the MCMC and on the exploration of the posterior for the most 
important parameters of 1 (Table A1).

Finally, to check the goodness-of-fit, we calculated �2 – discrepancies, relative to the expected counts under 1 and 2 , for the actual 
data (T) and replicated data (i.e., simulated from the model; T (s)). For a satisfactory model fit, the �2 – discrepancies calculated from 
replicated data should align with those obtained from actual data, i.e., Ĉ = T ∕T (s) ≈ 1 (Table A2).

TA B L E  A 1 Diagnostics assessing the convergence of the MCMC sampler (Rhat), and the efficiency of the posterior exploration in the 
bulk and tail of the distribution (ESS bulk, ESS tail) for 1.

Parameter Rhat
Rhat 
(2.5th)

Rhat 
(97.5th) ESS bulk

ESS bulk 
(2.5th)

ESS bulk 
(97.5th) ESS bulk

ESS tail 
(2.5th)

ESS tail 
(97.5th)

� 1.0002 1.0002 1.0002 3755 3755 3755 2467 2467 2467

�s,0 1.0008 0.9998 1.0017 3091 2221 4279 3296 2827 3583

�fs 1.0018 1.0018 1.0018 2307 2307 2307 2946 2946 2946

�f ′
s

1.0072 1.0003 1.0168 654 383 826 1846 1571 2230

�fHSGP
s

1.0004 1.0000 1.0011 3253 1711 4158 3717 3300 4332

�f 1.0000 1.0000 1.0000 4214 4214 4214 3199 3199 3199

�f ′
s

1.0010 1.0010 1.0010 8007 8007 8007 3455 3455 3455

�fHSGP
s

1.0009 1.0005 1.0012 2628 2016 3263 3048 2653 3346

�f 1.0014 1.0008 1.0022 3842 3324 4225 3541 3127 3901

�f ′
s

1.0009 0.9999 1.0032 5440 1775 6794 3876 2689 4425

�fHSGP
s

1.0006 0.9998 1.0020 6888 4014 8698 3948 3197 4544

�� 1.0004 0.9999 1.0008 3284 1853 4241 3589 3287 4095

Note: For each diagnostic, the mean, 2.5th and 97.5th percentiles are displayed. Note that we only display parameters that have a prior distribution in 1.
Abbreviations: ESS, effective sample size (in the tail or bulk of the distribution); MCMC, Markov chain Monte Carlo; Rhat, potential scale reduction factor.
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APPENDIX B

RESULTS FOR ALTERNATIVE OBSERVATION MODELS OF 1

In the main paper, we formulated 1 as a beta-Poisson NMM. Here we show the most important findings obtained by changing the 
observation process of 1 to either a Poisson, beta-binomial, or binomial distribution. Note that the beta-binomial NMM models species 
specific data jointly, just like the beta-Poisson NMM, while the Poisson NMM and binomial NMM need to be fitted to data of each species 
separately. In our study, a joint approach using a beta distribution did not qualitatively change the inference from NMM (Figures B1 and 
B2), but yielded speedups in computation time (Table B1). Specifying a (beta-)Poisson instead of a (beta-)binomial model was effective 
against inflation of abundance for wild boar and red deer (Figure B2), and has probably helped to control bias from accidental double 
counting.

TA B L E  A 2 Posterior means and 95% 
credible intervals for species specific 
overdispersion diagnostic 

(
Ĉ

)
 obtained 

from 1 and 2.

Species Model Mean 2.50% 97.50%

Fox 1 0.8454 0.6933 1.0264

2 0.8464 0.697 1.0259

Wild boar 1 2.3601 2.0432 2.7045

2 2.3615 2.0479 2.7162

Red deer 1 1.5102 1.3825 1.6444

2 1.5118 1.3872 1.6502

TA B L E  B 1 Time (in seconds) needed 
to fit 1, a beta-binomial version 1, 
and single-species versions of 1 with a 
Poisson or a binomial observation process 
for all species in the community.

Model Walltime in sec. Fold change

Beta-Poisson 10,472 1.00

Poisson 13,052 1.25

Beta-binomial 19,464 1.86

Binomial 24,068 2.30

TA B L E  B 2 Posterior means and 95% 
credible intervals for species-specific 
overdispersion diagnostic 

(
Ĉ

)
 obtained 

from 1 , a beta-binomial version 1, 
and single-species versions of 1 with a 
Poisson or a binomial observation process.

Model Species Mean 2.50% 97.50%

Beta-Poisson Fox 0.8454 0.6933 1.0264

Wild boar 2.3601 2.0432 2.7045

Red deer 1.5102 1.3825 1.6444

Poisson Fox 0.8554 0.7062 1.0433

Wild boar 2.3591 2.0544 2.7075

Red deer 1.5041 1.3772 1.6386

Beta-binomial Fox 0.9000 0.7559 1.0724

Red deer 2.4171 2.1126 2.7658

Red deer 1.6648 1.5302 1.8115

Binomial Fox 0.8970 0.7537 1.0667

Wild boar 2.4155 2.1182 2.7570

Red deer 1.6604 1.5361 1.7965
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    |  13 of 19BOLLEN et al.

F I G U R E  B 1 Posterior mean (and 
95% Bayesian credible intervals) of 
yearly detection rate/probability for 
each species, obtained from 1, a beta-
binomial version of 1, and single-species 
versions of 1 with a Poisson or a 
binomial observation process.

F I G U R E  B 2 Posterior mean (95% 
Bayesian credible intervals) of yearly 
abundances for each species, obtained 
from 1 , a beta-binomial version of 1

, and single-species versions of 1 with a 
Poisson or a binomial observation process.
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APPENDIX C

ADDITIONAL FIGURES AND TABLES FOR 1

In the main paper, we do not include visualisations for the detection rates, temporal and spatial random effects for the beta-Poisson NMM. 
Here we show these results based on 1 , and we also include maps for the 2.5th and 97.5th percentiles of abundances. Furthermore, 
we give an overview of the posterior total abundance and density per species per year derived from 1 (Table C1). We computed the 
total abundance, and density based on 1 by: (i) calculating the expected number of individuals E

(
Nsit

)
 of species s at site i  during year t, 

(ii) summing these expectations over all sites, such that E
�
Nst

�
=
∑R

i=1
E
�
Nsit

�
, and (iii) scaling them by the total surface area in the grid layer 

(i.e., the product of R , the number of sites, and Ai, the area (in km2) per site), hence E
(
Dst

)
= E

(
Nst

)
∕
(
R ⋅ Ai

)
. Finally, we show comparisons of 

the coefficient of variation (CV) between abundances from 1 and densities from REM (Table C2).

Populations Parameters

Sp. Year Abundance (mean ind/site)
Total abundance 
(ind)

Density 
(ind/km2)

Fox 1 1.02 (0.29) 16.4 (5.51) 3.83 (1.29)

2 1.06 (0.26) 17.8 (4.25) 4.16 (0.99)

3 1.34 (0.36) 44.86 (8.16) 6.86 (1.25)

4 1.09 (0.38) 19.45 (8.21) 4.54 (1.92)

5 1.13 (0.29) 22.12 (5.47) 4.91 (1.21)

Wild boar 1 1.58 (0.36) 31.39 (5.01) 7.33 (1.17)

2 1.57 (0.36) 29.86 (4.57) 6.97 (1.07)

3 1.55 (0.35) 40.39 (7.74) 6.18 (1.18)

4 1.57 (0.41) 29.88 (5.34) 6.97 (1.25)

5 1.55 (0.37) 27.46 (4.59) 6.09 (1.02)

Red deer 1 4.45 (0.77) 80.3 (9.55) 18.74 (2.23)

2 4.36 (0.76) 73.81 (11.17) 17.23 (2.61)

3 4.41 (0.77) 121.71 (18.03) 18.61 (2.76)

4 4.32 (0.76) 73.13 (11.57) 17.07 (2.7)

5 4.43 (0.77) 84.76 (11.48) 18.79 (2.54)

Note: Data represent posterior means (± posterior standard deviations).

TA B L E  C 1 Estimated beta-Poisson 
N-mixture model parameter values for 
each population, where the abundance 
�st is estimated directly, and the total 
abundance E

(
Nst

)
 and density E

(
Dst

)
 are 

derived from the number of sites R, and 
their respective surface area Ai.
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Populations Parameters

Sp. Year Model Mean (SD) CV 2.5%–97.5% (B)CI width

Fox 1 NMM 1.02 (0.29) 0.29 0.45–1.61 1.16

REM 0.56 (0.31) 0.55 0–1.18 1.18

2 NMM 1.06 (0.26) 0.24 0.58–1.61 1.03

REM 0.57 (0.3) 0.53 0–1.17 1.17

3 NMM 1.34 (0.36) 0.27 0.85–2.22 1.37

REM 0.73 (0.25) 0.34 0.23–1.23 1

4 NMM 1.09 (0.38) 0.35 0.42–1.87 1.45

REM NA NA NA NA

5 NMM 1.13 (0.29) 0.26 0.66–1.78 1.12

REM 0.41 (0.23) 0.56 0–0.87 0.87

Wild boar 1 NMM 1.58 (0.36) 0.23 1.07–2.42 1.35

REM 7.14 (2.8) 0.39 1.54–12.74 11.2

2 NMM 1.57 (0.36) 0.23 1.06–2.39 1.32

REM 6.19 (1.92) 0.31 2.35–10.03 7.68

3 NMM 1.55 (0.35) 0.23 1.04–2.35 1.31

REM 5.34 (1.82) 0.34 1.7–8.98 7.28

4 NMM 1.57 (0.41) 0.26 1.05–2.38 1.33

REM 5.84 (3.32) 0.57 0–12.48 12.48

5 NMM 1.55 (0.37) 0.24 1.02–2.33 1.31

REM 6.06 (2.57) 0.42 0.92–11.2 10.28

Red deer 1 NMM 4.45 (0.77) 0.17 3.26–6.28 3.01

REM 46.63 (16.3) 0.35 14.03–79.23 65.2

2 NMM 4.36 (0.76) 0.17 3.14–6.12 2.98

REM 34.87 (7.32) 0.21 20.23–49.51 29.28

3 NMM 4.41 (0.77) 0.17 3.23–6.24 3

REM 42.99 (9.21) 0.21 24.57–61.41 36.84

4 NMM 4.32 (0.76) 0.18 3.06–6.05 2.99

REM 44.92 (17.82) 0.4 9.28–80.56 71.28

5 NMM 4.43 (0.77) 0.17 3.23–6.29 3.05

REM 25.06 (8.48) 0.34 8.1–42.02 33.92

Note: Means ± standard deviations in abundance �st for NMM, and in density abundance Dst for 
REM.

TA B L E  C 2 Estimated model parameter 
values for each population.
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F I G U R E  C 1 Posterior mean (and 50, 
80 and 95% Bayesian credible intervals) 
of yearly detection rates for each species, 
obtained from 1.

F I G U R E  C 2 Posterior mean (and 50, 
80 and 95% Bayesian credible intervals) of 
the smooth temporal variation (log-scale) 
in abundance of each species, obtained 
from 1.
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F I G U R E  C 3 Posterior mean of the 
smooth spatial variation (log-scale) in 
abundance of each species, obtained from 
1. For visual clarity, different scales are 
applied to each of the panels.

F I G U R E  C 4 Correlations between the species specific HSGP coefficients 
(
�sm

)
, obtained from 1.
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F I G U R E  C 6 2.5th Percentile of 
posterior yearly abundance for each 
species, obtained from 1. Regions 
with more than 35% of forest cover are 
enclosed by the black lines. Heat scale: 
abundance – number of individuals that 
have used a grid cell at least once during 
the survey period.

F I G U R E  C 5 Posterior mean of yearly 
abundance for each species and each 
grid cell (0.2255 km2), obtained from 1. 
Regions with more than 35% forest cover 
are enclosed by black lines. Heat scale: 
abundance – number of individuals that 
have used a grid cell at least once during 
the survey period.
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F I G U R E  C 7 97.5th Percentile of 
posterior yearly abundance for each 
species, obtained from 1. Regions 
with more than 35% of forest cover are 
enclosed by the black lines. Heat scale: 
abundance – number of individuals that 
have used a grid cell at least once during 
the annual survey period.
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