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Abstract

Bayesian Optimization (BO) is a popular optimization technique for
expensive-to-evaluate black-box functions. We propose a cheap-expensive
multi-objective BO strategy for optimizing a Permanent Magnet Syn-
chronous Motor (PMSM). The design of an electric motor is a complex,
time-consuming process that contains various heterogeneous objectives
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and constraints; in particular, we have a mix of cheap and expen-
sive objective and constraint functions. The expensive objectives and
constraints are usually quantified by a time-consuming finite element
method, while the cheap ones are available as closed-form equations.
We propose a BO policy that can accommodate cheap-expensive objec-
tives and constraints, using a hypervolume-based acquisition function
that combines expensive function approximation from a surrogate with
direct cheap evaluations. The proposed method is benchmarked on mul-
tiple test functions with promising results, reaching competitive solutions
much faster than traditional BO methods. To address the aforementioned
design challenges for PMSM, we apply our proposed method, which aims
to maximize motor efficiency while minimizing torque ripple and active
mass, and considers six other performance indicators as constraints.

Keywords: Bayesian Optimization, Multi-objectives Optimization,
Constrained Optimization, Permanent Magnet Synchronous Motor

1 Introduction

Bayesian Optimization (BO) [1–4] is a popular surrogate-based data-efficient
technique for optimizing complex and time-consuming optimization problems
[5, 6]. It is particularly useful when data is limited or expensive to acquire.
This paper presents a case study in which both cheap and expensive objective
and constraint functions are considered in the design of electric motors.

In the case of electric motor design, many geometric and electromagnetic
parameters can affect the motor’s performance. BO can help to efficiently
identify the optimal combination of these parameters to achieve the desired
performance indicators (such as high efficiency and high torque density, as
required for use in electric vehicles).

Electric motor design optimization is highly relevant in practice, as electric
motors consume about 40% of the generated energy worldwide [7]. Usually,
the optimization is done using a Genetic Algorithm (GA) evaluated on Finite
Element Methods (FEM), requiring large numbers of evaluations [8]. Such
FEM evaluations can take hours to days, depending on the geometries of
the motor under study; consequently, this design optimization problem could
benefit substantially from an efficient optimization method [7, 9, 10]. Our
approach uses a surrogate model to approximate the expensive FEM evalu-
ations [8, 11, 12]. Objectives and constraints that can be calculated cheaply
(i.e., without the need for FEM, such as the total mass of the material) do not
require a surrogate model, though; they can be quantified or approximated
using deterministic closed-form formulas. Our approach distinguishes between
the cheap and expensive functions in the optimization procedure; we show that
this yields substantial improvements in data efficiency compared to traditional
BO methods.



Springer Nature 2021 LATEX template

Cheap-Expensive BO for PMSM 3

BO has two core components: a surrogate model and an acquisition func-
tion. The surrogate model is used to approximate the expensive output
functions (either objectives or constraints) cheaply. The choice for the sur-
rogate model is commonly a Gaussian Process (GP) [13, 14] or any other
statistical model with uncertainty quantification capability such as Polynomial
Chaos Expansion [15, 16], Neural Networks [17, 18], or Tree Parzen Estima-
tors [19]. Based on the model prediction and the uncertainty quantification, an
acquisition function is defined to sequentially search for the optimum design
by balancing exploration and exploitation. A lot of BO research is available,
accounting for different complexities in the optimization setting, such as batch
optimization [20, 21], multi-fidelity [22], constrained optimization [23, 24], and
multiple objectives [25, 26]. A review paper discussing problem settings in BO
is presented in [27].

In Multi-Objective Bayesian Global Optimization (MOBGO), cheap and
expensive objectives are commonly treated in the same manner, i.e., modeled
using surrogate models. Some attempts to exploit cheap-expensive properties
are presented in recent literature: Allmendinger et al. [28] extend the genetic
algorithm approach to deal with cheap objectives by using a fast-first and
interleaving method. Wang et al. [29–31] study the relationship between cheap-
expensive objectives and search bias in evolutionary algorithm settings. Loka et
al. [32] propose a hypervolume-based BO approach considering a mix of cheap
and expensive objectives, but only for an unconstrained bi-objective setting.

In this study, a two-stage constrained MOBGO algorithm is presented
to optimize a Permanent Magnet Synchronous Motor (PMSM) design. The
algorithm explicitly distinguishes between the cheap and expensive output
functions. The first stage is a constrained active learning (AL) step used to
improve the accuracy of the expensive constraint predictions. This is especially
useful when these constraint functions are highly irregular (showing many local
optima) and/or when the feasible region of the solution space is very small
(implying that the initial design may contain only a few or even no feasible
designs). The second stage is the optimization stage, which uses the proposed
hypervolume-based cheap-expensive constrained acquisition function (CEHVI-
C). This function extends the work of Yang et al. [33] by incorporating the
cheap objectives directly in the hypervolume calculation. The cheap constraints
are accounted for in the optimizer of the BO acquisition function. We show
that the resulting algorithm can attain competitive solutions faster than the
traditional BO method.

The key contributions of this paper are the following:

• The proposed approach builds on a flexible way to quantify hypervolume,
exploiting the distinction between cheap and expensive objectives. This
improves the computational effort for calculating this metric. Moreover,
contrary to the work in [33], it is applicable with any arbitrary box decom-
position approach. Additionally, the algorithm handles expensive and cheap
constraints in a clearly distinct way (accounting for the former in the prob-
ability of feasibility and for the latter in the optimization of the acquisition
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function). As shown, this results in an algorithm that is data-efficient and
yields high-quality solutions.

• Using the proposed approach, we show that the PMSM design problem
can be solved in a data-efficient manner, which outperforms the common
approaches used to solve this problem in the literature. This is in itself an
insightful result, as the FEM calculations are very expensive.

The rest of this paper is organized as follows: Section 2 describes the PMSM
under study. Section 3 explains the basics of multi-objective optimization in
general, along with the corresponding notation and terminology. Section 4
presents the proposed algorithm for constrained multi-objective problems with
cheap and expensive outcomes. In section 5, the experimental setup and results
are discussed. Finally, section 6 presents the conclusions of this paper.

2 Permanent Magnet Synchronous Motor
Optimization

A permanent magnet synchronous motor (PMSM) has several advantages
compared to other types of electric motors, such as higher power density and
higher efficiency. Consequently, this type of motor is preferred in settings where
power density and efficiency are critical, such as in automotive applications.
The downside is that this motor uses rare-earth magnets, which are not only
very expensive but also unfriendly for the environment because of the recycling
problems [34, 35] and the impact of the mining activities [36].
Figure 1 shows a schematic drawing of the motor with the relevant geometrical
design parameters, which are further detailed in Table 1. The magnets (referred
to as rotor poles, pm) are located on the rotor in red and black (to reflect
different polarities).

Table 1: Geometrical design parameters of the PMSM design optimization
problem

Design Variable Type Unit Value

(1) Stator outer radius (SOR) Constant mm 96
(2) Rotor yoke thickness (RYt) Variable mm 5.0-20.0
(3) Width of pm (Wpm) Variable 0.7-0.9
(4) Thickness of pm (Thpm) Variable mm 3.0-5.0
(5) Rotor outer radius (ROR) Variable mm 35.0-65.0
(6) Slot height (sh) Variable mm 10.0-25.0
(7) Slot teeth ratio (STR) Variable 0.4-0.7
(8) Axial length (Lfe) Variable mm 40.0-60.0
(9) Number of pm (p) Constant 10

The PMSM design problem has three objectives (see Table 2) and six
constraints (see Table 3).
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Fig. 1: Motor geometry with geometrical annotations

The optimization of these parameters is nontrivial, though, as they tend
to have conflicting impacts on the objectives: increasing the axial length of
the motor (parameter (8) in Fig. 1), for instance, increases the average torque
but simultaneously increases the total mass (and hence, cost). Consequently,
this design optimization problem is a constrained multi-objective optimization
problem. Some of the performance indicators in Tables 2 and 3 are cheap,
meaning that they can be calculated by means of closed-form formulas. The
expensive indicators are evaluated using Finite Element Methods (FEM) [37].
More details on the performance indicators can be found in Appendix 6.

Table 2: Objectives for the Optimization of a PMSM

Objective Name Type Unit Optimization Type

Efficiency Expensive % Maximization
Torque ripple Expensive N.m Minimization
Total mass Cheap kg Minimization

The PMSM problem is similar to the one proposed in [38, 39]. Some
work has been done to perform multi-objective optimization on a similar
motor design, but it relies on many FEM evaluations [39–41] and handcrafted
optimization steps [39, 42].
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Table 3: Constraints for the Optimization of a PMSM

Constraint Name Type Constraint

Magnitude of flux density in stator yoke (BmagSY) Expensive g1 ≤ 1.5 T
Magnitude of flux density in stator teeth (BmagST) Expensive g2 ≤ 1.5 T
Thermal loading Expensive g3 ≤ 8 kW/m2

Average torque (Tavg) Expensive 60Nm ≤ g4 ≤ 65Nm
Shaft radius Cheap g5 ≥ 15mm
Stator yoke thickness Cheap g6 ≥ 5mm

This study focuses on developing a data-driven approach that also mini-
mizes the number of expensive evaluations, and so that it can be applied to
different problems and settings.
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3 Constrained MOO: Problem Formulation

The goal of a constrained Multi-Objective Optimization (MOO) method is to
optimize a set of objective functions f(x) = [f1(x), f2(x), . . . , fM (x)] ∈ RM ,
while satisfying a set of constraints g(x) = [g1(x), g2(x), . . . , gV (x)] ≤ 0 ∈ RV :

min
x

(f1(x), . . . , fM (x))

s.t. gv(x) ≤ 0, v = 1, . . . , V (1)

where M ≥ 2 is the number of objectives, V ≥ 1 is the number of constraints,
and x ∈ X ⊂ Rd. The set X is d-dimensional and bounded. Without loss of
generality, this paper assumes that the objectives need to be minimized (except
when explicitly stated otherwise). In MOO, there typically is no single optimal
solution x∗ that minimizes all objectives simultaneously while satisfying all
constraints; instead, there is a set of optimal solutions, referred to as the Pareto
set. Mathematically, the Pareto set for an unconstrained optimization problem
is defined as:

P = {x ∈ X | ∄x′ ∈ X : x′ ≺ x} (2)

where the notation xb ≺ xa means that xb dominates xa. In a minimization
problem with M objectives, xb ≺ xa if and only if fm (xb) ≤ fm (xa) ,∀m ∈
{1, ..,M} and ∃m ∈ {1, ..,M} such that fm (xb) < fm (xa). Informally, we can
say that xb dominates xa if and only if it is better in at least one objective,
while not being worse in any of the other objectives. As evident from Eq. (2),
P is defined in the input space; the image of the Pareto set in the objective
space is referred to as the Pareto front: P =

{
f(x) ∈ RM | ∄x′ ∈ X : x′ ≺ x

}
.

In constrained problems, only feasible points x can be part of the Pareto set.
We thus define Pareto feasible set as:

P feas = {x ∈ X | ∄x′ ∈ X : x′ ≺ x, g(x) ≤ 0, g(x′) ≤ 0} (3)

For ease of notation, we denote P := P feas and P := Pfeas for every
constrained problem in this paper.

In this work, Bayesian Optimization (BO) is used to find the Pareto set
in a data-efficient manner (i.e., using the smallest possible number of function
evaluations). Bayesian optimization has two main components: (1) the surro-
gate model, which approximates the expensive output functions, and (2) the
acquisition function, which guides the BO procedure by sequentially selecting
additional input points to evaluate. BO automatically balances exploration
and exploitation.[13, 14, 43]. The Gaussian Process (GP) is the most popular
type of surrogate model used in BO; the technical details of the model can be
found in Appendix B.1. The proposed acquisition function is a key component
and is discussed in the following section.
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4 MOBGO algorithm for Cheap-Expensive
Objectives and Constraints

Previous research on MOBGO algorithms commonly uses an acquisition func-
tion based on the hypervolume metric to search for the Pareto optimal points
[25, 26, 33, 44]. Very recently, this type of acquisition function has been applied
in mixed-variable settings [45], parallel evaluation settings [46], and for high-
dimensional problems [47]. Yet, none of these previous works exploit potential
differences in the latencies (i.e., the evaluation times) of the different objec-
tive functions. In real-life problems, it often occurs that the output functions
(objectives and/or constraints) are a mix of cheap and expensive functions.

To the best of our knowledge, the only papers available so far on this topic
are [48, 49]

(which focus on exploiting latency differences in evolutionary algorithms),
and [32] (which presents a BO algorithm limited to bi-objective unconstrained
MOO problems).

Recently, Buckingham et al. [50] proposed a scalarization-based multi-
objective BO approach for a similar problem. However, their method assumes
that the cheap objective does not have a closed-form formula.

We propose a two-stage optimization approach (as in [51]), which is
depicted in Figure 2. The first stage is optional and is referred to as the Active
Learning (AL) stage. It aims to improve the accuracy of the GPs for hard-to-
model constraints (if any), using the Feasible Predictive Variance acquisition
function discussed in Section 4.1. In the AL phase, the initial surrogates for
these constraints are estimated based on a set of initial design points, which
are evaluated using the expensive FEM models. The most common choice in
the BO literature is a maximin Latin Hypercube design, [52] to ensure that
the resulting set is space-filling. As the aim of the AL phase is to improve the
accuracy of these constraint models, additional points are queried using the
Feasible Predictive Variance acquisition function, which is discussed in detail
in Section 4.1. The AL stage ends when the specified AL budget is depleted
and there is at least one feasible point present in the observations. In some
cases, the feasible area of the problem is very small, which may force the ana-
lyst to keep querying points until both conditions are fulfilled.
The second stage is the Bayesian optimization stage. If it was preceded by
the AL stage, the resulting observations are used as starting points, on which
the surrogate models are again estimated. If the AL phase was skipped, the
starting points are generated through a space-filling design (usually a max-
imin Latin Hypercube design, for the reasons stated above), and they are first
evaluated with the expensive FEM models in order to estimate the initial sur-
rogate models. The additional points to evaluate are then selected using the
proposed cheap-expensive hypervolume-based expected improvement acquisi-
tion function, which is discussed in Section 4.2. The algorithm ends when the
total budget has been depleted, and the points that have been evaluated as
feasible and Pareto-optimal are put forward as the points on the front.
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As explained below, the acquisition functions of both stages account for the
estimated Probability of Feasibility (PF) of the point with respect to the expen-
sive constraints, to avoid spending the budget for evaluating points that are
likely infeasible. The feasibility with respect to the cheap constraints is handled
inside the optimization procedure that maximizes the acquisition functions, as
discussed in Section 4.2.2.

(a) Active learning (b) Bayesian Optimization

Fig. 2: Two-stage optimization scheme. The first stage (AL) is optional. We
use it in our experiments for the PMSM case. The data set resulting from
the active learning steps in (a) are then used as the starting points in (b). If
the AL phase is skipped, the starting points in (b) are generated by a Latin
Hypercube design.

4.1 Stage 1: Active learning (AL)

This stage aims to improve the accuracy of the GP models of the expensive
constraints by focusing solely on exploring the region where the model exhibits
high uncertainty. This is especially useful when the expensive constraint func-
tions are non-smooth (i.e., highly irregular, showing many local optima, which
makes the function hard to model) and/or when the feasible region of the solu-
tion space is very small (implying that the initial design may contain only a
few or even no feasible designs). In such cases, the information gained during
the AL stage results in significant efficiency gains in the optimization stage.
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The acquisition function used is the Feasible Predictive Variance (FPV),
which is defined as:

FPV =

V∏
v=1

σ2
v · PFv(x∗) (4)

where σ2
v is the predictive variance of the hard-to-model constraint v at x∗, and

PFv refers to the Probability of Feasibility (see e.g. [23]) of x∗ for constraint v:

PFv(x∗) := Pr[g̃v(x∗) ≤ 0] (5)

=

∫ 0

−∞
p (g̃v(x∗) | x∗, TN ) dg̃v(x∗) (6)

g̃v(x∗) refers to the Gaussian process outcome for constraint v at x∗, and
TN denotes the data set already available for constraint v.

In the PMSM case study, we use this stage specifically for the average
torque constraint (see Table 3) as this constraint is hard to model, and more-
over it restricts the number of feasible solutions more severely than the other
constraints.

4.2 Stage 2: Bayesian Optimization

After finding enough feasible solutions, new points are selected by maximizing
the Cheap-Expensive Expected Hypervolume Improvement with Constraints
(CEHVI-C) acquisition function:

CEHVI-C = CEHVI(µ,σ,P, r) ·
V∏

v=1

PFv(x∗) (7)

CEHVI-C multiplies the proposed CEHVI acquisition function (see Section
4.2.1) with the probability of feasibility of all expensive constraints gv (
v = 1 · · ·V ). Assuming that all these constraints are independent, this reduces
to a multiplication of the individual PFv(x∗). Note that equation 7 also
implicitly assumes conditional independence between the objective and con-
straint functions [23]. Both assumptions are standard in constrained Bayesian
optimization.

The cheap constraints are not directly incorporated in equation 7, since
this would likely introduce severe non-smooth behavior in the response surface
of the acquisition function. Instead, the cheap constraints are accounted for in
the optimization procedure implemented to maximize the acquisition function,
which is further detailed in Section 4.2.2.



Springer Nature 2021 LATEX template

Cheap-Expensive BO for PMSM 11

4.2.1 Cheap-Expensive Expected Hypervolume Improvement

We extend the EHVI formulation presented in [33] such that (1) it can
efficiently handle a mix of cheap and expensive objectives, and (2) it can be
used independent of the hyperbox decomposition method chosen to implement
the calculations.

In hypervolume-based MOBGO, the notion of improvement by the
Lebesgue measure is used. Let us first define the hypervolume indicator (HVI)
H [53, 54]. Given a Pareto front P, the hypervolume indicator H of this front
P w.r.t. a reference point r is defined as follows [53, 54]:

H(P, r) = λM (∪y∈P [r,y]) (8)

where λM is the Lebesgue measure of the region that dominates r and that is
dominated by P (in RM , i.e., for R2, λ2 is the area of the dominated region,
while on R3, λ3 is the volume).

Using this definition, we can define the hypervolume improvement (also
referred to as exclusive hypervolume) generated by a new point y∗ as:

Hexc(y∗,P, r) = H(P ∪ {y∗}, r)−H(P, r) (9)

.
Based on the definition of hypervolume improvement in equation 9, we can

define the Expected HyperVolume Improvement (EHVI) at an arbitrary new
design point x⋆ as:

EHVI(µ,σ,P, r) =

∫
RM

Hexc(y,P, r) · ξσ,µ(y)dy (10)

where y corresponds to a (random) M -variate objective vector, while ξσ,µ(y)
denotes the value of the M -variate independent normal density function in this
vector (given the predictive mean vector µ ∈ RM at x⋆, and the predictive
variance vector σ2 ∈ RM

+ at x⋆). For ease of notation, let EHVI(µ,σ,P, r) :=
EHVI(µ,σ).

Let us define a set ∆(y,P, r) which contains (given a Pareto front P, the
reference point r and the output vector y) all the output vectors that currently
do not belong to the dominated set, but that would be added to it when the
vector y were added to the front.[33, 55]:

∆(y,P, r) =
{
z ∈ RM | y ≺ z , z ≺ r and ∄q ∈ P : q ≺ z} (11)

For notational simplicity, let ∆(y,P, r) := ∆(y). The EHVI in equation 10
can then be rewritten as:
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EHVI(µ,σ) =

NM∑
i=1

(∫ y1=u
(i)
1

−∞
· · ·
∫ yM=u

(i)
M

−∞

)
λM

[
S
(i)
M ∩∆(y)

]
· ξµ,σ(y)dy

(12)

where λM refers to the M -dimensional Lebesgue measure, S
(i)
M refers to

hyperbox i (see equation B20 in Appendix B.3), and NM denotes the total
number of hyperboxes in the decomposition. Note that equation 12 allows for
piece-wise integration, given the summation over the different hyperboxes.

Dividing each integration slice
∫ ym=u(i)

m

−∞ into (
∫ ym=l(i)m

−∞ +
∫ ym=u(i)

m

l
(i)
m

), we

obtain:

EHVI(µ,σ) =

NM∑
i=1

((∫ y1=l
(i)
1

−∞
+

∫ y1=u
(i)
1

y1=l
(i)
1

)
· · ·
(∫ yM=l

(i)
M

−∞
+

∫ yM=u
(i)
M

yM=l
(i)
M

))
λM

[
S
(i)
M ∩∆(y)

]
· ξµ,σ(y)dy (13)

As evident, each of the individual terms of this sum consist of the multiplication
of M factors, each of which contains the sum of 2 integrals. Since integration is
a linear mapping, we can expand each individual term in equation 13, resulting
in a summation of 2M terms, each consisting of an M -dimensional integral.

Let us finally define C(j)2 as a binary representation of such an M -

dimensional integral. C(j)2 ’s length is thus equal toM . The kth element, C
(j)2
k ,

equals 0 if the kth integral has finite bounds, and 1 if the lower bound is −∞.
Using the results from [26, 33], the EHVI can then be calculated exactly

as follows:

EHVI(µ,σ) =

NM∑
i=1

( 2M∑
j=0

( M∏
k=1

ωe(i, k, C
(j)2
k )

))
(14)

with

ωe

(
i, k, C

(j)2
k

)
:=

Ψ
(
l
(i)
k , u

(i)
k , µk, σk

)
if C

(j)2
k = 0

ϑ
(
l
(i)
k , u

(i)
k , σk, µk

)
if C

(j)2
k = 1

(15)

where i refers to the index number of the hyperbox, k to the index number

of the objective function, and C
(j)2
k is the binary representation of the kth

objective. Note that equation 14 implicitly uses the independence assumption
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between the different objectives, to replace the M-dimensional integrals by
multiplication of M single-dimensional integrals. As evident from equation 15,
the calculation of these single integrals can be done exactly, but depends on

whether the integral has finite bounds (C
(j)2
k = 0) or an infinite lower bound

(C
(j)2
k = 1). More specifically, for C

(j)2
k = 1, we have:

ϑ
(
l
(i)
k , u

(i)
k , σk, µk

)
=
(
u
(i)
k − l

(i)
k

)
·
(
Φ

(
l
(i)
k − µk

σk

))
(16)

where Φ denotes the Cumulative Distribution Function (CDF) of the standard
normal distribution. Equation 16 also occurs in [33], but we adjust it here for
a minimization context.

For C
(j)2
k = 0, we have:

Ψ
(
l
(i)
k , u

(i)
k , µk, σk

)
= Ψ−∞

(
u
(i)
k , u

(i)
k , µk, σk

)
−

Ψ−∞

(
u
(i)
k , l

(i)
k , µk, σk

)
(17)

with

Ψ−∞(a, b, µ, σ) : =

∫ b

−∞
(a− z)

1

σ
ϕ

(
z − µ

σ

)
dz (18)

= σϕ

(
b− µ

σ

)
+ (a− µ)

[
Φ

(
b− µ

σ

)]
(19)

where ϕ and Φ denote the Probability Density Function (PDF) and Cumulative
Distribution Function (CDF) of the standard normal distribution, respectively.

We can further refine equation 14 to deal efficiently with cheap and expen-
sive objectives. To that end, we introduce an M -dimensional binary vector tf :
the kth element of this vector, tfk , equals 0 if the kth objective is cheap, and
1 otherwise.We can then efficiently calculate the resulting Cheap-Expensive
Hypervolume Improvement (CEHVI) as follows:

CEHVI(µ,σ) =

NM∑
i=1

( 2M∑
j=0

( M∏
k=1

ω(i, k, C
(j)2
k , tfk)

))
(20)

with

ω(i, k, C
(j)2
k , tfk) :=

{
ωc(i, k, C

(j)2
k ) if tfk = 0

ωe(i, k, C
(j)2
k ) if tfk = 1

(21)
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For the expensive objectives, this expression reduces to ωe as given by

equation 15. For the cheap objectives, the calculation of ωc(i, k, C
(j)2
k ) depends

on the relative location of yk w.r.t. l
(i)
k and u

(i)
k , as shown in Table 4. As

evident, the resulting values are deterministic.

Table 4: Calculation of ωc(i, k, C
(j)2
k ) for the cheap objectives

Condition Value

yk < l
(i)
k < u

(i)
k ωc

(
i, k, C

(j)2
k

)
=

{
0 if C

(j)2
k = 0

(u
(i)
k − l

(i)
k ) if C

(j)2
k = 1

l
(i)
k < yk < u

(i)
k ωc

(
i, k, C

(j)2
k

)
=

{
(u

(i)
k − yk) if C

(j)2
k = 0

0 if C
(j)2
k = 1

l
(i)
k < u

(i)
k < yk ωc

(
i, k, C

(j)2
k

)
= 0

4.2.2 Acquisition Function Maximization

In every iteration, the query points are obtained by maximizing the acquisition
function (usually referred to as inner optimization). We use a multi-start opti-
mization method [56, 57] that incorporates the cheap constraints. First, the
Monte Carlo method is used to sample 5000 points, and the points that violate
cheap constraints are removed. We then select the 10 points with the highest
CEHVI-C value and apply Sequential Least Square Programming (SLSQP)
with the cheap constraints [58] to each of these in parallel (using the SLSQP
implementation of the Scipy [59] library).

5 Result and Discussion

5.1 Experiment settings

The proposed hypervolume-based MOBGO algorithm was implemented using
Trieste [60] in Python. Before applying our method to the Motor Optimiza-
tion case, we consider five benchmark functions to test the performance of the
proposed algorithm, by testing it on three unconstrained optimization prob-
lems (DTLZ1, DTLZ2, and DTLZ3 [61]) and two constrained optimization
problems (BNH [62] and SRN [63]). The characteristics of these benchmark
functions are presented in Table 5. The reference point indicated in the table
is used for the hypervolume computations.

For these benchmark functions, (d × 11 + 1) initial design points were
generated using quasi-random Halton Sampling [64]. The proposed method
is compared with EHVI(-Constrained), Random sampling, and NSGA-II
(see [65]; we used the version present in PyMOO [66], which accounts for
constraints). The total budget for the FEM simulator is set to 100 input evalu-
ations, except for the NSGA-II algorithm: as this method is less data efficient,
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Table 5: Full specification of the benchmark functions.

Name Input d Objectives Constraints Reference point
Expensive Cheap Expensive Cheap

DTLZ1 6 2 1 0 0 [425, 425, 425]
DTLZ2 6 2 1 0 0 [2.5 , 2.5 , 2.5 ]
DTLZ3 6 2 1 0 0 [825, 825, 825]
BNH 2 1 1 1 1 [150, 100]
SRN 2 1 1 1 1 [800, 200]

we allow it to spend 250 input evaluations. The AL budget is set to zero, as the
expensive constraints (if any) are not hard to model. Evidently, for the uncon-
strained problems, the CEHVI-C acquisition function reduces to the CEHVI
acquisition function (see equation 7).

For the PMSM optimization problem, 35 initial points are generated using
Latin Hypercube sampling [52]. The AL budget for the BO methods is set to
10 iterations; we include the AL phase in this problem as the initial design
is small, so we expect it to be beneficial, especially for learning the hard-to-
model average torque (Tavg) constraint. Both the initial design and the number
of AL iterations are deliberately kept small as the FEM model is relatively
slow to run. We compare the performance of our algorithm against the same
competitors as in the benchmark functions. The total budget equals 100 input
evaluations, except for the NSGA-II algorithm (250 evaluations).

5.2 Results for benchmark functions

We carried out 10 repetitions for each of the benchmark experiments, to check
the robustness of the results against the randomness involved in the algo-
rithms (which is evident in the NSGA-II and Random algorithms; in the BO
algorithms, it impacts the multistart design of the inner optimization).

Figure 3 shows the evolution of the mean hypervolume on the differ-
ent benchmark functions, for the competing algorithms. As shown, the BO
approaches (CEHVI and EHVI) clearly outperform the competing algorithms
in the unconstrained problem settings (top row). Moreover, the CEHVI algo-
rithm has significantly better performance than the EHVI algorithm in the
DTLZ1 and DTLZ3 experiments, which have a disjoint Pareto front [61] and
are thus hard to optimize (the DTLZ2, by contrast, has a smooth Pareto front).

In the constrained benchmark problems (bottom row), CEHVI-C again has
a clearly higher hypervolume indicator value than the other methods. While
both problems have a smooth Pareto front, CEHVI-C outperforms EHVI-C in
the SRN problem (in the BNH problem, the performance of both algorithms
is similar, as the cheap function is smoother and thus relatively easy to model
with GPs).

Table 6 gives an overview of the final hypervolume obtained at the end
of the different algorithms, along with the difference (in %) from the true
optimal hypervolume. As evident from this table, CEHVI-C is the winner in
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(a) DTLZ1 Hypervolume (b) DTLZ2 Hypervolume (c) DTLZ3 Hypervolume

(d) BNH Hypervolume (e) SRN Hypervolume

Fig. 3: Evolution of the mean hypervolume on the benchmark problems, with
a total budget of 100 evaluations. The shaded areas reflect the 95% confidence
intervals based on 10 repetitions.

all test problems except in BNH. Note, though, that NSGA-II only succeeds
in outperforming both BO approaches here because we gave it a significantly
higher total budget; for limited budgets (<= 100), NSGA-II is clearly inferior
(as evident from figure 3).

5.3 Results for PMSM design problem

To check the robustness of the algorithms against randomness, we ran
10 repetitions. The hypervolume values are calculated with reference point
[Efficiency,Torque ripple,Total mass] = [0.80, 8.1, 23.].

Figure 4 shows the evolution of the mean hypervolume for the different algo-
rithms. For the BO algorithms, we used the first ten iterations to implement
an AL stage: here, points were queried by implementing the FPV acquisition
function on the average torque constraint, to improve the corresponding GP
model. As evident from the figure, the AL phase already succeeds in improving
the hypervolume. In the optimization stage, we see that CEHVI-C performs
better than EHVI-C; NSGA-II is clearly inferior to both BO approaches. Actu-
ally, it even fails to query feasible points at certain iterations (even the later
ones) due to the many constraints in the PMSM design problem. As a result,
its hypervolume only improves marginally in the first 100 iterations. As evi-
dent from table 7, which shows the expected hypervolume obtained at the
end of the algorithms, the improvements obtained remain marginal even at a
higher budget.
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Table 6: Overview of the mean hypervolume and the % difference from the
true optimal hypervolume (with 95% confidence interval), obtained at the
end of the algorithms, for the benchmark problems. The best result for each
problem is highlighted in bold.

Test Problem BO Budget Method HVI ∆ to Ground truth (%)

DTLZ1 100 Random 7.5892e7± 1.3126e5 1.137 71± 0.275 86
100 EHVI 7.6585e7± 7.5134e4 0.235 31± 0.157 91
100 CEHVI 7.6759e7 ± 4.6615e3 0.008 22 ± 0.009 79
250 NSGA2 7.6571e7± 6.8405e4 0.254 02± 0.143 76

DTLZ2 100 Random 1.4318e1± 0.052 56 4.868 01± 0.563 46
100 EHVI 1.4925e1± 0.031 35 0.835 12± 0.336 07
100 CEHVI 1.4985e1 ± 0.031 13 0.438 29 ± 0.333 69
250 NSGA2 1.4713e1± 0.039 97 2.246 03± 0.428 48

DTLZ3 100 Random 5.4802e8± 2.2293e6 2.404 30± 0.640 53
100 EHVI 5.5766e8± 1.8455e6 0.686 36± 0.530 25
100 CEHVI 5.6148e8 ± 2.5549e4 0.006 21 ± 0.007 34
250 NSGA2 5.5988e8± 5.3153e5 0.291 95± 0.152 72

BNH 100 Random 1.3127e4± 1.6295e1 0.699 74± 0.198 86
100 EHVI-C 1.3134e4± 2.1248e1 0.651 31± 0.259 31
100 CEHVI-C 1.3161e4± 1.9731e1 0.447 41± 0.240 80
250 NSGA2 1.3174e4 ± 3.2091e1 0.350 01 ± 0.391 63

SRN 100 Random 3.1101e5± 2.9123e3 3.958 08± 1.451 03
100 EHVI-C 3.1885e5± 5.2265e3 1.536 36± 2.604 01
100 CEHVI-C 3.2240e5 ± 4.2819e2 0.439 08 ± 0.213 33
250 NSGA2 3.1885e5± 1.9090e3 1.536 84± 0.951 11

Fig. 4: Evolution of the mean hypervolume for the PMSM design problem, for
a total budget of 100 iterations. The shaded areas reflect the 95% confidence
interval based on 10 repetitions.

Figure 5 illustrates the quality of the final Pareto front obtained by
the CEHVI-C and the EHVI-C methods for a single arbitrary run. Clearly,
CEHVI-C succeeds in achieving solutions with a lower Torque ripple and a
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Table 7: Overview of the mean hypervolume (with 95% confidence interval
halfwidth), obtained at the end of the algorithms, for the PMSM design prob-
lem. The best result is highlighted in bold.

Method AL Budget Total Budget HVI

EHVI-C 10 100 9.6239 ± 0.2607
CEHVI-C 10 100 10.5554 ± 0.1258
NSGA-II 0 250 1.4818 ± 0.5237

Fig. 5: Log of Pareto front of a single experiment run.

lower Total mass than EHVI-C without compromising motor efficiency. The
CEHVI-C runs also take less computation time, as it avoids any estimations
for the cheap objective and constraints.

The three objectives of the optimization are the torque ripple, the motor
efficiency, and the total mass. The magnet mass is also added because it is the
most expensive part of the machine. Generally speaking, the cost of 1 kg of
rare-earth magnets equals more than ten times that of 1 kg of copper or 1 kg
of iron [67, 68].

Figure 6 shows the optimal geometry of an (arbitrary) Pareto-optimal
PMSM design obtained by CEHVI-C, along with the flux lines and flux den-
sities. While there is saturation in some parts of the core, it does not impact
the performance metrics in any negative way.
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Fig. 6: One of the Pareto-optimal designs found by CEHVI-C.

6 Conclusion

In this paper, a hypervolume-based MOBGO approach has been presented
and applied in view of optimizing a Permanent Magnet Synchronous Motor
design. This design problem consists of a mix of expensive performance metrics
(which require FEM evaluations) and cheap performance metrics (which can
be evaluated using closed-form expressions). The key strength of the proposed
approach is that it distinguishes between these cheap and expensive functions,
by only estimating Gaussian Process models for the expensive outcomes. It
includes an active learning stage (which uses the FPV acquisition function
to improve the accuracy for hard-to-model constraints) and an optimization
phase (which uses the proposed CEHVI-C acquisition function, which is a
constrained and cheap-expensive version of the well-known EHVI criterion).
The performance of the CEHVI-C function was first evaluated on a number
of benchmark functions; as shown, it leads to superior performance over the
standard EHVI-based approaches, especially when the cheap objective(s) are
hard to model with GP. This superiority was further confirmed in the PMSM
design results.

The proposed approach is likely beneficial for other engineering design
problems that include cheap and expensive outcomes. In future research, we
plan to extend the approach further such that it can handle noisy function
evaluations. Another interesting topic is to extend the method to be cost-
aware. Indeed, the cost of an expensive function evaluation may not be the
same over the entire search space; cost-aware BO may then try to find the
optimal solutions while minimizing both the number of function evaluations
and the resulting evaluation cost.
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Appendix A Details of the PMSM Problem

A.1 Expensive Objectives

The expensive objectives are evaluated using Finite Element Methods (FEM)
[37]. The motor torque objective is given by:

Tm =
p

2

πµoDgLfe

2Lg
FsFr sin (δsr) (A1)

where p refers to the number of rotor poles, µo is the permeability of the air,
Dg is the airgap diameter, Lfe is the axial length, and Lg is the length of the
airgap. The notations Fs, Fr, and δsr refer to the magnetomotive force of the
stator and the rotor, and the angle between them, respectively. Fs depends
mainly on the winding geometry (area, number of turns, and phases) and
on the permeable current density. Fr depends mainly on the properties and
geometry of the magnet, as well as on g and Lfe. The calculation of Fs and
Fr relies on the expensive FEM evaluation.

The efficiency of the motor is given by:

η =
Tmωr

Tmωr + Pl
100 (A2)

where ωr is the rotor speed, and Pl refers to the motor losses: copper loss,
magnet loss, and iron (stator and rotor core losses). Pl depends on the flux
density, geometry, material properties, current density, and the speed of the
motor. Pl is evaluated by FEM.

A.2 Cheap objectives and constraints

A.2.1 Total mass calculation

The cheap objective function for the motor design problem is the total mass of
the following motor parts: part1 = stator core (silicon steel), part2 = rotor core
(silicon steel), part3 = winding (copper), and part4 = rotor poles (magnets).
The mass of partn can be calculated as follows:

Volume partn = Area partn × Length partn (A3)

Mass partn = Volume partn ×Density partn (A4)
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where steel density = 7267.5 kg/m2, copper density = 8933 kg/m2, magnet
density = 7400 kg/m2. Then, the total mass of the motor can be obtained as
follows:

Total mass =

4∑
n=1

Mass partn (A5)

A.2.2 Cheap constraints

For the calculation of the cheap constraint functions, we first need to define the
following constants: airgap length (Lg) = 1, slot opening height (soh) = 1, slot
wedge width (swx) = 1, slot width yoke side ratio (swyR) = 1.5, slots = 12.
The stator Y thickness (SYt) can then be calculated using following formulas:

Rslotmiddle = ROR+ Lg + soh + swx + (0.5× sh) (A6)

LMslot = STR× 2π × Rslotmiddle

slots
(A7)

sw = swyR× LMslot (A8)

Rteeth =
√

(ROR+ Lg + soh + swx + sh)2 + (0.5× sw)2 (A9)

SYt = SOR− Rteeth (A10)

The second cheap constraint, shaft diameter (ShaftD) is defined by:

ShatfD = 2× ROR− 2× RYt− 2× Thpm (A11)

Appendix B Background on Bayesian
Optimization

B.1 GP model Details

The Gaussian Process (GP) model [13, 14, 43] is the most popular type of
surrogate model used in BO, especially if the input domain is continuous.
Informally, a GP defines a distribution over real-valued functions: f(x) ∼
GP(m(x), k(x,x′)), and is fully specified by its mean function m(x) and its
(positive semi-definite) covariance function k(x,x′).

A GP provides a predictive distribution for the output function under study
at unobserved input locations in the search space, given a (limited) set of avail-
able input/output data. Suppose we want to model an output function fm,
for which we have evaluated the set of data points X = [x1, . . . ,xN ], yield-
ing function evaluations Ym = [fm(x1), . . . , fm(xN )]. Then, DN = {X,Ym} is
defined as the observed data so far in our optimization process, and the GP
model is trained on these data (usually by means of maximum likelihood esti-
mation, as discussed below).
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The means and variances of the predictive distribution f⋆, at any set of
unobserved data points X⋆ = [x⋆1, . . . ,x⋆L], can then be estimated as follows:

µm (X⋆) = E (f⋆ | X⋆,DN ) = K⋆xK
−1
xx Ym (B12)

σ2
m (X⋆) = Var (f⋆ | X⋆,DN ) = K⋆⋆ −K⋆xK

−1
xx KT

⋆x (B13)

where µm (X⋆) is the L × 1 vector with the predictive means, and σ2
m (X⋆)

is the L × 1 vector with the predictive variances. The notation Kxx refers to
the N ×N matrix containing the estimated covariances between the available
data, i.e., k(xi,xj) for i, j = 1 . . . N . The notation K⋆x is the L × N matrix
containing the covariance estimates between the new points X⋆ and the N
available points, i.e., k(x⋆i,xj), for i = 1 . . . L, j = 1 . . . N . The notation K⋆⋆

refers to the L × L matrix containing the estimated covariances between the
new points, i.e., k(x∗i,x∗j) for i, j = 1 . . . L. To model the covariance function,
we choose the Matérn 5/2 kernel [69]. This kernel is a common choice when
the smoothness of the function is unknown [6], since it does not make any
overly smooth assumptions with respect to the output function under study.
It is defined as follows:

k (x,x′) = α

(
1 +

√
5r +

5

3
r2
)
exp(−

√
5r), (B14)

r =

√√√√ d∑
i=1

(xi − x′
i)

2

l2i
(B15)

where α is the kernel variance, and li is the kernel length scale for the ith
dimension.

When training the GP, Maximum Likelihood Estimation (MLE) [70] is
commonly used to estimate the hyperparameters θ := {α, l1, . . . , ld}:

θ̂ = argmax
θ

log p(f | X, θ) (B16)

= argmax
θ

−1

2
(log|2πKxx|+ fTK−1

xx f) (B17)

In the MOBGO case, each expensive output function (objectives as well as
constraints) is modeled using a distinct, single-output GP.

B.2 Expected Improvement

In unconstrained single-objective optimization problems, one of the most pop-
ular acquisition functions is the Expected Improvement (EI) [1]. As evident
from its name, it measures the improvement in the objective outcome that
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the analyst may expect when querying a new point x∗, given the current best
objective outcome obtained so far (ŷ) and the current GP model for the objec-
tive function (estimated on the currently available data Dn). Given the GP
model assumptions, the predictive outcome f(x∗) at such a new point is nor-
mally distributed (N(µ, σ2), with µ the predictive mean at x∗ and σ2 the
predictive variance). The improvement function at any arbitrary new point x∗
is then given by the following random variable (without loss of generality, we
assume here that we aim to minimize the objective function):

I(x∗) := (ŷ − f(x∗))I(ŷ > f(x∗)) (B18)

where I is the indicator function. The EI at x∗ is given by the following closed
form expression:

EI (x∗; Dn) :=E[I(x∗)]

=σϕ

(
ŷ − µ

σ

)
+ (ŷ − µ) Φ

(
ŷ − µ

σ

)
(B19)

B.3 Hyperbox Decomposition
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Fig. B1: Illustration of the hypervolume improvement (light grey area) of a
new point y∗ given the Pareto front P.

The concept of hypervolume improvement (Hexc) in R2 is illustrated in
Figure B1. To calculate Hexc efficiently (using piece-wise integration), the non-
dominated space is partitioned into a set of hyper-boxes or hyper-cells (as few
boxes/cells as possible).
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Figure B2 illustrates this hyper-box decomposition in R2 for a Pareto front

P consisting of 4 points. Note that each hyperbox S
(i)
2 (i = 1, · · · , 5) in this

figure can be represented by its lower bound vector l
(i)
2 and its upper bound

vector u
(i)
2 (both vectors are 2-dimensional in this case). In RM , the hyper-

boxes are thus represented by:

S
(i)
M =

(
l
(i)
M ,u

(i)
M

)
=

((
l
(i)
1 , . . . , l

(i)
M

)⊤
,
(
u
(i)
1 , . . . , u

(i)
M

)⊤)
for i = 1, . . . , NM (B20)

where NM is the number of hyper-boxes.
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Fig. B2: Hyperbox decomposition on R2; each hyperbox is shown in a different
color.

Different box-partition algorithms have been presented in the literature,
see for instance [25, 26, 33, 71, 72]. In this paper, we use the box-partition algo-
rithm from [25]. This is without loss of generality since the proposed algorithm
in this paper is compatible with any box-partition algorithm.

Appendix C DTLZ results with varying input
and output dimensions

To assess the performance of our proposed method under varying input and
output dimensions, we conducted an evaluation of the DTLZ functions with
combinations of input dimensions of [4, 6, 8] and output dimensions of [2, 3].
All of the scenarios assume 1 cheap objective. The obtained results for DTLZ1,
DTLZ2, and DTLZ3 are presented in Tables C1, C2, and C3, respectively.
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Table C1: Hypervolume improvement with 95% confidence interval for the
DTLZ1 function. Reference points of [600, 600] and [600, 600, 600] are used
for M=2 and M=3 respectively.

M d Method Budget HVI ∆ to Ground truth (%)

2 4 Random 100 3.5801e5± 3.8568e2 0.550 50± 0.172 85
EHVI 100 3.5941e5± 1.7502e2 0.164 43± 0.078 44
CEHVI 100 3.5995e5 ± 4.0028e1 0.014 62 ± 0.017 94
NSGA2 200 3.5973e5± 8.0121e1 0.074 92± 0.035 91

6 Random 100 3.5127e5± 1.4763e3 2.424 10± 0.661 64
EHVI 100 3.5694e5± 1.0928e3 0.850 69± 0.489 78
CEHVI 100 3.5976e5 ± 8.4896e1 0.066 34 ± 0.038 04
NSGA2 200 3.5780e5± 5.3252e2 0.611 80± 0.238 66

8 Random 100 3.3646e5± 2.4519e3 6.538 40± 1.098 90
EHVI 100 3.5194e5± 1.5345e3 2.237 70± 0.687 71
CEHVI 100 3.5931e5 ± 1.4983e2 0.192 46 ± 0.067 15
NSGA2 200 3.5162e5± 1.5136e3 2.327 00± 0.678 34

3 4 Random 100 2.1574e8± 6.3676e4 0.122 57± 0.047 56
EHVI 100 2.1598e8± 1.1133e4 0.010 97± 0.008 32
CEHVI 100 2.160 08 ± 8.4567e2 0.000 36 ± 0.000 63
NSGA2 200 2.1598e8± 8.8661e3 0.008 63± 0.006 62

8 Random 100 2.1597e8± 3.4617e4 0.015 09± 0.025 86
EHVI 100 2.1550e8± 2.3715e5 0.229 61± 0.177 14
CEHVI 100 2.1597e8 ± 3.4617e4 0.015 09 ± 0.025 86
NSGA2 200 2.1475e8± 2.0456e5 0.580 44± 0.152 79

Table C2: Hypervolume improvement with 95% confidence interval of the
DTLZ2. Reference points of [3, 3] and [3, 3, 3] are used for M=2 and M=3
respectively.

M d Method Budget HVI ∆ to Ground truth (%)

2 4 Random 100 0.8046e1± 0.0015e1 1.996 80 ± 0.295 09
EHVI 100 0.8183e1± 0.0001e1 0.319 22 ± 0.021 89
CEHVI 100 0.8192e1 ± 0.0001e1 0.217 39 ± 0.024 81
NSGA2 200 0.8152e1± 0.0011e1 0.701 69 ± 0.226 46

6 Random 100 0.7895e1± 0.0021e1 3.837 50 ± 0.424 09
EHVI 100 0.8171e1± 0.0001e1 0.469 86 ± 0.026 71
CEHVI 100 0.8191e1 ± 0.0001e1 0.228 89 ± 0.020 07
NSGA2 200 0.8083e1± 0.0011e1 1.553 90 ± 0.212 20

8 Random 100 0.7709e1± 0.0025e1 6.110 00 ± 0.500 78
EHVI 100 0.8160e1± 0.0003e1 0.609 07 ± 0.077 58
CEHVI 100 0.8180e1 ± 0.0002e1 0.362 47 ± 0.049 17
NSGA2 200 0.7950e1± 0.0021e1 3.173 40 ± 0.410 99

3 4 Random 100 2.5836e1± 4.2026e2 2.232 70 ± 0.256 59
EHVI 100 2.6318e1± 2.5326e2 0.409 31 ± 0.154 60
CEHVI 100 2.6345e1 ± 3.0863e2 0.307 18 ± 0.188 43
NSGA2 200 2.6188e1± 4.5699e2 0.898 02 ± 0.279 01

8 Random 100 2.5252e1± 0.0072e1 4.439 90 ± 0.437 50
EHVI 100 2.6251e1± 0.0063e1 0.661 86 ± 0.381 74
CEHVI 100 2.6260e1 ± 0.0114e1 0.627 20 ± 0.697 41
NSGA2 200 2.5836e1± 0.0081e1 2.230 50 ± 0.495 00
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Table C3: Hypervolume improvement with 95% confidence interval of the
DTLZ3. Reference points of [1100, 1100] and [1100, 1100, 1100] are used for
M=2 and M=3 respectively.

M d Method Budget HVI ∆ to Ground truth (%)

2 4 Random 100 1.1989e6± 2.1987e3 0.918 26 ± 0.293 17
EHVI 100 1.2068e6± 1.1462e3 0.266 29 ± 0.152 83
CEHVI 100 1.2098e6 ± 2.3727e2 0.013 97 ± 0.031 63
NSGA2 200 1.2082e6± 4.9900e2 0.150 86 ± 0.066 54

6 Random 100 1.1611e6± 9.0820e3 4.041 20 ± 1.211 00
EHVI 100 1.1952e6± 4.9118e3 1.220 10 ± 0.654 93
CEHVI 100 1.2090e6 ± 3.1147e2 0.084 70 ± 0.041 53
NSGA2 200 1.2005e6± 3.2024e3 0.788 01 ± 0.427 00

8 Random 100 1.0779e6± 1.4485e4 10.916 00 ± 1.931 40
EHVI 100 1.1688e6± 1.2016e4 3.408 90 ± 1.602 20
CEHVI 100 1.2061e6 ± 1.0296e3 0.321 77 ± 0.137 28
NSGA2 200 1.1701e6± 7.6555e3 3.301 00 ± 1.020 80

3 4 Random 100 1.3275e9± 8.7369e5 0.265 79 ± 0.105 91
EHVI 100 1.3306e9± 5.7116e5 0.033 40 ± 0.069 23
CEHVI 100 1.3310e9 ± 3.6666e3 0.000 18 ± 0.000 44
NSGA2 200 1.3308e9± 1.0310e5 0.014 52 ± 0.012 50

8 Random 100 1.2705e9± 7.1915e6 4.548 70 ± 0.871 74
EHVI 100 1.3254e9± 1.8606e6 0.423 61 ± 0.225 54
CEHVI 100 1.3306e9 ± 2.3480e5 0.028 47 ± 0.028 46
NSGA2 200 1.3090e9± 4.2413e6 1.654 50 ± 0.514 12
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[51] Mart́ınez-Frutos, J., Herrero-Pérez, D.: Kriging-based infill sampling cri-
terion for constraint handling in multi-objective optimization. Journal
of Global Optimization 64(1), 97–115 (2016). https://doi.org/10.1007/

https://doi.org/10.1109/TIE.2017.2756586
https://doi.org/10.1109/TIE.2017.2756586
https://doi.org/10.23915/distill.00017
https://doi.org/10.1109/CEC.2006.1688440
https://doi.org/10.1016/j.ejor.2014.09.033
https://doi.org/10.1016/j.ejor.2014.09.033
https://doi.org/10.48550/ARXIV.2103.15546
https://doi.org/10.48550/ARXIV.2103.15546
https://arxiv.org/abs/2103.15546
https://doi.org/10.1007/s10898-015-0370-8
https://doi.org/10.1007/s10898-015-0370-8


Springer Nature 2021 LATEX template

32 Cheap-Expensive BO for PMSM

s10898-015-0370-8. Accessed 2023-01-05

[52] Viana, F.A.C., Venter, G., Balabanov, V.: An algorithm for fast optimal
latin hypercube design of experiments. International Journal for Numer-
ical Methods in Engineering 82(2) (2010). https://doi.org/10.1002/nme.
2750

[53] Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary
algorithms — a comparative case study. In: Eiben, A.E., Bäck, T., Schoe-
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