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Abstract. We simulate coherent driven free dissipative Kerr nonlinear system numerically using time-evolving block decimation
(TEBD) algorithm and time propagation on the Heisenberg equation of motion using Euler’s method to study how the numerical
results are analogous to classical bistability. The system evolves through different trajectories to stabilize different branches for
different external drives and initial conditions. The Wigner state reprentation confirms the system to suffer a residual effect of
initial state throughout the non-classical dynamical evolution and the metastable states of the system. Furthermore, we also see the
numerically simulated spectral density remains significantly different from analytical counterparts when initial states do not lie to
the same branch of the final state.



INTRODUCTION

The Kerr effect –i.e. non-linear quadratic electro-optic
(QEO) response – had been in interest over centuries,
for having some of the interesting quantum phenomenon
e.g. photon switching in quantum interference [1], photon
bunching and antibunching in bistable steady-state [2],
dynamical optical bistability via bifurcation process [3]
and the generation of non-classical states [4]. In general,
the multistability of nonlinear systems offers a window
for a long-range of applications. Starting from first exper-
imentally achieving a bistable state inside a Fabry-Perot
optical device cavity [5], it gives immense motivation
for the construction of switching elements for potential
use in optical communications and computation [1, 6, 7],
nanophotonic devices such as low-dimensional tunable
photo-sensors [8], magneto-optical storage devices [9],
NRZ-to-RZ conversion [10], regeneration, monitoring,
multi-casting, demultiplexing and multiple-wavelength
generation [11, 12]. This prospect of technological appli-
cations demands to have sufficient knowledge of their fre-
quency response, relative phase, and squeezed phase pa-
rameters to engineer the performance of the devices and
control and manipulation of signals.

In this context, it has been noticed that, with the
influence of an appropriate external field, the non-linear
behavior of the system generates a specific quantum
state in the system. The Kerr non-linearity itself is a
prominent example which generates two-mode squeezed
vacuum (TMSV) by spontaneous parametric down-
conversion process [13]. Apart from Kerr non-linear sys-
tems, other examples could be optomechanical systems
where ground-state cooling [14], along with squeez-
ing below the standard quantum limit (SQL) [15] and
quantum-limited amplification [16] has been achieved by
controlling the external drive. Another important example
can be considered as the impurity-infected solid-state sys-
tems where the quadrature fluctuation embedded with the
state of the system is not only dependent on the external
drive but also the role of the initial state of the impurities
[17]. Also, the atomic system has remained able to control
phase for coherent pulse propagation and switching [18].
Therefore, it has been of huge attention to investigate how
nonlinearity and the external drive play a significant role
in the control and manipulation of the system, and the im-
pact of the initial state in the dynamical behavior of quan-
tum systems surviving under spontaneous decoherence.

Kerr nonlinearity ensures to display bistability in all
setups as a predominant characteristic at stationary state,
which has been encountered in two different ways: semi-
classically by approximating the state of the system to the
nearest coherent state, and quantum mechanically which
estimates the exact solution by using the master equation
formalism of the density matrix of the system. The semi-

classical solution of both dispersive and absorptive bista-
bility has been obtained through the Heisenberg-Langevin
equation [19, 20, 21], and the theory of quantum mechan-
ical solution for the absorptive case [22] and the dissi-
pative case [2] has been derived by mapping the mas-
ter equation to the Fokker Planck equation. While imple-
menting both the theoretical techniques on Kerr nonlinear
systems, they moreover determine Markovian dynamics
of open quantum systems which are considered as one of
the most fundamental problems in quantum mechanics.

The open quantum dynamics has been well regarded
for establishing the conceptual background of fundamen-
tal physics, encompassing concepts such as distinguish-
ing boundary between classical and quantum physics [23]
and highlighting issues in the detection of gravitational
waves [24]. However, while investigating the decoherence
dynamics of nonlinear open quantum systems, the the-
ory has been implemented after transforming the nonlin-
ear Hamiltonian to a linear one by linearizing the quan-
tum fluctuation over nonlinear steady-state field ampli-
tude. Appreciating its simplicity, this model, therefore,
had remained unable to provide a satisfactory framework
while obtaining the exact dynamical behavior, which
leads to overlooking interesting effects introduced by non-
linearity. Especially, the exact dynamical behavior of the
Kerr nonlinear systems and the impact of the initial state
can not be determined analytically, which requires numer-
ical treatment to deal with. Besides, the existing theoreti-
cal framework remains unable to explain the dependency
of a metastable state on the initial state of the system. Re-
cently, optical hysteresis has been witnessed experimen-
tally within the range of classical bistability in Kerr non-
linear systems [25, 26] which demands theoretical justi-
fication. This limitation of analytical treatment explicitly
motivates us to simulate the time evolution numerically,
which consists of transforming the environmental degrees
of freedom to a one-dimensional (1D) many-body chain
[27] and simulating the chain afterward. The computa-
tional method is composed of numerical diagonalization
and renormalization process [4, 28].

The time-adaptive density matrix renormalization
group (t-DMRG) algorithm is considered one of the most
powerful methods in optical, atomic, and condensed mat-
ter physics to simulate strongly-correlated many-body
quantum systems. While implementing the algorithm
for open quantum systems, we map the canonical S/B
coupling model to a 1D harmonic chain with nearest-
neighbor interactions. Recently, such mappings have been
used for the simulation of open quantum systems [29] to
simulate spin-boson models [30] and biomolecular sys-
tems [31].

In this article, besides analytical theory, using two
different numerical techniques, i.e. Euler’s time propaga-
tion, and time-evolving block decimation (TEBD) meth-



ods, we simulate Kerr non-linear system, to investigate
the impact of the initial state, under the influence of the
different driving fields. Earlier, in Ref. [4], while simu-
lating the dynamics of the Kerr nonlinear system using
TEBD, we have shown the consistency between the ana-
lytical and the numerical results. Also, we have observed
that the TEBD numerical result follows the quantum me-
chanical exact solution, whereas the time propagation of
the system field obtained using Euler’s method follows
the semi-classical solution of the Heisenberg equation of
motion. Therefore, in this case, we especially focus on
how the nature of the quantum jump is influenced by the
initial state of the system. Here, we start with a brief de-
scription of the system. Following by, we show how the
bistable nature of the steady-state of the system is de-
pendent on the initial state of the system. Characterizing
the effects of the non-linearity on the dynamical behav-
ior of the system, we afterward determine the fluctuation
spectra for the different initial states. Our analysis, more-
over, provides a platform to look after its frequency re-
sponse which will be useful in the fabrication of switch-
ing devices. The impact of the initial state on a coherent
driven nonlinear system also implicates some of the re-
cently observed phenomena in the context of impurity in-
fected solid-state systems [17].

THEORETICAL MODEL

We start with the Hamiltonian of a Kerr nonlinear system,
described as

HS = ωS a†a + χ”a†
2
a2 + i(a†Ee−iωLt − aE∗eiωLt) (1)

where ωS is the frequency of the mode of oscilla-
tion, a†(a) are the creation (annihilation) operators of the
system, and χ” is the anharmonicity parameter which is
contributed by the real part of the third-order nonlinear
susceptibility tensor . ~̃E(t) = ~Ee−iωLt + ~E∗eiωLt is an ex-
ternal driving field of amplitude E and oscillation fre-
quency ωL, applied on the system. To make the Hamilto-
nian time-independent, shifting to the frame of the driving
field gives the detuned cavity frequency ∆ = ωS −ωL. The
total Hamiltonian of the system (S) coupled to a bosonic
reservoir (B) is

Htot = HS + HB + HS B (2)

where HB = limxm→∞

∫ xm

−xm
g(x)d†(x)d(x)dx

represents the Hamiltonian of a multimode
reservoir, and the interaction Hamiltonian is
HS B = limxm→∞

∫ xm

−xm
h(x)

(
a†d(x) + h.c.

)
dx. d†x(dx)

are the creation (annihilation) operators, and g(x) and
h(x) are the frequency of oscillation and the coupling

strength between the system and environment, respec-
tively, for the environmental mode x, around the central
frequency ωS .The properties of bath can be characterized
by a uniquely defined spectral density function J(ω).
Considering linear dispersion relation: g(x) = g.x, where
g is the inverse of density of states, we choose a hard
cutoff limit of the frequency of the bath: ωc = g.xm. In
addition, for having Markovian dynamics, within the
range of frequencies of interest, the S/B coupling strength
is considered to be mode independent (wide band limit
approximation): h(x) = c0 [32], which gives the spectral
density function [33]

J(ω) =
1
2
γΘ(ω + ωc)Θ(ωc − ω), (3)

where γ = 2πc2
0 is the rate of dissipation of the sys-

tem and Θ is the Heaviside step function. The equation
of motion of the system field operators can be obtained
semi-classically from the Heisenberg-Langevin equation
of motion

ȧ = −i∆a − 2iχ′′a†a2 − E −
γ

2
a +
√
γain (4)

where ain is the stochastic noise contributed by
the reservior. The thermal population of the reservior
nth(ωS )δ(t − t′) = 〈a†in(t)ain(t′)〉. The thermal reservoir
is considered to be at zero temperature, and therefore
nth = 0.

Based on the theoretical framework defined here, we
determine the dynamical behavior of the Kerr nonlinear
system numerically using two different methods. The first
method includes the transformation of the S/B coupling
method to 1D chain and simulates afterward using the
TEBD algorithm (see Appendix a)) . The applicability
and limitations of the TEBD technique are explained in
[4] where we used the technique successfully for the first
time for the simulation of the Kerr nonlinear system. The
second approach involves time propagation of the semi-
classical nonlinear differential equations given in the Eq.
(4) using Euler’s method [4].

The bistable nature of the Kerr nonlinear system pro-
vokes us to consider three different initial conditions, to
investigate the switching effects on the dynamical behav-
ior. Earlier, we had seen that the initial state of the impu-
rities present in a bosonic solid-state system had a signif-
icant impact on the dynamics of the system [17].

STEADY STATE CONDITION

The exact quantum mechanical solution of the moment
calculating generalized function of the system field op-
erators is derived in Schrödinger picture by mapping the
master equation to the Fokker-Planck equation [2], which



FIGURE 1. Steady state field amplitude and correlation function plotted with the variation of driving field amplitude for ∆ =

−12g, χ” = 1.5g, γ = 6.28g. TEBD simulation parameters N = 61, xmax = 60, χ = 36,M = 20, δt = 10−2g−1 and total time of
evolution 2g−1.

FIGURE 2. Steady state Wigner function for (I) E= 1, (II) E= 8, (III) E= 10 and (IV) E= 20, and (a)α(0) = [0, 0], (b)α(0) =

[1.5, 0.33π] and (c)α(0) = [2.5,−0.37π] . All other parameters remain same with Fig. 1.

in turn determines the steady-state field amplitude and
second order correlation functions:

〈a〉 =

(
−

[E0/iχ]F
(
p + 1, q, 2[E0/χ]2)

pF
(
p, q, 2[E0/χ]2) )

. (5a)

g2(0) =

(
pqF

(
p, q, 2|E0/χ|

2)F(
p + 2, q + 2, 2[E0/χ]2)

(p + 1)(q + 1)[F
(
p + 1, q + 1, 2[E0/χ]2)]2

)
,

(5b)

where E0 = E = E∗, p = [ ∆
χ” +

γ
2iχ” ], q = [ ∆

χ” −
γ

2iχ” ]

and F
(
p, q, z

)
= F

(
[], [p, q], z

)
is the 0F2 hypergeometric

function.

Fig. 1 presents a comparison of analytically deter-
mined semi-classical (obtained from Eq. (4)) (See Ap-
pendix a)) and quantum mechanical steady-state behavior
(Eq. (5a)) of the system to their corresponding numerical
counterparts which are Euler’s time propagation and the
TEBD numerical methods. The amplitudes and the phases
of the steady-state system fields are plotted in Fig. 1 (I)
and (II), respectively; which shows how the TEBD nu-
merical result remains analogous to classical bistability.



FIGURE 3. Dynamical behaviour of the system field with the variation of driving field amplitude for (a) E= 1, (b) E= 8, (c) E= 10
and (d) E= 20, and initial field (I)α(0) = [0, 0], (II)α(0) = [1.5, 0.33π] and (III)α(0) = [2.5,−0.37π]. All other parameters remain
same with Fig. 1. In inset we plot the trajectory of the system field, along with the phase.

FIGURE 4. Analytically determined fluctuation spectra for (a) E= 1, (b) E= 8, (c) E= 10 and (d) E= 20 determined using (I)
semi-classical and (II) quantum mechanical treatments. All other parameters remain same with Fig. 1.

Following the semi-classical analytical solution which de-
termines the brunch values and the transition region, the

steady-state system field loses its linear behavior when
we increase the external drive, and the system jumps from



FIGURE 5. Numerically determined fluctuation spectra for (a) E= 1, (b) E= 8, (c) E= 10 and (d) E= 20 determined using (I)
Euler’s time propagation and (II) TEBD numerical methods, initial field α(0) = 0. All other parameters remain same with Fig. 1.

one steady-state to another. The numerical technique in-
volved with Euler’s time propagation method follows the
semi-classical analytical solution, whereas TEBD numer-
ical technique follows the quantum mechanical analyti-
cal solution, which is also seen before in Ref. [4]. Even
though the semi-classical solution exhibits bistability, the
quantum mechanical solution does not; rather creating a
superposition of them. As the coherent states are non-
orthogonal, the superposition of two coherent states in
the quantum mechanical solution creates a non-classical
state. As implication, we observe a peak in the plot of
second-order correlation function (g2(0)) in Fig. 1 (III)
around the transition region. The plot of g2(0) shows that
the system undergoes from bunching to the anti-bunching
steady-state mode when it shifts from lower brunch to
upper under the influence of stronger drive. The non-
classical nature of the steady-state due to the superposi-
tion of two coherent states, and the transition of the sys-
tem from bunching to anti-bunching mode with the in-
crement of an external drive is better understood from
the movement of the bump of Wigner function. While
increasing the strength of the drive at Fig. 2 (I-IV), the
bump is seen to be stabilized at different locations at phase
space, which clearly indicates superposition of two stable
coherent states.

More interesting features are depicted when we look
after the impact of the initial state on the steady-state
behavior of the system. The initial states are considered
to be coherent and chosen to live in different branches,
are noted by α(0). Fig. 1 (I) and (II) also indicates that
the semi-classical jump occurs at the different driving
field within the classically determined transition region,
for different initial states. A residual effect is observed

in the TEBD determined quantum mechanical estima-
tion, which intends to transit from bunching to anti-
bunching mode earlier for the initial state belonging in
upper brunch, resulting in shifting the pick of (g2(0)) in
Fig. 1 (III), towards the weaker drive. The phenomenon
is even better visualized in the plot of Wigner function
(Fig. 2 (a-c)), where the shift of the bump occurs earlier
when the system starts evolving from an initial state be-
longing to the upper branch. Such hysteresis has recently
been observed experimentally [25, 26], and an attempt
to understand the phenomenon is made numerically in
the Kerr nonlinear system [34]. It shows the semiclas-
sical method displays hysteresis within classically well-
defined regions. However, the simulation of the quantum
mechanical state never gives a theoretically determined
exact steady state, rather, it is observed that the longer
time of simulation ensures a narrower width of the hys-
teresis loop around the transition region, which also sup-
ports our result.

Note, importantly, that the analytically determined
steady-state is the result obtained ideally at infinite time
after all possible transitions that can occur, which is in-
dependent of the initial state of the system. However, in
reality, any switching device does not evolve for infinite
time, rather a long time (>> tdamp) evolution that ensures
the system be stabilized, is typically accepted as the final
state of the system. Therefore, one must take into account
the residual effects as the impact of the initial state while
studying the dynamical behavior or using the Kerr effect
in the design of switching systems. Continuation of the
impact of the initial state also indicates that the rate of
oscillations of the system field becomes extremely low
around the transition region, which is also revealed from



FIGURE 6. Numerically determined fluctuation spectra for (a) E= 1, (b) E= 8, (c) E= 10 and (d) E= 20 determined using (I)
Euler’s time propagation and (II) TEBD numerical methods, initial field α(0) = [2.5,−0.37π]. All other parameters remain same
with Fig. 1.

the study of the fluctuation spectrum in the following sec-
tion. In this context, recently, in Ref. [17] it has been no-
ticed that for a different type of non-linearity, where the
steady-state system field and the fluctuation spectra of an
impurity infected bosonic solid-state system also remains
distinctly dependent on the initial states of the impurities.

FIELD DYNAMICS

Following the footsteps of privious simulation of Kerr
nonlinear systems [4], here, we study the impact of ini-
tial state on it’s dynamical behavior. Fig. 3 shows how the
system field stabilizes after initial fluctuation. Not surpris-
ingly, the plots exhibit difference in two different methods
due to the fact that the Euler’s time propagation deter-
mines the classical field of the system which lies on one
among two branches, whereas TEBD generates superpo-
sition of them. As consequence, the difference enhances
around the transition region. Interestingly, the dynamical
behavior is seen to be different for different initial condi-
tions. More interesting phenomenon is noticed when we
plot the trajectory of the time evolution in the phase space.
The plots given in insets exhibit that the system evolves in
a (counter) clockwise trajectory when it evolves in (lower)
upper branch. The system tends to change its trajectory
immediately when it jumps from one branch to another
during the time evolution (Fig. 3I(c,d) and III(a)). How-
ever, the phase space plot of trajectories determined by
two different methods, remain significantly different, es-
pecially in the transition region (Fig. 3(I-III)(b,c)). In fact,
due to the superposition of two coherent states, no par-

ticular pattern is found in TEBD method when the sys-
tem evolves majorly through transition region (Fig. 3(I-
III)(c)). The difference in their dynamical behavior also
brings a significant distingtion in the bahavior of their
spectral density, which is the following topic of discus-
sion.

FLUCTUATION SPECTRA:
ANALYTICALLY DETERMINED

The numerical method, therefore, provides a solid plat-
form to deal with nonlinearities to study the dynamics
of Kerr nonlinear systems. To characterize the nonlin-
ear effects, we evaluate the fluctuation spectrum of the
field of the system S θ

ω = 1/2〈
{
Xθ
ω, X

θ
−ω

}
〉 – with Xθ

ω =

1/
√

2
(
a†−ωeiθ + aωe−iθ

)
– taking vacuum fluctuations into

account of the multimode bath. The presence of nonlin-
ear terms in the system Hamiltonian induces squeezing,
which can be experimentally observed by homodyne de-
tection of the output field. The analytically determined
fluctuation spectrum is shown in the Fig. 4 where it ex-
hibits a clear dependence on the frequency and phase.

Frequency dependence on driving field
Fig. 4 shows that, when the system saturates to the lower
branch, the normal mode splitting of the fluctuation spec-
tra reduces while increasing the strength of the driv-
ing field. However, an opposite phenomenon is observed
when the system saturates to the upper branch, i.e. incre-
ment of the normal mode splitting while increasing the



FIGURE 7. Numerically determined fluctuation spectra for (a) E= 1, (b) E= 8, (c) E= 10 and (d) E= 20 determined using (I)
Euler’s time propagation and (II) TEBD numerical methods, initial field α(0) = [1.5, 0.33π]. All other parameters remain same
with Fig. 1.

strength of the pump. The phenomenon is hinted at while
investigating the system field, i.e. the rate of change be-
comes very low around the transition region, which is bet-
ter understood from the linearized response of the fluctu-
ations of the system field given in Appendix a) (Eq. (22)).

Phase dependence on driving field
Fig. 4 also shows that the squeezing spectrum becomes
phase independent for a weaker drive, which can be
hinted by the fact that the impact of nonlinearity disap-
pears and the system responses linear for a weaker drive
in the lower branch (I,a and II,a). Furthermore, the phase
dependency becomes prominent with the increment of the
driving field. We also notice that the fluctuation spectra
determined by two different methods exhibit difference
especially in transition region Fig. 4((I,b), (II,b) and (I,c)
(II,c)), which appears due to the difference in the ampli-
tudes of the steady-state system field. However, when we
go further from the transition region, as the system col-
lapses to one of the two classical stable states the differ-
ence in the fluctuation spectra reduces.

FLUCTUATION SPECTRA:
NUMERICALLY DETERMINED

Even though the initial state of the Kerr nonlinear sys-
tem has an impact on the steady-state behavior of the sys-
tem, the impact is more severe on its dynamical behav-
ior, which we investigate by determining the fluctuation
spectra and comparing to its analytical counterpart. As an-

ticipated, we see the numerical spectra determined using
Euler’s time propagation and TEBD numerical methods
(Figs. 5, 6, 7) exhibit similarity to their corresponding
semi-classically and quantum mechanically determined
spectra (Fig. 4), respectively. However, the difference in
the initial state exhibits a significant difference in their
fluctuation spectra.

Initial state belongs to lower brunch
We start with ground state (α(0) = 0), to ensure the ini-
tial state belonging to the lower branch. By plotting the
fluctuation spectra in Fig. 5 we see that, in case of weaker
driving field when the system stabilizes to lower branch,
the obtained numerical spectra remains indifferent to the
analytical estimation (Fig. 4 (I,a) and (II,a) ). However, a
similar comparison in the higher driving field exhibits a
significant difference. In particular, we find an intense re-
sponse at comparatively lower frequency in both the nu-
merical spectra when the system saturates to upper branch
(Fig. 5 (I,d and II,d) ), which occurs due to the transition
of the system from lower branch to upper.

Initial state belongs to upper brunch
Hereafter, we investigate for the system belonging ini-
tially to an upper stable branch (α = [2.5,−0.37π]) in Fig.
6, which shows that, unlike previous case, both the fluc-
tuation spectra determined numerically moreover exhibit
similar patterns to the analytical spectra (Fig. 4) when the
driving field is stronger (I,d and II,d). Anticipating that,
however, due to the oscillation of the system while and



before transiting from upper branch to lower, in the case
of the lower driving field, we see multiple responses in
the fluctuation spectra (Fig. 6(I and II a,b,c) ), exhibiting
significant difference from their corresponding analytical
counterpart (Fig. 4).

Initial state belongs to unstable brunch
Finally, for the initial coherent state which belongs to
the unstable brunch of the classically defined transition
region (α = [1.5, 0.33π]), the fluctuation spectra deter-
mined numerically is plotted in Fig. 7, which shows that
they differ from their corresponding analytical counter-
part (Fig. 4) significantly, not only for the cases where
the system reaches to steady-state but also for the transi-
tion region, since, for TEBD numerical simulation even
though the system starts evolving form an initial classical
state, it ends up evolving to a non-classical state. How-
ever, for semi-classical Euler’s time propagation, the final
state collapses to one among stable branches (upper or
lower, but not unstable), even though the evolution started
from the unstable branch.

CONCLUSION

We have used Euler’s time propagation and TEBD nu-
merical techniques successfully to study the dynami-
cal behavior of the Kerr nonlinear system. Unlike the
conventional theoretical approach that considers lin-
earise approximation, the method exhibits better accuracy
while determining the quantum fluctuations. Determining
steady-state system field, we see that, the time propaga-
tion of the system field obtained using Euler’s method fol-
lows the semi-classical solution of the Heisenberg equa-
tion of motion, whereas the TEBD numerical simulation
follows the quantum mechanical exact solution obtained
by mapping the master equation to a Fokker-Planck equa-
tion. Therefore, the semi-classical jump determined by
Euler’s method for different initial states occurs at the
different driving fields within the classically determined
transition region. Moreover, the semi-classical Euler’s
method determines a coherent field of the system which
belongs to one among two branches, whereas TEBD nu-
merical result determines the superposition of them, gen-
erating non-classical states. The phenomenon has been
confirmed when we determine the second-order corre-
lation function and Wigner function, which also reveals
that the system suffers a residual effect of the initial state,
as we see that, with the increment of the driving field,
the system tends to jump earlier from bunching to anti-
bunching mode when it starts evolving from an initial
state belonging to the upper branch. The non-linearity in-
troduced frequency and phase dependency of the noise
fluctuation spectra also exhibits initial state dependency.

The numerical result remains significantly different from
its corresponding analytical counterpart especially when
the initial state does not belong to the same branch of the
final state.

Our work exhibits importance as it is capable of de-
termining the dynamical behavior of the externally driven
Kerr nonlinear system, which has been analyzed in re-
cent experiments. For example, the influence of differ-
ent magnetic fields on electrical conductivity in nonlinear
media has drawn attention for exhibiting interesting quan-
tum effects [35, 36, 37, 38]. Besides, it will also be ben-
eficiary for the phase control of switching systems [18].
While using for switching purposes, the nonclassical be-
havior around the transition region determines the accept-
able range of the control drive. The results could be use-
ful in the study of optical pulse propagation in nonlinear
media, espicially, how the nonolinearity effects non de-
phasing of the optical signal [39]. More importantly, it is
important to have an idea of their frequency response to
engineer novel schemes for sensing, control, and manipu-
lation of signals, and our analysis will be extremely useful
to fulfill that goal as it determines speed while designing
and manufacturing ultrafast devices such as photo-sensors
[8], storage systems [9] and switching systems [1, 6, 7].
Based on the performance of the numerical techniques,
we conclude by saying that one can consider it to be a
promising platform to handle nonlinear systems, e.g. mi-
crowave quantum optomechanics, two-level systems, and
solid-state open quantum systems reported in [17].
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APPENDIX: TEBD NUMERICAL MODEL

In order to implement the TEBD numerical scheme for the simulation of S/B coupling model, we transform the
Hamiltonian by mapping the bath operators to the operators of a semi-infinite lattice chain, through a unitary trans-
formation: bn =

∫ xm

−xm
Un(x)d(x)dx. In this case, we choose normalized shifted Legendre polynomial as the unitary

operator Un(x) =

√
(2n+1)

2xm
Ln(x/xm) defined in the range of x ∈ [−xm, xm] for having spectral density in the form of Eq.

(3). The unitary operator satisfies orthogonality condition, and we obtain the transformed Hamiltonian as

Hchain = HS + η′
(
a†b0 + ab†0

)
(6)

+ lim
N→∞

 N∑
n=0

ωnb†nbn +

N−1∑
n=0

ηn

(
b†nbn+1 + bnb†n+1

)
where the coefficients are η′ = c0

√
2ωc, ωn = 0 and , ηn = ωc

(
n+1

√
(2n+1)(2n+3)

)
. Fig. 8(a) presents a schematic

diagram of the transformation. Such mappings have been used recently in Ref. [29] for the simulation of open quantum
systems to apply on spin-boson models [30] and biomolecular aggregates [31].

The next step is the simulation of the chain using TEBD algorithm. For that, we express the state of the chain as
a matrix product state (MPS):

|Ψ〉 =

χ∑
α1,.,αN+1=0

M∑
i1...iN =0

λ[1]
α1

Γ[1]i2
α1α2

λ[2]
α2

Γ[2]i3
α2α3
· . (7)

.. · λ[N]
αN

Γ[N]iN
αN

λ[N+1]
αN+1
|i1, i2, .., iN−1, iN〉

The MPS state is obtained through the Schmidt decomposition of the pure state of N sites where χ is the Schmidt
number and M is the dimension of local Hilbert space. The method of numerical simulation for the real-time evolution
is shown diagrammatically in Fig. 8 (b), where we used 2nd order Suzuki Trotter (ST) expansion which presents the
unitary evolution operator as

Uδt = e−iδtHchain = e−iFδt/2e−iGδte−iFδt/2 + O[δt3] (8)

where, F =
∑

i odd Hi,i+1
chain and G =

∑
i even Hi,i+1

chain. The ST expansion evolves the pairs of alternate sites, minimizing
the error in 3rd order of the time step by evolving the pairs of alternate sites.

The simulation parameters are typically estimated by looking at error appearing in two ways; modeling the S/B
coupling Hamiltonian to a 1D chain and each step of simulation of the real-time evolution. Previously, the extensive
discussion of error and the estimation of parameters are discussed in Ref. [4, 28].

APPENDIX: SEMI-CLASSICAL EQUATION

The form the system Hamiltonian in Eq. (1) provides a nonlinear Heisenberg equation of motion (Eq. (4)) which in
turn determines the semi-classical stationary value of the system field. The presence of strong coherent pump helps us
to split the system field by its steady-state classical field (α ≡ 〈a〉t→∞) and the fluctuations around it: aold = α + anew,
where α is the steady-state system field. Neglecting the fluctuation terms, the zeroth order of the Eq. (4) determines
the steady-state system field given in Eq. (9).

|E|2 = |α|2
(
(∆ + 2χ”|α|2)2 +

γ2

4

)
, (9)

The extreme values of lower and upper branches are determined by taking derivative over the Eq. (9)
(
∂E2

∂|α|2
= 0

)
.

The highest value of lower branch is



FIGURE 8. (a) Transformation of Hamiltonian from system/bath coupling model to semi infinite chain model. (b) Diagrammatic
expression of the real time evolution operation on alternating pair

|α|2l =
1

6χ”

−2∆ −

√
∆2 − 3

γ2

4

 , (10a)

and the lowest value of upper branch is

|α|2u =
1

6χ”

−2∆ +

√
∆2 − 3

γ2

4

 . (10b)

These extreme values in turn are known as the turning points, which fixes the region for the quantum jump of
the steady-state system field. This also fixes the condition to visualize bistability which is the detuning must exceed a
critical value: ∆2 > 3 γ2

4 . The changes of fluctuation around the steady-state value are determined from the first order
of the Eq. (4)

ȧ = −i∆a −
γ

2
a − 2iχ”α2a† − 4iχ”|α|2a (11)

Notice that the nonlinear dissipative terms −4iχ”|α|2a in this equation regulate the resonance frequency of the
linearized response of the cavity field fluctuations.

APPENDIX: LINEARIZED MODEL OF SYSTEM FIELD FLUCTUATIONS

The fluctuation spectra of the system are defined as

S θ
ω =

∫ ∞

−∞

dτeiωτ〈{Xθ(t + τ), Xθ(t)}〉

=

∫ ∞

−∞

dτeiωτ〈{(a†(t + τ)e−iθ + a(t + τ)eiθ), (a†(t)e−iθ + a(t)eiθ)}〉

= 1 + φ(ω) + φ(−ω) + χθ(ω) (12)



FIGURE 9. Normal mode splitting of the fluctuation spectra in different regime

where

φ(ω) =

∫ ∞

−∞

dτeiωτ
[
〈a†(t + τ)a(t)〉 + 〈a†(t)a(t + τ)〉

]
= φ(−ω) (13)

χθ(ω) = e−2iθ
∫ ∞

−∞

dτeiωτ
[
〈a(t + τ)a(t)〉 + 〈a†(t)a†(t + τ)〉

]
+ c.c (14)

In the presence of a strong coherent tone, the dynamics of the system are affected by the fluctuations introduced
by the nonlinear Hamiltonian. We determine the fluctuation spectra analytically from the linearized Heisenberg EOM
over nonlinear stationary field amplitude.

S θ
ω =

1
2
〈
{
Xθ
ω, X

θ
−ω

}
〉, (15)

with Xθ
ω = 1/

√
2
(
a†−ωeiθ + aωe−iθ

)
, can be obtained from the Fourier transformation of the Eq. (11) and its Hermitian

conjugate: [
−iω + i∆ +

γ

2
+ 4iχ”|α|2

]
aω + 2iχ”α2a†−ω =

√
γain,ω (16a)[

−iω − i∆ +
γ

2
− 4iχ”|α|2

]
a†−ω − 2iχ”α∗2aω =

√
γa†in,−ω (16b)



with the usual definition of the Fourier transform:

aω =

∫ ∞

−∞

dteiωta(t), a†−ω =

∫ ∞

−∞

dteiωta†(t)

where ain is the stochastic input field. Defining

A = −iω + i∆ +
γ

2
+ 4iχ”|α|2, (17a)

B = 2iχ”α2, (17b)

C = −iω − i∆ +
γ

2
− 4iχ”|α|2, (17c)

the QLE of the system can be expressed as(
aω
a†−ω

)
=

1
AC − |B|2

(
C −B
−B∗ A

) ( √
γain,ω
√
γa†in,−ω

)
(18)

where A(−ω) = C∗(ω). This gives

aω = χd (ω) ain,ω + χx (ω) a†in,−ω, (19a)

a†−ω = χ∗x (−ω) ain,ω + χ∗d (−ω) a†in,−ω (19b)

where

χd (ω) =
√
γC(AC − |B|2)−1, (20a)

χx (ω) = −
√
γB(AC − |B|2)−1, (20b)

As the system is coupled to an empty bath, the anticommutator of the operators of input field gives a delta function:
〈{ain,ω, a

†

in,ω′ }〉 = δ (ω − ω′). The fluctuation spectrum of the system is

S θ
ω =

1
4

[(
|χd (ω)|2 + |χx (−ω)|2

)
〈
{
ain,ω, a

†

in,ω

}
〉 +

(
|χd (−ω)|2 + |χx (ω)|2

)
〈
{
a†in,−ω, ain,−ω

}
〉
]

+
1
4

[ (
χd (ω) χx (−ω) e−i2θ + χ∗d (ω) χ∗x (−ω) ei2θ

)
〈
{
ain,ω, a

†

in,ω

}
〉

+
(
χd (−ω) χx (ω) e−i2θ + χ∗d (−ω) χ∗x (ω) ei2θ

)
〈
{
a†in,−ω, ain,−ω

}
〉
]

=
1
4

[
|χd (ω)|2 + |χd (−ω)|2 + |χx (ω)|2 + |χx (−ω)|2 + 2 cos (2θ − φ) |χd (ω) χx (−ω) + χd (−ω) χx (ω)|

]
(21)

where φ = Arg
[
χd (ω) χx (−ω) + χd (−ω) χx (ω)

]
.

The denominator of S θ
ω is

|AC − |B|2|2 = |(−iω + i∆ +
γ

2
+ 4iχ”|α|2)(−iω − i∆ +

γ

2
− 4iχ”|α|2) − (2χ”|α|2)2|2

The poles of S θ
ω are located at

ω =
1
2

[
±iγ ∓ 2

√
(∆ + 4χ”|α|2)2 − 4χ”2|α|4

]
(22)

We see normal mode splitting in the cavity field amplitude introduced when the condition

(∆ + 4χ”|α|2)2 ≥ 4χ”2|α|4



satisfies, which simplifies to

|α|2lw ≤ −∆/6χ” (23a)

|α|2up ≥ −∆/2χ” (23b)

|α|up and |α|lw are the extreme limits belonging to the upper and lower branches, respectively.
The normal mode splitting is plotted in Fig. 9 for both the semi-classical and quantum mechanical estimations.

It is worth noticing that the splitting of frequency modes starts within the boundary of turning points:

|α|2l =
1

6χ”

−2∆ −

√
∆2 − 3

γ2

4

 ≥ −∆/6χ”, (24a)

|α|2u =
1

6χ”

−2∆ +

√
∆2 − 3

γ2

4

 ≤ −∆/2χ”. (24b)

Therefore, the semi-classical turning points do not satisfy the necessary conditions for normal mode splitting.
That is why we don’t see any normal mode splitting at turning points in Fig. 9. In the lower branch, the splitting
decreases when the steady-state field amplitude increases with the increment of the driving field. On the other side,
the splitting increases in the upper branch with the increment of the steady-state field amplitude.


