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Introduction: COVID-19 remains a major concern globally. Therefore, it is

important to evaluate COVID-19’s rapidly changing trends. The fractal dimension

has been proposed as a viable method to characterize COVID-19 curves since

epidemic data is often subject to considerable heterogeneity. In this study, we aim

to investigate the association between various socio-demographic factors and the

complexity of the COVID-19 curve as quantified through its fractal dimension.

Methods: We collected population indicators data (ethnic composition,

socioeconomic status, number of inhabitants, population density, the older adult

population proportion, vaccination rate, satisfaction, and trust in the government)

at the level of the statistical sector in Belgium.We compared these data with fractal

dimension indicators of COVID-19 incidence between 1 January – 31 December

2021 using canonical correlation analysis.

Results: Our results showed that these population indicators have a significant

association with COVID-19 incidences, with the highest explanatory and

predictive power coming from the number of inhabitants, population density, and

ethnic composition.

Conclusion: It is important to monitor these population indicators during a

pandemic, especially when dealing with targeted interventions for a specific

population.

KEYWORDS

Belgium, canonical correlation analysis, COVID-19, fractal dimension,

socio-demographic indicators

1. Introduction

The transmission of coronavirus disease 2019 (COVID-19) remains a major concern
globally three years after its first outbreak inWuhan, China. The causes of COVID-19, severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, are known to
produce various signs and symptoms. The latest variants of concern, the Omicron family,
caused a considerable increase in COVID-19 cases and hospitalizations in Belgium in
January and February 2022 (1), with subsequent waves having lower peak values.

To keep abreast with the rapidly changing dynamics of COVID-19 transmission, it is
essential to use an effectivemethod to evaluate the evolution of this disease. Statistical models
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such as time series analysis or spatiotemporal modeling have
been frequently used to evaluate the trends (2, 3). Mathematical
modeling and systems are also used to describe and predict changes
in the transmission (4). Recently, the concept of fractal dimension
has emerged as a promising tool for summarizing COVID-19
data. This stems from the recognition that epidemic data tends
to exhibit considerable heterogeneity, especially when observed on
a smaller geographical scale, giving rise to a rather noisy dataset.
Nevertheless, it is worth noting that this noise might contain
valuable information. Considering the geographical scaling, we
can view epidemic data as possessing a fractal nature, where
the intricacies of the data can be effectively described using a
fractal dimension (5). Păcurar and Necula showed that fractals
were useful to assess some characteristics in an epidemic outbreak
(6). A hybrid fractal theory and fuzzy logic approach has been
proposed to forecast COVID-19 time series data (7). Some studies
combinedmathematical modeling with fractal dimensions to assess
transmission and control of COVID-19 cases (8, 9). Based on this
reasoning, we believe that the fractal dimension could serve as a
valuable tool for assessing the local epidemic curve.

It is known that socio-demographic factors are closely
associated with many infectious diseases. Many studies reported
that factors such as socioeconomic status, population density, and
mobility, play an important role in COVID-19 transmission (10–
13). On top of these factors, race or ethnicity is also associated
with varying COVID-19 incidences and outcomes. In multicultural
populations, different population structures might have different
COVID-19 transmission and incidence patterns. For example,
compared to Caucasians, the risk for a positive COVID-19 test was
increased in African and Hispanic people who live in the United
States, while in the United Kingdom, the same risk is increased for
African, South Asian, and Middle Eastern people (14). In Kuwait,
South Asians had higher odds of mortality and intensive care
admission compared to Arabs and this finding might be influenced
by their socioeconomic status since the vast majority of South
Asians in Kuwait were unskilled laborers living in highly populated
areas (15). Baqui et al. reported higher risks of mortality among
Pardo (people of mixed ethnic ancestries) and Black Brazilians (16).

Considering the complex nature and dynamics of socio-
demographic factors, it is crucial to investigate different
combinations and associations among these factors with COVID-
19 indicators, not only during the pandemic but also in view
of pandemic preparedness. Considerable work has been done
regarding the relationship between COVID-19 risks and socio-
demographic factors. Numerous studies reported the impact
of multiple factors on the spread of the epidemic using diverse
methodologies, including system dynamics and complex network
analysis such as the susceptible-infected-recovered model and
its extensions (17–19), which focus more on understanding the
structure and dynamics of interconnected networks with an aim
to forecast epidemic patterns such as wave durations or numbers
of cases. A notable drawback of this method is the necessity to
estimate the value of unknown parameters based on a limited
number of observations, which poses substantial challenges,
especially when dealing with complex models or frequent changes
in the parameters (20). Fractal dimensions, on the other hand,
seek to quantify the epidemic complexity through the collected
time-series data. This complexity will then be linked to certain

population characteristics. It is arguably important to assess
different variable combinations to determine how these factors
influence the disease indicators, especially when some factors are
specific to a certain population. Thus, the novelty of this study is
threefold. First, the COVID-19 incidence curves are transformed
into fractal dimension related characteristics, reflected by mean,
variance, and correlation functions. Second, this is done at the
level of the statistical sector, a fine-grained geographical entity.
Third, a rich set of explanatory factors is employed, including
a detailed ethnic fingerprint of a sector. The fact that both the
fractal dimension variables as well as the explanatory variables are
multivariate naturally leads to canonical correlation.

In a previous study, we proposed the use of fractal dimensions
combined with k-means clustering to classify the complexity of
COVID-19 time-series data at a spatially aggregated geographical
level of high resolution (21). The COVID-19 daily incidences could
be explained by the estimated local fractal dimension curves and
their respective mean, variance, and autocorrelation values. The
unsupervised machine learning technique k-means clustering was
used to group these indices into distinct, non-overlapping clusters.
The centroid value of each cluster was subsequently compared
with the mean value of each respective index. Using this approach,
we were able to explore the complexity of COVID-19 time series
data and characterize the epidemic behavior in a given area. In
this study, we investigated the association between different socio-
demographic factors and the complexity of the COVID-19 curve
calculated with fractal dimension. This study contributes to the
literature by combining a refined method to evaluate disease trends
that can be used in small areas with routinely collected socio-
demographic data to investigate probable indicators associated with
variations in COVID-19 incidences.

2. Methods

2.1. Data

Belgium is divided into three geographical regions: Flanders,
Brussels, and Wallonia. These regions consist of 300, 19, and
262 municipalities, respectively. Each municipality is further
subdivided into statistical sectors. These statistical sectors, 19,794
in total, represent the smallest administrative areas in Belgium.
Individual data of daily COVID-19 confirmed cases at this level
were provided by the Agency for Care and Health (https://
www.zorg-en-gezondheid.be/). The agency collects data from the
Flemish region. Data from the Brussels region have a compatible
structure and can be incorporated into the analysis. Consequently,
our work focuses on these two geographical entities. In 2020, the
Flemish region was divided into 9,194 statistical sectors, while there
were 724 statistical sectors in the Brussels region, as shown in
Figure 1A. We retrieved data from 1 January until 31 December
2021, i.e., from the start of the COVID-19 vaccination campaign in
Belgium. Arguably, the vaccination rate has an impact on COVID-
19 transmission, especially in the short term. The vaccination data
in the Flemish region were provided by the Agency for Care and
Health while the vaccination data in the Brussels region were
provided by the Joint Community Commission of Brussels (https://
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FIGURE 1

(A) Statistical sectors in the Flemish and Brussels region, Belgium, 2021. The capital of each province is marked with a black line. (B) Daily incidence

rates per 100,000 individuals in each region. The map is adapted from https://statbel.fgov.be/en/open-data/statistical-sectors-2020 using R 4.2.1.

www.ccc-ggc.brussels/nl). We calculated the vaccination rate as the
percentage of fully vaccinated residents per statistical sector.

Data on socio-demographic factors at the statistical sector level
were provided by StatBel, the Belgian official statistics authority
(https://statbel.fgov.be/en). Key socio-demographic factors used in
this study are ethnic composition, median income as a proxy for
socioeconomic status, number of inhabitants, population density
per km2, and proportion of the older adult population (50 years and
older). To simplify the use of ethnic composition, we summarized
this variable into the Shannon diversity index (22). A higher value
of the Shannon index indicates higher ethnic diversity within a
statistical sector. For the Flemish region, we also included the
population proportion with high trust levels in the federal and
regional government as potential factors, as well as satisfaction with
the healthcare provided, based on a three-yearly survey conducted
in the year 2020 at the municipality level (https://gemeente-
stadsmonitor.vlaanderen.be/).

2.2. Statistical analysis

Each statistical sector consists of different socio-demographic
factors and vaccination rates, which we further refer to as

population indicators. Considering the complex nature of the
COVID-19 incidence curve, we used fractal dimensions to
gain a better insight into its complexity pattern. A detailed
methodology of the local fractal dimension has been described
in our previous work (21). We included in this paper a
brief summary of the fractal dimension approach to maintain
conciseness and avoid redundancies. First, we calculated the daily
COVID-19 incidence rate per statistical sector based on the
data provided by the Agency for Care and Health. Second, we
estimated the moving fractal dimension of these daily COVID-
19 incidence curves using four different methods: box-count,
Hall-Wood, variogram, and madogram (23). For each method,
we used three different sliding windows (of 7, 14, and 21
days) to create a local fractal dimension curve. These different
sliding windows were used to assess dynamics in curves of
fractals encompassing periods of varying duration. Finally, we
summarized the local fractal dimension into three indicators:
mean, variance, and autocorrelation value, which will be referred
to as fractal dimension indicators. Considering the multiple
inter-correlated fractal dimension indicators as well as various
population indicators, we used canonical correlation analysis
(CCA) to find a relationship between population indicators and
fractal dimension indicators.
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Given two sets of multiple variables X = X1,X2, . . . ,Xm and
Y = Y1,Y2, . . . ,Yn, CCA seeks the orthogonal linear combinations
of the variables within each set of indicators based on a weighted
average, such that the linear combination of the X variables (i.e. the
population indicators that include ethnic diversity index, median
income, population size, population density, the proportion of
older adult population, vaccination rate, trust, and satisfaction in
the government), denoted as U, given by:

U = a1X1 + a2X2 + · · · + amXm (1)

and the combination of Y variables (i.e. the mean, variance, and
autocorrelation value of the local fractal dimension), denoted as V ,
given by:

V = b1Y1 + b2Y2 + · · · + bnYn (2)

has a maximum correlation. U and V are the so-called canonical
variates that will be used to explain the correlation both within
and between sets with constraints that cov(Uj,Uk), cov(Vj,Vk),
and cov(Uj,Vk) are equal to 0 for all j 6= k, j & k ∈ 1, . . . , i
(24). The number of canonical variates i is equal to the smallest
set of variables so that i = 3 in our study. The association
between X and Y variables is evaluated by means of canonical
loading values, which signify the degree of correlation between
these variables and their canonical variate. Higher canonical
loadings serve as an indicator of a stronger association between
these two variables. Additionally, the sign of a canonical loading
determines the direction of their correlation. A positive loading
indicates a positive contribution to the canonical correlation, thus
establishing a positive association with other variables exhibiting
positive loadings on the same canonical variate. This interpretation
is equally applicable to negative canonical loadings, which denote
a contrary orientation of association. To assess the amount
of variability in the fractal dimension indicators that can be
explained by the population indicators, we used the so-called
redundancy analysis.

Data processing and statistical analysis were performed using
R 4.2.1 available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/. CCA was performed
using package candisc (25).

3. Results

3.1. Daily COVID-19 incidence

There were 536,800 cases reported between 1 January
and 31 December 2021 with a known residential statistical
sector. The incidence rate in both regions was relatively stable
in the first half of 2021 with a slightly higher incidence
in the Brussels region (Figure 1B). The incidence declined
in June 2021 and then increased again in July 2021, with
a large peak at the beginning of December 2021 for the
Flemish region and at the end of December 2021 for the
Brussels region.

3.2. Fractal dimension indicators

The local fractal dimension was calculated using four
estimators and three sliding windows. The fractal dimension
indicators obtained from the local fractal dimension curve
based on the box-count estimator with a 7-day sliding
window are depicted in Figure 2. The fractal dimension
indicators based on other sliding windows as well as other
estimators (Hall-Wood, variogram, and madogram) are found
in Supplementary Figures S1–S4. Higher mean values could
be observed in many statistical sectors including larger cities
such as Brussels, Antwerp, and Ghent. These higher values
correspond to the higher complexity of COVID-19 incidence
curves in these areas. Depending on the variance value, we
observe sporadic or community transmission. In combination with
higher mean values, areas with lower variance values experienced
community transmission.

3.3. Population indicators

The population in the Flemish and Brussels regions could
be divided into 14 ethnic groups, based on the country or
region of origin: (i) Belgium, (ii) the Netherlands, (iii) France,
(iv) North and other Western European countries, (v) Southern
Europe, (vi) Eastern European members of the European Union,
(vii) Eastern European non-members of the European Union,
(viii) Organization for Economic Co-operation and Development
(OECD) countries, (ix) Maghreb countries, (x) other African
countries, (xi) Asia, (xii) Turkey, (xiii) Central and South America,
and (xiv) unknown origin. The Shannon diversity index ranges
from 0 (no diversity) to 2.38 (very high diversity). A higher
Shannon index was found in statistical sectors in larger cities as
well as in the border area with the Netherlands and the prior coal
mining municipalities in the eastern part of the Flemish region
(Figure 3A).

The median income in each statistical sector ranges from
€2,213 to €55,949, which was distributed randomly across the
region (Figure 3B). In 2021, around 68% of the Belgian population
lived in the Flemish and Brussels regions, with a higher number of
inhabitants and population density in larger cities, particularly in
themunicipality of Antwerp and in the Brussels region (Figures 3C,
D). Only slightly more than 39% of these inhabitants were aged 50
years and older and 43% of them resided in the Flemish region.
The percentages were higher in the northeast, near the coast
(Figure 3E). The vaccination rate was rather high in the Flemish
region. Most statistical sectors reached a vaccination rate of 75–
100% (Figure 3F), while the vaccination rate in the Brussels region
was around 50–75%.

In the Flemish region, a higher proportion of people with
trust in the federal, as well as the regional government, could be
found in larger municipalities around the capital of each province
(i.e., Antwerp, Ghent, Leuven, Hasselt, Bruges) and to some extent
in the coastal areas (Figures 3G, H). Most municipalities had a
high proportion of people satisfied with the healthcare provided
(Figure 3I).
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FIGURE 2

(A–C) Fractal dimension indicators per statistical sector calculated using box-count estimator with a 7-day sliding window. The capital of each

province is marked with a black line. The white color indicates no values. The map is adapted from https://statbel.fgov.be/en/open-data/statistical-

sectors-2020 using R 4.2.1.

FIGURE 3

Population indicators per statistical sector. The capital of each province is marked with a black line. The white color indicates no values. (A) Ethnic

diversity. (B) Socioeconomic status. (C) Population size. (D) Population density. (E) Older adult population (≥ 50 years). (F) Vaccination rate. (G) Trust

in federal government. (H) Trust in regional government. (I) Satisfaction. The map is adapted from https://statbel.fgov.be/en/open-data/statistical-

sectors-2020 using R 4.2.1.

3.4. Association between population
indicators and local fractal dimension curve

The mean, variance, and autocorrelation values calculated
for each fractal dimension estimator based on a 7-day sliding
window were grouped into fractal dimension indicators so that
we have three variables in this set. Statistical sectors with missing
autocorrelation values, due to no reported COVID-19 cases within
the study period, were excluded. There were 9,517 statistical
sectors included in this analysis. We found at least two significant
correlations among three canonical variates in both regions, as

shown in Tables 1, 2. For each method, the first canonical variate
showed a very strong correlation and explained more than 91% of
the correlation between the two sets of indicators. The canonical
correlations based on longer sliding windows are presented in
Supplementary Tables S1, S2.

The canonical loading between each set of indicators and
their canonical variates are shown in Table 3 (results based on
longer sliding windows can be found in Supplementary Table S3).
We confined our attention to the first canonical variate. Some
population indicators have more explanatory power than others,
mainly when the absolute value of the canonical loading is above
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TABLE 1 Canonical correlation between population indicators and fractal dimension indicators in the Flemish region.

Canonical
variate

Box-count Hall-Wood Variogram Madogram

Rc Prop p-value Rc Prop p-value Rc Prop p-value Rc Prop p-value

1 0.9340 99.4514 < 0.001 0.9319 99.3552 < 0.001 0.9179 99.2996 < 0.001 0.9134 99.3681 < 0.001

2 0.1606 0.3852 < 0.001 0.1625 0.4084 < 0.001 0.1716 0.5633 < 0.001 0.1654 0.5562 < 0.001

3 0.1054 0.1634 < 0.001 0.1243 0.2364 < 0.001 0.0856 0.0074 < 0.001 0.0618 0.0038 < 0.001

The local fractal dimension was calculated using a 7-day sliding window.

Rc , canonical correlation value; prop, proportion of the correlation explained by this canonical variate.

TABLE 2 Canonical correlation between population indicators and fractal dimension indicators in the Brussels region.

Canonical
variate

Box-count Hall-Wood Variogram Madogram

Rc Prop p-value Rc Prop p-value Rc Prop p-value Rc Prop p-value

1 0.8949 99.3100 < 0.001 0.9133 99.1930 < 0.001 0.8526 98.5700 < 0.001 0.8583 98.7406 < 0.001

2 0.1633 0.6770 0.0430 0.1714 0.0303 0.0022 0.1863 1.3317 0.0042 0.1601 10.2400 0.0079

3 0.0269 0.0179 0.9745 0.1026 0.2100 0.1273 0.0509 0.0960 0.7811 0.0964 0.3309 0.1766

The local fractal dimension was calculated using a 7-day sliding window.

Rc , canonical correlation value; prop, proportion of the correlation explained by this canonical variate.

TABLE 3 Canonical loading between each set of indicators and their first canonical variate.

Variable Flemish region Brussels region

Box-count Hall-Wood Variogram Madogram Box-count Hall-Wood Variogram Madogram

Population size -0.9907 -0.9914 -0.9895 -0.9898 -0.9898 -0.9950 -0.9855 -0.9850

Population density -0.6876 -0.6831 -0.6909 -0.6894 -0.6105 -0.5879 -0.6236 -0.6180

Shannon index -0.3671 -0.3641 -0.3755 -0.3755 -0.2570 -0.2177 -0.2650 -0.2419

Older adult
population

0.2832 0.2839 0.2826 0.2821 0.3257 0.3070 0.3121 0.3021

Median income 0.2945 0.2883 0.3011 0.2986 0.3288 0.3209 0.3290 0.3289

Vaccination rate 0.2118 0.2098 0.2098 0.2087 0.2070 0.2276 0.1748 0.2020

Satisfaction -0.0695 -0.0658 -0.0737 -0.0731

Trust in the federal
government

-0.3323 -0.3269 -0.3414 -0.3396

Trust in the regional
government

-0.2610 -0.2549 -0.2751 -0.2741

Mean FD -0.9392 -0.9458 -0.9169 -0.9241 -0.8099 -0.7902 -0.5305 -0.6191

Variance FD -0.6360 -0.7292 -0.1455 -0.4270 0.1411 0.0413 0.9731 0.7258

ACF FD 0.7086 0.1036 0.8280 0.6803 0.9179 0.2693 0.7608 0.5937

Population and fractal dimension indicators with consistent negative signs are marked in bold.

ACF, autocorrelation value; FD, fractal dimension.

0.5 such as population size and population density. The first
canonical variate was represented strongly by mean, variance,
and autocorrelation values for fractal dimension indicators. In
the Flemish region, the canonical loadings of population size,
population density, Shannon index, satisfaction, and trust in the
government have a sign consistent with that of the mean. A
consistent sign indicates changes in the same direction, i.e., a higher
value of these population indicators would result in higher mean
and variance values. In contrast, older adult proportion, median
income, and vaccination rate have a sign opposite to that of mean
and variance, indicating lower mean and variance values when

the observed population indicators are higher. The Brussels region
showed similar trends except for predominantly positive canonical
loading of the fractal dimension variance.

Depending on the method used, the so-called redundancy
analysis showed that 26–53% of the total variability in fractal
dimension indicators is explained by the changes in all population
indicators in the Flemish region, while the analysis in the
Brussels region ranged from 13 to 45%. The box-count estimator
showed the highest total variability in fractal dimension indicators
which can be explained by changes in population indicators for
both regions.
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4. Discussion

Based on the canonical correlation analysis results, we
found a strong association between population indicators
and fractal dimension indicators of the COVID-19 incidence
curve. This suggests an effect of socio-demographic factors on
COVID-19 incidence.

Our results showed that population size, population density,
and the Shannon diversity index have the strongest influence on
the complexity of the COVID-19 incidence curve. Higher values of
these population indicators were associated with higher complexity
of the COVID-19 incidence curve, which further indicates a
possible community transmission. We also found associations
between a lower proportion of the older adult population, income,
and vaccination rate with the increased complexity of the COVID-
19 incidence curve.

Similar findings were reported in other studies. A study in
the southern part of Brazil showed a strong positive correlation
between population size and the number of COVID-19 cases and
deaths (26). Studies in the US and China reported higher numbers
of COVID-19 cases and deaths in urban or densely populated areas
(10, 27). Oh et al. found a significant influence of many socio-
demographic factors on COVID-19 incidences, such as racial and
ethnic composition, age, income, household size, and population
density (28). In contrast to these findings, a study in the Latin
American and Caribbean countries showed that countries with
higher numbers of inhabitants per square kilometer had lower
death rates (29). Differences in these findings might be attributed to
inequalities in the population. Molallo et al. reported that a higher
income inequality, defined as the ratio of household income at the
80th percentile to income at the 20th, is an influential factor in
explaining the increase in COVID-19 incidence, particularly in the
tri-state area in the US (30). We could see a similar trend in Table 3
where the lower median income is associated with higher mean and
variance values of the fractal dimension indicators. Moreover, there
was also inequity in healthcare associated with access and quality of
healthcare (31).

Another socio-demographic factor that should be considered
is social contact patterns, which vary by age, gender, and location
(32). In Belgium, a shift in COVID-19 transmission to the
younger age group was reported in the Fall of 2020 (33). This is
again reflected in Table 3, where a lower proportion of the older
adult population is associated with higher mean and variance
values. Many studies reported similar trends, even though severe
morbidity and high mortality rates remained in the older age group
(34–36). Increased COVID-19 cases in the younger age group could
enhance community transmissions since people in this age group
have complex social contact patterns. Such complex patterns can
also be seen in a population with high diversity. People from foreign
origins are perceived to have higher social contacts compared to
local residents (37, 38). However, we should also consider different
types of contacts made within the population. For example, in
the U.S., Dorèlien et al. reported that Hispanic people have the
highest number of household contacts while Non-Hispanic Black
people have the lowest number and shortest duration of household
member contacts compared to other ethnic groups at nearly all age
groups. However, they also tend to have a higher proportion of jobs

with the highest level of physical proximity, which increases the
risks of contracting COVID-19 (39).

Another contrast in the social contact patterns could be
observed based on the canonical loading of the Shannon index on
the fractal dimension variance.While a higher Shannon index led to
a higher mean fractal dimension, the variance would be higher only
in the Flemish region. We expected that people in homogeneous
areas (Shannon index closer to zero) would have more contact in
their local community while people in heterogeneous areas would
have more contact outside their community. Nevertheless, in cases
where homogeneous areas are predominantly populated by people
from foreign origins, there was a possibility that they also made
contact with their home country. For example, when the travel
restrictions were lifted, many people traveled long distances which
eventually contributed to the increase in local COVID-19 cases, as
reported in Ukraine and Taiwan in the Summer of 2021 (40, 41).

We expected that the vaccination rate would be a strong
explanatory variable of the complexity of the COVID-19 incidence
curve. However, we found a relatively low explanatory power of
the vaccination rate on the first canonical variate, even though the
vaccination rate was rather high. Vaccination showed a favorable
effect on alleviating the burden of COVID-19, for example
by reducing COVID-19 infection, severity, hospitalization, and
mortality in the first period of the pandemic (42, 43). However, the
protection wanes over time, and at some point the vaccination aids
in reducing the severity or mortality but less on the transmission,
especially with a new variant of concern (44). Moreover, a social
contact study showed an increasing daily mean number of contacts
following summer vacation in 2021 in Belgium (45). Hence, it
is possible to observe many COVID-19 cases in areas with high
vaccination coverage during the study period. On top of this,
there were still some areas where people were very hesitant to get
vaccinated. Faes et al. showed that areas in the Flemish region
with a more diverse population or lower socioeconomic status have
a lower vaccination coverage, even though the vaccinations were
given freely (46). This created further an imbalance in the overall
vaccination rate as observed in several parts of the Flemish region
and particularly in the Brussels region.

We also found low explanatory power of satisfaction and
trust in the government in the Flemish region, with contradictory
interpretations. There was a correlation between a higher
proportion of satisfaction and trust with higher mean and
variance values, which indicate a higher complexity of COVID-
19 incidences. We expected that higher satisfaction and trust
in the government would lead to an increased willingness to
follow government policies, especially in a time of crisis. Some
studies reported that public satisfaction and trust in a government
played an important role in the decision to be vaccinated
(47, 48). A possible explanation for our finding is that higher
satisfaction and trust were found in larger municipalities where
we observed a higher complexity of the COVID-19 incidence
curve. On the other hand, there is also a possibility of COVID-
19 under-reporting in areas with lower satisfaction and trust
in the government. Moreover, the survey was conducted with
an online self-administered questionnaire among representative
residents aged 17–85, thus it is possible that selection bias occurs.
Despite this contradictory finding, we believe in the importance
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of building good government-public relationships to improve the
pandemic situation.

As a sensitivity analysis, we compared our findings at the level
of the Flemish region to the provincial level. The results and
interpretation at the provincial level were similar to the regional
level, i.e., there was good explanatory power of population size,
population density, and the Shannon diversity index. We found,
however, a low canonical loading of the vaccination rate in the
province ofWest Flanders. This could be explained by the relatively
high and similar vaccination rates among the statistical sectors in
this province in combination with high COVID-19 cases.

One of the strengths of our study lies in the fine-scale
administrative unit used. We also used methods that are effective
for areas with different scales, especially when we need to analyze
various parameters simultaneously. Different interpretations in the
results, however, should be expected when comparing different
geographical units (e.g., province or municipality) due to the
difference in the population as well as fractal dimension indicators
within and between these areas. However, it is still possible to
translate these findings into a tool that can be used by local
authorities to tailor their interventions.

Despite these strengths, we also noted some limitations. First,
we used the vaccination rate at the end of our study period (31
December 2021). We compared our findings to a divided study
period (1 January–30 June 2021 and 1 July–31 December 2021)
considering the changes in the vaccination campaign strategy.
Unfortunately, we did not observe considerable differences in
the explanatory power of the population indicators, including
the vaccination rate. It might be interesting to also capture the
changes in vaccination rate over time and use these changes as an
explanatory variable. Second, there were some discrepancies in the
vaccination data. Some people could be vaccinated outside of their
permanent address or the number of vaccinated people registered
to certain statistical sectors is higher than the registered population
count, particularly when the population count is zero. For practical
reasons, we removed statistical sectors with zero population from
our canonical correlation analysis.

While the use of canonical correlation analysis is relatively
common in the field of infectious diseases or public health, the
concept of fractal dimension remains relatively unexplored within
this domain. Even though the general idea of fractal dimensions
might be intuitive, understanding its mathematical intricacies
can become more challenging. Hence, persuading individuals to
embrace the regular utilization of fractal dimensions, particularly as
we intend to integrate this concept into a surveillance system, could
pose a challenge. In addition to this, numerous studies lean more
toward utilizing scan statistics or model-based analysis methods
to assess clusters or risk factors based on anomalies in space
and/or time [e.g. (49–51)]. The goal of our proposed method is to
capture the complexity of a multivariate set of outcomes through
time and subsequently categorize these outcomes based on their
respective complexity characteristics. Therefore, we deliberately
avoid imposing a spatial mechanism as the underlying data-
generation process. This approach allows us to gain insights
into data complexity regardless of their geographical location.
Through this study, we want to underscore the potential of fractal
dimension-based analysis to compare data on disease patterns

and/or risk factors across diverse geographic locations, since we
found (dis-)similarities with other studies.

In conclusion, our study has demonstrated a significant
association between COVID-19 incidences and a range of factors
at the statistical sector level, including ethnic composition,
socioeconomic status, number of inhabitants, population
density, the older adult population proportion, vaccination rate,
satisfaction, and trust in government. To gain better control of
the pandemic, it is highly relevant to monitor these population
indicators. Targeted interventions such as community-oriented
campaigns promoting preventive measures across various
languages or the adoption of diverse vaccination strategies utilizing
local institutions such as schools and workplaces, could be tailored
based on the influential population indicators. It should be noted
that the dynamics of an epidemic are influenced by a multitude of
contributing variables. Through this study, we have demonstrated
the feasibility of employing fractal dimension analysis combined
with routinely collected data to interpret the epidemic patterns
and identify the underlying characteristics that exhibit a robust
association with epidemic propagation. It is certainly possible
to incorporate additional variables as deemed necessary, such as
replication rate or recovery rate, which enhances the versatility and
practical utility of this approach.
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