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Executive Summary 

This Deliverable aims at developing an integrated model of driver-vehicle-environment 

interaction and risk by: 

(i) identifying the most critical precursors of risk from both the task complexity and the coping 

capacity side, 

(ii) implementing an integrated model for understanding the effect of the inter-relationship of 

task complexity and coping capacity with risk, and 

(iii) comparing the performance of such models on different countries. 

 

The ultimate goal of the analyses in this project was to identify the impact that the balance 

between task complexity and coping capacity has on the risk of a crash. For that reason, a 

vast library of data from naturalistic driving experiments was created in five countries (i.e. 

Belgium, UK, Germany, Greece and Portugal) to investigate the most prominent driving 

behavior indicators available, including speeding, headway, overtaking, duration, distance and 

harsh events (i.e. harsh acceleration and harsh braking). It is also important to investigate 

common behaviors and driving patterns across different countries, as well as to identify specific 

interventions that have been effective in improving road safety in different contexts. By 

understanding these factors, it may be possible to identify strategies that can be used to 

promote safer driving behaviors and reduce the incidence of crashes in different countries. 

 

After making a short summary of the project’s aims and objective, the naturalistic driving 

experiment procedure in all of the countries involved was described along with the data 

acquisition, data cleaning and data aggregation procedures followed to extract the datasets 

that were used in the analyses. These strategies aimed to comprehend how the data were 

stored in the back-end database, how to deal with missing values, how to impute missing 

values taking into account the natural meaning of the recorded variables and how to best 

exploit the data for developing the models applied. The volume, diversity and noise included 

in the dataset, due to the different experimental difficulties faced in each of the countries led 

to extensive efforts to acquire clean data. The total number of drivers, trips and minutes per 

country and transport mode is presented in Table below: 

 

Drivers 
Belgium 

(cars) 
Belgium 
(trucks) 

UK 
(cars) 

Germany 
(cars) 

Greece 
(cars) 

Portugal 
(buses) 

Total 

Phase 1 39 23 53 28 65 29 237 

Phase 2 43 22 54 28   29 176 

Phase 3 51 22 53 27 65 26 244 

Phase 4 49 23 54 28 65 22 241 

Max 51 23 54 28 65 29 250 
        

Trips 
Belgium 

(cars) 
Belgium 
(trucks) 

UK 
(cars) 

Germany 
(cars) 

Greece 
(cars) 

Portugal 
(buses) 

Total 

Phase 1 1173 1448 3073 1397 2937 2459 12487 

Phase 2 1549 1691 3317 1322   1363 9242 

Phase 3 1973 1440 3417 1129 3935 1411 13305 

Phase 4 2468 1767 4594 1496 2194 2098 14617 

Summary 7163 6346 14401 5344 9066 7331 49651 
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Duration 
(minutes) 

Belgium 
(cars) 

Belgium 
(trucks) 

UK 
(cars) 

Germany 
(cars) 

Greece 
(cars) 

Portugal 
(buses) 

Total 

Phase 1 23725 117160 56853 23617 51786 202532 475673 

Phase 2 31414 146315 58458 19469   123132 378788 

Phase 3 40121 139245 59556 17704 69962 145934 472522 

Phase 4 52077 187636 93974 23644 39695 232323 629349 

Summary 147337 590356 268841 84434 161443 703921 1956332 

 

It should be noted that Structural Equation Model (SEM) is used to explore how the model 

variables are inter-related, allowing for both direct and indirect relationships to be modeled. In 

particular, observed variables are measurable, whereas unobserved variables are latent 

constructs. These models are often represented by a path analysis, showing how a set of 

‘explanatory’ variables can influence a ‘dependent’ variable. In this Deliverable, particular 

emphasis was given in SEM analysis as it was found to be the most widely used and 

appropriate for modeling complex and multi-layered relationships between observed 

(e.g. number of speeding and headway events) and unobserved variables (e.g. crash risk). 

 

The next section of the deliverable describes in detail, the methodologies followed 

throughout the analyses. Apart from SEMs, Generalized Linear Models (GLMs), Neural 

Networks (LSTMs and shallow), as well as Grouped Random Parameters Binary Logit and 

Ordered Probit Fractional Split Models are described. 

 

Ultimately, the goal of these analyses was to identify the impact that the balance between 

task complexity and coping capacity has on the risk of a crash. The results of those 

analyses are thoroughly described in Chapter 4 of the current Deliverable. 

 

Through the application of SEM models, the analyses revealed that higher task complexity 

levels lead to higher coping capacity by drivers. Additionally, the influence of task 

complexity on risk was greater than the effect of coping capacity in Belgium, Greece and 

Germany and mixed results were observed in the UK and Portugal. Models fitted on data from 

different phases of the experiments validated that interventions had a positive influence on risk 

compensation, increasing drivers' coping capacity and reducing dangerous driving behavior. 

 

Furthermore in Chapter 5, predictive real-time analyses (NNs and LSTMs) demonstrated that 

it is possible to predict the level of Safety Tolerance Zone (STZ) with up to 95% accuracy, 

while post-trip explanatory studies (GRPL and OPFS) showcased the capacity of state-of-

the-art econometric models to shed light on the complex relationship of risk with task 

complexity and coping capacity. The comparison of models fitted on data from the different 

phases of the experiments, validated that in the majority of the countries the interventions had 

a positive influence on risk compensation, increasing the coping capacity of the operators and 

reducing the risk of dangerous driving behavior. Moreover, predictive real-time analyses 

demonstrated that it is possible to predict the level of STZ with an accuracy of up to 95%, while 

post-trip explanatory studies showcased the capacity of state-of-the-art econometric models 

to shed light on the complex relationship of risk with the interdependence of task complexity 

and coping capacity. 

 

An overview of the effects found for task complexity and coping capacity on risk among all 

available data can be found in Table 110Table below. A positive sign means a positive 
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correlation of task complexity or coping capacity with risk while a negative sing indicates a 

negative relationship between task complexity or coping capacity and risk. 

 

Country 
(transport mode) 

Ιndicator 
Phase 1 Phase 2 Phase 3 Phase 4 

TC CC TC CC TC CC TC CC 

Belgium (cars) 
speeding - + - + - + + + 

headway - + - + - - - + 

Belgium (trucks) 

speeding - - - - - - - - 

harsh acceleration + - + - + - + - 

headway - - - - - - + - 

UK (cars) headway - - + - - - - - 

Germany (cars) speeding + - + - + - + + 

Greece (cars) speeding + -   + - + - 

Portugal (buses) headway + - - - + - + - 

Overall (cars) 

speeding, 
headway, 
overtaking, 
fatigue 

+ - + - + - + - 

*TC refers to Task Complexity and CC refers to Coping Capacity 

 

The difference in the relationship between variables across different countries could be due to 

a variety of factors, such as cultural differences, economic factors, or variations in driving 

behaviors and infrastructure.  

 

In the final part of the Deliverable, conclusions are drawn for the relationship between task 

complexity, coping capacity and risk, while explanations for the model drawbacks are given. 

 

On the basis of the i-DREAMS results, a set of policy recommendations at different levels (EU, 

national and local authorities, industry, etc.) can be provided. The i-DREAMS system itself can 

directly improve safety once launched, but also additional safety benefits can be envisaged in 

the medium and long term as it is built on and further adapted to different contexts and industry 

needs, thanks to its modular nature. The effectiveness of the i-DREAMS system may depend 

on a variety of factors, including the specific context in which it is implemented, the quality and 

accuracy of the data used to train the system, and the degree of integration and adoption by 

drivers and other stakeholders. 

 

The integrated treatment of task complexity, coping capacity and risk can improve behavior 

and safety of all travelers and all transport modes, through the unobtrusive and seamless 

monitoring of behavior. Thus, authorities may use data systems at population level to plan 

mobility and safety interventions, set up road user incentives, optimize enforcement and 

enhance community building on safe traveling.  
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1 Introduction 

The goal of this section is to provide a brief outline of the objectives of the specific deliverable, 

how those are aligned and relevant with the overall project, and which approach was followed 

in order to achieve them. 

 

1.1 About the project 

The overall objective of the i-DREAMS project is to setup a framework for the definition, 

development, testing and validation of a context-aware safety envelope for driving (‘Safety 

Tolerance Zone’), within a smart Driver, Vehicle & Environment Assessment and Monitoring 

System (i-DREAMS). Taking into account driver background factors and real-time risk 

indicators associated with the driving performance as well as the driver state and driving task 

complexity indicators, a continuous real-time assessment will be made to monitor and 

determine if a driver is within acceptable boundaries of safe operation (i.e. Safety Tolerance 

Zone). Moreover, the to-be-developed i-DREAMS platform will offer a series of in-vehicle 

interventions, meant to prevent drivers from getting too close to the boundaries of unsafe 

operation and to bring them back into the Safety Tolerance Zone (STZ) while driving. The 

safety-oriented interventions will be developed to inform or warn the driver real-time in an 

effective way as well as on an aggregated level after driving through an app- and web-based 

gamified coaching platform, thus reinforcing the learning of safer driving habits/behaviors. 

Consequently, the i-DREAMS platform will allow the implementation of the two aforementioned 

safety interventions, meant to motivate and enable human operators to develop the 

appropriate safety-oriented attitude. 

 

Specifically, the in-vehicle interventions are meant to assist and support vehicle operators in 

real-time (i.e. while driving). Depending on how imminent crash risks are, a distinction can be 

made between a ‘normal driving’ phase, a ‘danger’ phase, and an ‘avoidable accident’ phase. 

In the normal driving phase, no abnormalities in a vehicle operator’s driving style are detected 

by the monitoring pillar of the i-DREAMS platform, and no sign of a crash course initiating is 

present. Consequently, no real-time intervention is required. In the danger phase, abnormal 

deviations from the vehicle operator’s driving style are detected by the i-DREAMS monitoring 

module, and the potential for a crash course to unfold is present. A warning signal is to be 

issued in that case. In the avoidable accident phase, deviations from normal driving have 

evolved even further, and the risk for a crash to occur will become imminent if the vehicle 

operator does not adapt appropriately and immediately to the present circumstances. A more 

intrusive warning signal is provided to support vehicle operators in avoiding a collision. 

 

With regards to post-trip interventions, these are not operational while driving, but they are 

based on what happens during a trip. They hinge upon all the raw data that is captured by the 

i-DREAMS sensors, which is further processed and fused into information about a vehicle 

operator’s driving style, how it evolved during a trip, how many (safety-critical) events occurred, 

and in which circumstances these events happened. This information can be further translated 

into feedback consultable for vehicle operators via an app in a pre- or post-trip setting. To 

establish a longer-term relationship with individual vehicle operators, app-supported feedback 

can be combined with the use of a web-based coaching platform, containing gamification 

features meant to motivate drivers to work on a gradual and persistent improvement of their 

driving. 
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Figure 1 summarizes the conceptual framework, which will be tested in a simulator study and 

three stages of on-road trials in Belgium, Germany, Greece, Portugal and the United Kingdom 

(UK) with a total of 600 participants representing car, bus, truck and tram/train drivers. For the 

purpose of the current research, data from 250 drivers (car, trucks and buses) were analyzed. 

 

 
Figure 1: Conceptual framework of the i-DREAMS platform. The green frame indicates the thematic scope of this 

deliverable (see section 1.2) 

Expected by the end of the project in 2023, the key output of the project will be an integrated 

set of monitoring and communication tools for intervention and support, including in-vehicle 

assistance and feedback and notification tools as well as a gamified platform for self-

determined goal setting working with incentive schemes, training and community building tools. 

Furthermore, a database with anonymized data with regards to human factors (e.g. speeding, 

harsh events, fatigue) from the simulator and field experiments will be developed. It should be 

noted that only the monitoring would be assessed in this Deliverable and the impact of both 

real-time and post-trip intervention will be investigated in Deliverable 7.2 (Brown et al., 2023). 

 

1.2 About this report 
 

The work presented in this deliverable relates to the left part of Figure 1 (see green box), i.e. 

the determination of Safety Tolerance Zone via monitoring of task complexity and coping 

capacity. Staying within the STZ, vehicle operators avoid situations in which a collision 

becomes unavoidable. As can be seen in Figure 1, the Safety Tolerance Zone is subdivided 

in three segments, i.e. ‘normal driving’, the ‘danger phase’, and the ‘avoidable accident phase’. 

For the real-time determination of this Safety Tolerance Zone, the monitoring module in the i-

DREAMS platform continuously registers and processes data for all the variables related to 

the context and to the vehicle. Regarding the operator however, continuous data registration 

and processing are limited to mental state and behavior. Data related to operator competence, 

personality, socio-demographic background, and health status, are collected via survey 

questionnaires. 
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It should be noted that the current deliverable is directly related to the Deliverables 6.1 

(Papazikou et al., 2023) and 6.2 (Michelaraki et al., 2023). In particular, Deliverable 6.1 focuses 

on the relationship between task complexity and risk and Deliverable 6.2 deals with the 

interaction of coping capacity on risk, without investigating the potential interaction between 

both latent concepts on risk, while this report mainly focuses on the development of an 

integrated model of driver behavior and safety, based on the interaction of ‘task complexity’ 

on the one hand, and ‘coping capacity’ on the other hand, with ‘risk’. A complete Structural 

Equation Model (SEM) will be developed to describe the interactions between task complexity 

and coping capacity (i.e. related to both vehicle state and operator state factors). From the 

parameter estimates of the integrated model, a comprehensive set of quantitative effects of 

indicators will be created, describing the impacts of vehicle, operator and context 

characteristics on risk under different conditions. Lastly, comparisons among different 

countries and transport modes will be made. 

 

1.2.1 Aims and objectives 
 
This deliverable has following aims and objectives: 

• Identification of the most critical precursors of risk from both the task complexity 

and the coping capacity(vehicle and operator state) side 

• Examination of the effect of task complexity and coping capacity (i.e. vehicle and 

operator state) on risk across the four phases of i-DREAMS road-trial on a transport 

mode basis. A detailed description of the phases can be found on Table 1. 

• Implementation of an integrated model for understanding the effect of the 

aforementioned inter-relationship with risk. 

• Extraction of a comprehensive set of quantitative effects of indicators, describing 

the impacts of vehicle, operator and context characteristics on risk under different 

conditions. 

• Comparison of the performance of such models on different countries. 

 

1.2.2 Structure 
 

The organization of the Deliverable is the following: 

 

Chapter 2 provides a detailed description of the field trial study design. In particular, an 
overview of the obtained dataset, the questionnaire data collected as well as the procedure 
followed for data aggregation and cleaning is clearly explained. In addition, the definition of 
task complexity and coping capacity (i.e. vehicle and operator state) is provided and the 
variables used to define task complexity and coping capacity along with some descriptive 
statistics are presented.  
 
This is followed by a description of the methodological anlaysis (Chapter 3) in which the 
purpose of this analysis along with the concept of Multivariate Regression Analysis (e.g. 
Generalized Linear Modeling technique) and latent variables analysis (e.g. Structural Equation 
Models) are highlighted. In addition, a methodological overview of real-time techniques, such 
as Neural Networks, classification and Long Short-Term Memory Networks as well as post-trip 
approaches, such as Grouped Random Parameters Binary Logit models and Ordered Probit 
Fractional Split models is given. The key performance indicators and appropriate metrics that 
are commonly used for model evaluation and selection are also descripted.  
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The major part of this Deliverable is dedicated to the mathematical modeling of the STZ 
(Chapter 4), where Generalized Linear Models and Structural Equation Models are 
implemented in order to turn the available measurements into meaningful information on the 
Safety Tolerance Zone level. 
 
Chapter 5 aims to develop an integrated model of driver behavior and safety, based on the 
interaction of task complexity and coping capacity with risk. To that end, real-time (i.e. Neural 
Networks, classification and Long Short-Term Memory Networks) and post-trip (i.e. Grouped 
Random Parameters Binary Logit models and Ordered Probit Fractional Split models) 
analyses are implemented in order to examine the impact of vehicle, operator and context 
characteristics on risk under different conditions. Comparisons among the examined countries 
(i.e. Belgium, UK, Germany, Greece, Portugal) and different transport modes (i.e. cars, trucks 
and buses) are also provided. 
 
Lastly, Chapter 6 draws the main findings along with practical conclusions and gives 
recommendations for further research. 
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2 i-DREAMS data collection 

 

2.1 Experiment description 
 
Within the i-DREAMS project, a naturalistic driving experiment was carried out involving 
250 drivers from Belgium, UK, Germany, Greece and Portugal and a large database of 49,651 
trips and 1,956,332 minutes was created. A detailed description of the on-road driving trials for 
identifying STZ and the performance of in-vehicle interventions can be found in previous 
Deliverable 5.3 (Hancox et al., 2021).  
 
It should be highlighted that the i-DREAMS field trials are the first time that all components of 
the complete i-DREAMS system are combined in a real-world setting, where it can be used by 
individuals and organisations outside of the i-DREAMS project. 
 
The objectives of the on-road trials in i-DREAMS are to:  

• test the driving behavior and validate the STZ mathematical model 

• test if the i-DREAMS system influences driver safety 

• assess the effect of the interventions (developed as part of the i-DREAMS system) 

for both real-time and post-trip warnings and 

• obtain the user feedback about the acceptance and acceptability of the i-DREAMS 

system 

 
The on-road trials in i-DREAMS were designed based on several proven principles derived 
from previous literature focusing on testing interventions in order to assist drivers in maintaining 
the STZ. As the first stage of the field trials, pilot testing was performed for a limited number 
of vehicles (i.e. five vehicles) for each test site. The purpose of the pilot tests was to fine-tune 
the i-DREAMS technology. This includes all the processes associated with production, 
installation and interventions but also collection, processing and visualization of data. In 
addition, it offered the chance to implement changes based on user feedback before 
transitioning to large-scale testing. 
 

The on-road trials focused on monitoring driving behavior and the impact of real-time 

interventions (i.e., in-vehicle warnings) and post-trip interventions (i.e., post-trip-feedback & 

gamification) on driving behavior.  

 

The experimental design of the i-DREAMS on-road study is displayed in Table 1 and has been 

subdivided into four consecutive phases: 

• Phase 1: monitoring (baseline measurement) 

• Phase 2: real-time intervention 

• Phase 3: real-time intervention and post-trip feedback 

• Phase 4: real-time intervention and post-trip feedback and gamification 

 
It should be noted that in Greece, data from an additional telematics experiment which took 

place for a 3-month timeframe were collected and analyzed in order to enhance the power of 

the analyses presented. The experimental design of the i-DREAMS on-road trials for Greece 

was subdivided into three phases (i.e. phase 1 – monitoring, phase 3 - real-time intervention 

and post-trip feedback and phase 4 - real-time intervention and post-trip feedback and 
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gamification; while there was no real-time interventions provided by the app (phase 2 was 

not existed). 

Table 1: Description and duration of each Phase 

Phases Description Duration per participant 

Phase 1 Monitoring (baseline measurement; no interventions) 4 weeks 

Phase 2 In-vehicle intervention 4 weeks 

Phase 3 Post-trip feedback on the smartphone 4 weeks 

Phase 4 Post-trip feedback on smartphone + gamified web platform 6 weeks 

 
Firstly, Phase 1 of the field trials refers to a reference period after the installation of the i-
DREAMS system in order to monitor driving behavior without interventions.  
 
Secondly, Phase 2 of the field trials refers to a monitoring period during which only in-vehicle 
real-time warnings were provided using adaptive Advanced Driver Assistance Systems 
(ADAS).  
 
Thirdly, in Phase 3 of the field trials, feedback via the i-DREAMS smartphone app is combined 
with in-vehicle warnings.  
 
Lastly, in Phase 4 of the field trials, gamification features are added to the app, with additional 
support of a web-dashboard.  
 
In essence, the i-DREAMS project focuses on calibrating the subjective experience of coping 
capacity and task complexity in driving. The interaction between these concepts is best 
investigated by applying a combined nudging-coaching approach. This combined approach is 
used as the blueprint of the on-road trials’ experimental design. 
 
Figure 2 provides an overview of the different phases of the experimental design of the i-
DREAMS on-road study. 
 

 
Figure 2: Overview of the different phases of the experimental design of the i-DREAMS on-road study 
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2.2 Overview of the variable types and technologies 
 
As the key output of the i-DREAMS project is an integrated set of monitoring and 
communication tools for intervention and support, state-of-the-art technologies and systems 
were utilized in order to monitor driving performance indicators. An OBD-II device supporting 
all OBD-II protocols is installed in each vehicle. A modern vehicle supports hundreds of 
parameters, which are recorded by the OBD-II device which accommodates the proper 
Software Development Kit (SDK) to extract the necessary data as well as a rich set of APIs 
(Application Programming Interfaces) to communicate with third party systems. This OBD-II 
integrates 2G or 3G GSM/GPRS technology through which all data recorded from the vehicle 
through its sensors is transmitted to remote servers (Cloud). The mobile network is used for 
data transmission without any user involvement. 
 
More specifically, data from the Mobileye system (Mobileye, 2022), a dash camera and the 
Cardio gateway (CardioID Technologies, 2022) which records driving behavior (e.g., speed, 
acceleration, deceleration, steering) along with GNSS signals were used. In particular, the 
Mobileye system is as a network sensor and a camera-based system mounted on the 
windshield that measures parameters, like headway monitoring, lane position monitoring, 
traffic sign recognition and pedestrian recognition. The system can be connected to the CAN 
bus and enables the integration with several ADAS ecosystem products. The Cardio gateway 
is a system based on sensors which is connected to the Mobileye equipment through the CAN 
bus of the vehicle and can transfer data through different communication technologies (BLE, 
CAN, I2C, SPI, WiFi). Information about the current warning stage, as defined by Mobileye, 
were also collected for comparison with the i-DREAMS warning stage (i.e. normal driving, 
danger phase, avoidable accident phase). At the same time, information about the current 
state of the i-DREAMS platform were collected.  
 

The fundamental challenge within the i-DREAMS project is how explanatory variables (i.e. 

various variables performance metrics and indicators of task complexity and coping capacity) 

are correlated with the dependent variable “risk” in order to predict STZ. 

 

There are three main components of the nature of variables which are used in i-DREAMS: 

• Discrete variables: variables that are categorical (ordinal or nominal) and can only 

take discrete values from the real numbers. A few examples of discrete variables in i-

DREAMS could be fatigue (yes, no), time of the day (daytime, night time driving) and 

STZ (normal phase, danger phase, avoidable accident phase). 

• Continuous variables: variables that can take any values from the real numbers. A 

few examples of continuous variables in i-DREAMS could be speeding, headway and 

composite variables, such as weighted sum or weighted average variables. 

• Latent variables: variables that are not observable to the analyst and so it is not known 

whether they are continuous or discrete. Examples of latent variables in i-DREAMS are 

task complexity and coping capacity which are latent explanatory variables and so 

observable indicators are needed to measure these latent variables. Risk is also initially 

conceived in i-DREAMS as a latent variable. 

 

Explanatory variables of risk and the most reliable indicators of coping capacity, such as 
average speed, headway, illegal overtaking, harsh accelerations, harsh brakings, distance 
traveled, duration, forward collision warnings or pedestrian collision warnings will be assessed. 
 

Specifically, the main risk factors that will be explored within the i-DREAMS project are:  
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• Speeding 

• Headway 

• Overtaking 

• Fatigue 

• Harsh accelerations 

• Harsh brakings 

• Vehicle control events (combination of harsh acceleration, braking and cornering 

events) 

 
Table 2 provides an overview of the variables examined along with their corresponding 
description. 
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Table 2: Driving performance indicators of the analyzed data along with their corresponding description (Source: Mobileye, CardioID) 

Source Variable Description Unit Type Range 

  

grpby_seconds Total trip duration seconds Integer   

trip_uuid Unique ID of the trip   String   

driver_uuid Unique driver ID   String   

vehicle_uuid Unique ID of the vehicle   String   

vehicle_class Vehicle class identifier   String Car, Bus, Truck, Train, Tram 

trip_start The trip start date and time in ISO8601 format   String   

trip_end The trip stop date and time in ISO8601 format   String   

Phase phase of the experiment   Integer 
1 - no interventions/monitoring , 2 - real-time warnings, 3 
- real-time warnings and post-trip feedback, 4 - real-time 
warnings and post-trip feedback along with gamification 

i-Dreams 
STZ 

iDreams_Headway_Map_level__-1 
Real-time headway intervention level -1 
level -1 => no vehicle detected (Normal 
Driving) 

  Integer 
0 - intervention level unequal to -1 
1 - intervention level equal to -1 

iDreams_Headway_Map_level__0 
Real-time headway intervention level 0 
level 0 => vehicle detected, but headway >= 
2.5 (Normal Driving) 

  Integer 
0 - intervention level unequal to 0 
1 - intervention level equal to 0 

iDreams_Headway_Map_level__1 

Real-time headway intervention level 1 
level 1 => vehicle detected, headway < 2.5, 
but above warning threshold (Normal 
Driving) 

  Integer 
0 - intervention level unequal to 1 
1 - intervention level equal to 1 

iDreams_Headway_Map_level__2 
Real-time headway intervention level 2 
level 2 => first warning stage (Dangerous 
Driving) 

  Integer 
0 - intervention level unequal to 2 
1 - intervention level equal to 2 

iDreams_Headway_Map_level__3 
Real-time headway intervention level 3 
level 3 => second warning stage (Avoidable 
Accident) 

  Integer 
0 - intervention level unequal to 3 
1 - intervention level equal to 3 

iDreams_Overtaking_Map_level__0 
Real-time overtaking intervention level 0  
level 0 => no warning (Normal Driving) 

  Integer 
0 - intervention level unequal to 0 
1 - intervention level equal to 0 

iDreams_Overtaking_Map_level__1 
Real-time overtaking intervention level 1  
level 1 => visual warning (Normal Driving) 

  Integer 
0 - intervention level unequal to 1 
1 - intervention level equal to 1 
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Source Variable Description Unit Type Range 

iDreams_Overtaking_Map_level__2 
Real-time overtaking intervention level 2 
level 2 => visual and auditory warning 
(Dangerous Driving) 

  Integer 
0 - intervention level unequal to 2 
1 - intervention level equal to 2 

iDreams_Overtaking_Map_level__3 
Real-time overtaking intervention level 3  
level 3 => frequent warning (Avoidable 
Accident) 

  Integer 
0 - intervention level unequal to 3 
1 - intervention level equal to 3 

iDreams_Speeding_Map_level__0 
Real-time speeding intervention level 0 
level 0 => no warning (Normal Driving) 

  Integer 
0 - intervention level unequal to 0 
1 - intervention level equal to 0 

iDreams_Speeding_Map_level__1 
Real-time speeding intervention level 1 
level 1 => visual indication (Normal Driving) 

  Integer 
0 - intervention level unequal to 1 
1 - intervention level equal to 1 

iDreams_Speeding_Map_level__2 
Real-time speeding intervention level 2 
level 2 => visual speeding warning 
(Dangerous Driving) 

  Integer 
0 - intervention level unequal to 2 
1 - intervention level equal to 2 

iDreams_Speeding_Map_level__3 
Real-time speeding intervention level 3 
level 3 => visual and auditory warning 
(Avoidable Accident) 

  Integer 
0 - intervention level unequal to 3 
1 - intervention level equal to 3 

iDreams_Fatigue_Map_level__0 
Real-time fatigue intervention level 0 
level 0 => no warning (Normal Driving)  

  Integer 
0 - intervention level unequal to 0 
1 - intervention level equal to 0 

iDreams_Fatigue_Map_level__1 
Real-time fatigue intervention level 1 
level 1 => visual warning (Dangerous 
Driving) 

  Integer 
0 - intervention level unequal to 1 
1 - intervention level equal to 1 

iDreams_Fatigue_Map_level__2 
Real-time fatigue intervention level 2 
level 2 => visual and auditory warning 
(Dangerous Driving) 

  Integer 
0 - intervention level unequal to 2 
1 - intervention level equal to 2 

iDreams_Fatigue_Map_level__3 
Real-time fatigue intervention level 3 
level 3 => frequent warnings (Dangerous 
Driving)  

  Integer 
0 - intervention level unequal to 3 
1 - intervention level equal to 3 

Gateway 
IMU 

DrivingEvents_Map_lvl__H 
H - High event (harsh acceleration, harsh 
braking, and harsh cornering) severity level 

  String 
0 - high event severity level not detected 
1 - high event severity level detected 

DrivingEvents_Map_lvl__L 
L - Low event (harsh acceleration, harsh 
braking, and harsh cornering) severity level 

  String 
0 - low event severity level not detected 
1 - low event severity level detected 

DrivingEvents_Map_lvl__M 
M - Medium event (harsh acceleration, harsh 
braking, and harsh cornering) severity level 

  String 
0 - medium event severity level not detected 
1 - medium event severity level detected 
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Source Variable Description Unit Type Range 

DrivingEvents_Map_evt__ha Type of event - harsh acceleration: ‘ha’   String 
0 - harsh acceleration not detected 
1 - harsh acceleration detected 

DrivingEvents_Map_evt__hb Type of event - harsh braking: ‘hb’   String 
0 - harsh braking not detected 
1 - harsh braking detected 

DrivingEvents_Map_evt__hc Type of event - harsh cornering: ‘hc’   String 
0 - harsh cornering not detected 
1 - harsh cornering detected 

IBI_value Time interval between successive heart beats milliseconds Integer   

Mobileye 

ME_Car_speed Vehicle speed km/h Integer   

ME_Car_wipers Wipers   Boolean 
0 - missing values 
False - Wipers are off,  
True - Wipers are on 

ME_Car_high_beam High-beam   Boolean 
0 - missing values 
False - High-beam is off 
True - High-beam is on 

ME_AWS_hw_measurement Headway measurement seconds Float   

ME_AWS_tsr_level Traffic sign recognition level km/h or mp/h Integer 

0 - no warning, 1 - 0-5 units over speed limit, 2 - 5-10 
units over speed limit, 3 - 10-15 units over speed limit, 4 - 
15-20 units over speed limit, 5 - 20-25 units over speed 
limit, 6 - 25-30 units over speed limit, 7 - 30+ units over 
speed limit 

ME_AWS_fcw Forward collision warning   Boolean 
0 - missing values 
False - Forward collision warning is inactive 
True - Forward collision warning is active 

ME_AWS_ldw Lane departure warning   Boolean 
0 - missing values 
False - Lane departure warning is inactive 
True - Lane departure warning is active (left or right) 

ME_AWS_pcw Pedestrian collision warning   Boolean 
0 - missing values 
False - Pedestrian collision warning is inactive 
True - Pedestrian collision warning is active 
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Source Variable Description Unit Type Range 

ME_AWS_pedestrian_dz Pedestrian in danger zone   Boolean 
0 - missing values 
False - Pedestrian not detected in danger zone 
True - Pedestrian detected in danger zone 

ME_AWS_time_indicator Indicates lighting conditions   String 1 - day, 2 - dusk, 3 - night 

ME_TSR_tsr_1_speed Display 1 speed traffic sign code   Integer   

GPS_spd Speed km/h Float   

GPS_distances Total trip distance km Float   

ME_LDW_Map_type_L_mean Left lane departure warning   Boolean 
0 - missing values 
False - Left lane departure warning is inactive 
True - Left lane departure warning is active 

ME_LDW_Map_type_R_mean Right lane departure warning   Boolean 
0 - missing values 
False - Right lane departure warning is inactive 
True - Right lane departure warning is active 
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2.3 Questionnaires 
 

In addition to the vehicle data, questionnaire data were also collected both before and after the 

trial. The number of participants who answered both for the entry and exit questionnaires 

and for which data was available at the time of writing this deliverable is shown below. It should 

be noted that at the time of writing this deliverable, the questionnaire data from Portugal were 

not completed yet; thus, questionnaire data for buses have not been included in the analysis. 

• 45 car drivers in Belgium 

• 23 truck drivers in Belgium 

• 54 car drivers in UK 

• 28 car drivers in Germany 

• 65 car drivers in Greece 

 

The full questionnaires are given in i-DREAMS Deliverable 7.2 in Annex 2 (Brown et al., 2023).  

Information collected pre-trial included:  

• Screening questionnaire: driver details (age, gender, driving experience, employment 

status, etc.), vehicle details (model, age, etc.).  

• Entry questionnaire: current use of and opinions on different ADAS, driving style and 

confidence, opinions on driving and safety, self-assessment of driver’s risk-taking 

behaviors (e.g., speeding, mobile phone use), crash and offence history, sleepiness 

and driving, medical conditions.  

 

Information collected post-trial included: 

• User experience questionnaire: opinions on the i-DREAMS system - except for 

Greece, in which an alternative driving experiment without the use of i-DREAMS in-

vehicle system was used - (ease of use, works as described), opinions on the i-

DREAMS smartphone app (ease of use, usefulness).  

• Exit questionnaire: opinions on the i-DREAMS system (improvement of driving, 

usefulness, trust, clarity of warnings, etc.), experience of driving situations, driver 

behavior (driving and non-driving related behaviors), overall experience rating.  

 

In particular, a set of 12 questions were asked identically at both trial entry and trial exit 

(respectively EQ11 and EX3 in Annex 2 of Deliverable 7.2), to allow analysis of before and 

after responses. These questions related to the areas of perceived knowledge, self-efficacy, 

attitude, personal norm, and subjective norm. The theory used in the development of these 

questions is described in more detail in i-DREAMS Deliverable 7.1 (Katrakazas et al., 2020). 

 

2.4 Aggregation and cleaning 
 
In the transportation research domain, traffic data used for behavior prediction or safety 
assessment are usually aggregated (Abdel-Aty et al., 2005, Franke and Krems, 2013) in order 
for post-trip or post-event interventions to be applied. At the same time, real-time applications 
(Habtemichael et al., 2012, Vlahogianni and Barmpounakis, 2017) demand the use of highly 
disaggregated or time-series data, in order to identify different behaviors or critical events in 
the future. 
 
Highly disaggregated data which describe all the available driving performance indicators, 
such as average speed, headway, harsh acceleration or harsh braking were collected. A 
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methodological framework was employed in which data were aggregated in 30-seconds or 
60-seconds intervals and the mean and standard deviations of the aforementioned kinematic 
characteristics were extracted. It should be noted that the aforementioned intervals have been 
also utilized in previous traffic safety studies (Katrakazas et al., 2019). 
 

The most crucial step in the data aggregation and cleaning was to identify NA values and 

remove validly the missing data from the dataset. Then, a basic procedure was followed for 

each type of variable. There are two different types of indicators that appear in the data: level-

type variables and continuous variables. “Level-type” variables include the speeding, headway 

measurements, overtaking, fatigue and harsh events. The latter appear in a categorization of 

high, medium, and low events, but also as harsh braking, harsh acceleration, and harsh 

cornering events. 

 

With regards to headway, overtaking, speeding and fatigue levels, for the trips that had at 

least one value per aggregation row, the remaining levels were imputed with 0. For instance, 

in case there were valid values for 2 (out of 4) levels and values for the 3rd and 4th level were 

NAs, an imputation with 0 in the remaining levels was made. In the case where there were NA 

values for all levels, a replacement of NA values with -9999 value was made. Afterwards, a 

check per each aggregation row was implemented to ensure the accuracy and the validity of 

the data aggregation approach. As the aggregated variables were added in the form of mean 

and sum, the summary of each aggregation row should be equal to 1 in the case of the mean 

and equal to 30 in the case of the sum (30s aggregation level). Similarly, a check per each 

aggregation row was implemented in order to ensure the accuracy and the validity of the data 

aggregation in the case of harsh events and the summary of each aggregation row for the 

aforementioned variables should be equal to the corresponding variable in total (low + medium 

+ high).  

 

Lastly, as per “continuous” variables, such as speed, distance, headway, forward collision 

warning, pedestrian collision warning, etc, the replacement of NA values was done by the 

imputation with the mean or median value of the corresponding variable per trip.  

 

2.5 Variables used 
 
After an extensive data cleaning and preparation, the next step of the analysis involved a 
collinearity testing so that any highly correlated variables were excluded from the models. 
When two variables have an absolute value of correlation coefficient at least 0.6, then these 
two variables are highly correlated. The most appropriate variables were selected to be 
included in the GLM and SEM analysis, using either correlation or feature selection algorithms.  
 

2.5.1 Definition of task complexity and coping capacity 
 
The cornerstone of the i-DREAMS platform is the assessment of task complexity and coping 
capacity. Task complexity relates to the current status of the real world context in which a 
vehicle is being operated. Since this context is consistent of various individual elements which, 
together, determine the complexity of the task imposed on the vehicle operator, a multi-
dimensional approach in further operationalizing this concept is adopted. In particular, task 
complexity context is monitored via registration of road layout (i.e. highway, rural, urban), time 
and location, traffic volumes (i.e. high, medium, low) and weather. 
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As for coping capacity, Figure 3 shows that this concept is dependent upon two underlying 
factors and it consists of several aspects of both vehicle and operator state. These are also 
multi-dimensional in nature.  
 

More specifically, the latent variables associated to “vehicle state” are estimated on the basis 

of various metrics. The factor ‘vehicle’ entails three aspects, as shown below: 

• Technical specifications, measured on the basis of average speed, braking power, 

acceleration performance, etc. 

• Actuators & admitted actions, measured on the basis of accelerator, brakes, steering 

wheel, etc. 

• Current status, measured on the basis of fuel efficiency, schedule maintenance), real-

time information either from on board systems (OBD II, FMS, Tachometer), 

Telematics/GPS, or smartphone, or additional information coming from ADAS systems 

- (headway & collision monitoring, pedestrian warning, lane keeping monitoring, on 

board cameras, etc. 

 

Additionally, the latent variables associated to “operator state” are estimated on the basis of 

various metrics. The factor ‘operator’ entails six aspects, as shown below: 

• Mental state, measured on the basis of metrics on alertness, attention, emotions, etc. 

• Behavior, measured on the basis of metrics such as speeding, harsh acceleration / 

braking / cornering, seat belt use etc. 

• Competencies, measured on the basis of metrics on risk assessment, attention 

regulation, self-appraisal, etc. 

• Personality, measured on the basis of metrics on adventure seeking, disinhibition, 

experience seeking, boredom susceptibility, etc. 

• Sociodemographic profile, measured on the basis of age, gender, experience, socio-

economic status, nationality, ethnicity, cultural identity, etc. 

• Health status, measured on the basis of metrics on current symptoms, neurologic and 

cardiovascular indicators, medication, etc. 

 
As already outlined, coping capacity is not only dependent upon the status of the operator, but 
of the vehicle as well. Each of these operator- and vehicle-related aspects can be further 
operationalized by a combination of different variables, as shown in Figure 3. 
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Figure 3: Monitoring context, operator & vehicle: an illustrative canvas 

 
According to the i-DREAMS concept of a context-aware Safety Tolerance Zone, ‘risk’ results 
from the interaction of ‘task complexity’ and ‘coping capacity’. However, these three core 
aspects are unobserved / latent variables, which cannot be measured directly, but can be 
estimated on the basis of various metrics. Based on the abovementioned, task complexity as 
a latent variable can be measured by metrics and indicators related to the road environment. 
Coping capacity is also a latent variable, including two distinct aspects, each one being a latent 
variable itself. These are vehicle state and operator state. Risk as a latent variable can be 
measured by indicators such as danger phase events and avoidable accident events, as 
detected by the Safety Tolerance Zone monitor. Latent variables analysis will be performed on 
the basis of dedicated techniques such as Structural Equation Modeling. 
 
Figure 4 illustrates the conceptual framework of the i-DREAMS platform for the prediction of 
risk in function of coping capacity and task complexity.  
 

 
Figure 4: Post-hoc prediction of risk in function of coping capacity and task complexity 
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2.5.2 Variables used to define task complexity and coping capacity 
 
The most appropriate variables which were used in order to define task complexity and coping 
capacity (vehicle and operator state) along with the variables that were finally utilized to 
represent risk are shown in Table 3. 
 
With regards to car wipers, considered as an indicator of weather conditions, can be used to 
clear rain, snow, or debris from the windshield of a vehicle, which are all common weather-
related hazards. The speed at which the wipers move can also indicate the intensity of the 
precipitation or debris. For instance, if the wipers are moving very fast, it may indicate heavy 
rain or snow. On the other hand, if the wipers are moving slowly, it could mean that there is 
only light precipitation. Overall, car wipers are an important safety feature of a vehicle and can 
help drivers navigate through different weather conditions. 
 
In addition, high beam headlights are considered an indicator of lighting conditions as they are 
used to provide maximum illumination when driving in low light or dark conditions. The high 
beam headlights are designed to project a beam of light further down the road, which can help 
drivers to see obstacles or pedestrians that may be difficult to see with low beam headlights. 
Overall, high beam headlights are an important feature of a vehicle that can help drivers 
navigate through different lighting conditions. 
 

Table 3: Variables for task complexity and coping capacity (vehicle and operator state) and risk 

Task complexity Coping capacity - vehicle state Coping capacity - operator state Risk 

Car wipers Vehicle age Distance Inter Beat Interval Headway map levels 

Car high beam First vehicle registration  Duration Headway Speeding map levels 

Time indicator  Fuel type Average speed Overtaking Overtaking map levels 

Distance Engine Cubic Centimetres Harsh acceleration/braking Fatigue Fatigue map levels 

Duration Engine Horsepower (HP) Forward collision warning (FCW) Gender Harsh acceleration 

Month Gearbox Pedestrian collision warning (PCW) Age Harsh braking 

Day of the week Vehicle brand Lane departure warning (LDW) Educational level Vehicle control events 

 

2.5.3 Descriptive statistics 
 
Descriptive statistics for the available parameters in database used for the different countries 
(i.e. Belgium, UK, Germany, Greece and Portugal) and transport modes (i.e. cars, trucks and 
buses) per each phase are presented in Annex 1. 
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3 Analysis 

 

3.1 Purpose of the analysis 

 

There are two main purposes for data analysis in i-DREAMS, prediction and explanatory 
analysis, and the type of analytical methods to be used depends on these purposes: 

• Prediction is mostly done to identify (in real-time) the level of the STZ at which the 

driver is, and in order to trigger real-time in-vehicle interventions. 

• Explanatory analysis is mostly done to identify the relationship between risk and 

factors contributing to risk. This relationship may help better understand the underlying 

reasons of driving behavior and ultimately help improve interventions (both in-vehicle 

and post trip). In addition, understanding the effects of explanatory variables on risk 

may also help evaluating the effectiveness of interventions.  

 

Another dimension of data analysis in i-DREAMS is the temporal element of data analysis:  

• Real-time: The collected data may be analysed in real-time (e.g. large amount of data, 

time series nature of real-time data) 

• Post-trip: The collected data may be aggregated and analysed after the trip has been 

completed. 

 

Proper analytical methods have been used to capture the unique properties of data in both 

cases. However, it is noted that, while it seems intuitive that real-time data analysis 

corresponds to the prediction purpose, and post-trip data analysis corresponds to the 

explanatory analysis purpose, it may be worth investigating whether there are additional 

combinations applicable within the scope of i-DREAMS. 

 
It should be mentioned that the analytical models for STZ identification have already been 
described in previous project Deliverables 3.2 (Katrakazas et al., 2020) and 4.2 (Yang et al., 
2020). In summary, Dynamic Bayesian Networks (DBNs), Long-Short-Term-Memory networks 
(LSTMs), as well as Discrete Choice Models (DCM) and Structural Equation Models (SEM) 
can be used for STZ identification and explanation of measurement impacts. Furthermore, a 
plethora of analytical tools have been already documented in order to be able to predict or 
explain safety risk and the impact of interventions. 
 
A schematic overview of the proposed mathematical models (DBN, LSTM, DCM and SEM) to 
be considered for the analysis is given in Figure 5. 
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Figure 5: Schematic overview of modeling approaches considered for the analysis of risk factors 

 
Following the Big Data analysis and processing carried out in previous Deliverables, the 
processed data analysis methods include two families of techniques: 
 

• Multivariate regression analysis (e.g. Generalized Linear Models) for exploratory 

analysis in order to identify the key correlations between observed metrics while 

controlling for the differences between the sample groups. 

• Latent variables analysis (e.g. Structural Equation Models) for latent analysis in order 

to quantify the effects between latent and observable variables of task complexity and 

coping capacity with complex relationships. 

 

3.2 Generalized Linear Models (GLMs) 

 

In statistics, the Generalized Linear Model (GLM) is a flexible generalization of ordinary linear 
regression that allows for response variables that have error distribution models other than a 
normal distribution. The GLM generalizes linear regression by allowing the linear model to be 
related to the response variable via a link function and by allowing the magnitude of the 
variance of each measurement to be a function of its predicted value (Hastie and Pregibon, 
2017). 
 
In a generalized linear model (GLM), each outcome Y of the dependent variables is assumed 
to be generated from a particular distribution in an exponential family, a large class of 
probability distributions that includes the normal, binomial, Poisson and gamma 
distributions, among others. The mean, μ, of the distribution depends on the independent 
variables, X, through: 
 

𝐸(𝑌|X) = 𝜇 =  𝑔−1(𝑋𝛽)       (1) 
 
where: E(Y|X) is the expected value of Y conditional on X; Xβ is the linear predictor, a linear 
combination of unknown parameters β; g is the link function. 
 
In this framework, the variance is typically a function, V, of the mean: 
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𝑉𝑎𝑟(𝑌|X) = 𝑉(𝑔−1(𝑋𝛽))       (2) 
 
It is convenient if V follows from an exponential family of distributions, but it may simply be that 
the variance is a function of the predicted value. 
 
The unknown parameters, β, are typically estimated with maximum likelihood, maximum quasi-
likelihood, or Bayesian techniques.  
 
GLMs were formulated as a way of unifying various other statistical models, including 
linear regression, logistic regression and Poisson regression. In particular, Hastie and 
Tibshirani (1990) proposed an iteratively reweighted least squares method for maximum 
likelihood estimation of the model parameters. Maximum-likelihood estimation remains popular 
and is the default method on many statistical computing packages. Other approaches, 
including Bayesian approaches and least squares fits to variance stabilized responses, have 
been developed.  
 
A key point in the development of GLM was the generalization of the normal distribution 
(on which the linear regression model relies) to the exponential family of distributions. This 
idea was developed by Collins et al. (2001). Consider a single random variable y whose 
probability (mass) function (if it is discrete) or probability density function (if it is continuous) 
depends on a single parameter θ. The distribution belongs to the exponential family if it can be 
written as follows: 
 

𝑓(𝑦; 휃) = 𝑠(𝑦)𝑡(휃)𝑒𝑎(𝑦)𝑏(𝜃)       (3) 
 
where: a, b, s, and t are known functions. The symmetry between y and θ becomes more 
evident if the equation above is rewritten as follows: 
 
𝑓(𝑦; 휃) = exp [𝛼(𝑦)𝑏(휃) + 𝑐(휃) +  𝑑(𝑦)]     (4) 
 
where: s(y)=exp[d(y)] and t(θ)=exp[c(θ)] 
 
If a(y) =y then the distribution is said to be in the canonical form. Furthermore, any additional 
parameters (besides the parameter of interest θ) are regarded as nuisance parameters forming 
parts of the functions a, b, c, and d, and they are treated as though they were known. Many 
well-known distributions belong to the exponential family, including Poisson, normal or 
binomial distributions. On the other hand, examples of well-known and widely used 
distributions that cannot be expressed in this form are the student’s t-distribution and the 
uniform distribution. 
 
It should be mentioned that the Variance Inflation Factor (VIF) is a measure of the amount 
of multicollinearity in regression analysis. Multicollinearity exists when there is a correlation 
between multiple independent variables in a multiple regression model. The default VIF cutoff 
value is 5; only variables with a VIF less than 5 will be included in the model (VIF<5). However, 
in certain cases, even if VIF is less than 10, then it can be accepted. 

 

3.3 Structural Equation Models (SEMs) 
 

Structural Equation Modelling (SEM) is widely used for modelling complex and multi-layered 

relationships between observed and unobserved variables, such as ‘task complexity’, ‘coping 

capacity’ etc. Observed variables are measurable, whereas unobserved variables are latent 

constructs – analogous to factors / components in a factor / principal component analysis.  
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Structural equation models have two components: a measurement model and a structural 

model. The measurement model is used to determine how well various observable exogenous 

variables can measure (i.e. load on) the latent variables, as well as the related measurement 

errors. The structural model is used to explore how the model variables are inter-related, 

allowing for both direct and indirect relationships to be modelled. In this sense, SEMs differ 

from ordinary regression techniques in which relationships between variables are direct. 

 

The general formulation of SEM is as follows (Washington et al., 2011; 2020): 

 

휂 = 𝛽휂 + 𝛾𝜉 + 휀       (5) 

 

where η is a vector of endogenous variables, ξ is a vector of exogenous variables, β and γ are 

vectors of coefficients to be estimated, and ε is a vector of regression errors. 

 

The measurement models are then as follows (Chen, 2007): 

 

𝑥 = 𝛬𝑥𝜉 + 𝛿, for the exogenous variables     (6) 

 

𝑦 = 𝛬𝑦휂 + 휁, for the endogenous variables     (7) 

 

where x and δ are vectors related to the observed exogenous variables and their errors, y and 

ζ are vectors related to the observed endogenous variables and their errors, and Λx, Λy are 

structural coefficient matrices for the effects of the latent exogenous and endogenous variables 

on the observed variables. 

 

The structural model is often represented by a path analysis, showing how a set of 

‘explanatory’ variables can influence a ‘dependent’ variable. The paths can be drawn so as to 

reflect whether the explanatory variables are correlated causes, mediated causes, or 

independent causes to the dependent variable. 

 

3.4 Neural Networks (NNs) 
 
An Artificial Neural Network (ANN) is a highly complex, non-linear, parallel processor with a 
natural propensity for storing experimental knowledge and making it available afterward. A 
multi-layer perceptron ANN is typically made up of three kinds of layers: an input layer, an 
output layer, and one or more hidden layers. The input layer receives the values of the 
explanatory variables, i.e., the input data. The hidden layer, made up of m neurons, adds up 
the weights of the input values of the various explanatory variables, and calculates the complex 
association patterns. With regards to the hidden layer, activation function applies a non-
linear map to the linear transformation of input values, introducing nonlinearity into the model. 
A single hidden layer is usually enough for crash analysis applications, but the definition of the 
number of neurons in it is generally the object of experimentation;. For the output layer, the 
values of the various hidden neurons are summed and the network's output values are 
presented (Garefalakis et al., 2022; Silva et al., 2020). 
 

3.5 Long Short-Term Memory (LSTM) Networks 
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Long Short-Term Memory Models (LSTMs) are a special kind of RNN, capable of learning 
long-term dependencies (Girma et al., 2019). They work tremendously well on a large variety 
of problems, and are now widely used. LSTMs are explicitly designed to avoid the long-term 
dependency problem. Remembering information for long periods of time is practically their 
default behavior and not something they struggle to learn. All recurrent LSTMs have the form 
of a chain of repeating modules of neural network.  
 
LSTMs use ”memory block” in the hidden unit to capture the long-term dependencies that may 
exist in the data (Girma et al., 2019). This memorizing capability of LSTM has shown the best 
performance across many time-series tasks, such as activity recognition, video captioning, 
language translation. The cell state (memory block) of LSTM has one or more memory cells 
that are regulated by structures called gates, which control the addition of new sequential 
information and the removal of useless ones to and from memory, respectively. Gates are a 
combination of sigmoid activation functions and an element-wise multiplication or Hadamard 
product and they are used to control information that passes through the network. An LSTM is 
often composed by three gates, namely forget, input, and output gates, which are described 
below: 
 

• Forget gate: Forget gate decides what information to keep or remove from the cell 
state. The first step in LSTM is to decide what information are going to throw away from 
the cell state. This decision is made by a sigmoid layer called the “forget gate layer.”  

• Input gate: Input gate decides what new information to add and how to update the old 
cell state, Ct-1, to the new cell state Ct for the next memory block. This has two parts. 
First, a sigmoid layer called the “input gate layer” decides which values we’ll update. 
Next, a tanh layer creates a vector of new candidate values, Ct', that could be added to 
the state. Then the old cell state Ct−1 updates into the new cell state Ct and the old state 
is multiplied by ft.  

• Output gate: Output gate filters out and decides which information to produce as an 
output from a memory block at a given time step t. This output will be based on cell 
state, but will be a filtered version. First, a sigmoid layer, which decides what parts of 
the cell state are going to output, is run. Then, the cell state, used as tanh (to push the 
values to be between −1 and 1) and multiply it by the output of the sigmoid gate, in 
order to take and output the parts needed.  

 

3.6 Grouped Random Parameters Binary Logit (GRPL) Models 
 
Binary Logit Discrete Choice Models have been widely used to correlate a binary dependent 
variable with explanatory variables (Hensher et al., 2005). These models assume that effects 
of explanatory variables are fixed across the sample. However, this assumption may not 
always hold and the effects of explanatory variables may vary across individuals due to 
unobserved heterogeneity (Hensher and Greene, 2003). In addition, the empirical data in this 
study contain multiple observations for each driver (multiple near-misses per trip for each 
driver) creating several panels in the data. The grouped random parameters logit model has 
been used in the literature to address the above limitations of the simple binary logit model 
(Afghari et al, 2022) and thus is used in this study to model the binary near-miss indicator. The 
specification of this model is briefly presented in the following.  
 
Let 𝑌𝑖𝑡 be a binary dependent variable representing a near-miss (𝑌𝑖𝑡=1: near-miss, 𝑌𝑖𝑡=0: no 
event) of the ith driver at time t. Assuming a random utility theory (Hensher et al., 2005), the 
utility of near-miss for this driver (Uit) is stated as:  
 
𝑈𝑖𝑡 = 𝛽𝑖𝑋𝑖𝑡 + 휀𝑖𝑡        (8) 
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where 𝛽𝑖  are estimable parameters (including the intercept), 𝑋𝑖𝑡  are explanatory variables and 
εit is the random error term assumed to be identically and independently distributed across 
observations and describing the random part of the utility. Assuming that εit is generalized 
extreme value distributed (Mcfadden, 1980), the probability of a near-miss can be presented 
as: 
 

𝑃(𝑌𝑖𝑡 = 1 ) =  
1

1+𝑒−(𝛽𝑖𝑋𝑖𝑡)       (9) 

 
Note that the estimable parameters are allowed to vary across individuals to account for 
unobserved heterogeneity in the data. However, the parameters are fixed across multiple 
observations of the same individual, accounting for the panel nature of the data. This model is 
referred to as the grouped random parameters model in the literature (Afghari et al, 2022). The 
likelihood of having a near-miss across all individuals can then be determined by the product 
of the above equation over the entire observations.  
 

3.7 Ordered Probit Fractional Split (OPFS) Models 
 

Ordered discrete choice models are proper analytical models for this type of risk indicator 

(Washington et al., 2020). However, these models have the implicit assumption that one 

outcome category may be selected at a time (Hensher et al., 2005). Such an assumption does 

not hold for modelling speeding behavior of drivers over a defined period of time (e.g. 1 minute) 

because multiple speeding categories may occur during this time. For example, whilst 35% of 

this 1-minute window may consist of 1st STZ, another 45% may consist of the 2nd and the 

remaining 20% may consist of the 3rd STZ level for speeding. Thus, the discrete outcome 

during this time window is not binary anymore, and the conventional discrete outcome models 

are not suitable. An alternative modelling approach in such circumstances is fractional 

response modelling where the outcome variable is a fraction (proportion) summing to unity 

across all categories (Afghari et al., 2018). 

 

Let Yit be the actual proportion of speeding STZ levels that driver i commits during time interval 

t (e.g. 1-minute intervals); and let s (s = 1, 2, 3) represent speeding STZ categories (i.e. STZ1, 

STZ2, and STZ3) during 1-minute intervals. In ordered models, the actual proportion of STZ 

levels (Yit) is associated with an underlying latent variable (y*
it). This latent variable is then 

mapped to the actual STZ proportions by thresholds ( ) and using the following linear 

function: 

*
it it iY X = +

   and    
SsitY =

   if   

*
1s it sY  − 

   (10) 

where   is the vector of parameters, itX
 is the vector of covariates and i  is the random 

error term. To estimate the latent propensity of STZ proportions, it is assumed that: 

| (.)( )X Hsit it sitE Y =
,  

0 (.) 1Hsit 
,   1

1
S

Hsit
s=

=
   (11) 

where 
(.)Hsit  is the probability density function for the STZ category s. Depending on the 

distributional assumption for the probability of error terms, 
(.)Hsit  can take standard normal or 

standard logistic probability density functions for the ordered probit or ordered logit models, 

respectively. The former functional form is used in this section to construct an ordered probit 

model for speeding STZ. The probability of each STZ category is then presented as: 
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{ ( )} { ( )}1( )s X Xsit s it s itP Y      = = − − −−      (12) 

where 
(.)

 is the standard normal cumulative probability density function. The corresponding 

quasi log-likelihood function is then expressed as: 

1 1

( ( ) )
SN

wsitssit
i s

LL Log P Y d


=

= =

= 
        (13) 

where 
wsit is the fraction (proportion between 0 and 1) of STZ category s for driver i and time 

period t, and the rest of notations are as previously stated. These fractions sum to unity over 

the categories ( 1

1
S

wsit
s=

=
). This model is referred to as ordered fractional split (Afghari et al., 

2020). Note that 
wsit  takes binary values (0 or 1) in conventional choice models; one for the 

chosen alternative and zero for the non-chosen alternative. Maximum likelihood approach is 

used to estimate this log-likelihood function. 

 

3.8 Model goodness-of-fit measures 
 
In the context of model selection, model Goodness-of-Fit measures consist an important 
part of any statistical model assessment. Several goodness-of-fit metrics are commonly used, 
including the goodness-of-fit index (GFI), the (standardized) Root Mean Square Error 
Approximation (RMSEA), the comparative fit index (CFI) and the Tucker-Lewis Index (TLI). 
Such criteria are based on differences between the observed and modelled variance-
covariance matrices. A detailed description of the aforementioned metrics is presented below: 
 
The Akaike Information Criterion (AIC), which accounts for the number of included 
independent variables, is used for the process of model selection between models with 
different combination of explanatory variables (Vrieze, 2012). 
 
𝐴𝐼𝐶 =  −2𝐿(휃) +  𝑞         (14) 
 
where: q is the number of parameters and L(θ) is the log-likelihood at convergence. Lower 
values of AIC are preferred to higher values because higher values of -2L(θ) correspond to 
greater lack of fit. 
 
The Bayesian Information Criterion (BIC) is used for model selection among a finite set of 
models; models with lower BIC are generally preferred. 
 
𝐵𝐼𝐶 =  −2𝐿(휃) +  𝑞 ln (𝑁)        (15) 
 
The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) provide 
measures of model performance that account for model complexity. AIC and BIC combine a 
term reflecting how well the model fits the data with a term that penalizes the model in 
proportion to its number of parameters.  
 
The Comparative Fit Index (CFI) is based on a noncentral x2 distribution. It evaluates the 
model fit by comparing the fit of a hypothesized model with that of an independence model. 
The values of CFI range from 0 to 1, indicating a good fit for the model when the value exceeds 
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0.95 (Lee and Sohn, 2022). In general, values more than 0.90 for CFI are generally accepted 
as indications of very good overall model fit (CFI>0.90). The formula is represented as follows: 
 

𝐶𝐹𝐼 = 1 −  
max (𝑥𝐻

2−𝑑𝑓𝐻,0)

max (𝑥𝐻
2−𝑑𝑓𝐻,𝑥𝐼

2−𝑑𝑓𝐼)
      (16) 

 
where: x2

H is the value of x2 and dfH is degrees of freedom in the hypothesized model, and x2
I 

is the value of x2 and dfI is the degrees of freedom in the independence model. 
 
The Tucker Lewis Index (TLI) considers the parsimony of the model. Therefore, if the fit 
indices of two models are similar, a simpler model (i.e. greater degrees of freedom) is chosen. 
TLISI is an unstandardized value, so it can have a value less than 0 or greater than 1. It 
indicates a good fit for the model when the value exceeds 0.95 (Lee and Sohn, 2022). In 
general, values more than 0.90 for TLI are generally accepted as indications of very good 
overall model fit (TLI>0.90). The formula is represented as follows: 
 

𝑇𝐿𝐼 =

𝑥𝐼
2

𝑑𝑓𝐼
−

𝑥𝐻
2

𝑑𝑓𝐻

𝑥𝐼
2

𝑑𝑓𝐼
−1

         (17) 

 
where: x2

H is the value of x2 and dfH is the degrees of freedom in the hypothesized model, and 
x2

I is the value of x2 and dfI is the degrees of freedom in the independence model. 
 
Currently, one of the most widely used goodness-of-fit indices is the Root Mean Square Error 
Approximation (RMSEA). RMSEA measures the unstandardized discrepancy between the 
population and the fitted model, adjusted by its degrees of freedom (df). Different proposals 
have been made as to the correct use of RMSEA. The most common approach is to calculate 
and interpret the sample’s RMSEA (McDonald and Ho, 2002). RMSEA is considered a 
“badness-of-fit measure,” meaning that lower index values represent a better-fitting model. 
RMSEA index ranges between 0 and 1. Its value 0.05 or lower is indicative of model fit with 
observed data. P close value tests the null hypothesis that RMSEA is no greater than 0.05. If 
P close value is more than 0.05, the null hypothesis is accepted that RMSEA is no greater than 
0.05 and it indicates the model is closely fitting the observed data (RMSEA<0.05). The formula 
is represented as follows: 
 

𝑅𝑀𝑆𝐸𝐴 = √
𝑥𝐻

2− 𝑑𝑓𝐻

𝑑𝑓𝐻(𝑛−1)
        (18) 

 
where: x2

H is the value of x2 and dfH is the degrees of freedom in the hypothesized model; n is 
the sample size. 
 
The Root Mean Squared Error (RMSE) is one of the most commonly used measures for 
evaluating the quality of predictions. It shows how far predictions fall from measured true 
values using Euclidean distance. 
 
The formula of RMSE, which is the square root of the average squared error, is represented 
as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝑒𝑡

2        (19) 

 

where: N is the number of forecasted points, and 𝑒𝑡 is the error (i.e. 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑡 − 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑𝑡)  
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The Goodness of Fit Index (GFI) is a measure of fit between the hypothesized model and the 
observed covariance matrix. The adjusted goodness of fit index (AGFI) corrects the GFI, which 
is affected by the number of indicators of each latent variable (Baumgartner and Hombur, 
1996). The GFI and AGFI range between 0 and 1, with a value of over 0.9 generally indicating 
acceptable model fit. In general, values more than 0.90 for GFI are generally accepted as 
indications of very good overall model fit (GFI>0.90). 
 
Lastly, the Hoelter index is calculated to find if chi-square is insignificant or not. If its value is 
more then 200 for the model then model is considered to be good fit with observed data 
(Hoelter>200). Values of less than 75 indicate very poor model fit. The Hoelter only makes 
sense to interpret if N > 200 and the chi square is statistically significant. 
 
For the classification models the confusion matrix and the corresponding metrics will be 
utilized. In order to compare the classification performance of the several configurations 
(hyperparameters and mix of considered inputs), well-established machine learning error 
metrics were calculated. The following metrics were utilized, based on the confusion matrix, 
which provides True Positive (TP), True Negative (TN), False Positive (FP) and False Negative 
(FN) metrics. The classification algorithms are evaluated using the accuracy, precision, 
recall, f1-score, and false alarm rate as defined below.  
 
Accuracy, which represents the proportion of correctly classified observations, is defined as: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
       (20) 

 
Precision, which quantifies the number of positive class predictions that actually belong to the 
positive class, is defined as follows: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (21) 

 

Recall, also known as True Positive Rate, is defined as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (22) 

 
F1score, which combines precision and recall into a single measure, is defined as follows: 
 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)𝑥 (𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+(𝑅𝑒𝑐𝑎𝑙𝑙)
      (23) 

 
False alarm rate is defined as follows: 
 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
       (24) 
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4 Synthesis of risk factors 

4.1 Generalized Linear Models 

 

A high number of regression model tests were conducted for different combinations of 
variables. An attempt was made to use the same independent variables in the model applied. 
For each configuration, various alternatives were tested through the respective log-likelihood 
test comparisons. The optimal combination of variables was the one that had a sufficient 
number of statistically significant independent variables at a 95% confidence level (p-values ≤ 
0.05). 
 
In order to ensure that the results are reliable, accurate, and not biased by chance, it is 
important to account for chance capitalization, which refers to the possibility of obtaining 
significant results simply by chance, especially when testing a large number of variables. This 
can be done by adjusting the significance level or using methods such as Bonferroni or False 
Discovery Rate (FDR) correction to account for multiple comparisons. In this analysis, the 
Bonferroni correction was used that involves dividing the desired level of significance by the 
number of tests being conducted. This approach can be conservative, as it reduces the chance 
of false positives but also decreases the power of the test. 
 
Moreover, the independent variables were also checked for multicollinearity through the 
Variance Inflation Factor (VIF). A standard guideline is that VIF values higher than 10 indicate 
high multicollinearity (Kutner et al., 2004). However, a threshold equal to 5 is also commonly 
used (Sheather, 2009). Subsequently, the final models were selected as the ones with the 
independent variable configuration with the lowest AIC and BIC values for each developed 
model. 
 

4.1.1 Belgium 

 

GLMs were employed to investigate the relationship of key performance indicators (i.e. 

speeding, headway, overtaking and fatigue) for Belgian car drivers. 

 

4.1.1.1 Speeding 

 

The relationship between speeding and risk is widely recognized in the road safety community 
and as such, speeding is a commonly used dependent variable in transportation human factors 
research. The first Generalized Linear Regression model investigated the relationship between 
the speeding and several explanatory variables of task complexity and coping capacity 
(operator state). In particular, the dependent variable of the developed model is the dummy 
variable “speeding”, which is coded with 1 if there is a speeding event and with 0 if not. For 
task complexity, the variables used are time indicator, wipers and high beam, while for coping 
capacity - operator state, the variables used are distance traveled and harsh acceleration. It 
should be mentioned that the explanatory variables of vehicle state, such as fuel type, vehicle 
age or gearbox, or socio-demographic characteristics, such as gender, age or educational 
level are not statistically significant at a 95% confidence level; thus, these variables are not 
included in the models. The model parameter estimates are summarized in Table 10. 
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Table 4: Parameter estimates and multicollinearity diagnostics of the GLM for speeding 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) 3.668 0.043 85.768 < .001 - 

Time indicator 0.908 0.078 11.683 < .001 1.882 

Weather 0.009 4.217×10-4  20.952 < .001 1.228 

High beam - Off -0.018 7.062×10-4  -25.286 < .001 1.470 

Harsh acceleration 2.661 0.181 14.689 < .001 1.013 

Distance -6.128×10-4  7.273×10-5  -8.426 < .001 1.678 

Summary statistics     

AIC 17404.428     

BIC 17413.817     

Degrees of freedom 88377     

 
Based on Table 10, it can be observed that all explanatory variables are statistically significant 
at a 95% confidence level; there is no issue of multicollinearity as the VIF values are much 
lower than 5. With regard to the coefficients, it was revealed that the indicators of task 
complexity, such as time indicator and wipers were positively correlated with speeding. The 
former refers to the time of the day (day coded as 1, dusk coded as 2, night coded as 3) which 
means that higher speeding events occur at night compared to during the day. This may be 
due to fewer cars on the road, lower visibility, and a false sense of security that comes with 
driving in the dark. Interestingly, wipers (wipers off coded as 0, wipers on coded as 1) were 
also found to have a positive correlation with speeding which means that there are more 
speeding events during adverse (e.g. rainy) weather conditions. This may be due to the fact 
that wet and slippery roads can make it more difficult to maintain control of the vehicle. 
Additionally, rain can reduce visibility and make it harder to see other cars or obstacles on the 
road. Taking into account the indicator of high beam (indicating lighting conditions; no high 
beam detected), a negative correlation was identified which means that when high beam was 
off - and, therefore, it was daytime - there were less speeding events. This finding comes in 
agreement with the previous argument with the indicator of time of the day that higher speeding 
events occur at night compared to the rest of the day. 
 
Regarding the indicators of coping capacity - operator state, harsh accelerations had a positive 
relationship with the dependent variable (i.e. speeding), indicating that as the number of harsh 
acceleration increases, speeding also increases. This is a noteworthy finding of the current 
research as it confirms that harsh driving behavior events present a statistically significant 
positive correlation with speeding. Lastly, total distance traveled was negatively correlated with 
speeding which may be due to the fact that the longer a person drives, the more fatigued they 
may become, causing them to drive slower and more cautiously. 

 

4.1.1.2 Headway 

 

One of the major contributors to road crashes is the headway between two vehicles; when it is 
too short to allow the following driver to react appropriately to harsh braking by the leading 
vehicle. The headway between two vehicles can be expressed in terms of time and space. 
Within this framework, the second GLM investigated the relationship between the headway 
and several explanatory variables of task complexity and coping capacity (operator 
state). More specifically, the dependent variable of the developed model is the dummy variable 
“headway”, which is coded with 1 if there is a headway event and with 0 if not. For task 
complexity, the variables used are time indicator, wipers and high beam, while for coping 
capacity - operator state, the variables used are exposure indicators of distance traveled and 
duration. It is worth noting that the explanatory variables of vehicle state, such as fuel type, 
vehicle age or gearbox, or socio-demographic characteristics, such as gender, age or 
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educational level are not statistically significant at a 95% confidence level; thus, these variables 
are not included in the models. The model parameter estimates are summarized in Table 11. 
 

Table 5: Parameter estimates and multicollinearity diagnostics of the GLM for headway 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) 4.057 0.059 68.260 < .001 - 

Duration 0.001 6.144×10-5  17.806 < .001 1.005 

Distance 0.001 8.553×10-5  12.561 < .001 1.458 

Weather -0.002 5.417×10-4  -3.463 < .001 1.650 

High beam - Off 0.014 0.002 6.710 < .001 1.675 

Time indicator -1.059 0.035 -30.005 < .001 1.574 

Summary statistics     

AIC 13569.585     

BIC 13579.111     

Degrees of freedom 101275     

 
Findings derived from Table 11 demonstrated that all the explanatory variables were 
statistically significant at a 95% confidence level. In addition, there was no issue of 
multicollinearity as the VIF values are much lower than 5. With respect to the coefficients, it 
was found that time of the day (indicator of task complexity) was negatively correlated with 
headway, which means that drivers tend to keep safer distances from the vehicle in front of 
them during the night. This may probably be due to the fact that there is no heavy traffic during 
night hours; thus, headway events are avoided. Interestingly, high beam (indicating lighting 
conditions; no high beam detected) was positively correlated with headway which means that 
when high beam was off - and, therefore, it was daytime - there were more highway events. 
This finding comes in agreement with the previous argument with the indicator of time of the 
day that lower headway events occur at night compared to the rest of the day. In addition, 
wipers were also found to have a negative correlation with headway which means that there 
are less headway events during adverse (e.g. rainy) weather conditions. Furthermore, 
exposure indicators of distance and duration appeared to have a positive relationship with the 
dependent variable (i.e. headway). 

 

4.1.1.3 Overtaking 

 
The third GLM investigated the relationship between the overtaking and several explanatory 

variables of task complexity and coping capacity (operator state). For instance, the 

dependent variable of the developed model is the dummy variable “overtaking”, which is coded 

with 1 if there is a overtaking event and with 0 if not. With regards to task complexity, the 

variables used are time indicator and wipers, while for coping capacity - operator state, the 

variables used are distance traveled, duration, harsh acceleration, drowsiness. It should be 

noted that the explanatory variables of vehicle state, such as fuel type, vehicle age or gearbox, 

or socio-demographic characteristics, such as gender, age or educational level are not 

statistically significant at a 95% confidence level; thus, these variables are not included in the 

models. The model parameter estimates are summarized in   
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Table 12.  
 

Table 6: Parameter estimates and multicollinearity diagnostics of the GLM for overtaking 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) -1.357 0.014 -94.380 < .001 - 

Duration 4.017×10-4  6.735×10-6  59.641 < .001 1.010 

Distance 8.217×10-4  2.268×10-5  36.233 < .001 1.509 

Harsh acceleration 0.009 2.470×10-4  36.319 < .001 1.565 

Time indicator -0.002 0.015 -0.121 0.904 1.684 

Weather 0.001 9.121×10-5  14.161 < .001 1.454 

Drowsiness 1.201×10-5  3.850×10-7  31.193 < .001 1.047 

Summary statistics     

AIC 123393.241     

BIC 123402.672     

Degrees of freedom 92129     

 
Taking into account the aforementioned   
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Table 12, a series of interesting findings can be provided. First of all, the majority of the 
explanatory variables (expect for time indicator) were statistically significant at a 95% 
confidence level and there was no issue of multicollinearity as the VIF values were much lower 
than 5. It is worth noting that a similar pattern as the previous GLM for headway was identified. 
In particular, the indicator of time of the day was negatively correlated with overtaking, which 
means that drivers were not willing to perform an illegal overtaking during night, probably due 
to low traffic volumes occurred. On the other hand, wipers (indicating weather condition) was 
positively correlated with overtaking. With regards to the indicators of coping capacity – 
operator state, such as harsh accelerations, distance, duration and drowsiness appeared to 
have a positive relationship with the dependent variable (i.e. overtaking), indicating that as the 
values of the aforementioned independent variables increases, overtaking also increases.  

 

4.1.1.4 Fatigue 

 
The fourth GLM investigated the relationship between the fatigue and several explanatory 

variables of task complexity and coping capacity (operator state). In particular, the 

dependent variable of the developed model is the dummy variable “fatigue”, which is coded 

with 1 if there is a fatigue event and with 0 if not. For task complexity, the variables used are 

time indicator, wipers and high beam, while for coping capacity - operator state, the variables 

used are distance traveled, duration and harsh braking. It should be mentioned that the 

explanatory variables of vehicle state, such as fuel type, vehicle age or gearbox, or socio-

demographic characteristics, such as gender, age or educational level are not statistically 

significant at a 95% confidence level; thus, these variables are not included in the models. The 

model parameter estimates are summarized in   
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Table 13. 
 

Table 7: Parameter estimates and multicollinearity diagnostics of the GLM for fatigue 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) 0.046 0.014 3.350 < .001 - 

Duration 1.942×10-5  5.944×10-6  3.267 0.001 1.026 

Distance -0.003 4.858×10-5  -54.333 < .001 1.170 

Time indicator 0.498 0.018 27.067 < .001 1.316 

Weather 0.003 1.076×10-4  29.736 < .001 1.278 

High beam - Off -0.015 3.067×10-4  -49.304 < .001 1.367 

Harsh braking -1.103 0.029 -38.047 < .001 1.022 

Summary statistics     

AIC 136914.741     

BIC 136924.247     

Degrees of freedom 99256     

 
All the explanatory variables were statistically significant at a 95% confidence level, as 

shown in   
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Table 13. With regards to multicollinearity diagnostics, VIF values for all independent variables 
were much lower than 5. It was observed that the indicators of task complexity such as wipers 
and time indicator were positively correlated with fatigue. For instance, it was revealed that 
during the night, drivers are more prone to becoming fatigued due to the body's natural 
circadian rhythm. It can be more challenging for drivers to stay alert and focused when driving 
at night, especially during the early morning hours when the body is naturally in a state of rest. 
At the same time, high beam (indicating lighting conditions; high beam no detected) was 
negatively correlated with fatigue, which implies that when high beam was off - and, therefore, 
it was daytime - there were less fatigue events. Furthermore, indicators of coping capacity – 
operator state, such as duration had a positive relationship with the dependent variable (i.e. 
fatigue), indicating that the longer the duration is, the higher the probability of driver being 
fatigue becomes. This is a noteworthy finding of the current research as it confirms that 
exposure indicators present a statistically significant positive correlation with fatigue levels. 
Lastly, harsh braking and distance had a negative relationship with fatigue. 
 

4.1.2 UK 

 

GLMs were employed to investigate the relationship of key performance indicators (i.e. 

speeding and headway) for UK car drivers. It should be noted that results for overtaking and 

fatigue were not statistically significant; thus, they were not included. 

 

4.1.2.1 Speeding 

 

The first Generalized Linear Regression model investigated the relationship between the 
speeding and several explanatory variables of task complexity and coping capacity 
(vehicle and operator state). In particular, the dependent variable of the developed model is 
the dummy variable “speeding”, which is coded with 1 if there is a speeding event and with 0 
if not. For task complexity, the variables used are wipers on and high beam, while for coping 
capacity - operator state, the variables used are distance traveled, duration, harsh acceleration 
events, gender, forward collision warning and right lane departure warning. It should be noted 
that for vehicle state, variables such as fuel type, vehicle age and gearbox were not statistically 
significant; and thus, these independent variables were not included in the analysis. The model 
parameter estimates are summarized in Table 8. 
 

Table 8: Parameter estimates and multicollinearity diagnostics of the GLM for speeding 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) -3.824 0.014 -274.620 < .001 - 

Duration 4.672×10-5  7.877×10-7  59.317 < .001 1.058 

Harsh acceleration -0.187 0.012 -15.377 < .001 1.014 

Weather -0.273 0.023 -11.713 < .001 1.008 

High beam 0.128 0.078 1.635 0.102 1.002 

Forward collision warning 10.603 2.479 4.276 < .001 1.001 

Right lane departure warning 0.357 0.014 25.348 < .001 1.026 

Distance 0.002 1.876×10-5  117.628 < .001 1.072 

Gender - Male 0.373 0.012 31.757 < .001 1.056 

Summary statistics     

AIC 263599.548     

BIC 263610.743     

Degrees of freedom 537681     
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Based on Table 8, it can be observed that all explanatory variables are statistically significant 
at a 95% confidence level and there is no issue of multicollinearity as the VIF values are much 
lower than 5. With regard to the coefficients, it was revealed that the indicators of coping 
capacity are all positively correlated with speeding except for harsh acceleration events that 
appear to be fewer when speeding occurs. The opposite happens with FCW and LDW events 
that appear to be higher in case of speeding. An increase in the trip duration and the distance 
travelled is associated with an increase in speeding events, as well. The use of wipers though 
is, as expected, negatively associated with speeding events. Gender was a significant variable 
in this model showing that male drivers (males coded as 0, females as 1), are possibly prone 
to speeding while the use of high beams also was connected with higher speeding events 
possibly due to lighter night hours traffic. 

 

4.1.2.2 Headway 

 
Τhe second GLM investigated the relationship between the headway and several 
explanatory variables of task complexity and coping capacity (vehicle and operator state). 
More specifically, the dependent variable of the developed model is the dummy variable 
“headway”, which is coded with 1 if there is a headway event and with 0 if not. For task 
complexity, the variables used are weather and high beam, while for coping capacity - operator 
state, the variables used are distance traveled, duration, gender, right lane departure warning 
and harsh acceleration. The model parameter estimates are summarized in Table 9. 
 

Table 9: Parameter estimates and multicollinearity diagnostics of the GLM for headway 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) -2.675 0.009 -309.038 < .001 - 

Duration 4.599×10-5  6.055×10-7  75.950 < .001 1.037 

Harsh acceleration 0.156 0.008 20.065 < .001 1.009 

Weather -0.133 0.014 -9.438 < .001 1.009 

High beam -1.575 0.085 -18.505 < .001 1.001 

Right lane departure warning 0.106 0.010 10.737 < .001 1.019 

Distance 0.003 1.263×10-5  215.943 < .001 1.050 

Gender - Male 0.052 0.008 6.733 < .001 1.040 

Summary statistics     

AIC 549886.488     

BIC 549897.683     

Degrees of freedom 537681     

 
Findings derived from Table 9 demonstrated that all the explanatory variables were statistically 
significant at a 95% confidence level. In addition, there was no issue of multicollinearity as the 
VIF values are much lower than 5. For the model for headway variable, the FCW variable is 
not statistically significant, while harsh acceleration events are positively correlated with 
headway showing that higher number of harsh acceleration events are associated with shorter 
headways. High beam use and wipers use are negatively correlated with the headway showing 
that drivers in nighttime and during rainy weather conditions keep safer distances. It should be 
noted that both speeding, and headway variables are binary with 0 translating to no events 
and 1 to the occurrence of speeding or headway events accordingly. 
 

4.1.3 Germany 
 

GLMs were employed to investigate the relationship of key performance indicators (i.e. 

speeding, headway, overtaking and fatigue) for German car drivers. 
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4.1.3.1 Speeding 

 
The first Generalized Linear Regression model investigated the relationship between the 
speeding and several explanatory variables of task complexity and coping capacity 
(vehicle and operator state). In particular, the dependent variable of the developed model is 
the dummy variable “speeding”, which is coded with 1 if there is a speeding event and with 0 
if not. For task complexity, the variables used are time indicator and high beam, for coping 
capacity - vehicle state, the variables used are type of fuel and vehicle age, while for coping 
capacity - operator state, the variables used are distance traveled, duration, harsh 
acceleration, drowsiness, gender and age. The model parameter estimates are summarized 
in Table 10. 
 

Table 10: Parameter estimates and multicollinearity diagnostics of the GLM for speeding 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) 1.105 0.057 19.549 < .001 - 

Duration 0.003 3.414×10-5  73.366 < .001 1.262 

Distance 5.735×10-4  3.723×10-5  15.404 < .001 1.029 

Harsh acceleration 1.282×10-4  1.974×10-6  64.951 < .001 1.222 

Fuel type - Petrol 0.219 0.010 21.446 < .001 1.328 

Vehicle Age 3.162×10-5  3.340×10-6  9.469 < .001 1.277 

Gender - Female -0.275 0.021 -13.025 < .001 1.256 

Age -0.003 0.001 -2.289 0.022 1.076 

Drowsiness 1.009×10-5  2.656×10-6  3.800 < .001 1.113 

Time indicator 8.547×10-5  1.925×10-6  44.405 < .001 1.080 

High beam - On 0.817 0.059 13.963 < .001 1.073 

Summary statistics     

AIC 127971.813     

BIC 127981.881     

Degrees of freedom 174299     

 
Based on Table 10, it can be observed that all explanatory variables are statistically significant 
at a 95% confidence level; there is no issue of multicollinearity as the VIF values are much 
lower than 5. With regard to the coefficients, it was revealed that the indicators of task 
complexity, such as time and high beam (indicating lighting conditions; no high beam detected) 
were positively correlated with speeding. Regarding the indicators of coping capacity – vehicle 
state such as fuel type and vehicle age were positively correlated with speeding. Furthermore, 
it was demonstrated that indicators of coping capacity – operator state, such as harsh 
accelerations, distance, duration and drowsiness had a positive relationship with the 
dependent variable (i.e. speeding), indicating that as the values of the aforementioned 
independent variables increases, speeding also increases. This is a noteworthy finding of the 
current research as it confirms that harsh driving behavior events present a statistically 
significant positive correlation with speeding. 
 
Taking into consideration socio-demographic characteristics, gender and age were negatively 
correlated with speeding. In particular, the negative value of the “Gender” coefficient implied 
that as the value of the variable was equal to 1 (males coded as 0, females as 1), the speeding 
percentage was lower. Results revealed that the vast majority of male drivers displayed less 
cautious behavior during their trips and exceeded more often the speed limits than female 
drivers. It is also remarkable that the negative value of the “Age” coefficient implied that as the 
value of the variable increased (higher value indicates increased age and, therefore, increased 
years of participant’s experience), the speeding percentage was lower. Young drivers 
appeared to have a riskier driving behavior than older drivers and were more prone to exceed 
the speed limits. 
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4.1.3.2 Headway 

 
Τhe second GLM investigated the relationship between the headway and several 
explanatory variables of task complexity and coping capacity (vehicle and operator state). 
More specifically, the dependent variable of the developed model is the dummy variable 
“headway”, which is coded with 1 if there is a headway event and with 0 if not. For task 
complexity, the variables used are time indicator and high beam, for coping capacity - vehicle 
state, the variables used are type of fuel and vehicle age, while for coping capacity - operator 
state, the variables used are distance traveled, duration, harsh acceleration, gender and age. 
The model parameter estimates are summarized in Table 11. 
 

Table 11: Parameter estimates and multicollinearity diagnostics of the GLM for headway 

Variables Estimate 
Standard 

Error 
z-value Pr(|z|) 

VIF 

(Intercept) -5.819 0.133 -43.606 < .001 - 

Duration 8.918×10-5  1.253×10-5  7.115 < .001 1.327 

Distance -5.882×10-4  7.388×10-5  -7.962 < .001 1.193 

Harsh acceleration 5.247×10-5  6.460×10-6  8.123 < .001 1.106 

Fuel type - Petrol 0.178 0.027 6.662 < .001 1.522 

Vehicle Age 5.419×10-5  8.460×10-6  6.406 < .001 1.278 

Gender - Female -0.305 0.049 -6.256 < .001 1.182 

Age -0.014 0.002 -5.758 < .001 1.369 

Time indicator -8.357×10-5  8.590×10-6  -9.728 < .001 2.554 

High beam - Off 7.443 0.077 96.180 < .001 2.734 

Summary statistics     

AIC 62116.795     

BIC 62126.863     

Degrees of freedom 174299     

 
Findings derived from Table 11 demonstrated that all the explanatory variables were 
statistically significant at a 95% confidence level. In addition, there was no issue of 
multicollinearity as the VIF values are much lower than 5. With respect to the coefficients, it 
was found that time of the day (indicator of task complexity) was negatively correlated with 
headway, which means that drivers tend to keep safer distances from the vehicle in front of 
them during the night. This may probably be due to the fact that there is no heavy traffic during 
night hours; thus, headway events are avoided. Interestingly, high beam (indicating lighting 
conditions; no high beam detected) was positively correlated with headway, which means that 
when high beam was off - and, therefore, it was daytime - there were more highway events. 
This finding comes in agreement with the previous argument with the indicator of time of the 
day that lower headway events occur at night compared to the rest of the day. Moreover, harsh 
accelerations and duration appeared to have a positive relationship with the dependent 
variable (i.e. headway), while distance traveled was negatively correlated with headway. 
 

4.1.3.3 Overtaking 

 
The third GLM investigated the relationship between the overtaking and several explanatory 
variables of task complexity and coping capacity (vehicle and operator state). For instance, 
the dependent variable of the developed model is the dummy variable “overtaking”, which is 
coded with 1 if there is a overtaking event and with 0 if not. With regards to task complexity, 
the variables used are time indicator and high beam, for coping capacity - vehicle state, the 
variables used are type of fuel and vehicle age, while for coping capacity - operator state, the 
variables used are distance traveled, duration, harsh acceleration, drowsiness, gender and 
age. The model parameter estimates are summarized in Table 12. 
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Table 12: Parameter estimates and multicollinearity diagnostics of the GLM for overtaking 

Variables Estimate 
Standard 

Error 
z-value Pr(|z|) 

VIF 

(Intercept) -6.177 0.147 -41.985 < .001 - 

Duration 1.082×10-4  1.308×10-5  8.274 < .001 1.384 

Distance -6.167×10-4  7.495×10-5  -8.227 < .001 1.200 

Harsh acceleration 5.157×10-5  6.526×10-6  7.901 < .001 1.122 

Fuel type - Petrol 0.218 0.028 7.869 < .001 1.599 

Vehicle Age 6.051×10-5  8.820×10-6  6.860 < .001 1.320 

Gender - Female -0.437 0.049 -8.865 < .001 1.201 

Age -0.014 0.003 -5.416 < .001 1.394 

Drowsiness 8.631×10-6  4.970×10-6  1.737 0.082 1.293 

Time indicator -1.125×10-4  9.554×10-6  -11.777 < .001 3.102 

High beam - Off 7.737 0.088 87.972 < .001 3.291 

Summary statistics     

AIC 61147.387     

BIC 61157.455     

Degrees of freedom 174299     

 
Taking into account the aforementioned Table 12, a series of interesting findings can be 
provided. First of all, all the explanatory variables were statistically significant at a 95% 
confidence level and there was no issue of multicollinearity as the VIF values were much lower 
than 5. It is worth noting that a similar pattern as the previous GLM for headway was identified. 
In particular, the indicator of time of the day was negatively correlated with overtaking, which 
means that drivers were not willing to perform an illegal overtaking during night, probably due 
to low traffic volumes occurred. On the other hand, high beam (indicating lighting conditions; 
no high beam detected) was positively correlated with overtaking. 
 
With regards to the indicators of coping capacity – vehicle state, such as fuel type and vehicle 
age were positively correlated with overtaking, which means that drivers of older vehicle fleet 
were not willing to perform an illegal overtaking. Similarly, the indicators of coping capacity – 
operator state, such as harsh accelerations, duration and drowsiness appeared to have a 
positive relationship with the dependent variable (i.e. overtaking), indicating that as the values 
of the aforementioned independent variables increases, overtaking also increases. 
Interestingly, distance traveled was negatively correlated with overtaking. Lastly, gender and 
age had a negative relationship with the dependent variable (i.e. overtaking). 
 

4.1.3.4 Fatigue 

 

The fourth GLM investigated the relationship between the fatigue and several explanatory 
variables of task complexity and coping capacity. In particular, the dependent variable of 
the developed model is the dummy variable “fatigue”, which is coded with 1 if there is a fatigue 
event and with 0 if not. For task complexity, the variables used are time indicator and high 
beam, for coping capacity - vehicle state, the variables used are type of fuel and vehicle age, 
while for coping capacity - operator state, the variables used are distance traveled, duration, 
harsh acceleration, gender and age. The model parameter estimates are summarized in Table 
13. 
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Table 13: Parameter estimates and multicollinearity diagnostics of the GLM for fatigue 

Variables Estimate 
Standard 

Error 
z-value Pr(|z|) 

VIF 

(Intercept) -3.608 0.056 -64.056 < .001 - 

Duration 8.322×10-4  6.632×10-6  125.488 < .001 1.172 

Distance 0.001 3.138×10-5  36.108 < .001 1.124 

Harsh acceleration -3.967×10-5  3.720×10-6  -10.665 < .001 1.052 

Fuel type - Diesel -0.528 0.013 -40.328 < .001 1.421 

Vehicle Age 1.496×10-4  4.105×10-6  36.437 < .001 1.794 

Gender - Female -0.930 0.029 -31.665 < .001 1.280 

Age 0.012 0.001 8.306 < .001 1.139 

Time indicator 1.317×10-4  3.089×10-6  42.645 < .001 1.075 

High beam - Off 4.576 0.035 129.661 < .001 1.337 

Summary statistics     

AIC 134848.401     

BIC 134858.470     

Degrees of freedom 174299     

 
All the explanatory variables were statistically significant at a 95% confidence level, as shown 
in Table 13. With regards to multicollinearity diagnostics, VIF values for all independent 
variables were much lower than 5. It was observed that the indicators of task complexity such 
as time and high beam (indicating lighting conditions; no high beam detected) were positively 
correlated with fatigue. In addition, the indicator of coping capacity – vehicle state such as 
vehicle age was positively correlated with fatigue. On the other hand, fuel type had a negative 
impact on the dependent variable “fatigue”. Furthermore, indicators of coping capacity – 
operator state, such as distance traveled and duration had a positive relationship with the 
dependent variable (i.e. fatigue), indicating that the longer the distance and duration is, the 
higher the probability of driver being fatigue becomes. This is a noteworthy finding of the 
current research as it confirms that exposure indicators present a statistically significant 
positive correlation with fatigue levels. Finally, harsh accelerations had a negative relationship 
with fatigue. Lastly, the negative value of the “gender” coefficient implied that female drivers 
were less fatigued as compared to male drivers.  
 

4.1.4 Greece 

 

GLMs were employed to investigate the relationship of key performance indicators (i.e. 

speeding and headway) for Greek car drivers. It should be noted that variables for headway, 

overtaking and fatigue were not available; thus, results for the aforementioned indicators were 

not included. 

 

4.1.4.1 Speeding 

 
The GLM applied investigated the relationship between the speeding and several 
explanatory variables of coping capacity (vehicle and operator state). In particular, the 
dependent variable of the developed model is the dummy variable “speeding”, which is coded 
with 1 if there is a speeding event and with 0 if not. For task complexity, the variables used are 
time indicator, for coping capacity - vehicle state, the variables used are type of fuel, gearbox 
and vehicle age, while for coping capacity - operator state, the variables used are distance 
traveled, duration, harsh acceleration, harsh braking, gender and age. The model parameter 
estimates are summarized in Table 14. 
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Table 14: Parameter estimates and multicollinearity diagnostics of the GLM for speeding 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) 66.123 16.472 4.014 < .001 - 

Duration 6.326×10-4  2.547×10-5  24.839 < .001 1.110 

Distance 0.002 8.698×10-5  21.915 < .001 1.146 

Harsh acceleration -0.433 0.051 -8.508 < .001 1.346 

Harsh braking 0.113 0.067 1.696 0.090 1.447 

Age -0.044 0.002 -27.215 < .001 1.331 

Gender1 0.397 0.059 6.698 < .001 1.732 

Fuel_type - Petrol 0.297 0.046 6.389 < .001 1.368 

VehicleAge 0.032 0.008 3.919 < .001 1.456 

Gearbox - Automatic -0.518 0.056 9.251 < .001 1.353 

Time indicator 0.201 0.021 9.544 < .001 1.057 

     

AIC 19378.588     

BIC 19386.426     

Degrees of freedom 18736     

 
Based on Table 14, it can be observed that all explanatory variables are statistically significant 
at a 95% confidence level; there is no issue of multicollinearity as the VIF values are much 
lower than 5. With regard to the coefficients, it was revealed that the indicators of task 
complexity, such as time indicator was positively correlated with speeding. Time indicator 
refers to the time of the day (day coded as 1, dusk coded as 2, night coded as 3) which means 
that higher speeding events occur at night compared to during the day. This may be due to 
fewer cars on the road, lower visibility, and a false sense of security that comes with driving in 
the dark.  
 
With regard to the coefficients, it was revealed that the indicators of coping capacity – vehicle 
state, such as fuel type and gearbox were negatively correlated with speeding and vehicle age 
was positively correlated with speeding. More specifically, the positive value of the variable 
“Fuel type” coefficient implied that when the fuel type was petrol (diesel coded as 1, hybrid 
electric coded as 2 and petrol coded as 3), the speeding percentage became higher. This 
indicated that vehicles with gasoline-powered engines provided higher speeding events 
compared to other types of vehicles, such as electric cars and hybrid cars. Additionally, the 
positive value of the “Vehicle Age” coefficient revealed that the higher the value of this variable, 
the higher the speeding percentage. This means that the increased proportion of older vehicles 
increases the risk to exceed the speed limits. This finding was also confirmed by Torok (2020) 
who found that by reducing the number of older vehicles on the roads, especially vehicles older 
than 15 years, road safety can be improved. This was probably due to the fact that in the 
current years, with the permanent development and safety improvements of the automotive 
sector, more and more vehicles are equipped with advanced driver assistance systems which 
include the ability of the vehicle to stop, the stability control of the vehicle, the passive safety 
systems (e.g. frontal and side airbags) or the ability of the vehicle to perceive its environment 
(e.g. frontal and backward sensors) in order to comply with the speed limits. 
 
Furthermore, it was demonstrated that indicators of coping capacity – operator state, such as 
harsh braking, distance and duration had a positive relationship with the dependent variable 
(i.e. speeding), indicating that as the values of the aforementioned independent variables 
increases, speeding also increases. This is a noteworthy finding of the current research as it 
confirms that harsh driving behavior events present a statistically significant positive correlation 
with speeding. 
 
Taking into consideration socio-demographic characteristics, gender and age were negatively 
correlated with speeding. In particular, the positive value of the “Gender” coefficient implied 
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that as the value of the variable was equal to 0 (males coded as 0, females as 1), the speeding 
percentage was higher. Results revealed that the vast majority of male drivers displayed less 
cautious behavior during their trips and exceeded more often the speed limits than female 
drivers. It is also remarkable that the negative value of the “Age” coefficient implied that as the 
value of the variable increased (higher value indicates increased age and, therefore, increased 
years of participant’s experience), the speeding percentage was lower. Young drivers 
appeared to have a riskier driving behavior than older drivers and were more prone to exceed 
the speed limits. 

 

4.1.5 Portugal 

 

GLMs were employed to investigate the relationship of key performance indicators (i.e. 

speeding, headway, overtaking and fatigue) for Portuguese bus drivers. 

 

4.1.5.1 Speeding 

 

The first GLM investigated the relationship between the speeding and several explanatory 
variables of task complexity and coping capacity (operator state). In particular, the 
dependent variable of the developed model is the dummy variable “speeding”, which is coded 
with 1 if there is a speeding event and with 0 if not. For task complexity, the variable used is 
time indicator while for coping capacity - operator state, the variables used are distance 
traveled, harsh acceleration, harsh braking and fatigue. It should be mentioned that the 
explanatory variables of vehicle state, such as fuel type, vehicle age or gearbox, or socio-
demographic characteristics, such as gender, age or educational level are not statistically 
significant at a 95% confidence level; thus, these variables are not included in the models. The 
model parameter estimates are summarized in Table 15. 
 

Table 15: Parameter estimates and multicollinearity diagnostics of the GLM for speeding 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) 3.441 0.020 168.858 < .001 - 

Time indicator 0.164 0.008 21.306 < .001 1.002 

Harsh braking 0.294 0.082 3.594 < .001 1.051 

Harsh acceleration 0.490 0.112 4.371 < .001 1.052 

Fatigue -0.095 0.008 -12.527 < .001 1.378 

Distance 0.010 1.038×10-4  99.797 < .001 1.379 

     

AIC 153657.374     

BIC 153668.223     

Degrees of freedom 380656     

 
Based on Table 10, it can be observed that all explanatory variables are statistically significant 
at a 95% confidence level; there is no issue of multicollinearity as the VIF values are much 
lower than 5. With regard to the coefficients, it was revealed that the indicators of task 
complexity, such as time indicator was positively correlated with speeding. Time indicator 
refers to the time of the day (day coded as 1, dusk coded as 2, night coded as 3) which means 
that higher speeding events occur at night compared to during the day. This may be due to 
fewer cars on the road, lower visibility, and a false sense of security that comes with driving in 
the dark. Regarding the indicators of coping capacity - operator state, distance and harsh 
events (i.e. harsh acceleration and harsh braking) had a positive relationship with the 
dependent variable (i.e. speeding), indicating that as the total distance traveled and the number 
of harsh events increases, speeding also increases. Lastly, fatigue was negatively correlated 
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with speeding which implies that the more fatigued the driver is, the slower and more cautiously 
they drive. 

 

4.1.5.2 Headway 

 

The second GLM investigated the relationship between the headway and several 
explanatory variables of task complexity and coping capacity (operator state). More 
specifically, the dependent variable of the developed model is the dummy variable “headway”, 
which is coded with 1 if there is a headway event and with 0 if not. For task complexity, the 
variable used is time indicator, while for coping capacity - operator state, the variables used 
are exposure indicators of distance traveled, harsh acceleration, harsh braking. It is worth 
noting that the explanatory variables of vehicle state, such as fuel type, vehicle age or gearbox, 
or socio-demographic characteristics, such as gender, age or educational level are not 
statistically significant at a 95% confidence level; thus, these variables are not included in the 
models. The model parameter estimates are summarized in Table 16. 
 

Table 16: Parameter estimates and multicollinearity diagnostics of the GLM for headway 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) -5.526 0.055 -100.579 < .001 - 

Time indicator -0.192 0.022 -8.781 < .001 1.001 

Harsh braking 0.897 0.242 3.708 < .001 1.045 

Harsh acceleration 0.147 0.318 0.462 0.644 1.045 

Distance 0.009 2.425×10-4  35.162 < .001 1.000 

     

AIC 27567.794     

BIC 27567.794     

Degrees of freedom 380657     

 
Findings derived from Table 11 demonstrated that the majority of the explanatory variables 
were statistically significant at a 95% confidence level. In addition, there was no issue of 
multicollinearity as the VIF values are much lower than 5. With respect to the coefficients, it 
was found that time of the day (indicator of task complexity) was negatively correlated with 
headway, which means that drivers tend to keep safer distances from the vehicle in front of 
them during the night. This may probably be due to the fact that there is no heavy traffic during 
night hours; thus, headway events are avoided. Furthermore, exposure indicator of distance 
as well as harsh events (i.e. harsh acceleration and harsh braking) appeared to have a positive 
relationship with the dependent variable (i.e. headway). 

 

4.1.5.3 Overtaking 

 
The third GLM investigated the relationship between the overtaking and several explanatory 
variables of task complexity and coping capacity (operator state). For instance, the 
dependent variable of the developed model is the dummy variable “overtaking”, which is coded 
with 1 if there is a overtaking event and with 0 if not. With regards to task complexity, the 
variable used is time indicator, while for coping capacity - operator state, the variables used 
are distance traveled, harsh acceleration, harsh braking and average speed. It should be noted 
that the explanatory variables of vehicle state, such as fuel type, vehicle age or gearbox, or 
socio-demographic characteristics, such as gender, age or educational level are not 
statistically significant at a 95% confidence level; thus, these variables are not included in the 
models.The model parameter estimates are summarized in Table 17.  
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Table 17: Parameter estimates and multicollinearity diagnostics of the GLM for overtaking 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) -7.928 0.171 -46.241 < .001 - 

Time indicator -0.120 0.065 -1.855 0.064 1.004 

Average speed 1.229 0.074 16.522 < .001 1.018 

Distance 0.007 8.365×10-4  7.835 < .001 1.016 

Harsh braking -0.316 0.690 -0.459 0.646 1.044 

Harsh acceleration 0.568 0.996 0.570 0.568 1.045 

     

AIC 4195.226     

BIC 4206.076     

Degrees of freedom 380656     

 
Taking into account the aforementioned Table 17, a series of interesting findings can be 
provided. First of all, the majority of the explanatory variables (expect for harsh events) were 
statistically significant at a 95% confidence level and there was no issue of multicollinearity as 
the VIF values were much lower than 5. It is worth noting that a similar pattern as the previous 
GLM for headway was identified. In particular, the indicator of time of the day was negatively 
correlated with overtaking, which means that drivers were not willing to perform an illegal 
overtaking during night, probably due to low traffic volumes occurred. With regards to the 
indicators of coping capacity – operator state, such as harsh accelerations, distance and 
average speed appeared to have a positive relationship with the dependent variable (i.e. 
overtaking), indicating that as the values of the aforementioned independent variables 
increases, overtaking also increases. For instance, this means that the longer the distance of 
the trip is, the higher the number of the overtaking events occur. In addition, increased number 
of total harsh acceleration can be an indicator of overtaking which requires drivers to accelerate 
quickly to pass another vehicle. On the other hand, harsh braking had a negative correlation 
with overtaking which means that drivers tend to avoid overtaking when they perform harsh 
braking. Harsh braking can be a sign of aggressive driving, and drivers who exhibit this 
behavior may be less likely to take risks or make sudden maneuvers, such as overtaking. 
 

4.1.5.4 Fatigue 

 
The fourth GLM investigated the relationship between the fatigue and several explanatory 
variables of task complexity and coping capacity (operator state). In particular, the 
dependent variable of the developed model is the dummy variable “fatigue”, which is coded 
with 1 if there is a fatigue event and with 0 if not. For task complexity, the variable used is time 
indicator, while for coping capacity - operator state, the variables used are distance traveled, 
harsh acceleration, harsh braking and average speed. It should be mentioned that the 
explanatory variables of vehicle state, such as fuel type, vehicle age or gearbox, or socio-
demographic characteristics, such as gender, age or educational level are not statistically 
significant at a 95% confidence level; thus, these variables are not included in the models.The 
model parameter estimates are summarized in Table 18. 
 

Table 18: Parameter estimates and multicollinearity diagnostics of the GLM for fatigue 

Variables Estimate Standard Error z-value Pr(|z|) VIF 

(Intercept) 0.556 0.010 58.498 < .001 - 

Time indicator 0.101 0.004 27.277 < .001 1.001 

Average speed -0.045 0.014 -3.180 0.001 1.075 

Distance 0.009 7.428×10-5  123.989 < .001 1.074 

Harsh braking 0.224 0.039 5.758 < .001 1.050 

Harsh acceleration 0.334 0.057 5.862 < .001 1.051 
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AIC 455426.929     

BIC 455437.779     

Degrees of freedom 380656     

 
All the explanatory variables were statistically significant at a 95% confidence level, as shown 
in Table 18. With regards to multicollinearity diagnostics, VIF values for all independent 
variables were much lower than 5. It was observed that time indicator was positively correlated 
with fatigue. This may be due to the fact that during the night, drivers are more prone to 
becoming fatigued due to the body's natural circadian rhythm. It can be more challenging for 
drivers to stay alert and focused when driving at night, especially during the early morning 
hours when the body is naturally in a state of rest. Moreover, indicators of coping capacity – 
operator state, such as distance and harsh events had a positive relationship with the 
dependent variable (i.e. fatigue), indicating that the longer the distance is, the higher the 
probability of driver being fatigue becomes. This is a noteworthy finding of the current research 
as it confirms that exposure indicators present a statistically significant positive correlation with 
fatigue levels. Lastly, average speed had a negative relationship with fatigue, which implies 
that the higher the average speed is, the lower the fatigue events are. This finding may be due 
to the fact that driving at a higher average speed makes drivers be alert and can help reduce 
fatigue. 
 

4.2 Structural Equation Models 

 

Following exploratory analysis, the latent variable (or variables) associated to the latent 

variable “task complexity” and “coping capacity” were estimated from the various indicators. 

This way, the effect of different personal factors on ‘operator state’ was defined, and further 

analyzed for different countries (i.e. Belgium, UK, Germany, Greece, Portugal) and different 

travel modes (i.e. cars, trucks, buses). Several SEM were applied in order to identify the impact 

of task complexity and coping capacity on the STZ level, controlling for the above exogenous 

factors. 

 

4.2.1 Belgium (Cars) 

 

4.2.1.1 Speeding 

 

Four separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity, coping capacity and risk (expressed as the three stages of 

the STZ) of speeding. Each model corresponds with one of the phases of the i-DREAMS 

experiment namely:  

• Phase 1: monitoring - 39 drivers, 1,173 trips (23,725 minutes) 

• Phase 2: real-time interventions - 43 Belgian car drivers, 1,549 trips (31,414 minutes) 

• Phase 3: real-time & post-trip interventions - 51 Belgian car drivers, 1,973 trips (40,121 

minutes) 

• Phase 4: real-time, post-trip interventions & gamification - 49 Belgian car drivers, 2,468 

trips (52,077 minutes) 

 

The results for phase 1 are shown in Figure 6 below. It is shown that several operator state 

indicators load on the latent variable coping capacity, as follows: 
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• Driver’s age, with a negative correlation indicating that older drivers have lower coping 

capacity. 

• Better general driving skills are associated with higher coping capacity. 

• Higher exposure on rural roads per week is associated with lower coping capacity, 

possibly because those drivers have lower exposure in complex (urban) environments 

and cannot sustain sufficient skills to cope with them. 

• A sportive and ambitious driving style is associated with higher coping capacity, 

possibly indicating a younger age and a higher alertness of these drivers. It is worth 

mentioning that a sporty and ambitious driver is someone who enjoys driving and wants 

to push themselves and their vehicle to the limits. They may enjoy taking their car on 

winding roads, racing, or participating in other high-performance driving activities. They 

may also be interested in upgrading their vehicle with performance modifications to 

enhance its capabilities. Overall, a sporty and ambitious driver is someone who is 

passionate about driving and wants to get the most out of their car. 

• Driver’s confidence to their own driving skills is associated with higher coping capacity. 

• Drivers reporting of always driving higher than the speed limit is associated with higher 

coping capacity.  

These results are in line with the dedicated exploratory analysis of Deliverable 6.2. 

 

At the same time, in line with Deliverable 6.1 on Task Complexity investigation, there are two 

indicators loading on the latent variable:  

• ‘wipers on’ (indicating rainy weather conditions)  

• ‘high-beam on’ (indicating night-time or poor visibility conditions) 

 

The latent variable Risk is measured by means of the STZ levels for speeding (level 1 ‘normal 

driving’ used as the reference case), with positive correlations of Risk with the STZ indicators.  

 

The structural model between the latent variables shows some interesting findings: first, task 

complexity and coping capacity are inter-related with a positive correlation – albeit the 

magnitude of this correlation is very small. This positive correlation indicates that higher task 

complexity is associated with higher coping capacity implying that drivers’ coping capacity 

increases as the complexity of driving task increases. This finding may be a sign of risk 

compensating behavior of drivers when the complexity of driving task is high, and is in line with 

the theoretical model of i-DREAMS, validating the assumption that risk is an outcome of the 

interaction between the two variables in addition to their separate effects. The more complex 

the situation becomes as a result of speeding, the better the driver's coping capacity will 

become, for example because of increased alertness.  

 

Task Complexity increase is associated with lower risk, which is not intuitive. Although the 

initial assumption was that task complexity would increase risk, once its effect is moderated by 

that of coping capacity the opposite is the case. It is noted however that the task complexity 

latent variable is measured by environmental indicators (i.e. rainy weather, night-time) which 

are known to induce compensatory behaviors by drivers, in particular expressed as reduced 

speed during these more demanding conditions. Variables on road type, traffic conditions etc. 

would need to be included for a complete picture of the role of task complexity on the risk 

expressed in terms of speeding STZ. 
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At the same time, coping capacity is associated with higher risk, again an interesting finding. 

It could be assumed that higher coping capacity might reduce risk; however, the coping 

capacity indicators in our sample include static demographic and self-reported behavior 

indicators and therefore are more representative of driver personality and general driving 

styles, and less so of the real-time operator state during the experiment. For instance, 

indicators related to the level of sleepiness, fatigue or distraction were either not available or 

not significant in this model. Therefore, it can be concluded that younger, more confident and 

less compliant drivers exhibited lower risk in this experiment, in terms of exceeding the STZ 

speeding boundaries – a finding which can be attributed to higher alertness and exposure in 

complex environments, without however taking into account the variations of their state during 

these trips. 

 
Figure 6: Results of SEM on Risk (speeding STZ) – Belgian car drivers – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal 0.661; TLI is 0.560 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.121. Table 19 summarizes the model fit of SEM 

applied for speeding. 

 

Table 19: Model Fit Summary for speeding – Belgian car drivers – experiment Phase 1 

Model Fit measures Value 

AIC 273200.6 

BIC 273402.4 

CFI 0.661 

TLI 0.560 

RMSEA 0.121 

 

Residual variances details are presented in Table 20 that follows. 

 

Table 20: Residual variances for speeding – Belgian car drivers – experiment Phase 1 

Variable Estimate Std.Err z-value P(>|z|) 

.Wiper 0.042 0.000 96.426 0.000 

.Night 0.185 0.007 25.853 0.000 
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Variable Estimate Std.Err z-value P(>|z|) 

.Age 0.024 0.010 2.415 0.016 

.COMPT1 0.971 0.009 108.795 0.000 

.Rural 0.268 0.008 33.666 0.000 

.Style 0.218 0.002 108.336 0.000 

.CONF 0.215 0.002 108.775 0.000 

.VIO2 0.999 0.009 108.912 0.000 

.iSP2 0.010 0.000 31.670 0.000 

.iSP3 0.047 0.000 97.501 0.000 

TC -0.001 0.000 -5.668 0.000 

CC 0.976 0.014 71.608 0.000 

.RISK 0.003 0.000 9.341 0.000 

 

Figure 7, Figure 8 andFigure 9 show the results of the 2nd, 3rd and 4th phase of the experiment. 

It is observed that the relationships among risk, task complexity and coping capacity are fairly 

consistent between the different phases, it is interesting to note however: 

• The impact of exposure on rural roads disappears during the interventions phases, 

possibly indicating that the implementation of the i-DREAMS interventions helped 

drivers to counterbalance this effect. 

• On phase 2, the indicators of numbers of Forward Collision Warnings (FCW) and 

Pedestrian Collision Warnings (PCW) are loading on task complexity, introducing the 

impact of real-time events recorded expressing demanding and risky situations as 

indicators of task complexity. It is noted that the overall impact of task complexity on 

Risk is only slightly reduced. Given that these FCW and PCW events may or may not 

be directly associated with exceeding the speed limit, as is the representation of risk in 

this case. Furthermore, these indicators were not found to be significant in the 3rd and 

4th phase of the experiment, but the number of such events was also lower during these 

phases of the experiment.  

• On phase 4, the structural relationship between task complexity and coping capacity 

changes to a negative coefficient, and the relationship between task complexity and 

risk changes to a positive coefficient. This finding may not be directly interpreted, but it 

is possible that the presence of all i-DREAMS interventions on phase 4 lead to a 

different interaction between the three latent variables, which would need additional 

indicators available in order to draw conclusions. 

• The loadings of the observed proportions of the STZ of speeding are consistent 

between the different phases, it is noted though that the loading of the 3rd STZ level 

becomes notably higher in the 4th phase of the experiment. This may indicate that the 

increased risk in these conditions is determined by those drivers who do not respond 

to the interventions and reach the 3rd level – their proportion however is smaller in the 

3rd and 4th phase of the experiment. 
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Figure 7: Results of SEM on Risk (speeding STZ)– Belgian car drivers – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal 0.473; TLI is 0.335 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.082. Table 21 summarizes the model fit of SEM 

applied for speeding. 

 

Table 21: Model Fit Summary for speeding – Belgian car drivers – experiment Phase 2 

Model Fit measures Value 

AIC 57294.26 

BIC 57518.77 

CFI 0.473 

TLI 0.335 

RMSEA 0.082 

 

Residual variances details are presented in Table 22 that follows. 
 

Table 22: Residual variances for speeding – Belgian car drivers – experiment Phase 2 

Variable Estimate Std.Err z-value P(>|z|) 

.Wiper 0.050 0.002 25.373 0.000 

.HBeam 0.006 0.000 120.714 0.000 

.FCW 0.013 0.000 122.607 0.000 

.PCW 0.003 0.000 121.884 0.000 

.Age 0.839 0.008 107.963 0.000 

.COMPT1 0.950 0.008 119.233 0.000 

.Style 0.110 0.003 40.771 0.000 

.CONF 0.157 0.001 107.216 0.000 

.VIO2 0.840 0.008 108.022 0.000 

.iSP2 0.006 0.000 17.758 0.000 

.iSP3 0.049 0.000 100.601 0.000 

TC 0.007 0.002 3.741 0.000 

CC 0.161 0.006 27.813 0.000 

.RISK 0.002 0.000 5.543 0.000 
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The results for phase 3 are shown in Figure 8 below. 

 

 
Figure 8: Results of SEM on Risk (speeding STZ)– Belgian car drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.484; TLI is 0.291 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.103. Table 23 summarizes the model fit of SEM 

applied for speeding. 

 

Table 23: Model Fit Summary for speeding – Belgian car drivers – experiment Phase 3 

Model Fit measures Value 

AIC 338636.6 

BIC 338808.6 

CFI 0.484 

TLI 0.291 

RMSEA 0.103 

 

Residual variances details are presented in Table 24 that follows. 

 

Table 24: Residual variances for speeding – Belgian car drivers – experiment Phase 3 

Variable Estimate Std.Err z-value P(>|z|) 

.Age 0.877 0.007 128.226 0.000 

.COMPT1 0.934 0.007 135.295 0.000 

.Style 0.116 0.003 46.070 0.000 

.CONF 0.148 0.001 115.393 0.000 

.VIO2 0.922 0.007 133.988 0.000 

.iSP2 0.005 0.000 58.011 0.000 

.iSP3 0.053 0.001 93.492 0.000 

TC 0.056 0.000 141.635 0.000 

CC 0.123 0.004 27.475 0.000 

.RISK 0.001 0.000 9.576 0.000 
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The results for phase 4 are shown in Figure 9 below. 

 

 
Figure 9: Results of SEM on Risk (speeding STZ)– Belgian car drivers – experiment Phase 4 

 

The Comparative Fit Index (CFI) of the model is equal 0.817; TLI is 0.709 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.037. Table 25 summarizes the model fit of SEM 

applied for speeding. 

 

Table 25: Model Fit Summary for speeding – Belgian car drivers – experiment Phase 4 

Model Fit measures Value 

AIC 271111.2 

BIC 271253.0 

CFI 0.817 

TLI 0.709 

RMSEA 0.037 

 

Residual variances details are presented in Table 26 that follows. 

 

Table 26: Residual variances for speeding – Belgian car drivers – experiment Phase 4 

Variable Estimate Std.Err z-value P(>|z|) 

.Age 0.880 0.009 102.258 0.000 

.COMPT1 0.950 0.007 145.629 0.000 

.Style 0.139 0.006 22.614 0.000 

.iSP2 0.006 0.000 110.846 0.000 

.iSP3 0.036 0.001 28.890 0.000 

TC 0.109 0.001 161.364 0.000 

CC 0.120 0.007 16.474 0.000 

.RISK 0.000 0.000 9.695 0.000 

 

4.2.1.2 Headway 

 

Four separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity, coping capacity and risk (expressed as the three phases of 
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the STZ) based on headway measurement. Each model corresponds with one of the phases 

of the i-DREAMS experiment namely:  

• Phase 1: monitoring - 38 Belgian car drivers, 633 trips (16,393 minutes) 

• Phase 2: real-time interventions - 42 Belgian car drivers, 813 trips (21,412 minutes) 

• Phase 3: real-time & post-trip interventions - 50 Belgian car drivers, 990 trips (27,691 

minutes) 

• Phase 4: real-time, post-trip interventions & gamification - 49 Belgian car drivers, 1,222 

trips (35,284 minutes) 

 

The results for phase 1 are shown in Figure 10 below. It is shown that the latent variable coping 

capacity is measured by means of the operator state indicators that were significant in the 

speeding-based SEM Risk model (see previous section), with the addition of the IBI (Inter-

Beat-Interval), which was also observed in the dedicated exploratory investigation of coping 

capacity alone (see Deliverable 6.2). Task complexity is measured by the same indicators as 

in the previous model, and in line with the exploratory findings of Deliverable 6.1 (Papazikou 

et al., 2023). 

 

Risk is measured by means of the STZ levels for headway (level 1 ‘normal driving’ used as the 

reference case), with positive correlation of Risk with the 2nd and 3rd level of the STZ headway 

indicators – which are here grouped together due to lack of sufficient data for the 3rd level.  

 

The structural model between task complexity, coping capacity and risk shows great 

consistency with that of the previous section. 

 

 

 

 

Figure 10: Results of SEM on Risk (headway STZ) – Belgian car drivers – experiment Phase 1 
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The Comparative Fit Index (CFI) of the model is equal 0.526; TLI is 0.395 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.142. Table 27 summarizes the model fit of SEM 

applied for headway. 

 

Table 27: Model Fit Summary for headway – Belgian car drivers – experiment Phase 1 

Model Fit measures Value 

AIC 248443 

BIC 248626 

CFI 0.526 

TLI 0.395 

RMSEA 0.142 

 

Residual variances details are presented in Table 28 that follows. 

 

Table 28: Residual variances for headway – Belgian car drivers – experiment Phase 1 

Variable Estimate Std.Err z-value P(>|z|) 

.Wiper 0.047 0.001 55.717 0.000 

.Night 0.147 0.004 34.992 0.000 

.Age 0.089 0.013 6.979 0.000 

.COMPT1 0.959 0.011 86.881 0.000 

.Rural 0.237 0.009 25.156 0.000 

.Style 0.231 0.003 86.344 0.000 

.CONF 0.224 0.003 86.851 0.000 

.VIO2 0.957 0.011 87.064 0.000 

.IBI 0.999 0.011 87.068 0.000 

TC 0.003 0.001 4.240 0.000 

CC 0.795 0.016 49.074 0.000 

.RISK 0.061 0.001 84.318 0.000 

 

Figure 11, 12 and 13 show the respective results of the 2nd, 3rd and 4th phase of the experiment. 

Overall, there are fluctuations between both the structural and the measurement equations of 

the model in the different phases. For instance, IBI is a significant indicator of coping capacity 

only in phases 1 & 3, and the signs of the regression coefficients between the latent variables 

change in different phases. These findings may be due to the differences in the samples, as 

well as the higher sensitivity of headway measurements as STZ determinants. 

 

It may be interesting to emphasise on the model of phase 2. In that phase, the introduction of 

the real-time interventions reveals a significant indicator loading on task complexity, which is 

the number of PCW recorded per minute. The negative sign of this loading indicates that higher 

number of PCW per minute is associated with lower task complexity, which may imply that 

warning the drivers about the presence of pedestrians removes a burden from the drivers 

shoulders and decreases the complexity of driving task for them. At the same time, the 

correlation of task complexity with risk becomes non-significant, and the correlation between 

task complexity and coping capacity becomes negative. This suggests that higher task 

complexity, measured by night-time driving and PCWs, results in lower coping capacity, which 

in turn results in higher risk of exceeding the headway thresholds of safe driving. Although this 

sounds intuitive, especially at the beginning of the implementation of interventions, the different 
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patterns shown by the model in different phases does not allow to conclude on the nature of 

the relationships. 

 

 

Figure 11: Results of SEM on Risk (headway STZ) – Belgian car drivers – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal 0.361; TLI is 0.158 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.127. Table 29 summarizes the model fit of SEM 

applied for headway. 

 

Table 29: Model Fit Summary for headway – Belgian car drivers – experiment Phase 2 

Model Fit measures Value 

AIC 241196.0 

BIC 241371.4 

CFI 0.361 

TLI 0.158 

RMSEA 0.127 

 

Residual variances details are presented in Table 30 that follows. 
 

Table 30: Residual variances for headway – Belgian car drivers – experiment Phase 2 

Variable Estimate Std.Err z-value P(>|z|) 

.Night 0.090 0.003 26.356 0.000 

.PCW 0.003 0.000 101.950 0.000 

.Age 0.927 0.009 100.706 0.000 

.COMPT1 0.989 0.010 103.423 0.000 

.Rural 0.991 0.010 103.441 0.000 

.Style -0.002 0.007 -0.341 0.733 

.CONF 0.178 0.002 100.200 0.000 

.VIO2 0.883 0.009 96.207 0.000 

TC 0.005 0.003 1.372 0.170 

CC 0.073 0.004 17.462 0.000 

.RISK 0.056 0.001 66.161 0.000 
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The results for phase 3 are shown in Figure 12 below. 

 

 
Figure 12: Results of SEM on Risk (headway STZ) – Belgian car drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.446; TLI is 0.261 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.109. Table 31 summarizes the model fit of SEM 

applied for headway. 

 

Table 31: Model Fit Summary for headway – Belgian car drivers – experiment Phase 3 

Model Fit measures Value 

AIC 242126.3 

BIC 242275.4 

CFI 0.446 

TLI 0.261 

RMSEA 0.109 

 

Residual variances details are presented in Table 32 that follows. 

 

Table 32: Residual variances for headway – Belgian car drivers – experiment Phase 3 

Variable Estimate Std.Err z-value P(>|z|) 

.Age 0.800 0.009 89.701 0.000 

.COMPT1 1.207 0.012 97.045 0.000 

.Rural 0.333 0.003 97.411 0.000 

.Style 0.246 0.003 94.588 0.000 

.CONF -0.578 0.128 -4.516 0.000 

.IBI 0.985 0.010 95.180 0.000 

TC 0.077 0.001 97.316 0.000 

CC 0.022 0.004 5.537 0.000 

.RISK 0.051 0.001 97.380 0.000 

 

The results for phase 4 are shown in Figure 13 below. 
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Figure 13: Results of SEM on Risk (headway STZ) – Belgian car drivers – experiment Phase 4 

 

The Comparative Fit Index (CFI) of the model is equal 0.454; TLI is 0.236 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.125. Table 33 summarizes the model fit of SEM 

applied for headway. 

 

Table 33: Model Fit Summary for headway – Belgian car drivers – experiment Phase 4 

Model Fit measures Value 

AIC 396860.4 

BIC 397004.4 

CFI 0.454 

TLI 0.236 

RMSEA 0.125 

 

Residual variances details are presented in Table 34 that follows. 

 

Table 34: Residual variances for headway – Belgian car drivers – experiment Phase 4 

Variable Estimate Std.Err z-value P(>|z|) 

.Age 0.959 0.007 130.202 0.000 

.COMPT1 0.834 0.007 114.274 0.000 

.Rural 0.995 0.008 132.565 0.000 

.Style 0.195 0.002 102.767 0.000 

.CONF 0.069 0.003 22.845 0.000 

TC 0.116 0.001 132.823 0.000 

CC 0.041 0.003 15.860 0.000 

.RISK 0.042 0.000 132.791 0.000 
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4.2.2 Belgium (Trucks) 

 

4.2.2.1 Speeding 

 

Four separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity, coping capacity and risk (expressed as the three stages of 

the STZ) of speeding. Each model corresponds with one of the phases of the i-DREAMS 

experiment namely:  

• Phase 1: monitoring - 23 Belgian truck drivers, 1,148 trips (117,160 minutes) 

• Phase 2: real-time interventions - 22 Belgian truck drivers, 1,691 trips (146,315 

minutes) 

• Phase 3: real-time & post-trip interventions - 22 Belgian truck drivers, 1,440 trips 

(139,245 minutes) 

• Phase 4: real-time, post-trip interventions & gamification - 23 Belgian truck drivers, 

1,767 trips (187,636 minutes) 

 

The results for phase 1 are shown in Figure 14 below. It is shown that one trip related and 

several operator state indicators load on the latent variable coping capacity, as follows: 

• Trip duration, with a negative correlation indicating that higher trip duration is 

associated with lower coping capacity. 

• Driver’s age, with a negative correlation indicating that older drivers have lower coping 

capacity. 

• A sportive and ambitious driving style is associated with higher coping capacity, 

possibly indicating a younger age and a higher alertness of these drivers. 

• Driver’s confidence to their own driving skills is associated with higher coping capacity.  

 

These results are in line with the dedicated exploratory analysis of Deliverable 6.2 (Michelaraki 

et al., 2023). 

 

At the same time, in line with Deliverable 6.1 (Papazikou et al., 2023) on task complexity 

investigation, there are two indicators loading on the latent variable:  

• ‘wipers on’ (indicating rainy weather conditions)  

• ‘speed (indicating situational needs) 

 

The latent variable risk is measured by means of the STZ levels for speeding (level 1 ‘normal 

driving’ used as the reference case) with negative correlations of risk with the STZ indicators. 

The negative sign shows that the latent variable risk could in fact be representing an inverse 

of risk, more like a normal driving. 

 

The structural model between the latent variables shows some interesting findings: first, task 

complexity and coping capacity are inter-related with a positive correlation –which reduces in 

magnitude as the driver’s progress from phase 1 though phase 4. This positive correlation 

indicates that higher task complexity is associated with higher coping capacity implying that 

drivers coping capacity increases as the complexity of driving task increases. This finding may 

be a sign of risk compensating behavior of drivers when the complexity of driving task is high, 
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and is in line with the theoretical model of i-DREAMS, validating the assumption that Risk (or 

its’ inverse, the normal driving) is an outcome of the interaction between the two variables in 

addition to their separate effects. 

 

Task complexity is negatively associated with (inverse) risk (normal driving), which is intuitive. 

The higher the complexity, the lower the chances to drive normally. For instances, in rainy 

conditions, it would make it hard for the drivers to maintain normal driving behavior and given 

the situation, they may feel compelled to speed and thus enters into dangerous driving phase 

(STZ 2). 

 

At the same time, coping capacity is negatively associated with (inverse) risk (or what we 

established as normal driving), again an interesting finding (similar to the case of headway and 

acceleration). It could be assumed that higher coping capacity might encourage normal driving 

and reduce risk but it is not the case here. Furthermore, the coping capacity indicators in our 

sample include static demographic and self-reported behavior indicators and therefore are 

more representative of driver personality and general driving styles, and less so of the real-

time operator state during the experiment. For instance, indicators related to the level of 

sleepiness, fatigue or distraction were either not available or not significant in this model. 

Therefore, it can be concluded that younger, and more confident drivers exhibited (lower 

normal driving) higher Risk in this experiment, in terms of exceeding the STZ speeding 

boundaries, without however taking into account the variations of their state during these trips. 

 
Figure 14: Results of SEM on Risk (speeding STZ) – Belgian truck drivers – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal 0.899; TLI is 0.834 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.080. Table 35 summarizes the model fit of SEM 

applied for speeding. 

 

Table 35: Model Fit Summary for speeding – Belgian truck drivers – experiment Phase 1 

Model Fit measures Value 

AIC 12877.885 

BCC 12877.889 

CFI 0.899 
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TLI 0.834 

RMSEA 0.080 

Hoelter's critical N (α = .05) 253 

Hoelter's critical N (α = .01) 306 

 

Residual variances details are presented in Table 36 that follows. 

 

Table 36: Residual variances for speeding – Belgian truck drivers – experiment Phase 1 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_Capacity 0.207 0.002 89.232 *** 

Task_Complexity 44.89 1.643 27.324 *** 

Risk_Speeding 0.108 0.003 34.537 *** 

Confidence 0.259 0.002 129.926 *** 

Style 0.154 0.001 227.281 *** 

Age 66.377 0.474 140.046 *** 

Trip_duration 4203.012 17.611 238.661 *** 

Speed 75.671 1.627 46.515 *** 

ME_Car_wipers_median 0.010 0.000 239.874 *** 

iDreams_Speeding_Map_level_2_mean 0.010 0.000 209.914 *** 

Speeding -0.067 0.002 -27.418 *** 

 

Figure 15, 16 and 17 show the results of the 2nd, 3rd and 4th phase of the experiment. It is 

observed that the relationships among risk, task complexity and coping capacity are fairly 

consistent between the different phases, it is interesting to note however: 

• The structural relationship between task complexity and coping capacity remains 

positive across all phases, although it reduces in magnitude in phase 4. Similarly, the 

relationship between task complexity and risk remains the same though the magnitude 

increases in the negative direction. Moreover, the relationship between coping capacity 

and risk is also consistent across phases. 

• The loadings of the observed proportions of the STZ of speeding are consistent 

between the different phases, it is noted though that the loading of the 2nd STZ level 

becomes notably higher in the 1st phase of the experiment compared to other phases. 

This could be attributed to i-DREAMS interventions as they were active in phase 2, 3 

and 4. 

• The loading of trip duration was negative in 1st phase but it changes to positive in the 

following phases of the experiment. This could be that with the presence of 

interventions, the coping capacity of the drivers increase and they can maintain normal 

driving for longer trips. 



D6.3. An integrated model of driver-vehicle-environment interaction and risk 

©i-DREAMS, 2019  Page 75 of 174 

 
Figure 15: Results of SEM on Risk (speeding STZ) – Belgian truck drivers – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal 0.895; TLI is 0.827 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.074. Table 37 summarizes the model fit of SEM 

applied for speeding. 

 

Table 37: Model Fit Summary for speeding – Belgian truck drivers – experiment Phase 2 

Model Fit measures Value 

AIC 13650.075 

BCC 13650.079 

CFI 0.895 

TLI 0.827 

RMSEA 0.074 

Hoelter's critical N (α = .05) 297 

Hoelter's critical N (α = .01) 360 

 

Residual variances details are presented in Table 38 that follows. 

 

Table 38: Residual variances for speeding – Belgian truck drivers – experiment Phase 2 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_Capacity 0.357 0.005 70.373 *** 

Task_Complexity 70.586 1.930 36.571 *** 

Risk_Speeding 0.093 0.004 26.119 *** 

Style 0.183 0.001 269.346 *** 

Age 98.414 0.377 261.063 *** 

Trip_duration 6945.027 25.953 267.604 *** 

Speed_mps 69.783 1.895 36.834 *** 

ME_Car_wipers_median 0.009 0.000 268.989 *** 

iDreams_Speeding_Map_level_2_mean 0.005 0.000 264.728 *** 

Confidence 0.132 0.005 27.523 *** 

Speeding_1 -0.059 0.003 -18.844 *** 
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The results for phase 3 are shown in Figure 16 below. 

 

 
Figure 16: Results of SEM on Risk (speeding STZ) – Belgian truck drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.865; TLI is 0.747 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.062. Table 39 summarizes the model fit of SEM 

applied for speeding. 

 

Table 39: Model Fit Summary for speeding – Belgian truck drivers – experiment Phase 3 

Model Fit measures Value 

AIC 12903.621 

BCC 12903.625 

CFI 0.865 

TLI 0.747 

RMSEA 0.062 

Hoelter's critical N (α = .05) 395 

Hoelter's critical N (α = .01) 466 

 

Residual variances details are presented in Table 40 that follows. 

 

Table 40: Residual variances for speeding – Belgian truck drivers – experiment Phase 3 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_Capacity 0.300 0.005 55.424 *** 

Task_Complexity 39.942 0.832 48.011 *** 

Risk_Speeding 0.107 0.005 22.822 *** 

Confidence 0.200 0.005 38.633 *** 

Style 0.183 0.001 259.391 *** 

Age 87.083 0.356 244.848 *** 

Trip_duration 10527.72 39.975 263.357 *** 

Speed 87.360 0.824 106.051 *** 

ME_Car_wipers_median 0.007 0.000 255.733 *** 

ME_Car_high_beam_median 0.000 0.000 263.68 *** 

iDreams_Speeding_Map_level_2_mean 0.004 0.000 250.436 *** 

Speeding_1 -0.084 0.005 -18.531 *** 
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The results for phase 4 are shown in Figure 17 below. 

 

 

Figure 17: Results of SEM on Risk (speeding STZ) – Belgian truck drivers – experiment Phase 4 

 

The Comparative Fit Index (CFI) of the model is equal 0.938; TLI is 0.898 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.075. Table 41 summarizes the model fit of SEM 

applied for speeding. 

 

Table 41: Model Fit Summary for speeding – Belgian truck drivers – experiment Phase 4 

Model Fit measures Value 

AIC 17806.525 

BCC 17806.528 

CFI 0.938 

TLI 0.898 

RMSEA 0.075 

Hoelter's critical N (α = .05) 292 

Hoelter's critical N (α = .01) 354 

 

Residual variances details are presented in Table 42 that follows. 

 

Table 42: Residual variances for speeding – Belgian truck drivers – experiment Phase 4 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_Capacity 1.453 0.022 65.738 *** 

Task_Complexity 74.018 2.101 35.224 *** 

Risk_Speeding 0.081 0.004 23.062 *** 

Confidence -0.901 0.022 -40.197 *** 

Skills 0.337 0.002 218.606 *** 

Age 121.971 0.396 308.141 *** 

Trip_duration 10166.125 33.187 306.33 *** 

Speed 72.445 2.073 34.94 *** 

ME_Car_wipers_median 0.005 0.000 305.372 *** 

iDreams_Speeding_Map_level_2_mean -0.046 0.002 -19.116 *** 

Speeding_1 0.005 0.000 301.293 *** 
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4.2.2.2 Harsh Acceleration 

 

Four separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity, coping capacity and risk (expressed as the three stages of 

the STZ) of harsh acceleration. Each model corresponds with one of the phases of the i-

DREAMS experiment namely:  

• Phase 1: monitoring - 23 Belgian truck drivers, 1,334 trips (28,296 minutes) 

• Phase 2: real-time interventions - 22 Belgian truck drivers, 1,543 trips (34,297 minutes) 

• Phase 3: real-time & post-trip interventions - 22 Belgian truck drivers, 1,346 trips 

(31,827 minutes) 

• Phase 4: real-time, post-trip interventions & gamification - 23 Belgian truck drivers, 

1,602 trips (42,289 minutes) 

 

The results for phase 1 are shown in Figure 18 below. It is shown that one trip related variable 

and several operator state indicators load on the latent variable coping capacity, as follows: 

• Trip duration, with a negative correlation indicating that higher trip duration is 

associated with lower coping capacity. 

• Driver’s age, with a negative correlation indicating that older drivers have lower coping 

capacity. 

• A sportive and ambitious driving style is associated with higher coping capacity, 

possibly indicating a younger age and a higher alertness of these drivers. 

• Driver’s confidence to their own driving skills is associated with higher coping capacity.  

 

These results are mostly in line with the dedicated exploratory analysis of Deliverable 6.2 

(Michelaraki et al., 2023). There is however a small exception. The ‘trip duration’ enters into 

the list of predictors of latent variable coping capacity while ‘driving skills’ remains insignificant. 

 

At the same time, in line with Deliverable 6.1 on Task Complexity investigation, there are two 

indicators loading on the latent variable:  

• ‘wipers on’ (indicating rainy weather conditions)  

• ‘speed’ (indicating the situational constraints) 

 

The latent variable Risk is measured by means of the STZ levels for acceleration (level 1 

‘normal driving’ used as the reference case), with negative correlations of Risk with the STZ 

indicators. The negative sign shows that the latent variable risk could in fact be representing 

an inverse of risk, more like a normal driving. 

 

The structural model between the latent variables shows some interesting findings: first, task 

complexity and coping capacity are inter-related with a positive correlation. This positive 

correlation indicates that higher task complexity is associated with higher coping capacity 

implying that drivers coping capacity increases as the complexity of driving task increases. 

This finding may be a sign of risk compensating behavior of drivers when the complexity of 

driving task is high, and is in line with the theoretical model of iDreams, validating the 
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assumption that Risk (or conversely the normal driving as established above) is an outcome 

of the interaction between the two variables in addition to their separate effects. 

 

Task complexity increase is associated with higher (Risk) normal driving (lower risk), which is 

not intuitive. Although the initial assumption was that task complexity would increase risk or 

decrease normal driving, once its effect is moderated by that of coping capacity the opposite 

is the case. It is noted however that the task complexity latent variable is measured by 

environmental indicator (i.e. rainy weather) and situational indicator (i.e. speed) which are 

known to induce compensatory behaviors by drivers, in particular expressed as reduced speed 

during the more demanding conditions. Variables on road type, traffic conditions etc. would 

need to be included for a complete picture of the role of task complexity on the risk (normal 

driving) expressed in terms of acceleration STZ. 

 

At the same time, coping capacity is negatively associated with normal driving or inverse of 

risk, again an interesting finding. It could be assumed that higher coping capacity might reduce 

risk or improve normal driving but this is not the case here. Furthermore, the coping capacity 

indicators in our sample include static demographic and self-reported behavior indicators and 

therefore are more representative of driver personality and general driving styles, and less so 

of the real-time operator state during the experiment. For instance, indicators related to the 

level of sleepiness, fatigue or distraction were either not available or not significant in this 

model. Therefore, it can be concluded that younger, more confident truck drivers exhibited 

(higher risk) lower normal driving in this experiment, in terms of exceeding the STZ acceleration 

boundaries, without however taking into account the variations of their state during these trips. 

 

 
Figure 18: Results of SEM on Risk (Harsh acceleration STZ) – Belgian truck drivers – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal 0.921; TLI is 0.881 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.062. Table 43 summarizes the model fit of SEM 

applied for harsh acceleration. 
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Table 43: Model Fit Summary for harsh acceleration – Belgian truck drivers – experiment Phase 1 

Model Fit measures Value 

AIC 2730.212 

BCC 2730.234 

CFI 0.921 

TLI 0.881 

RMSEA 0.062 

Hoelter's critical N (α = .05) 386 

Hoelter's critical N (α = .01) 456 

 

Residual variances details are presented in Table 44 that follows. 

 

Table 44: Residual variances for harsh acceleration – Belgian truck drivers – experiment Phase 1 

Variable Estimate Std. Error z-value P(>|z|) 

Task_complexity 65.97 15.26 4.324 *** 

Coping_Capacity 0.326 0.007 49.42 *** 

Risk_acceleration 0.638 0.056 11.38 *** 

Speed_mps 29.82 15.24 1.957 0.05 

ME_Car_wipers_median 0.006 0.000 118.9 *** 

Skills 0.339 0.003 113.1 *** 

Age 85.89 0.897 95.72 *** 

Trip_duration 3807 32.24 118.1 *** 

DEM_evt_ha_lvl_L_mean -0.500 0.055 -9.17 *** 

DEM_evt_ha_lvl_M_mean 0.084 0.001 91.55 *** 

DEM_evt_ha_lvl_H_mean 0.017 0.000 119 *** 

Confidence 0.102 0.006 18.06 *** 

 

Figure 19, 20 and 21 show the results of the 2nd, 3rd and 4th phase of the experiment. It is 

observed that the relationships among risk, task complexity and coping capacity are fairly 

consistent between the different phases (except phase 3 where coping capacity and risk have 

positive relationship), it is interesting to note however: 

• In phase 3, the structural relationship between coping capacity and (inverse) risk 

changes to a positive coefficient. This finding may not be directly interpreted, but it is 

possible that the presence of real time and post trip i-DREAMS interventions in phase 

3 lead to a different interaction between the latent variables coping capacity and risk, 

which would need additional indicators available in order to draw conclusions. Also, the 

magnitude of the correlation between latent variables coping capacity and task 

complexity reduces to extremely small value. 

• The loading of 'trip duration’ in phase 2 changes to positive sign which show a 

momentarily improvement in the coping capacity of drivers in the presence of real-time 

interventions. However, in the later phases 3 and 4, this trend is back as the phase 1.  

• The loadings of the observed proportions of the STZ of acceleration are consistent 

between the different phases (The loadings of 2nd STZ level have consistently higher 

negative sign across all phases while the loadings of 3rd STZ level have consistently 

lower sign across all phases). The loading of 1st STZ level becomes notably higher in 

the 4th phase of the experiment. This may indicate that drivers tend to have normal 

driving in 4th phase in the presence of all interventions. 
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Figure 19: Results of SEM on Risk (Harsh acceleration STZ) – Belgian truck drivers – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal 0.813; TLI is 0.719 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.088. Table 45 summarizes the model fit of SEM 

applied for harsh acceleration. 

 

Table 45: Model Fit Summary for harsh acceleration – Belgian truck drivers – experiment Phase 2 

Model Fit measures Value 

AIC 6417.821 

BCC 6417.839 

CFI 0.813 

TLI 0.719 

RMSEA 0.088 

Hoelter's critical N (α = .05) 197 

Hoelter's critical N (α = .01) 232 

 

Residual variances details are presented in Table 46 that follows. 

 

Table 46: Residual variances for harsh acceleration – Belgian truck drivers – experiment Phase 2 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_Capacity 0.207 0.008 26.008 *** 

Task_Complexity 109.198 12.789 8.539 *** 

Risk_acceleration 0.632 0.046 13.713 *** 

Style 0.199 0.002 127.278 *** 

Age 93.906 0.798 117.657 *** 

Trip_Duration 7056.981 55.518 127.112 *** 

speed_mps -2.588 12.763 -0.203 0,839 

ME_Car_wipers_median 0.010 0.000 130.306 *** 

DEM_evt_ha_lvl_L_mean -0.487 0.046 -10.608 *** 

DEM_evt_ha_lvl_M_mean 0.071 0.001 104.147 *** 

DEM_evt_ha_lvl_H_mean 0.019 0.000 130.831 *** 

Confidence 0.227 0.008 29.59 *** 

 

The results for phase 3 are shown in Figure 20 below. 
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Figure 20: Results of SEM on Risk (Harsh acceleration STZ) – Belgian truck drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.882; TLI is 0.778 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.064. Table 47 summarizes the model fit of SEM 

applied for harsh acceleration. 

 

Table 47: Model Fit Summary for harsh acceleration – Belgian truck drivers – experiment Phase 3 

Model Fit measures Value 

AIC 3177.783 

BCC 3177.802 

CFI 0.882 

TLI 0.778 

RMSEA 0.064 

Hoelter's critical N (α = .05) 372 

Hoelter's critical N (α = .01) 439 

 

Residual variances details are presented in Table 48 that follows. 

 

Table 48: Residual variances for harsh acceleration – Belgian truck drivers – experiment Phase 3 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_capacity 0.024 0.002 14.063 *** 

Task_Complexity 31.965 4.574 6.989 *** 

Risk_Acceleration 0.338 0.024 14.296 *** 

Confidence 0.444 0.004 118.919 *** 

Style 0.162 0.002 92.562 *** 

Age 41.443 2.147 19.307 *** 

Trip_duration 9191.06 72.982 125.937 *** 

Speed_mps 62.137 4.566 13.609 *** 

DEM_evt_ha_lvl_L_mean -0.241 0.020 -12.017 *** 

DEM_evt_ha_lvl_M_mean 0.069 0.001 93.597 *** 

time_of_day_p_np 0.198 0.002 125.743 *** 
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Variable Estimate Std. Error z-value P(>|z|) 

DEM_evt_ha_lvl_H_mean 0.011 0.000 126.573 *** 

 

The results for phase 4 are shown in Figure 21 below. 

 

 
Figure 21: Results of SEM on Risk (Harsh acceleration STZ) – Belgian truck drivers – experiment Phase 4 

 

The Comparative Fit Index (CFI) of the model is equal 0.843; TLI is 0.764 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.077. Table 49 summarizes the model fit of SEM 

applied for harsh acceleration. 

 

Table 49: Model Fit Summary for harsh acceleration – Belgian truck drivers – experiment Phase 4 

Model Fit measures Value 

AIC 6089.699 

BCC 6089.713 

CFI 0.843 

TLI 0.764 

RMSEA 0.077 

Hoelter's critical N (α = .05) 256 

Hoelter's critical N (α = .01) 302 

 

Residual variances details are presented in Table 50 that follows. 

 

Table 50: Residual variances for harsh acceleration – Belgian truck drivers – experiment Phase 4 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_Capacity 0.226 0.009 24.724 *** 

Task_Complexity 81.73 8.328 9.814 *** 

Risk_Acceleration 1.304 0.184 7.08 *** 

Confidence 0.297 0.009 33.426 *** 

Style 0.227 0.002 145.037 *** 

Age 116.936 0.985 118.683 *** 

Trip_duration 10232.541 71.682 142.75 *** 
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Variable Estimate Std. Error z-value P(>|z|) 

Speed 33.659 8.296 4.057 *** 

ME_Car_wipers_median 0.005 0.000 144.637 *** 

DEM_evt_ha_lvl_L_mean -1.157 0.184 -6.281 *** 

DEM_evt_ha_lvl_M_mean 0.083 0.001 110.975 *** 

DEM_evt_ha_lvl_H_mean 0.03 0.000 143.032 *** 

 

4.2.2.3 Headway 

 

Four separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity, coping capacity and risk (expressed as the three stages of 

the STZ) of headway. Each model corresponds with one of the phases of the i-DREAMS 

experiment namely:  

• Phase 1: monitoring - 23 truck drivers, 1,148 trips (117,160 minutes) 

• Phase 2: real-time interventions - 22 Belgian truck drivers, 1,691 trips (146,315 

minutes) 

• Phase 3: real-time & post-trip interventions - 22 Belgian truck drivers, 1,440 trips 

(139,245 minutes) 

• Phase 4: real-time, post-trip interventions & gamification - 23 Belgian truck drivers, 

1,767 trips (187,636 minutes) 

 

The results for phase 1 are shown in Figure 22 below. It is shown that one trip related variable 

and several operator state indicators load on the latent variable coping capacity, as follows: 

• Trip duration, with a negative correlation indicating that higher trip duration is 

associated with lower coping capacity. 

• Driver’s age, with a negative correlation indicating that older drivers have lower coping 

capacity. 

• A sportive and ambitious driving style is associated with higher coping capacity, 

possibly indicating a younger age and a higher alertness of these drivers. 

• Driver’s confidence to their own driving skills is associated with higher coping capacity. 

 

These results are in line with the dedicated exploratory analysis of Deliverable 6.2.  

 

At the same time, in line with Deliverable 6.1 on task complexity investigation, there are two 

indicators loading on the latent variable:  

• ‘wipers on’ (indicating rainy weather conditions)  

• ‘speed’ (indicating situational needs) 

 

The latent variable risk is measured by means of the STZ levels for headway (level 1 ‘normal 

driving’ used as the reference case), with negative correlations of risk with the STZ indicators. 

The negative sign shows that the latent variable risk could in fact be representing an inverse 

of risk, more like a normal driving.  

 

The structural model between the latent variables shows some interesting findings: first, task 

complexity and coping capacity are inter-related with a positive correlation. This positive 
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correlation indicates that higher task complexity is associated with higher coping capacity 

implying that drivers coping capacity increases as the complexity of driving task increases. 

This finding may be a sign of risk compensating behavior of drivers when the complexity of 

driving task is high, and is in line with the theoretical model of i-DREAMS, validating the 

assumption that Risk (or conversely the normal driving as established above) is an outcome 

of the interaction between the two variables in addition to their separate effects. 

 

Task complexity is negatively associated with the latent variable (inverse) risk, which was 

defined by different levels of headway. This was expected finding as task complexity would 

decrease normal driving. In rainy conditions, it would make it hard for the drivers to maintain 

normal driving behavior and given the situation, they may be forced to speed and come close 

to other drivers, thus enters into dangerous driving phase (STZ 2).  

 

At the same time, coping capacity is negatively associated with (inverse) risk (or normal 

driving), which is counter-intuitive (similar to what we have noted for acceleration). It could be 

assumed that higher coping capacity might improve normal driving (reduce risk) but this is not 

the case here. Furthermore, the coping capacity indicators in our sample include static 

demographic and self-reported behavior indicators and therefore are more representative of 

driver personality and general driving styles, and less so of the real-time operator state during 

the experiment. For instance, indicators related to the level of sleepiness, fatigue or distraction 

were either not available or not significant in this model. Therefore, it can be concluded that 

younger, and more confident drivers exhibited (higher risk) lower normal driving) in this 

experiment, in terms of exceeding the STZ headway boundaries, without however considering 

the variations of their state during these trips. 

 
Figure 22: Results of SEM on Risk (headway STZ) – Belgian truck drivers – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal 0.989; TLI is 0.982 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.043. Table 51 summarizes the model fit of SEM 

applied for headway. 
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Table 51: Model Fit Summary for headway – Belgian truck drivers – experiment Phase 1 

Model Fit measures Value 

AIC 3786.289 

BCC 3786.293 

CFI 0.989 

TLI 0.982 

RMSEA 0.043 

Hoelter's critical N (α = .05) 866 

Hoelter's critical N (α = .01) 1049 

 

Residual variances details are presented in Table 52 that follows. 

 

Table 52: Residual variances for headway – Belgian truck drivers – experiment Phase 1 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_Capacity 0.132 0.002 68.053 *** 

Task_Complexity 120.093 14.234 8.437 *** 

Risk_Headway 0.024 0.000 126.04 *** 

trip_duration 4217.46 17.62 239.359 *** 

Age 44.615 0.738 60.488 *** 

Style 0.150 0.001 221.758 *** 

Confidence 0.334 0.002 169.667 *** 

Speed 0.468 14.226 0.033 0.974 

ME_Car_wipers_median 0.01 0.000 238.774 *** 

Headway_1 -0.001 0.000 -7.567 *** 

iDreams_Headway_Map_level_2_mean 0.002 0.000 30.04 *** 

 

Figure 23, 24 and 25 show the results of the 2nd, 3rd and 4th phase of the experiment. It is 

observed that the relationships among risk, task complexity and coping capacity are fairly 

consistent between the different phases, it is interesting to note however: 

• The loading of age substantially reduces in phase 4. This might indicate that the impact 

of age on the coping capacity is compensated by the presence of all interventions and 

old drivers may perform normal driving. 

• In phase 4, the structural relationship between coping capacity and risk changes to a 

positive coefficient. This is an interesting outcome. It is possible that the presence of 

all i-DREAMS interventions in phase 4 lead to a different interaction between the three 

latent variables. The combined effect of all interventions resulted in a positive 

relationship between coping capacity and risk (normal driving) and at the same time a 

negative relationship between task complexity and risk (normal driving).  

• The loadings of the observed proportions of the STZ of headway are consistent 

between the different phases. 
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Figure 23: Results of SEM on Risk (headway STZ) – Belgian car drivers – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal 0.899; TLI is 0.834 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.080. Table 53 summarizes the model fit of SEM 

applied for headway. 

 

Table 53: Model Fit Summary for headway – Belgian truck drivers – experiment Phase 2 

Model Fit measures Value 

AIC 10742.257 

BCC 10742.26 

CFI 0.970 

TLI 0.951 

RMSEA 0.065 

Hoelter's critical N (α = .05) 378 

Hoelter's critical N (α = .01) 458 

 

Residual variances details are presented in Table 54 that follows. 

 

Table 54: Residual variances for headway – Belgian truck drivers – experiment Phase 2 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_Capacity 0.136 0.003 53.516 *** 

Task_Complexity 262.388 48.028 5.463 *** 

Risk_headway 0.022 0.000 144.111 *** 

Age 85.9 0.454 189.275 *** 

Style 0.173 0.001 247.331 *** 

Confidence 0.353 0.003 137.058 *** 

Speed_mps -122.019 48.03 -2.540 0.011 

ME_Car_wipers_median 0.009 0.000 265.581 *** 

iDreams_Headway_Map_level_2_mean 0.002 0.000 36.839 *** 

Trip_duration 6969.862 26.51 262.91 *** 

Headway_1 -0.001 0.000 -7.945 *** 
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The results for phase 3 are shown in Figure 24 below. 

 

 
Figure 24: Results of SEM on Risk (headway STZ) – Belgian car drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.985; TLI is 0.969 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.046. Table 55 summarizes the model fit of SEM 

applied for headway. 

 

Table 55: Model Fit Summary for headway – Belgian truck drivers – experiment Phase 3 

Model Fit measures Value 

AIC 5150.702 

BCC 5150.706 

CFI 0.985 

TLI 0.969 

RMSEA 0.046 

Hoelter's critical N (α = .05) 754 

Hoelter's critical N (α = .01) 913 

 

Residual variances details are presented in Table 56 that follows. 

 

Table 56: Residual variances for headway – Belgian truck drivers – experiment Phase 3 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_capacity 0.059 0.001 41.073 *** 

Task_complexity 103.535 6.39 16.202 *** 

Risk_Headway 0.022 0.000 144.006 *** 

Trip_duration 10563.18 40.038 263.829 *** 

Age 60.330 0.630 95.762 *** 

Style 0.159 0.001 200.245 *** 

Confidence 0.441 0.002 219.023 *** 

Speed 23.766 6.373 3.729 *** 

ME_Car_wipers_median 0.007 0.000 252.951 *** 

Headway_mean_sum_1 -0.001 0.000 -8.187 *** 

iDreams_Headway_Map_level_2_mean 0.002 0.000 39.637 *** 
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The results for phase 4 are shown in Figure 25 below. 

 

 
Figure 25: Results of SEM on Risk (headway STZ) – Belgian car drivers – experiment Phase 4 

 

The Comparative Fit Index (CFI) of the model is equal 0.943; TLI is 0.912 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.086. Table 57 summarizes the model fit of SEM 

applied for headway. 

 

Table 57: Model Fit Summary for headway – Belgian truck drivers – experiment Phase 4 

Model Fit measures Value 

AIC 25269.232 

BCC 25269.235 

CFI 0.943 

TLI 0.912 

RMSEA 0.086 

Hoelter's critical N (α = .05) 215 

Hoelter's critical N (α = .01) 259 

 

Residual variances details are presented in Table 58 that follows. 

 

Table 58: Residual variances for headway – Belgian truck drivers – experiment Phase 4 

Variable Estimate Std. Error z-value P(>|z|) 

Coping_Capacity 0.457 0.041 11.26 *** 

Task_Complexity 83.287 5.371 15.506 *** 

Risk_Headway 0.026 0.000 120.696 *** 

trip_duration 10166.676 33.193 306.29 *** 

Age 122.768 0.423 290.111 *** 

Style 0.211 0.001 306.248 *** 

Confidence 0.095 0.041 2.351 0.019 

Speed 63.75 5.358 11.899 *** 

ME_Car_wipers_median 0.005 0.000 302.361 *** 

Headway_1 -0.001 0.000 -9.476 *** 

iDreams_Headway_Map_level_2_mean 0.003 0.000 41.523 *** 
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4.2.3 UK (Cars) 

 

4.2.3.1 Headway 

 

Four separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity and coping capacity with risk where risk, expressed as the 

three phases of the STZ, was formed as a composite of headway. Each model corresponds 

with one of the phases of the i-DREAMS experiment namely: 

• Phase 1: monitoring - 53 UK car drivers, 3,073 trips (56,853 minutes) 

• Phase 2: real-time interventions - 54 UK car k drivers, 3,317 trips (58,458 minutes) 

• Phase 3: real-time & post-trip interventions - 53 UK car drivers, 3,417 trips (59,556 

minutes) 

• Phase 4: real-time. post-trip interventions & gamification - 54 UK car drivers, 4,594 trips 

(93,974 minutes) 

 

To begin with, a SEM analysis was performed based on data from 53 drivers and 3,073 trips, 

collected in phase 1 of the i-DREAMS project trials where no interventions were present. The 

model was developed in IBM SPSS Amos 27 Graphics software, and it is graphically described 

in Figure 26.  

 

 
Figure 26: Results of SEM on Risk (headway STZ) – UK car drivers – experiment Phase 1 

 

Maximum likelihood estimation method was employed. The presented model appears to be a 

good fit to the data. The Comparative Fit Index (CFI) is 0.984; TLI is 0.977 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.042. More details about the model fit can be found 

in Table 59 below. 

 

Table 59: Model Fit Summary for headway – UK car drivers – experiment Phase 1 

Model Fit measures Value 

AIC 6377.390 

BIC 6599.142 
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Model Fit measures Value 

CFI 0.984 

TLI 0.977 

RMSEA 0.042 

GFI 0.989 

Hoelter's critical N (α = .05) 830 

Hoelter's critical N (α = .01) 961 

 

The results of SEM including residual variances details are presented in the Table 60 that 

follows. 

 

Table 60: Residual variances for headway – UK car drivers – experiment Phase 1 

Variable Estimate S.E. C.R. P 

Coping_capacity .004 .000 20.976 *** 

Task_complexity .002 .001 3.170 .002 

Risk .035 .000 203.135 *** 

iDreams_Headway_Map_level_23_mean .001 .000 20.421 *** 

iDreams_Headway_Map_level_1_mean .003 .000 66.268 *** 

iDreams_Headway_Map_level_1_0_mean .070 .000 234.307 *** 

EQ4e_Mobile_phone .406 .002 227.243 *** 

EQ4b_Speed_limit .672 .004 172.492 *** 

EQ5_Driving_style .150 .005 32.465 *** 

EQ4g_Illegal_overtake .266 .001 232.027 *** 

EQ17_General_sleep_rating .202 .001 236.368 *** 

ME_Car_high_beam_median .004 .000 232.933 *** 

ME_Car_wipers_median .057 .001 80.601 *** 

 

All the observed indicators of the three latent variables task complexity, coping capacity and 

risk are statistically significant at 99% confidence level. The latent variables of task complexity 

and coping capacity have a statistically significant impact on risk that is significantly interpreted 

by the time spent in each of the three levels of STZ regarding the headway indicator. Coping 

capacity and task complexity are positively correlated (0.46). 

 

Coping capacity seems to have a greater effect on risk than task complexity and the negative 

sign indicates that on cases that coping capacity increases, risk decreases. The opposite is 

observed for task complexity and risk as their positive relationship indicates that when driving 

task difficulty increases, risk also increases. 

 

The latent construct of task complexity is represented by the indicator variables of High beam 

and wipers use. Wipers can be an indication of weather conditions, most specifically, they can 
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be indicative of rain presence during the trip while high beams can indicate lighting conditions, 

for example, low visibility or dark. Both variables have a positive loading on the latent factor 

task complexity showing that an increase in the latter explains an increase in both of them 

accordingly. 

 

Regarding coping capacity, all the indicator variables in the model show a negative relationship 

with risk except for general sleeping rate. Driver style appears to be the most important 

indicator (higher estimate) for coping capacity and risk development while also important 

indicators are the speeding (driving always above speed limit), the mobile phone usage while 

driving, the illegal overtaking and the general sleeping rate. The latter, as expected, has a 

positive relationship with coping capacity showing that better sleep habits are associated with 

increased levels of driver capability. Last but not least, according to the model increased level 

of risks are linked to increased time spent on second and third headway level of STZ. 

 

Following the same approach, a SEM analysis was employed for driving data on phase 2 of 

the on-road trials (54 drivers, 3,317 trips) where intervention notifications have been introduced 

to the drivers. The model is graphically described in Figure 27.  

 

 
Figure 27: Results of SEM on Risk (headway STZ) – UK car drivers – experiment Phase 2 

 

The results indicate that the model is reasonably consistent with the data as CFI is 0.885, TLI 

is 0.834, and RMSEA is 0.037. More details about the model fit can be found in Table 61 below. 

 

Table 61: Model Fit Summary for headway – UK car drivers – experiment Phase 2 

Model Fit measures Value 

AIC 4939.518 

BIC 5171.580 

CFI 0.885 

TLI 0.834 

RMSEA 0.037 

GFI 0.992 
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Model Fit measures Value 

Hoelter's critical N (α = .05) 1076 

Hoelter's critical N (α = .01) 1248 

 

The results of SEM including residual variances details are presented in the Table 62 that 

follows. 

 

Table 62: Residual variances for headway – UK car drivers – experiment Phase 2 

Variable Estimate S.E. C.R. P 

Coping_capacity .003 .000 13.471 *** 

Task_complexity .001 .000 2.732 .010 

Risk .005 .000 11.588 *** 

iDreams_Headway_Map_level_23_mean .030 .000 190.514 *** 

iDreams_Headway_Map_level_1_mean .064 .000 184.292 *** 

iDreams_Headway_Map_level_1_0_mean .080 .002 51.613 *** 

EQ4e_Mobile_phone .433 .003 164.485 *** 

EQ4b_Speed_limit .693 .005 140.954 *** 

EQ5_Driving_style .441 .003 150.146 *** 

EQ4g_Illegal_overtake .243 .002 153.672 *** 

ME_Car_high_beam_median .004 .000 222.508 *** 

ME_Car_wipers_median .072 .001 133.416 *** 

EQ17_General_sleep_rating .201 .001 236.729 *** 

 

Similarly with phase 1, all the observed indicators of the three latent variables task complexity, 

coping capacity and risk are statistically significant at 99% confidence level. The latent 

variables of task complexity and coping capacity have a statistically significant impact on risk 

that is significantly interpreted by the time spent in each of the three levels of STZ regarding 

the headway indicator. 

 

The effect size of coping capacity to risk seems to be low (lower than phase 1) but statistically 

significant. On the contrary, the task complexity relates more strongly to risk than in phase 1 

(0.34) indicating again that on cases that task complexity increases (wipers and high beam 

usage), risk also increases. The opposite is observed with coping capacity where when the 

latter increases, the risk decreases. Coping capacity and task complexity correlation is not 

supported in this model.  

 

In terms of the indicators of the latent concepts, wipers appear to load stronger than high 

beams to task complexity as in phase 1 and again here, driver style is the stronger factor 

following closely by illegal overtaking, mobile phone use, speed limit and lastly general 
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sleeping rate. Lower risk seems to be associated with higher time in the first level of STZ 

regarding headway. 

 

Another SEM analysis was employed for data from 53 drivers and 3,417 trips included in phase 

3 of the on-road trials where drivers can interact with i-dreams smart phone application. The 

model is graphically described in Figure 28.  

 

 
Figure 28: Results of SEM on Risk (headway STZ) – UK car drivers – experiment Phase 3 

 

The results indicate that the model is consistent with the data as CFI is 0.988, TLI is 0.983, 

and RMSEA is 0.037. More details about the model fit can be found in Table 63 below.   

 

Table 63: Model Fit Summary for headway – UK car drivers – experiment Phase 3 

Model Fit measures Value 

AIC 5266.238 

BIC 5489.058 

CFI 0.988 

TLI 0.983 

RMSEA 0.037 

GFI 0.991 

Hoelter's critical N (α = .05) 1055 

Hoelter's critical N (α = .01) 1221 

 

The results of SEM including residual variances details are presented in the Table 64 that 

follows. 

 

Table 64: Residual variances for headway – UK car drivers – experiment Phase 3 

Variable Estimate S.E. C.R. P 

Coping_capacity .001 .000 10.803 *** 

Task_complexity .010 .001 9.871 *** 
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Variable Estimate S.E. C.R. P 

Risk .030 .000 195.116 *** 

iDreams_Headway_Map_level_23_mean .001 .000 17.028 *** 

iDreams_Headway_Map_level_1_mean .002 .000 60.390 *** 

iDreams_Headway_Map_level_1_0_mean .063 .000 240.912 *** 

EQ4e_Mobile_phone .419 .002 235.687 *** 

EQ4b_Speed_limit .538 .004 121.442 *** 

EQ5_Driving_style .320 .003 92.698 *** 

EQ4g_Illegal_overtake .292 .001 235.136 *** 

ME_Car_high_beam_median .004 .000 234.789 *** 

ME_Car_wipers_median .078 .001 73.084 *** 

EQ17_General_sleep_rating .203 .001 242.925 *** 

 

As in the two previous phases, all the observed indicators of the three latent variables task 

complexity, coping capacity and risk are statistically significant at 99% confidence level. The 

latent variables of task complexity and coping capacity have a statistically significant impact 

on risk that is significantly interpreted by the time spent in each of the three levels of STZ 

regarding the headway indicator. More specifically, higher risk is translating in more time spent 

in second and third level of STZ. In this model again, driving task difficulty affects positively 

(increases) the levels of risk while the opposite stands for coping capacity as expected. 

 

As in phase 1, the effect of coping capacity on risk (standardised coefficient=0.23) is greater 

than this of task complexity (standardised coefficient=0.12) and coping capacity and task 

complexity are positively correlated (0.51). Wipers and high beam use show a positive 

relationship with task complexity and in accordance with risk while driving style, driving above 

speed limit, mobile phone use while driving and illegal overtaking are negatively related to 

coping capacity and in turn with risk. 

 

Lastly, a SEM analysis was performed for driving data on phase 4 (54 drivers, 4,594 trips) of 

the on-road trials where gamification was available for the app. The model is graphically 

described in Figure 29. 
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Figure 29: Results of SEM on Risk (headway STZ) – UK car drivers – experiment Phase 4 

 

Maximum likelihood estimation method was employed. The results indicate that the model is 

consistent with the data as CFI is 0.989, TLI is 0.985, and RMSEA is 0.035. More details about 

the model fit can be found in Table 65 below.  

 

Table 65: Model Fit Summary for headway – UK car drivers – experiment Phase 4 

Model Fit measures Value 

AIC 7536.846 

BIC 7770.156 

CFI 0.989 

TLI 0.985 

RMSEA 0.035 

GFI 0.992 

Hoelter's critical N (α = .05) 1160 

Hoelter's critical N (α = .01) 1342 

 

The results of SEM including residual variances details are presented in the Table 66 that 

follows. 

 

Table 66: Residual variances for headway – UK car drivers – experiment Phase 4 

Variable Estimate S.E. C.R. P 

Coping_capacity .001 .000 8.570 *** 

Task_complexity .000 .000 2.309 *** 

Risk .018 .001 26.062 *** 

iDreams_Headway_Map_level_23_mean .007 .000 17.030 *** 
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Variable Estimate S.E. C.R. P 

iDreams_Headway_Map_level_1_mean .007 .000 19.519 *** 

iDreams_Headway_Map_level_1_0_mean .056 .001 60.500 *** 

EQ4e_Mobile_phone .401 .001 300.081 *** 

EQ4b_Speed_limit .573 .003 174.136 *** 

EQ5_Driving_style .255 .004 64.743 *** 

EQ4g_Illegal_overtake .281 .001 296.405 *** 

ME_Car_high_beam_median .053 .000 252.211 *** 

ME_Car_wipers_median .004 .000 231.432 *** 

EQ17_General_sleep_rating .201 .001 305.965 *** 

 

All the observed indicators presented in the model to represent the three latent concepts of 

task complexity, coping capacity and risk are statistically significant at 99.9% confidence level. 

Task complexity and coping capacity have a statistically significant impact on risk that is 

significantly interpreted by the time spent in each of the three levels of STZ regarding the 

headway indicator. As mentioned before in previous phases, lower risk relates to more time in 

the first level of STZ, in other words, to higher headways measurements. Similarly to phase 2, 

task complexity has a greater effect (standardised coefficient=-0.26) on risk than coping 

capacity (standardised coefficient=-0.19). 

 

In terms of the relationship between driving task complexity and risk the picture is different 

than in the other three phases. The model for phase 4 indicates that increased levels of driving 

task difficulty, related to weather and visibility conditions, are linked to lower levels of risk. This 

result could be interpreted by the fact that when drivers have to face more complicated road 

conditions such as rain or lower visibility, they could become more alerted and cautious. 

 

Regarding the specific indicators of the latent concept of coping capacity, the same pattern 

can be observed as in all other phases with the driver style to dominate in the coping capacity 

latent construct. The wipers and high beam use are positively related to task complexity while 

mobile phone use while driving, driving faster than the speed limit, driver style and illegal 

overtaking are all negatively related to coping capacity as it was intuitive. Furthermore, good 

sleeping rate is positively associated with driver capacity.  

 

4.2.4 Germany (Cars) 

 

4.2.4.1 Speeding 

 

Four separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity, coping capacity and risk (expressed as the three phases of 

the STZ) of speeding. Each model corresponds with one of the phases of the i-DREAMS 

experiment namely:  

• Phase 1: monitoring - 28 German car drivers, 1,397 trips (23,617 minutes) 
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• Phase 2: real-time interventions - 28 German car drivers, 1,322 trips (19,469 minutes) 

• Phase 3: real-time & post-trip interventions - 27 German car drivers, 1,129 trips (17,704 

minutes) 

• Phase 4: real-time. post-trip interventions & gamification - 28 German car drivers, 1,496 

trips (23,644 minutes) 

 

To begin with, the results for phase 1 are shown in Figure 30 below. Risk is measured by 

means of the STZ levels for speeding (level 1 ‘normal driving’ used as the reference case; level 

2 refers to ‘dangerous driving’, while no incidents with regards to level 3 ‘avoidable accident 

driving’ were found). In particular, positive correlations of risk with the STZ indicators were 

found. It should be noted that the identified model indicated that level 3 of speeding variable 

does not have significant loading in the measurement model for the latent variable risk and 

thus, this level was not included in the final model. Level 1 and level 2 of speeding (or STZ1 

and STZ 2 indicators) have positive loadings in relationship to the latent variable Risk, 

respectively. 

 

To begin with, the latent variable task complexity is measured by means of the environmental 

indicator of “ME_AWS_time_indicator_median” (indicating time of the day). It should be noted 

that based on the definition of task complexity, road layout, time, location, traffic volumes and 

weather variables should be included in the analysis. However, road type (i.e. urban, rural, 

highway), location, traffic volumes (i.e. high, medium, low) and weather were not available in 

German dataset. Thus, only the time indicator was able to be used in the models applied. To 

that aim, exposure indicators, such as trip duration and distance traveled were included in the 

task complexity analysis. In particular, time of the day, distance and duration found to have a 

positive correlation with task complexity.  

 

Furthermore, it is shown that the latent coping capacity is measured by means of both vehicle 

state indicators, such as “VehicleAge” (indicating the age of the vehicle), “Gearbox” (indicating 

the type of gearbox; automatic or manual) and “Fuel_type” (indicating the type of fuel; diesel, 

hybrid electric, petrol). At the same time, operator state indicators, such as “Gender” (indicating 

the gender of the driver; male or female), “Age” (indicating the age of the driver) and 

‘iDreams_Headway_Map_level_total_mean” (indicating the headway level) are included in the 

SEM applied.  

 

The structural model between the latent variables shows some interesting findings: first, task 

complexity and coping capacity are inter-related with a positive correlation (regression 

coefficient=0.003) – which reduces in magnitude as the driver’s progress from phases 1 and 2 

though phases 3 and 4. This positive correlation indicates that higher task complexity is 

associated with higher coping capacity implying that drivers coping capacity increases as the 

complexity of driving task increases. Overall, the structural model between task complexity and 

risk shows a positive coefficient, which means that increased task complexity relates to 

increased risk according to the model (regression coefficient=0.61). On the other hand, the 

structural model between coping capacity and risk shows a negative coefficient, which means 

that increased coping capacity relates to decreased risk according to the model (regression 

coefficient=-0.25). 
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Figure 30: Results of SEM on Risk (Speeding STZ) – German car drivers – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal 0.977; TLI is 0.970 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.076. Table 67 summarizes the model fit of SEM 

applied for speeding. 

 

Table 67: Model Fit Summary for speeding – German car drivers – experiment Phase 1 

Model Fit measures Value 

AIC 954147.405 

BIC 954464.514 

CFI 0.977 

TLI 0.970 

RMSEA 0.076 

GFI 0.956 

Hoelter's critical N (α = .05) 240.111 

Hoelter's critical N (α = .01) 273.737 

 

Residual variances details are presented in Table 68 that follows. 

 

Table 68: Residual variances for speeding – German car drivers – experiment Phase 1 

Variable Estimate Std. Error z-value P(>|z|) 

Grpby_seconds 0.706 0.007 94.993 < .001 

GPS_distances_sum 0.715 0.008 90.970 < .001 

ME_AWS_time_indicator_median 0.977 0.008 117.878 < .001 

Fuel_type 0.990 0.007 143.884 < .001 

VehicleAge -11.117 3.371 -3.298 < .001 

Gearbox 0.998 0.006 156.675 < .001 

iDreams_Headway_Map_level_total 1.000 0.006 157.233 < .001 

Age 0.998 0.006 156.921 < .001 

Gender 0.989 0.007 142.982 < .001 
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Variable Estimate Std. Error z-value P(>|z|) 

iDreams_Speeding_Map_level_0_sum 0.008 2.110×10-4  35.677 < .001 

iDreams_Speeding_Map_level_1_sum -0.008 2.140×10-4  94.993 < .001 

 

The following Figures show the results of the 2nd, 3rd and 4th phase of the experiment. It is 

observed that the measurement equations of task complexity and coping capacity are fairly 

consistent between the different phases. At the same time, the loadings of the observed 

proportions of the STZ of speeding are consistent between the different phases. The structural 

model between task complexity and inverse risk (normal driving) are positively correlated 

among the four phases, while coping capacity and risk found to have a negative relationship 

in all phases of the experiment. The results for phase 2 are shown in Figure 31 below. 

 

 
Figure 31: Results of SEM on Risk (Speeding STZ) – German car drivers – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal 0.953; TLI is 0.937 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.112. Table 69 summarizes the model fit of SEM 

applied for speeding. 

 

Table 69: Model Fit Summary for speeding – German car drivers – experiment Phase 2 

Model Fit measures Value 

AIC 785899.448 

BIC 786207.816 

CFI 0.953 

TLI 0.937 

RMSEA 0.112 

GFI 0.917 

Hoelter's critical N (α = .05) 110.738 

Hoelter's critical N (α = .01) 126.171 
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Residual variances details are presented in Table 70 that follows. 

 

Table 70: Residual variances for speeding – German car drivers – experiment Phase 2 

Variable Estimate Std. Error z-value P(>|z|) 

Grpby_seconds 0.649 0.009 70.506 < .001 

GPS_distances_sum 0.859 0.007 116.520 < .001 

Fuel_type 1.292 0.014 92.758 < .001 

VehicleAge 1.322 0.015 89.205 < .001 

Gearbox 1.000 0.007 139.232 < .001 

iDreams_Headway_Map_level_total 1.008 0.007 137.818 < .001 

Age 1.010 0.007 137.268 < .001 

Gender 1.226 0.012 101.583 < .001 

Education 1.013 0.007 136.851 < .001 

iDreams_Speeding_Map_level_0_sum 0.009 2.490×10-4  37.452 < .001 

iDreams_Speeding_Map_level_1_sum -0.009 2.535×10-4  -36.943 < .001 

 

The results for phase 3 are shown in Figure 32 below. 

 
Figure 32: Results of SEM on Risk (Speeding STZ) – German car drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.996; TLI is 0.993 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.059. Table 71 summarizes the model fit of SEM 

applied for speeding. 

 

Table 71: Model Fit Summary for speeding – German car drivers – experiment Phase 3 

Model Fit measures Value 

AIC 282420.347 

BIC 282625.175 

CFI 0.996 

TLI 0.993 

RMSEA 0.059 

GFI 0.983 

Hoelter's critical N (α = .05) 507.651 

Hoelter's critical N (α = .01) 637.688 
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Residual variances details are presented in Table 72 that follows. 

 

Table 72: Residual variances for speeding – German car drivers – experiment Phase 3 

Variable Estimate Std. Error z-value P(>|z|) 

ME_AWS_time_indicator_median 0.993 0.010 94.720 < .001 

DEM_evt_ha_lvl_L_mean 0.736 0.036 20.194 < .001 

GPS_distances_sum 0.720 0.008 94.682 < .001 

Age 0.980 0.008 129.041 < .001 

Grpby_seconds 0.645 0.008 81.986 < .001 

iDreams_Speeding_Map_level_0_sum 0.007 1.169×10-4  56.001 < .001 

iDreams_Speeding_Map_level_1_sum -0.007 1.182×10-4  -55.315 < .001 

 

The results for phase 4 are shown in Figure 33 below. 

 

 
Figure 33: Results of SEM on Risk (Speeding STZ) – German car drivers – experiment Phase 4 

 

The Comparative Fit Index (CFI) of the model is equal 0.978; TLI is 0.966 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.100. Table 73 summarizes the model fit of SEM 

applied for speeding. 

 

Table 73: Model Fit Summary for speeding – German car drivers – experiment Phase 4 

Model Fit measures Value 

AIC 525983.888 

BIC 526243.996 

CFI 0.978 

TLI 0.966 

RMSEA 0.100 

GFI 0.943 

Hoelter's critical N (α = .05) 153.470 

Hoelter's critical N (α = .01) 180.957 
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Residual variances details are presented in Table 74 that follows. 

 

Table 74: Residual variances for speeding – German car drivers – experiment Phase 4 

Variable Estimate Std. Error z-value P(>|z|) 

ME_AWS_time_indicator_median 0.995 0.009 108.205 < .001 

DEM_evt_ha_lvl_L_mean 0.224 0.115 1.940 0.052 

GPS_distances_sum 0.829 0.007 123.000 < .001 

Grpby_seconds 0.639 0.008 84.763 < .001 

Gender 0.944 0.007 141.467 < .001 

Age 0.974 0.008 123.311 < .001 

Fuel_type 0.999 0.008 125.390 < .001 

iDreams_Speeding_Map_level_0_sum 0.006 9.887×10-5  63.609 < .001 

iDreams_Speeding_Map_level_1_sum -0.006 9.984×10-5  -62.838 < .001 

 

4.2.5 Greece (Cars) 

 

4.2.5.1 Speeding 

 

Three separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity, coping capacity and risk (expressed as the three phases of 

the STZ) of speeding. Each model corresponds with one of the phases of the i-DREAMS 

experiment namely:  

• Phase 1: monitoring - 65 Greek car drivers, 2,937 trips (51,786 minutes) 

• Phase 3: real-time & post-trip interventions - 65 Greek car drivers, 3,935 trips (69,962 

minutes) 

• Phase 4: real-time. post-trip interventions & gamification - 65 Greek car drivers, 2,194 

trips (39,695 minutes) 

 

The results for phase 1 are shown in Figure 34 below. Risk is measured by means of the STZ 

levels for speeding (level 1 refers to ‘normal driving’ used as the reference case, level 2 refers 

to ‘dangerous driving’ while level 3 refers to ‘avoidable accident driving’), with positive 

correlations of Risk with the STZ indicators.  

 

To begin with, the latent variable task complexity is measured by means of the environmental 

indicators “ME_AWS_time_indicator_median” (indicating time of the day). The exposure 

indicator of trip duration was also included in the task complexity analysis. In particular, time 

of the day and duration had a positive correlation with task complexity. Moreover, the latent 

coping capacity is measured by means of operator state indicators, such as distance, harsh 

acceleration, harsh braking, age and gender. At the same time, the indicators of coping 

capacity - vehicle state, such as vehicle age, gearbox or fuel type are included in the SEM 

applied.  

 

The structural model between the latent variables shows some interesting findings. First of all, 

task complexity and coping capacity are inter-related with a positive correlation (regression 

coefficient=0.56). This positive correlation indicates that higher task complexity is associated 

with higher coping capacity implying that drivers coping capacity increases as the complexity 

of driving task increases.  
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Overall, the structural model between task complexity and risk shows a positive coefficient, 

which means that increased task complexity relates to increased risk according to the model 

(regression coefficient=0.69). On the other hand, the structural model between coping capacity 

and risk shows a negative coefficient, which means that increased coping capacity relates to 

decreased risk according to the model (regression coefficient=-0.35). 

 

 
Figure 34: Results of SEM on Risk (Speeding STZ) – Greek car drivers – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal 0.840; TLI is 0.798 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.089. Table 75 summarizes the model fit of SEM 

applied for speeding. 

 

Table 75: Model Fit Summary for speeding – Greek car drivers – experiment Phase 1 

Model Fit measures Value 

AIC 692252.677 

BIC 692590.360 

CFI 0.840 

TLI 0.798 

RMSEA 0.089 

GFI 0.925 

Hoelter's critical N (α = .05) 164.309 

Hoelter's critical N (α = .01) 183.214 

 

Residual variances details are presented in Table 76 that follows. 
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Table 76: Residual variances for speeding – Greek car drivers – experiment Phase 1 

Variable Estimate Std. Error z-value P(>|z|) 

grpby_seconds -13.639 52.128 -0.262 0.794 

GPS_distances_sum 0.998 0.011 89.383 < .001 

ME_AWS_time_indicator_median 1.000 0.009 106.909 < .001 

DEM_evt_ha_lvl_H_mean 1.000 0.013 76.550 < .001 

Age 0.862 0.009 101.232 < .001 

Gender 0.299 0.010 29.136 < .001 

Fuel_type 0.674 0.008 84.400 < .001 

VehicleAge 0.864 0.009 101.297 < .001 

Gearbox 0.849 0.008 100.479 < .001 

DEM_evt_hb_lvl_H_mean 1.000 0.013 76.556 < .001 

iDreams_Speeding_Map_level_0_mean -9.548 3.697 -2.583 0.010 

iDreams_Speeding_Map_level_1_mean 0.920 0.030 31.114 < .001 

iDreams_Speeding_Map_level_2_mean 0.964 0.010 94.063 < .001 

 

The following Figures show the results of the 3rd and 4th phase of the experiment. It is observed 

that the measurement equations of task complexity and coping capacity are fairly consistent 

between the different phases. At the same time, the loadings of the observed proportions of 

the STZ of speeding are consistent between the different phases. The structural model 

between task complexity and inverse risk (normal driving) are positively correlated among the 

three phases, while coping capacity and risk found to have a negative relationship in all phases 

of the experiment. The results for phase 3 are shown in Figure 35 below. 

 

 
Figure 35: Results of SEM on Risk (Speeding STZ) – Greek car drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.811; TLI is 0.762 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.092. Table 77 summarizes the model fit of SEM 

applied for speeding. 
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Table 77: Model Fit Summary for speeding – Greek car drivers – experiment Phase 3 

Model Fit measures Value 

AIC 2.268×10+6  

BIC 2.268×10+6  

CFI 0.811 

TLI 0.762 

RMSEA 0.092 

GFI 0.908 

Hoelter's critical N (α = .05) 154.927 

Hoelter's critical N (α = .01) 172.746 

 

Residual variances details are presented in Table 78 that follows. 

 

Table 78: Residual variances for speeding – Greek car drivers – experiment Phase 3 

Variable Estimate Std. Error z-value P(>|z|) 

ME_AWS_time_indicator_median 0.951 0.005 176.006 < .001 

grpby_seconds 0.667 0.016 42.411 < .001 

GPS_distances_sum 0.997 0.005 191.252 < .001 

Age 0.629 0.004 151.007 < .001 

Gender 0.540 0.004 130.780 < .001 

Fuel_type 0.995 0.005 194.984 < .001 

VehicleAge 0.685 0.004 161.191 < .001 

Gearbox 0.569 0.004 137.849 < .001 

DEM_evt_hb_lvl_H_mean 0.999 0.008 129.155 < .001 

DEM_evt_ha_lvl_H_mean 0.995 0.008 129.341 < .001 

iDreams_Speeding_Map_level_0_mean 21.018 8.341 2.520 0.012 

iDreams_Speeding_Map_level_1_mean 1.038 0.017 61.946 < .001 

iDreams_Speeding_Map_level_2_mean 0.957 0.006 160.887 < .001 

 

The results for phase 4 are shown Figure 36 below. 

  
Figure 36: Results of SEM on Risk (Speeding STZ) – Greek car drivers – experiment Phase 4 



D6.3. An integrated model of driver-vehicle-environment interaction and risk 

©i-DREAMS, 2019  Page 107 of 174 

 

The Comparative Fit Index (CFI) of the model is equal 0.809, TLI is 0.759 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.111. Table 79 summarizes the model fit of SEM 

applied for speeding. 

 

Table 79: Model Fit Summary for speeding – Greek car drivers – experiment Phase 4 

Model Fit measures Value 

AIC 4.326×10+6  

BIC 4.326×10+6  

CFI 0.809 

TLI 0.759 

RMSEA 0.111 

GFI 0.872 

Hoelter's critical N (α = .05) 107.037 

Hoelter's critical N (α = .01) 119.311 

 

Residual variances details are presented in Table 80 that follows. 

 

Table 80: Residual variances for speeding – Greek car drivers – experiment Phase 4 

Variable Estimate Std. Error z-value P(>|z|) 

GPS_distances_sum 0.952 0.004 268.224 < .001 

grpby_seconds 0.058 0.007 8.939 < .001 

ME_AWS_time_indicator_median 0.863 0.003 267.069 < .001 

DEM_evt_ha_lvl_H_mean 0.995 0.006 168.036 < .001 

Age 0.881 0.003 274.527 < .001 

Gender 0.731 0.003 263.853 < .001 

Fuel_type 0.811 0.003 270.086 < .001 

VehicleAge 0.363 0.002 188.467 < .001 

Gearbox 0.240 0.002 129.755 < .001 

DEM_evt_hb_lvl_H_mean 1.000 0.006 167.717 < .001 

iDreams_Speeding_Map_level_0_mean -2.192 0.073 -30.049 < .001 

iDreams_Speeding_Map_level_1_mean 0.758 0.006 120.858 < .001 

iDreams_Speeding_Map_level_2_mean 0.925 0.004 219.243 < .001 

 

4.2.6 Portugal (Buses) 

 

4.2.6.1 Headway 

 

Four separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity, coping capacity and risk (expressed as the three phases of 

the STZ) of headway. Each model corresponds with one of the phases of the i-DREAMS 

experiment namely:  

• Phase 1: monitoring - 29 Portuguese bus drivers, 2,459 trips (202,532 minutes) 

• Phase 2: real-time interventions - 29 Portuguese bus drivers, 1,363 trips (123,132 

minutes) 

• Phase 3: real-time & post-trip interventions - 26 Portuguese bus drivers, 1,411 trips 

(145,934 minutes) 
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• Phase 4: real-time. post-trip interventions & gamification - 22 Portuguese bus drivers, 

2,098 trips (23,2323 minutes) 

 

To begin with, the results for phase 1 are shown in Figure 37 below. Risk is measured by 

means of the STZ levels for headway (level 1 ‘normal driving’ used as the reference case; level 

2 refers to ‘dangerous driving’, while level 3 refers to ‘avoidable accident driving’. In particular, 

negative correlations of risk with the STZ indicators were found.  

 

The latent variable task complexity is measured by means of the environmental indicator of 

“ME_AWS_time_indicator_median” (indicating time of the day) and total duration. It should be 

noted that based on the definition of task complexity, road layout, time, location, traffic volumes 

and weather variables should be included in the analysis. However, road type (i.e. urban, rural, 

highway), location, traffic volumes (i.e. high, medium, low) and weather were not available in 

Portuguese dataset. Thus, only the time indicator was able to be used in the models applied. 

To that aim, exposure indicators, such as trip duration was included in the task complexity 

analysis. In particular, time of the day and duration found to have a positive correlation with 

task complexity. 

 

Moreover, it is shown that the latent coping capacity is measured by means of operator state 

indicators, such as average speed, distance, harsh acceleration and harsh braking. It should 

be noted that vehicle state indicators, such as vehicle age, gearbox, type of fuel or socio-

demographic characteristics were not provided.  

 

The structural model between the latent variables shows some interesting findings: first, task 

complexity and coping capacity are inter-related with a positive correlation (regression 

coefficient=0.96) – which reduces in magnitude as the driver’s progress from phases 1 and 2 

though phases 3 and 4. This positive correlation indicates that higher task complexity is 

associated with higher coping capacity implying that drivers coping capacity increases as the 

complexity of driving task increases. Overall, the structural model between task complexity and 

risk shows a positive coefficient, which means that increased task complexity relates to 

increased risk according to the model (regression coefficient=5.36). On the other hand, the 

structural model between coping capacity and risk shows a negative coefficient, which means 

that increased coping capacity relates to decreased risk according to the model (regression 

coefficient=-5.02). 
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Figure 38: Results of SEM on Risk (Headway STZ) – Portuguese bus drivers – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal 0.983; TLI is 0.974 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.053. Table 81 summarizes the model fit of SEM 

applied for headway. 

 

Table 81: Model Fit Summary for headway – Portuguese bus drivers – experiment Phase 1 

Model Fit measures Value 

AIC 3.328×10+6 

BIC 3.328×10+6 

CFI 0.983 

TLI 0.974 

RMSEA 0.053 

GFI 0.985 

Hoelter's critical N (α = .05) 533.123 

Hoelter's critical N (α = .01) 629.053 

 

Residual variances details are presented in Table 82 that follows. 

 

Table 82: Residual variances for headway – Portuguese bus drivers – experiment Phase 1 

Variable Estimate Std. Error z-value P(>|z|) 

Duration 0.007 0.026 0.292 0.771 

ME_AWS_time_indicator 1.000 0.004 277.573 < .001 

Distance 0.095 0.007 14.439 < .001 

GPS_spd 0.998 0.004 277.623 < .001 

DrivingEvents_Map_evt_ha_mean 0.998 0.004 277.623 < .001 

DrivingEvents_Map_evt_hb_mean 0.999 0.004 277.610 < .001 

iDreams_Headway_Map_level_0_mean -0.283 0.005 -52.424 < .001 

iDreams_Headway_Map_level_1_mean 0.785 0.003 266.843 < .001 

iDreams_Headway_Map_level_2_mean 0.967 0.003 279.715 < .001 
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The following Figures show the results of the 2nd, 3rd and 4th phase of the experiment. It is 

observed that the measurement equations of task complexity and coping capacity are fairly 

consistent between the different phases. The structural model between task complexity and 

inverse risk (normal driving) are positively correlated in phases 1, 3 and 4, while a negative 

corellataion of phase 2 was identified. At the same time, coping capacity and risk found to have 

a negative relationship in all phases of the experiment. The results for phase 2 are shown in 

Figure 39 below. 

 

 
Figure 39: Results of SEM on Risk (Headway STZ) – German car drivers – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal 0.985; TLI is 0.978 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.052. Table 83 summarizes the model fit of SEM 

applied for headway. 

 

Table 83: Model Fit Summary for headway – Portuguese bus drivers – experiment Phase 2 

Model Fit measures Value 

AIC 1.699×10+6 

BIC 1.699×10+6 

CFI 0.985 

TLI 0.978 

RMSEA 0.052 

GFI 0.986 

Hoelter's critical N (α = .05) 556.489 

Hoelter's critical N (α = .01) 656.631 

 

Residual variances details are presented in Table 84 that follows. 

 

Table 84: Residual variances for headway – Portuguese bus drivers – experiment Phase 2 

Variable Estimate Std. Error z-value P(>|z|) 

Duration 0.185 0.017 10.852 < .001 

ME_AWS_time_indicator 0.998 0.005 199.902 < .001 
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Variable Estimate Std. Error z-value P(>|z|) 

Distance 0.020 0.007 2.997 0.003 

GPS_spd 0.997 0.005 199.905 < .001 

DrivingEvents_Map_evt_ha_mean 0.999 0.005 199.907 < .001 

DrivingEvents_Map_evt_hb_mean 1.000 0.005 199.906 < .001 

iDreams_Headway_Map_level_0_mean 1.005 0.007 154.294 < .001 

iDreams_Headway_Map_level_1_mean 1.002 0.005 187.247 < .001 

iDreams_Headway_Map_level_2_mean 1.001 0.005 196.999 < .001 

 

The results for phase 3 are shown in Figure 40 below. 

 

 
Figure 40: Results of SEM on Risk (Headway STZ) – Portuguese bus drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.998; TLI is 0.997 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.019. Table 85 summarizes the model fit of SEM 

applied for headway. 

 

Table 85: Model Fit Summary for headway – Portuguese bus drivers – experiment Phase 3 

Model Fit measures Value 

AIC 1.511×10+6 

BIC 1.511×10+6 

CFI 0.998 

TLI 0.997 

RMSEA 0.019 

GFI 0.998 

Hoelter's critical N (α = .05) 4284.444 

Hoelter's critical N (α = .01) 5188.355 

 

Residual variances details are presented in Table 86 that follows. 
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Table 86: Residual variances for headway – Portuguese bus drivers – experiment Phase 3 

Variable Estimate Std. Error z-value P(>|z|) 

Duration 387.221 0.015 13.451 < .001 

ME_AWS_time_indicator 1.000 0.005 199.902 < .001 

Distance 1.000 0.007 1.345 < .001 

GPS_spd 0.505 0.005 199.905 < .001 

DrivingEvents_Map_evt_ha_mean 1.000 0.005 199.907 < .001 

DrivingEvents_Map_evt_hb_mean 1.017 0.016 0.726 < .001 

iDreams_Headway_Map_level_0_mean 1.010 0.005 182.677 < .001 

iDreams_Headway_Map_level_1_mean 1.005 0.004 277.610 < .001 

iDreams_Headway_Map_level_2_mean 387.221 0.005 -52.424 < .001 

 

The results for phase 4 are shown in Figure 41 below. 

 

 
Figure 41: Results of SEM on Risk (Headway STZ) – Portuguese bus drivers – experiment Phase 4 

 

The Comparative Fit Index (CFI) of the model is equal 0.964; TLI is 0.946 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.051. Table 73 summarizes the model fit of SEM 

applied for headway. 

 

Table 87: Model Fit Summary for headway – Portuguese bus drivers – experiment Phase 4 

Model Fit measures Value 

AIC 1.594×10+6 

BIC 1.595×10+6 

CFI 0.964 

TLI 0.946 

RMSEA 0.051 

GFI 0.986 

Hoelter's critical N (α = .05) 582.268 

Hoelter's critical N (α = .01) 687.057 

 

Residual variances details are presented in Table 88 that follows. 
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Table 88: Residual variances for headway – Portuguese bus drivers – experiment Phase 4 

Variable Estimate Std. Error z-value P(>|z|) 

Duration 0.200 0.019 10.246 < .001 

ME_AWS_time_indicator 0.994 0.005 182.697 < .001 

Distance 0.012 0.016 0.726 0.468 

GPS_spd 0.990 0.005 182.677 < .001 

DrivingEvents_Map_evt_ha_mean 0.997 0.005 182.752 < .001 

DrivingEvents_Map_evt_hb_mean 1.000 0.005 182.764 < .001 

iDreams_Headway_Map_level_0_mean 1.063 0.010 106.653 < .001 

iDreams_Headway_Map_level_1_mean 1.016 0.006 169.131 < .001 

iDreams_Headway_Map_level_2_mean 1.006 0.006 177.870 < .001 

 

4.2.7 Overall model (Cars) 

 

Four separate SEM models were estimated in order to explore the relationship between the 

latent variables of task complexity, coping capacity and risk (expressed as the three stages of 

the STZ) of all event variables, such as speeding, headway, overtaking and fatigue (level 1 

‘normal driving’ used as the reference case). Data from Belgian, German and UK car drivers 

were analyzed. Each model corresponds with one of the phases of the i-DREAMS experiment 

namely:  

• Phase 1: monitoring - 120 car drivers, 5,643 trips (104,195 minutes) 

• Phase 2: real-time interventions - 125 car drivers, 6,188 trips (109,341 minutes) 

• Phase 3: real-time & post-trip interventions - 130 car drivers, 6,519 trips (117,381 

minutes) 

• Phase 4: real-time, post-trip interventions & gamification - 130 car drivers, 8,558 trips 

(169,695 minutes) 

 

To begin with, the results for phase 1 are shown in Figure 42 below. Risk is measured by 

means of the STZ levels for speeding, headway, overtaking and fatigue (level 1 ‘normal driving’ 

used as the reference case; level 2 refers to ‘dangerous driving’, while no incidents with 

regards to level 3 ‘avoidable accident driving’ were found).  

 

To begin with, the latent variable task complexity is measured by means of the environmental 

indicator of time of the day, lighting conditions and weather. Furthermore, it is shown that the 

latent coping capacity is measured by means of both vehicle state indicators, such as 

“VehicleAge” (indicating the age of the vehicle), “Gearbox” (indicating the type of gearbox; 

automatic or manual) and “Fuel_type” (indicating the type of fuel; diesel, hybrid electric, petrol). 

At the same time, operator state indicators, such as “Gender” (indicating the gender of the 

driver; male or female), “Age” (indicating the age of the driver), distance travelled, harsh 

acceleration and harsh braking are included in the SEM applied.  

 

The structural model between the latent variables shows some interesting findings: first, task 

complexity and coping capacity are inter-related with a positive correlation (regression 

coefficient=0.02) – which increases in magnitude as the driver’s progress from phases 1 

though phases 2 and 3. This positive correlation indicates that higher task complexity is 

associated with higher coping capacity implying that drivers coping capacity increases as the 
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complexity of driving task increases. Overall, the structural model between task complexity and 

risk shows a positive coefficient, which means that increased task complexity relates to 

increased risk according to the model (regression coefficient=2.17). On the other hand, the 

structural model between coping capacity and risk shows a negative coefficient, which means 

that increased coping capacity relates to decreased risk according to the model (regression 

coefficient=-0.55). 

 

 
Figure 42: Results of SEM on Risk (Speeding STZ) – Belgian, German and UK car drivers – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal 0.650; TLI is 0.570 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.091. Table 89 summarizes the model fit of SEM 

applied for speeding. 

 

Table 89: Model Fit Summary for speeding – Belgian, German and UK car drivers – experiment Phase 1 

Model Fit measures Value 

AIC 817833.112 

BIC 818194.915 

CFI 0.650 

TLI 0.570 

RMSEA 0.091 

GFI 0.918 

Hoelter's critical N (α = .05) 155.529 

Hoelter's critical N (α = .01) 171.977 

 

Residual variances details are presented in Table 90 that follows. 

 

Table 90: Residual variances for speeding – Belgian, German and UK car drivers – experiment Phase 1 

Variable Estimate Std. Error z-value P(>|z|) 

ME_AWS_time_indicator_median 0.862 0.009 100.596 < .001 

ME_Car_high_beam_median 0.812 0.008 97.405 < .001 

ME_Car_wipers_median 0.998 0.010 104.686 < .001 

Age 0.379 0.009 41.795 < .001 
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Variable Estimate Std. Error z-value P(>|z|) 

Fuel_type 1.000 0.013 76.545 < .001 

VehicleAge 1.000 0.013 76.555 < .001 

Gearbox 2.402 0.131 18.391 < .001 

GPS_distances_sum 1.220 0.023 52.503 < .001 

Gender 1.032 0.010 101.735 < .001 

DEM_evt_ha_lvl_H_mean 0.862 0.009 100.596 < .001 

STZ1 0.812 0.008 97.405 < .001 

STZ2 0.998 0.010 104.686 < .001 

STZ3 0.379 0.009 41.795 < .001 

 

The following Figures show the results of the 2nd, 3rd and 4th phase of the experiment. It is 

observed that the measurement equations of task complexity and coping capacity are fairly 

consistent between the different phases. At the same time, the loadings of the observed 

proportions of the STZ of speeding are consistent between the different phases. The structural 

model between task complexity and inverse risk (normal driving) are positively correlated 

among the four phases, while coping capacity and risk found to have a negative relationship 

in all phases of the experiment. The results for phase 2 are shown in Figure 43 below. 

 

 
Figure 43: Results of SEM on Risk (Speeding STZ) – Belgian, German and UK car drivers – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal 0.688; TLI is 0.617 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.074. Table 91 summarizes the model fit of SEM 

applied for speeding. 

 

Table 91: Model Fit Summary for speeding – Belgian, German and UK car drivers – experiment Phase 2 

Model Fit measures Value 

AIC 2.512×10+6  

BIC 2.512×10+6  

CFI 0.688 

TLI 0.617 
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Model Fit measures Value 

RMSEA 0.074 

GFI 0.938 

Hoelter's critical N (α = .05) 236.232 

Hoelter's critical N (α = .01) 261.271 

 

Residual variances details are presented in Table 92 that follows. 

 

Table 92: Residual variances for speeding – Belgian, German and UK car drivers – experiment Phase 2 

Variable Estimate Std. Error z-value P(>|z|) 

ME_AWS_time_indicator_median 0.713 0.022 31.963 < .001 

ME_Car_high_beam_median 0.970 0.006 171.072 < .001 

ME_Car_wipers_median 0.999 0.005 187.505 < .001 

Age 0.879 0.005 180.312 < .001 

Fuel_type 0.867 0.005 178.940 < .001 

VehicleAge 0.884 0.005 180.930 < .001 

Gearbox 0.873 0.005 179.664 < .001 

GPS_distances_sum 0.973 0.005 183.467 < .001 

Gender 0.120 0.009 13.409 < .001 

DEM_evt_ha_lvl_H_mean 1.000 0.008 123.875 < .001 

DEM_evt_hb_lvl_H_mean 1.000 0.008 123.385 < .001 

STZ1 -0.361 0.077 -4.690 < .001 

STZ2 0.783 0.013 60.557 < .001 

STZ3 0.991 0.005 187.483 < .001 

 

The results for phase 3 are shown in Figure 44 below. 

 
Figure 44: Results of SEM on Risk (Speeding STZ) – Belgian, German and UK car drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.637; TLI is 0.562 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.087. Table 93 summarizes the model fit of SEM 

applied for speeding. 
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Table 93: Model Fit Summary for speeding – Belgian, German and UK car drivers – experiment Phase 3 

Model Fit measures Value 

AIC 2.901×10+6  

BIC 2.901×10+6  

CFI 0.637 

TLI 0.562 

RMSEA 0.087 

GFI 0.908 

Hoelter's critical N (α = .05) 166.828 

Hoelter's critical N (α = .01) 183.169 

 

Residual variances details are presented in Table 94 that follows. 

 

Table 94: Residual variances for speeding – Belgian, German and UK car drivers – experiment Phase 3 

Variable Estimate Std. Error z-value P(>|z|) 

grpby_seconds 0.644 0.015 44.245 < .001 

ME_AWS_time_indicator_median 0.951 0.005 179.290 < .001 

ME_Car_wipers_median 0.998 0.005 193.632 < .001 

ME_Car_high_beam_median 0.999 0.005 193.861 < .001 

Age 0.639 0.004 153.179 < .001 

Fuel_type 0.997 0.005 195.131 < .001 

VehicleAge 0.674 0.004 159.380 < .001 

Gearbox 0.557 0.004 135.209 < .001 

GPS_distances_sum 0.996 0.005 191.177 < .001 

Gender 0.554 0.004 134.476 < .001 

DEM_evt_ha_lvl_H_mean 0.995 0.008 129.345 < .001 

DEM_evt_hb_lvl_H_mean 0.999 0.008 129.153 < .001 

STZ1 1.629 0.029 56.712 < .001 

STZ2 1.386 0.018 75.676 < .001 

STZ3 1.026 0.005 188.174 < .001 

 

The results for phase 4 are shown in Figure 45 below. 
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Figure 45: Results of SEM on Risk (Speeding STZ) – Belgian, German and UK car drivers – experiment Phase 4 

 

The Comparative Fit Index (CFI) of the model is equal 0.754; TLI is 0.703 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.093. Table 95 summarizes the model fit of SEM 

applied for speeding. 

 

Table 95: Model Fit Summary for speeding – Belgian, German and UK car drivers – experiment Phase 4 

Model Fit measures Value 

AIC 5.729×10+6  

BIC 5.729×10+6  

CFI 0.754 

TLI 0.703 

RMSEA 0.093 

GFI 0.899 

Hoelter's critical N (α = .05) 147.761 

Hoelter's critical N (α = .01) 162.223 

 

Residual variances details are presented in Table 96 that follows. 

 

Table 96: Residual variances for speeding – Belgian, German and UK car drivers – experiment Phase 4 

Variable Estimate Std. Error z-value P(>|z|) 

ME_Car_wipers_median 0.987 0.004 279.552 < .001 

ME_Car_high_beam_median 0.966 0.003 278.492 < .001 

grpby_seconds 0.112 0.006 18.858 < .001 

ME_AWS_time_indicator_median 0.855 0.003 265.935 < .001 

Age 0.888 0.003 275.077 < .001 

Fuel_type 0.806 0.003 270.034 < .001 

VehicleAge 0.355 0.002 189.990 < .001 

Gearbox 0.245 0.002 137.894 < .001 

GPS_distances_sum 0.917 0.003 266.204 < .001 
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Variable Estimate Std. Error z-value P(>|z|) 

Gender 0.742 0.003 265.255 < .001 

DEM_evt_ha_lvl_H_mean 0.995 0.006 168.002 < .001 

DEM_evt_hb_lvl_H_mean 1.000 0.006 167.719 < .001 

STZ1 -7.362 0.990 -7.435 < .001 

STZ2 0.974 0.005 211.023 < .001 

STZ3 0.999 0.004 280.639 < .001 

 

4.3 Summary 

 

The analyses demonstrated that in Belgium task complexity and coping capacity were 

positively correlated in the majority of the models, which means that with higher task complexity 

comes higher coping capacity, a non-intuitive result. Task complexity was found to have 

greater loadings on risk, but that effect dropped when observing trips from phase 1 to phase 4 

of the experiment. Furthermore, in many of the developed models the loadings revealed a 

spike in their values during phase 3 of the experiment and a small drop in phase 4, which 

points to the fact that the combination of real-time and post-trip feedback significantly 

influenced the relationship between task complexity, coping capacity and risk, whereas 

gamification in some cases might have confused drivers. It should be noted that there might 

be the danger for drivers to have been experienced a learning effect through the stages, as 

they gained experience and familiarity with the driving task. However, if the drivers did not go 

through the stages in the same order, it was possible that their results in later phases may 

have been different. Thus, the same order of phases for all drivers was used in order to draw 

a definitive conclusion. 

 

In UK, loadings from the SEM models demonstrate that coping capacity and task complexity 

were positively correlated in phase 1 and 3, but had no significant relationship in phase 2 and 

phase 4. Similarly with Belgium, task complexity had a stronger impact on risk, with phase 3 

showing the greatest effect on driving risk. The difference in the relationship between variables 

across different countries could be due to a variety of factors, such as cultural differences, 

economic factors, or variations in driving behaviors and infrastructure. 

 

In Germany, the model for speeding revealed a positive correlation of task complexity and 

coping capacity, but with the largest correlation on phase 2 of the experiment, where real-time 

warnings were introduced. At the end of the experiment (phase 4), coping capacity was found 

to have its largest correlation with risk, while task complexity had its greatest loading during 

phase 3 of the experiment. 

 

In Greece, i phase 1, task complexity and coping capacity were inter-related with a positive 

correlation which implies that drivers’ coping capacity increases as the complexity of driving 

task increases. On the other hand, in phase 4, task complexity and coping capacity were 

negatively correlated. The effect of task complexity was generally greater than the one of 

coping capacity, whereas the peak of the contributions from task complexity and coping 

capacity was observed in phase 4. 

 

Lastly, in Portugal, task complexity was positively associated with the latent variable risk, which 

was defined by different levels of headway. The higher the complexity, the higher the chance 

to drive normally and more carefully. On the other hand, coping capacity was negatively 

associated with risk (or normal driving) which implied that higher coping capacity might 
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encourage normal driving and reduce risk. Task complexity and coping capacity were inter-

related with a positive correlation – which reduced in magnitude as the driver’s progress from 

phase 1 though phase 4. Similar patterns of professional drivers (in terms of loadings and signs 

among phases for Belgian truck and Portuguese bus drivers) were observed. 

 

Looking at the observed risk factors, it was demonstrated that for the speeding and the 

headway models, the correlation of task complexity and coping capacity was positive, with the 

main exceptions being observed in phases 2 and 3 in Greece, Germany and Belgium. For 

harsh accelerations in Belgian trucks, the correlation of coping capacity and task complexity 

was in general positive along the same magnitude for all phases. 

 

According to the overall model applied for cars, the latent variable risk was measured by means 

of the STZ levels for speeding, headway, overtaking and fatigue. The positive correlation of 

task complexity and coping capacity implied that drivers’ coping capacity increased as the 

complexity of driving task increases. This finding may be a sign of risk compensating behavior 

of drivers when the complexity of driving task is high, and is in line with the theoretical model 

of i-DREAMS, validating the assumption that risk (or its’ inverse, the normal driving) is an 

outcome of the interaction between the two variables in addition to their separate effect. A 

positive correlation of risk with the STZ indicators was identified in phase 1, while a negative 

correlation was found in phase 4 which showed that the latent variable risk could in fact be 

representing an inverse of risk, more like a normal driving. 

 

With regards to the overall model, results showed that higher task complexity levels lead to 

higher coping capacity. This means that drivers, when faced with difficult conditions, tend to 

regulate well their capacity to apprehend potential difficulties, while driving. It was revealed 

that the SEM applied between task complexity and inverse risk were positively correlated in all 

phases of the experiment, which means that increased task complexity relates to increased 

risk. On the other hand, coping capacity and inverse risk found to have a negative relationship 

in all phases, which means that increased coping capacity relates to decreased risk. Overall, 

the interventions had a positive influence on risk, increasing the coping capacity of the 

operators and reducing the risk of dangerous driving behavior.  
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5 Other analyses 

5.1 Real-time 
 

5.1.1 Neural Networks 
 

In order to investigate if real-time prediction of the STZ is also feasible, two feed-forward multi-

layer perceptrons were also applied on a subset from the total dataset of the German car 

drivers (Ndrivers=30, trips=5340). In order to identify the effect of phase on the prediction, the 

analysis considered phase as an independent variable and the analysis was performed for the 

whole dataset, rather than per phase as the analyses in Chapter 4. The algorithms, had an 

accuracy of more than 94% with a false alarm rate of up to only 6%. The Neural Networks 

(NNs) classification algorithms acted as preparatory step towards the LSTM classification that 

is shown in the next subsection. The predictors utilized for the models are shown in Table 97. 

 

Table 97: Predictors utilized for Neural Networks 

Variables Headway Speeding 

Phase x x 

SQ_Age x x 

ME_Car_speed_mean x x 

DEM_evt_ha_lvl_L_mean x x 

DrivingEvents_Map_lvl_L_mean x  
iDreams_Headway_Map_level_total_mean x  
iDreams_Speeding_Map_level_0_mean  x 

iDreams_Speeding_Map_level_total_mean  x 

 

After the application of the models, the identified confusion matrix was produced for the two 

independent variables (i.e. headway and speeding), as shown in Table 98. 

 

Table 98: Confusion data matrix for headway and speeding 

Variable TP FP FN TN Sum 

Headway 33378 0 1400 82 34860 

Speeding 2178 1987 63 30632 34860 

 

From the confusion matrix, the following metrics were estimated and are depicted in Table 99. 

 

Table 99: Assessment of classification model for headway and speeding 

Variable Accuracy Precision Recall f1-score G-Means FA Rate 

Headway 95.98% 100.00% 95.97% 97.95% 97.97% 0.00% 

Speeding 94.12% 52.29% 97.19% 68.00% 71.29% 6.09% 

 

Figure 46 illustrates the performance of Neural Network classification on headway and 

speeding STZ level.  
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Figure 46: Performance of Neural Network classification for headway and speeding 

 

The results shown in Figure 46 are in line with relevant literature on real-time safety evaluations 

(Silva et al., 2020), as well as previous project analyses utilized on simulator data (Garefalakis 

et al., 2022). Precision, f1-score and G-means metrics are probably lower due to the greater 

amount of ‘normal’ STZ level instances as compared with ‘dangerous’ conditions. 

 

5.1.2 Long Short-Term Memory Networks 
 

5.1.2.1 Speeding 

 

Following the development of simple NN classifiers, Long Short-Term Memory Networks 

(LSTMs) were trained in order to predict ‘dangerous’ speeding level. As shown in Table 100, 

the speeding LSTM did not achieve significant results, only reaching 57.82% accuracy after 

the developed trials. Although LSTM is often used for sequence modeling, it is worth 

mentioning that the sequence may not always be explicitly visible in the predictors themselves. 

In some cases, the sequence may be implicit in the way that the data is organized or structured. 

For example, in time series data, the sequence is often defined by the order in which the data 

was collected over time. In this case, the LSTM is used to model and make predictions based 

on the temporal dependencies and patterns in the data. In other cases, the sequence may be 

less obviously related to time, but still exist in the way that the data is organized. For example, 

in natural language processing, the sequence may be defined by the order of words in a 

sentence or text document. Thus, the sequence is implicit in the way that the data was 

collected or organized, even if it's not immediately apparent from the predictors themselves. 

An LSTM could still be used in this case to model and make predictions based on the implicit 

sequence in the data. The predictors utilized for the models applied for speeding are shown in 

Table 100. 
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Table 100: Predictors utilized for Long Short-Term Memory Networks for speeding 

Variables v1 v2 v3 v4 v5 

Phase x x x x x 

SQ_Age x x x x x 

GPS_spd_mean x   x x 

ME_Car_speed_mean x x  x x 

Driving Events_Map_evt_ha_mean x x x  x 

DEM_evt_ha_lvl_L_mean x x x   

iDreams_Speeding_Map_level_0_mean x x x   

iDreams_Speeding_Map_level_1_mean     x 

iDreams_Speeding_Map_level_total_mean x x x x x 

iDreams_Headway_Map_level_total_mean    x  

Accuracy (%) 57.82 57.82 57.82 57.11 57.82 

 

5.1.2.2 Headway 

 

Similarly with speeding, LSTMs could not find the dangerous level of headway as well. Perhaps 

this is because of a lack of data or speed-related indicators to identify the different levels. The 

predictors utilized for the models applied for headway are shown in Table 101. 

 

Table 101: Predictors utilized for Long Short-Term Memory Networks for headway 

Variables v1 v2 v3 v4 

Phase x X x x 

SQ_Age x X x x 

GPS_spd_mean x  x  

ME_Car_speed_mean  X x x 

DrivingEvents_Map_lvl_H_mean x  x  

DrivingEvents_Map_lvl_L_mean  X   

DEM_evt_ha_lvl_L_mean  X   

iDreams_Headway_Map_level_-1_mean   x  

iDreams_Headway_Map_level_0_mean x    

iDreams_Headway_Map_level_total_mean x X x x 

iDreams_Speeding_Map_level_total_mean    x 

Accuracy (%) 57.39 55.5 57.82 57.82 

 

It should be noted that an accuracy of less than 60% may not be sufficient for a high-

performance intervention system, as it could result in a relatively high number of false alarms 

or missed detections. However, the required level of accuracy depends on the specific use 

case and the risks involved. For instance, in a system designed to detect potential crashes or 

safety hazards, a higher level of accuracy may be necessary in order to ensure the safety of 

drivers and other road users. As for the use of prediction models by an intervention system, 
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the output of the models can be used in a variety of ways. In particular, the prediction models 

can generate real-time alerts or warnings to drivers or other stakeholders, such as traffic 

control centers or emergency responders. The models can also be used to trigger automated 

interventions, such as adjusting the speed of a vehicle or activating safety features like 

automatic braking systems. In addition, the output of prediction models can be used for 

ongoing analysis and monitoring of road safety performance, in order to identify trends and 

patterns that can inform future interventions and improvements. 

 

5.2 Post-trip 
 

5.2.1 Grouped Random Parameters Binary Logit Model 

 

5.2.1.1 Near-Misses 

 
Occurrence of a near-miss is one of the indicators of risk that can be used in i-DREAMS. A 
near-miss can be defined in various ways (Papazikou et al., 2019). For the purpose of analysis 
in i-DREAMS, near-miss is defined as a binary indicator in which (in any 60 seconds interval) 
at least two harsh events occur including harsh acceleration, harsh braking, or harsh cornering. 
 
Four separate models were fitted for the occurrence of near-misses, one for each phase of the 
experiment. The sample used was that of Belgian car drivers. More specifically: 

• Phase 1: 29 drivers, 456 trips (3,735 minutes) – 19 observed near-misses 

• Phase 2: 35 drivers, 462 trips (3,673 minutes) – 23 near-misses 

• Phase 3: 36 drivers, 424 trips (3,584 minutes)  – 24 near-misses 

• Phase 4: 30 drivers, 436 trips (3,659 minutes) – 26 near-misses 
 
The results of each phase are shown in the following Table 102, Table 103, Table 104 and 
Table 105. In order to show the evolution of models over the four phases, shaded cells in each 
phase are the differences of the parameter estimates (either one has become significant, or 
one has become insignificant) with the previous phase.  
 

Table 102: GRPL model for near-misses – Belgian car drivers – Experiment phase 1 

Variable Estimate Std.Error z value p value 

Years of holding a driving licence -0.280 0.023 -12.423 0.000 

Night-time driving -1.847 0.742 -2.488 0.013 

Long headway (more than 2 seconds) -6.208 1.979 -3.137 0.002 

Inter-Beat Interval (IBI) [mean] 0.418 0.218 1.917 0.055 

Inter-Beat Interval (IBI) [SD] -0.001 0.336 -0.003 0.997 

Driving faster than the speed limit in urban 
areas over the last year [mean] 

-4.278 1.229 -3.480 0.001 

Driving faster than the speed limit in urban 
areas over the last year [SD] 

1.697 0.867 1.958 0.050 

Violation: used a hand-held mobile phone while 
driving over the last year [mean] 

0.253 0.159 1.590 0.112 

Violation: used a hand-held mobile phone while 
driving over the last year [SD] 

-1.915 0.266 -7.190 0.000 
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Variable Estimate Std.Error z value p value 

Fixed effect (trip) -0.930 4.412 -0.211 0.833 

Goodness of fit   

LL0 -468.5  
  

LL -129.5  
  

P 10  
  

N 3735  
  

AIC 279.0  
  

BIC 294.7  
  

 

The fitted model of experiment phase 1 performs well as indicated by the large reduction of 

the LL vs. the initial LL0. A number of explanatory variables are significant in terms of their 

impact on the probability of near-miss, including driver related variables (including 

physiological and self-reported behavioral indicators), trip related variables but also 

observation / minute level variables: 

• The years of holding a driving license are associated with reduced probability of near 

miss, which is intuitive as more experienced drivers are known to have lower 

involvement in critical events. 

• A higher mean IBI is associated with higher probability of near miss; although this effect 

is marginally significant at 95%, it may reflect the effects of driver sleepiness or fatigue, 

which is known to be associated with higher IBI (slower heart rate). The variance of this 

random parameter is not statistically significant indicating that the effect of IBI on near-

misses is almost the same for all drivers. 

• Driving faster than the speed limit in urban areas over the last year is associated with 

a lower probability of near-miss over this sample of drivers; this effect has a significant 

random variation, as indicated by its SD estimate, however the overall distribution lies 

within the positive scale. It can be assumed that more frequent speed limit exceedance 

in urban areas may be associated with lower traffic volumes, which leads to fewer 

interactions with other vehicles and other road users. This may also due to the fact that 

drivers actually had a real crash rather than a near-miss. 

• The mean parameter estimate of using a mobile phone while driving over the last year 

is not statistically significant, however its standard deviation over this sample significant 

and negative. This indicates that for half of the trips mobile phone use is associated 

with higher probability of near-miss, while the opposite is the case for the other half. 

This may reflect the known mechanism of mobile phone use which may on the one 

hand lead to impaired reaction time and crash probability, but on the other hand indicate 

a successful compensatory behavior of drivers, who may reduce their speed and 

increase their headway while using the mobile phone. 

• Night time driving is associated with lower probability of near miss, possibly due to 

lower traffic volumes at night. 

• Finally, headways longer than 2 seconds over the 60-second intervals are found to 

reduce the probability of near-misses, which is intuitive. 



D6.3. An integrated model of driver-vehicle-environment interaction and risk 

©i-DREAMS, 2019  Page 126 of 174 

• The fixed variable “trip” is associated with lower probability of near-miss, indicating that 

drivers who performed more trips during the experiment were less likely to have a near-

miss. 

Table 103: GRPL model for near-misses – Belgian car drivers – Experiment phase 2 

Variable Estimate Std.Error z value p value 

Gender: male -1.468 0.322 -4.558 0.000 

Years of holding a driving licence -0.065 0.012 -5.337 0.000 

Night-time driving -1.023 0.600 -1.706 0.088 

Long headway (more than 2 seconds) -2.751 0.934 -2.946 0.003 

Driving more than 10 km/h over the limit 2.184 0.359 6.083 0.000 

Inter-Beat Interval (IBI) [mean] 0.814 0.210 3.871 0.000 

Inter-Beat Interval (IBI) [SD] 0.001 0.387 0.001 0.999 

Driving faster than the speed limit in urban 
areas over the last year [mean] 

-0.589 0.216 -2.730 0.006 

Driving faster than the speed limit in urban 
areas over the last year [SD] 

0.000 0.250 0.000 1.000 

Violation: used a hand-held mobile phone 
while driving over the last year [mean] 

-0.579 0.185 -3.133 0.002 

Violation: used a hand-held mobile phone 
while driving over the last year [SD] 

0.000 0.360 -0.001 0.999 

Fixed effect (trip)     

Goodness of fit     

LL0 -350.6  
  

LL -148.9  
  

P 12  
  

N 3673  
  

AIC 321.8  
  

BIC 340.6  
  

 

The fitted model for the 2nd phase of the experiment (receiving real-time feedback through the 

i-DREAMS gateway) reveals the following differentiations compared to the 1st phase (no 

intervention): 

• The male gender is associated with lower probability of near miss in this phase. It 

should be noted that males are over-represented in the sample, so this effect may 

express the general effectiveness of the real-time intervention. 

• A higher mean IBI is now clearly associated with higher probability of near miss, 

suggesting that the real-time interventions may not fully address the sleepiness/fatigue 

risk, or that there are other human factors related to IBI which are not explicitly 

identified. 
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• Driving faster than the speed limit in urban areas over the last year is associated with 

a lower probability of near-miss over this sample of drivers, and its random variation is 

now non-significant. 

• At the same time, however, the real-time measurement of exceeding the speed limit 

more than 10 Km/h over one minute is associated with higher probability of near-miss, 

suggesting that the interventions seems less effective at higher stages of the STZ. 

• The mean parameter estimate of Using a mobile phone while driving over the last year 

is now statistically significant and reducing the probability of near-miss. It appears that 

the effect of compensatory behavior of mobile phone use while driving is stronger when 

drivers receive real-time interventions, although these are not targeting mobile phone 

use in real time. 

 

It is noted that the effect of headways is still significant in this model, but with a smaller 

magnitude, suggesting the effectiveness of the headway warnings received by drivers. 

 

Table 104: GRPL model for near-misses – Belgian car drivers – Experiment phase 3 

Variable Estimate Std.Error z value p value 

Gender: male -1.674 0.356 -4.707 0.000 

Years of holding a driving licence -0.080 0.012 -6.783 0.000 

Night-time driving -0.930 0.762 -1.220 0.222 

Long headway (more than 2 seconds) -2.247 0.929 -2.418 0.016 

Driving more than 10 km/h over the limit 1.952 0.340 5.733 0.000 

Inter-Beat Interval (IBI) [mean] 0.784 0.188 4.178 0.000 

Inter-Beat Interval (IBI) [SD] -0.245 0.201 -1.219 0.223 

Driving faster than the speed limit in urban 
areas over the last year [mean] 

-0.653 0.250 -2.614 0.009 

Driving faster than the speed limit in urban 
areas over the last year [SD] 

-0.006 0.318 -0.020 0.984 

Violation: used a hand-held mobile phone 
while driving over the last year [mean] 

-0.588 0.191 -3.073 0.002 

Violation: used a hand-held mobile phone 
while driving over the last year [SD] 

0.000 0.258 0.001 1.000 

Fixed effect (trip) 1.093 0.773 1.414 0.157 

Goodness of fit   

LL0 -364.7  
  

LL -157.1  
  

P 12  
  

N 3584  
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Variable Estimate Std.Error z value p value 

AIC 338.2  
  

BIC 356.8  
  

 

The model fitted for the 3rd phase of the experiment, in which post-trip feedback is added, 

presents one main differentiation: the impact of night time driving becomes non significant. The 

effect of long headways is statistically significant again, together with the effect of driving more 

than 10Km/h over the speed limit, without notable differentiation in their magnitude. It can be 

assumed that the effect of post-trip feedback together with the real-time interventions does not 

show strikingly different results from the previous phase. 

 

Table 105: GRPL model for near-misses – Belgian car drivers – Experiment phase 4 

Variable Estimate Std.Error z value p value 

Gender: male -3.270 0.765 -4.275 0.000 

Years of holding a driving licence -0.072 0.019 -3.821 0.000 

Night-time driving - - - - 

Long headway (more than 2 seconds) -3.677 1.276 -2.883 0.004 

Driving more than 10 km/h over the limit 1.319 0.533 2.477 0.013 

Inter-Beat Interval (IBI) [mean] 0.540 0.225 2.395 0.017 

Inter-Beat Interval (IBI) [SD] -0.482 0.492 -0.979 0.327 

Driving faster than the speed limit in urban 
areas over the last year [mean] 

-2.926 1.324 -2.210 0.027 

Driving faster than the speed limit in urban 
areas over the last year [SD] 

1.500 0.632 2.373 0.018 

Violation: used a hand-held mobile phone while 
driving over the last year [mean] 

0.144 0.245 0.587 0.557 

Violation: used a hand-held mobile phone while 
driving over the last year [SD] 

1.013 0.394 2.569 0.010 

Fixed effect (trip) -18.377 6.176 -2.976 0.003 

Goodness of fit  
  

LL0 -387.3    

LL -137.4  
  

P 12  
  

N 3659  
  

AIC 298.8  
  

BIC 317.6  
  

 

The results of the respective model of the 4th phase of the project, in which real-time and post-

trip feedback is combined with gamification show no substantial difference from the previous 
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two phases. Only minor differentiations occur, e.g. the variance of the impact of self-reported 

use of mobile phone over the last year becomes significant, as in the 1st phase model. 

 

It appears that lighter traffic conditions, as those of night-time driving and speeding in urban 

areas reduce the probability of near-miss at the driver habits level. On the other hand, at the 

microscopic level, drivers exceeding the speed limit by more than 10Km/h within 60 seconds 

of a trip are more likely to have a near-miss while doing so, while on the contrary drivers 

keeping longer headways within 60 seconds of trip are less likely to have a near-miss. 

Physiological indicators that are known to be associated with sleepiness increase the 

probability of near-miss. There is heterogeneity among drivers as regards the impacts of self-

reported behaviors and habits, as well as the impact of physiological indicators, without 

however changes on the sign of these impacts (positive or negative) in each case. 

 

Overall, it can be concluded that near-misses appear to be random events whose explanatory 

factors do not differentiate between different phases of the experiment. This finding can be 

attributed to the adopted definition of near-misses, i.e. the occurrence of two harsh events in 

60 seconds of driving, which may not be representative of all types of near-misses. It is noted, 

however, that these explanatory factors concern the near-misses which did occur, and do not 

directly relate to the effectiveness of the applied interventions as per this type of outcome nor 

do they relate to actual crashes that may have occurred. In fact, the number of this type of 

near-misses remains fairly constant along the four phases of the experiment, and it is 

proportional to the number of drivers / minutes of trips recorded in each phase. 

 

5.2.2 Ordered Probit Fractional Split Model 

 

5.2.2.1 Speeding 

 

Speeding (i.e. driving over the speed limit) is one of the indicators of risk that is used in i-

DREAMS. According to this definition, this indicator of risk is discrete and is ordered. The STZ 

for speeding has been defined in i-DREAMS as: 

• STZ 1: driving less than 5 km/h over the speed limit 

• STZ 2: driving between 5 km/h and 10 km/h over the speed limit and 

• STZ 3: driving more than 10 km/h over the speed limit 

 

Four separate models were fitted for the propensity of speeding as per the above model 
(Ordered Probit Fractional Split – OPFS), one for each phase of the experiment. More 
specifically: 

• Phase 1: monitoring - 39 drivers, 1173 trips (23,725 minutes) 

• Phase 2: real-time interventions - 43 Belgian car drivers, 1549 trips 

• Phase 3: real-time & post-trip interventions - 51 Belgian car drivers, 1973 trips (40,121 

minutes) 

• Phase 4: real-time, post-trip interventions & gamification - 49 Belgian car drivers, 2468 

trips (52,077 minutes) 

 
The results of each phase are shown in the following Table 106, Table 107, Table 108 
andTable 109. In order to show the evolution of models over the four phases, shaded cells in 
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each phase are the differences of the parameter estimates (either one has become significant, 
or one has become insignificant) with the previous phase.  
 

Table 106: OPFS model for speeding – Belgian car drivers – Experiment phase 1 

Variable Estimate Std.Error z value p value 

Age -0.193 0.027 -7.012 0.000 

Gender: male 0.059 0.024 2.449 0.014 

Education: college or above -0.124 0.033 -3.744 0.000 

Driving style: sportive 0.201 0.023 8.708 0.000 

Belief about driving -0.058 0.011 -5.164 0.000 

Perceived competence: general driving skills 
than the average driver 

0.067 0.012 5.740 0.000 

Familiarity with the benefits of safe driving -0.032 0.012 -2.640 0.008 

Violation: driving faster than the speed limit 
over the last year 

0.055 0.012 4.642 0.000 

Average weekly km driven on rural roads 0.150 0.026 5.731 0.000 

Night-time driving 0.201 0.026 7.797 0.000 

Fixed effect 1: driver 0.004 0.001 3.875 0.000 

Fixed effect 2: trip -0.233 0.443 -0.527 0.598 

Threshold 1: STZ1 to STZ2 1.090 0.062 17.581 0.000 

Threshold 2: STZ2 to STZ3 1.292 0.062 20.770 0.000 

Goodness of fit   

LL0 -11441.6 

   

LL -11224.3 

   

P 14.0 

   

N 23725.0 

   

AIC 22476.6 

   

BIC 22509.9 

   

 

A number of explanatory variables are significant in terms of their impact on the propensity of 

exceeding the STZ levels of speeding, including driver related variables (including 

demographic and self-reported behavioral indicators), trip related variables and environment 

related variables: 

• Older drivers and drivers with college education or higher are less likely to commit 

higher levels of the STZ for speeding over a minute, possibly due to more conservative 

driving 

• Male drivers, as well as drivers with sportive driving style, driving faster than the speed 

limit over the last year and higher perceived competence compared to the average 

driver are more likely to exhibit higher levels of the STZ. All these variables reflect the 
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confident and more aggressive behaviors that are known to be associated with 

violations. 

• Drivers who think driving is very dangerous and those who are familiar with the benefits 

of safe driving have lower propensity of exceeding the normal STZ of speeding. 

• A higher exposure per week on rural roads is associated with higher propensity of 

speeding, possibly because rural roads have lower traffic and moderate speed limits, 

leading familiar drivers to tend to exceed speed limits in higher levels. 

• Night time driving also leads to higher propensity of speeding, possibly due to lower 
traffic during these hours. 

 

During the 2nd phase of the experiment (see Table 107), the results remain practically the 

same. The only difference is that the effect of exposure on rural roads becomes non significant. 

This might be an indication that the real-time intervention has counterbalanced the effect of 

experience and exposure. 

 

Table 107: OPFS model for speeding – Belgian car drivers – Experiment phase 2 

Variable Estimate Std.Error z value p value 

Age -0.047 0.012 -3.900 0.000 

Gender: male 0.045 0.023 1.943 0.052 

Education: college or above -0.098 0.025 -3.861 0.000 

Driving style: sportive 0.031 0.022 1.415 0.157 

Belief about driving -0.070 0.010 -6.964 0.000 

Perceived competence: general driving skills 
than the average driver 

0.047 0.010 4.723 0.000 

Familiarity with the benefits of safe driving -0.010 0.011 -0.982 0.326 

Violation: driving faster than the speed limit 
over the last year 

0.110 0.011 9.766 0.000 

Average weekly km driven on rural roads -0.007 0.012 -0.555 0.579 

Night-time driving 0.161 0.028 5.770 0.000 

Fixed effect 1: driver 0.000 0.001 0.392 0.695 

Fixed effect 2: trip -0.747 0.379 -1.971 0.049 

Threshold 1: STZ1 to STZ2 0.925 0.053 17.590 0.000 

Threshold 2: STZ2 to STZ3 1.081 0.053 20.533 0.000 

Goodness of fit   

LL0 -13715.9 

   

LL -13572.3 

   

P 14 

   

N 30188 

   

AIC 27172.6 
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Variable Estimate Std.Error z value p value 

BIC 27207.3 

   

 

In the model of the 3rd phase of the experiment (real-time interventions and post-trip feedback 

through the mobile phone app – see Table 108) there is an interesting finding; the demographic 

variables of age and education level also become non significant. This suggests that 

personality traits (beliefs, attitudes, aggressive driving and violations) remain explanatory 

factors of the propensity of speeding despite the presence of the intervention scheme. In this 

model, night time driving is also not associated with exceeding safe STZ boundaries. 

 

Table 108: OPFS model for speeding – Belgian car drivers – Experiment phase 3 

Variable Estimate Std.Error z value p value 

Age -0.002 0.010 -0.164 0.870 

Gender: male 0.052 0.021 2.464 0.014 

Education: college or above 0.009 0.020 0.475 0.635 

Driving style: sportive 0.165 0.018 9.203 0.000 

Belief about driving -0.059 0.008 -7.042 0.000 

Perceived competence: general driving skills 
than the average driver 

0.048 0.008 5.739 0.000 

Familiarity with the benefits of safe driving -0.034 0.008 -4.110 0.000 

Violation: driving faster than the speed limit 
over the last year 

0.029 0.010 3.029 0.002 

Average weekly km driven on rural roads -0.022 0.011 -2.069 0.039 

Night-time driving - - - - 

Fixed effect 1: driver 0.001 0.001 1.501 0.133 

Fixed effect 2: trip -0.380 0.378 -1.004 0.316 

Threshold 1: STZ1 to STZ2 1.054 0.045 23.403 0.000 

Threshold 2: STZ2 to STZ3 1.185 0.045 26.260 0.000 

Goodness of fit   

LL0 -18417.7 

   

LL -18277.8 

   

P 13 

   

N 40121 

   

AIC 36581.6 

   

BIC 36615.4 

   

 

Finally, in the 4th phase of the experiment (where gamification is introduced – see Table 109), 

there is only slight variation of the previous findings. Age is significant again, college education 
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is marginally significant, and familiarity with the benefits of safe driving becomes non 

significant. 

 

Table 109: OPFS model for speeding – Belgian car drivers – Experiment phase 4 

Variable Estimate Std.Error z value p value 

Age -0.042 0.010 -4.092 0.000 

Gender: male 0.068 0.018 3.832 0.000 

Education: college or above 0.032 0.018 1.798 0.072 

Driving style: sportive 0.041 0.016 2.560 0.010 

Belief about driving -0.046 0.007 -6.237 0.000 

Perceived competence: general driving 
skills than the average driver 

0.036 0.008 4.608 0.000 

Familiarity with the benefits of safe driving -0.002 0.008 -0.207 0.836 

Violation: driving faster than the speed limit 
over the last year 

0.045 0.008 5.398 0.000 

Average weekly km driven on rural roads 0.021 0.010 2.087 0.037 

Night-time driving - - - - 

Fixed effect 1: driver 0.000 0.000 -0.894 0.371 

Fixed effect 2: trip -0.310 0.378 -0.821 0.411 

Threshold 1: STZ1 to STZ2 1.096 0.039 28.080 0.000 

Threshold 2: STZ2 to STZ3 1.231 0.039 31.449 0.000 

Goodness of fit   

LL0 -22399.4 

   

LL -22308.0 

   

P 12 

   

N 52077 

   

AIC 44640.0 

   

BIC 44672.6 

   

 

Although there is indication that the introduction of interventions reduces the role of the 

environmental variable (night-time) and the drivers’ general characteristics, and strengthens 

the role of personality characteristics, the small samples do not allow for a final conclusion. It 

is possible that these fluctuations are due to the differences in sample sizes and other 

unobserved factors. 

 

It is indicated however that this type of model is appropriate for monitoring the proportions the 

STZ levels at a relatively small time-scale, which gives a more accurate representation of 

speeding behavior that what would have been obtained by a discrete ordinal model. 
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6 Conclusions 

This deliverable aimed at developing an integrated model of driver-vehicle-environment 

interaction and risk by: 

 

(i) identifying the most critical precursors of risk from both the task complexity and the coping 

capacity side, 

(ii) implement an integrated model for understanding the effect of the inter-relationship of task 

complexity and coping capacity with risk, and 

(iii) compare the performance of such models on different countries. 

 

The ultimate goal of the analyses in this project was to identify the impact that the balance 

between task complexity and coping capacity has on the risk of a crash. For that reason, a 

vast library of data from naturalistic driving experiments was created in five countries (i.e. 

Belgium, UK, Germany, Greece and Portugal) to investigate the most prominent driving 

behavior indicators available, including speeding, headway, overtaking, duration, distance and 

harsh events (i.e. harsh acceleration and harsh braking).  

 

The analysis team answered several of the research questions dealing with the 

comprehension of the relationship between task complexity and coping capacity, which can be 

summarized in the following conclusions: 

 

• For the majority of the risk factors investigated it was found that higher task complexity 

levels lead to higher coping capacity by the vehicle operators. This means that drivers 

when faced with difficult conditions tend to regulate well their capacity to react to 

potential difficulties, while driving. 

• When looking into the relationship between the interaction of task complexity and 

coping capacity and its effect on risk, in Belgium, Greece and Germany, it was shown 

that the influence of task complexity on risk was greater than the effect of coping 

capacity. Mixed results were observed in the UK and Portugal.  

• The comparison of models fitted on data from the different phases of the experiments, 

validated that in the majority of the countries the interventions had a positive influence 

on risk compensation, increasing the coping capacity of the operators and reducing the 

risk of dangerous driving behavior. 

• Predictive real-time analyses demonstrated that it is possible to predict the level of STZ 

with an accuracy of up to 95%, while post-trip explanatory studies showcased the 

capacity of state-of-the-art econometric models to shed light on the complex 

relationship of risk with the interdependence of task complexity and coping capacity. 

 

An overview of the effects found for task complexity and coping capacity on risk among all 

available data can be found in Table 110 below. A positive sign means a positive correlation 

of task complexity or coping capacity with risk while a negative sing indicates a negative 

relationship between task complexity or coping capacity and risk. 
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Table 110: Effect of task complexity and coping capacity on risk per indicator/ phase/country/transport mode 

Country 
(transport mode) 

Ιndicator 
Phase 1 Phase 2 Phase 3 Phase 4 

TC CC TC CC TC CC TC CC 

Belgium (cars) 
speeding - + - + - + + + 

headway - + - + - - - + 

Belgium (trucks) 

speeding - - - - - - - - 

harsh acceleration + - + - + - + - 

headway - - - - - - + - 

UK (cars) headway - - + - - - - - 

Germany (cars) speeding + - + - + - + + 

Greece (cars) speeding + -   + - + - 

Portugal (buses) headway + - - - + - + - 

Overall (cars) 

speeding, 
headway, 
overtaking, 
fatigue 

+ - + - + - + - 

*TC refers to Task Complexity and CC refers to Coping Capacity 

 

From Table 110, it can be concluded that in the majority of the models the intuitive effect that 

task complexity along with coping capacity has on risk has been validated. It is demonstrated 

that in most of the models, increased task complexity decreases risk, while increased coping 

capacity decreases risk. The majority of ‘inconsistent’ effects are observed in phase 2 and 

phase 4 of the experiments, probably due to some of the drivers being affected by the 

introduction of real-time warnings or the gamification features of the i-DREAMS app.  

 

It is worth noting that the relationship between task complexity and risk, as well as coping 

capacity and risk, may depend on the specific context and the type of task or activity involved. 

In general, higher task complexity may increase the potential for errors or crahses, as it can 

lead to greater cognitive or physical demands on the individual performing the task. However, 

it is also possible that increased experience or training can help to mitigate the risk associated 

with higher task complexity. Similarly, a higher coping capacity may help to reduce the risk of 

crahses or errors, as it can provide individuals with the resources or strategies needed to 

effectively manage challenging or stressful situations. However, the effectiveness of coping 

strategies may depend on the specific context and the individual's ability to apply them in real-

world situations. Overall, it is important to consider the specific factors and context involved 

when assessing the relationship between task complexity, coping capacity, and risk. 

 

The developed models presented in this deliverable can be further exploited by researchers 

and practitioners. Additional task complexity and coping capacity factors, such as road type, 

more personality traits and driving profiles could be utilized for example. Furthermore, data 

could be enhanced by including additional measurements such as electrocardiogram and 

electroengephalogram readings, traffic conflicts and transport emissions . Finally, additional 

methodologies such as imbalanced learning and models taking into account unobserved 

heterogeneity could be explored for the understanding of the relationship between task 

complexity, coping capacity and crash risk. 

 

On the basis of the i-DREAMS results, a set of policy recommendations at different levels (EU, 

national and local authorities, industry, etc.) can be provided. Some potential policy 

recommendations based on the i-DREAMS results include: 
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• Developing and promoting standardized guidelines and best practices for driver 

monitoring and assistance systems, in order to improve their effectiveness and ensure 

consistency across different vehicles and manufacturers. 

• Encouraging investment in research and development of new technologies and 

approaches for driver monitoring and assistance, in order to further improve their accuracy 

and effectiveness. 

• Establishing clear regulations and standards for driver monitoring and assistance 

systems, in order to ensure their safety and effectiveness in real-world situations. 

• Providing education and training programs for drivers and other road users, in order to 

increase awareness of the benefits and limitations of driver assistance systems, and to 

promote safe and responsible use of these technologies. 

• Developing and implementing targeted interventions and policies to address specific 

road safety challenges identified by the i-DREAMS study, such as distraction, fatigue, and 

impaired driving. 

 

Overall, the i-DREAMS study can provide valuable guidance and evidence-based 

recommendations for policymakers and stakeholders working to improve road safety and 

promote the widespread adoption of effective driver assistance and monitoring systems. 

 

The i-DREAMS system itself can directly improve safety once launched, but also additional 

safety benefits can be envisaged in the medium and long term as it is built on and further 

adapted to different contexts and industry needs, thanks to its modular nature. The 

effectiveness of the i-DREAMS system may depend on a variety of factors, including the 

specific context in which it is implemented, the quality and accuracy of the data used to train 

the system, and the degree of integration and adoption by drivers and other stakeholders. 

 

The integrated treatment of task complexity, coping capacity and risk can improve behavior 

and safety of all travelers and all transport modes, through the unobtrusive and seamless 

monitoring of behavior. Moreover, the feedback and training of travelers can also improve 

travel behavior, shift to safer and eco-friendly modes and eventually reduce their risk. Thus, 

authorities may use data systems at population level to plan mobility and safety interventions, 

set up road user incentives, optimize enforcement and enhance community building on safe 

traveling. 

 

All in all, it is expected that the i-DREAMS platform, as a part of an Intelligent Transportation 

System (ITS) which is the cornerstone of the Information and Communication Technology 

(ICT) infrastructure, will improve the efficiency of traffic and road safety (i.e. reducing the 

number of road crashes, or the severity of crashes in the form of a decrease in fatalities, 

seriously injured and injured, or the number of crashes involving unprotected traffic participants 

- motorcyclists, cyclists and pedestrians). The introduction of this multidisciplinary approach 

(i.e. the integrated treatment of task complexity, coping capacity and risk) could be a solid base 

for the road transport safety planning and governance as well as the use of friendly techniques 

like Internet of Things (IoT) or gamification tools can be promoted for better travellers’ 

connectivity and interaction with the systems and devices. 
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Annex 1: Descriptive statistics for the available parameters 

Belgium (Cars) 
Table 111: Descriptive statistics for the available parameters in database used for Belgium car drivers 

Variables Min 1st quartile Median Mean 3rd quartile Max NA Description 

Phase 1 

Gender - male 0 0 1 0,71 1 1     

Age 20 30 44 43,8 64 79     

Income 1 3 5 4,27 5 6   
1: Less than €1.000, 2: €1.000 - €2.000, 3: €2000 - €3.000, 4: 
€3000 - €4.000, 5: €4000 - €5.000, 6: More than €5.000 

% driving on urban roads 2 20 25 26,8 30 60     

% driving on rural roads 20 25 40 42,9 60 80     

Violation item 1 1 2 2 2,14 2,14 5   
how often did you as a car driver, drive faster than the speed 
limit inside built-up areas? (1) Never, (2) Seldom, (3) About half 
the time, (4) Usually, (5) (almost) Always 

Violation item 2 1 3 3 3,3 4 5   
how often did you as a car driver, drive faster than the speed 
limit? (1) Never, (2) Seldom, (3) About half the time, (4) Usually, 
(5) (almost) Always 

Driving style 0 0 0 0,45 1 1   
0: Discrete average driver or Less experienced hesitant driver 
1: Sportive ambitioned driver or risk-taking offensive driver 

Confidence 0 0 1 0,65 1 1   
How confident you are concerning your own driving skills? 1: 
Very confident or confident, 0: otherwise 

Competence 3 3 3 3,503 4 5   
How do you think you compare to the average driver, regarding 
general driving skills, I am: (1) Much worse, (2) Worse, (3) Not 
better nor worse, (4) Better, (5) Much better 

Attitude item 1 1 2 3 3,27 5 5   
Driving is … (5) Very dangerous, (4) Quite dangerous, (3) 
Neither dangerous nor safe, (2) Quite safe, (1) Very safe 

Attitude item 2 3 4 4 4,14 4 5   
a. I know the benefits of safe driving: (1) Strongly disagree, (2) 
Disagree, (3) Neutral, (4) Agree, (5) Strongly agree 

Highest level of education 0 0 1 0,71 1 1   1: college or above, 0: otherwise 

Employment status 0 0 1 0,59 1 1   1: full time or part time employed, 0: otherwise 

Headway - STZ 1 0 0 0,07 0,17 0,27 1   Proportion of events in 60 seconds 

Headway - STZ 2 0 0 0 0,13 0,17 1   Proportion of events in 60 seconds 
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Variables Min 1st quartile Median Mean 3rd quartile Max NA Description 

Headway - STZ 3 0 0 0 0,03 0 1   Proportion of events in 60 seconds 

Speeding - STZ 1 0 0 0,45 0,47 0,92 1 159 Proportion of events in 60 seconds 

Speeding - STZ 2 0 0 0 0,05 0,02 1 824 Proportion of events in 60 seconds 

Speeding - STZ 3 0 0 0 0,1 0,05 1 895 Proportion of events in 60 seconds 

Harsh acceleration events 0 0 0,53 0,5 1 1 607 Proportion of events in 60 seconds 

Harsh braking events 0 0 0 0,2 0,27 1 630 Proportion of events in 60 seconds 

Harsh cornering events 0 0 0 0,31 0,7 1 895 Proportion of events in 60 seconds 

KSS 35 35 35 35 35 39 5598   

IBI 376 755 807 811 871 1263 1230   

Wipers on 0 0 0 0,05 0 1   Proportion of events in 60 seconds 

High beams on 0 0 0 0,018 0 1   Proportion of events in 60 seconds 

FCW 0 0 0 0,02 0 3   Number of events in 60 seconds 

PCW 0 0 0 0 0 2   Number of events in 60 seconds 

Night-time driving 0 0 0 0,2 0 1   Proportion of events in 60 seconds 

Day-time driving 0 1 1 0,78 1 1   Proportion of events in 60 seconds 

Phase 2 

Gender - male 0 0 1 0,7 1 1    
Age 20 34 44 42,6 54 79    
Income 1 3 5 4,421 5 6    
% driving on urban roads 2 20 25 25,4 40 60    
% driving on rural roads 20 25 40 41,6 60 80    
Violation item 1 1 2 2,559 2,559 3 5    
Violation item 2 1 3 3 3,413 4 5    
Driving style 0 0 0 0,458 1 1    
Confidence 0 0 1 0,736 1 1    
Competence 3 3 3,561 3,561 4 5    
Attitude item 1 1 2 3 3,18 3,18 5    
Attitude item 2 3 4 4 4,203 4,203 5    
Highest level of education 0 0 1 0,684 1 1    
Employment status 0 0 1 0,615 1 1    
Headway - STZ 1 0 0 0,1 0,219 0,366 1    
Headway - STZ 2 0 0 0 0,117 0,15 1    
Headway - STZ 3 0 0 0 0,023 0 1    
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Variables Min 1st quartile Median Mean 3rd quartile Max NA Description 

Speeding - STZ 1 0 0 0,4 0,454 0,933 1 68  
Speeding - STZ 2 0 0 0 0,032 0,016 1 920  
Speeding - STZ 3 0 0 0 0,097 0,033 1 1015  
Harsh acceleration events 0 0 0,433 0,47 1 1 775  
Harsh braking events 0 0 0 0,23 0,35 1 760  
Harsh cornering events 0 0 0 0,311 0,733 1 1379  
KSS 0 0 0 0,071 0 1    
IBI 0 0 0 0,012 0 3    
Wipers on 0 0 0 0,001 0 2    
High beams on 0 0 0 0,006 0 1    
FCW 35 35 35 35,01 35 39 1160  
PCW 371 751 791 798 858 1478 3497  
Night-time driving 0 0 0 0,105 0 1    
Day-time driving 0 1 1 0,877 1 1    

Phase 3 

Gender - male 0 0 1 0,728 1 1    
Age 20 30 43 43 60 79    
Income 1 3 5 4,391 5 6    
% driving on urban roads 2 20 25 26,6 40 60    
% driving on rural roads 20 30 40 40,2 55 80    
Violation item 1 1 2 3 2,795 3 5    
Violation item 2 1 3 3 3,514 5 5    
Driving style 0 0 0 0,47 1 1    
Confidence 0 1 1 0,754 1 1    
Competence 3 3 4 3,654 4 5    
Attitude item 1 1 3 3 3,384 5 5    
Attitude item 2 3 4 4 4,216 4,216 5    
Highest level of education 0 0 1 0,6 1 1    
Employment status 0 0 1 0,664 1 1    
Headway - STZ 1 0 0 0,1 0,217 0,366 1    
Headway - STZ 2 0 0 0 0,105 0,133 1    
Headway - STZ 3 0 0 0 0,018 0 1    
Speeding - STZ 1 0 0 0,45 0,478 1 1 1015  
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Variables Min 1st quartile Median Mean 3rd quartile Max NA Description 

Speeding - STZ 2 0 0 0 0,224 0,333 1 1123  
Speeding - STZ 3 0 0 0 0,311 0,766 1 2145  
Harsh acceleration events 0 0 0 0,071 0 1    
Harsh braking events 0 0 0 0,011 0 3    
Harsh cornering events 0 0 0 0 0 2    
KSS 0 0 0,316 0,425 0,9 1 176  
IBI 0 0 0 0,027 0 1 1018  
Wipers on 0 0 0 0,111 0,05 1 1345  
High beams on 0 0 0 0,011 0 1    
FCW 35 35 35 35,01 35 39 18150  
PCW 319 753 818 815 857 1651 8750  
Night-time driving 0 0 0 0,104 0 1    
Day-time driving 0 1 1 0,874 1 1    

Phase 4 

Gender - male 0 0 1 0,7 1 1    
Age 20 30 43 42,5 54 79    
Income 1 3 5 4,381 5 6    
% driving on urban roads 2 20 25 26 35 60    
% driving on rural roads 20 30 40 40 55 80    
Violation item 1 1 2 3 2,818 3 5    
Violation item 2 1 3 3 3,496 5 5    
Driving style 0 0 0 0,478 1 1    
Confidence 0 0 1 0,709 1 1    
Competence 3 3 4 3,571 4 5    
Attitude item 1 1 3 3 3,331 5 5    
Attitude item 2 3 4 4 4,195 4,195 5    
Highest level of education 0 0 1 0,65 1 1    
Employment status 0 0 1 0,648 1 1    
Headway - STZ 1 0 0 0,1 0,223 0,366 1    
Headway - STZ 2 0 0 0 0,095 0,1 1    
Headway - STZ 3 0 0 0 0,013 0 1    
Speeding - STZ 1 0 0 0,45 0,476 1 1 827  
Speeding - STZ 2 0 0 0 0,239 0,383 1 901  
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Variables Min 1st quartile Median Mean 3rd quartile Max NA Description 

Speeding - STZ 3 0 0 0 0,295 0,683 1 1934  
Harsh acceleration events 0 0 0 0,075 0 1    
Harsh braking events 0 0 0 0,011 0 4    
Harsh cornering events 0 0 0 0,001 0 2    
KSS 0 0 0,366 0,444 0,933 1    
IBI 0 0 0 0,027 0 1 1284  
Wipers on 0 0 0 0,096 0,016 1 2003  
High beams on 0 0 0 0,026 0 1    
FCW 35 35 35 35 35 35 25649  
PCW 471 762 829 822 867 1375 15919  
Night-time driving 0 0 0 0,133 0 1    
Day-time driving 0 1 1 0,84 1 1    

 

Belgium (Trucks) 
Table 112: Descriptive statistics for the available parameters in database used for Belgium truck drivers 

Variables Min Mean Median Std. Deviation Max 

Phase 1 

Speeding_STZ1 0,865 1,000 0,319 0,000 1,000 

Speeding_STZ2 0,025 0,000 0,110 0,000 1,000 

Speeding_STZ3 0,110 0,000 0,282 0,000 1,000 

Trip duration 69,023 49,000 65,701 1,000 503,000 

Age 45 50 11 25 56 

Driving Style 2,220 2,000 0,414 2,000 3,000 

Driver's Confidence 2,030 2,000 0,683 1,000 3,000 

Speed 15,545 18,491 10,980 0,000 41,410 

Phase 2 

Speeding_STZ1 0,836 1,000 0,346 0,000 1,000 

Speeding_STZ2 0,013 0,000 0,072 0,000 1,000 

Speeding_STZ3 0,151 0,000 0,335 0,000 1,000 

Trip duration 81,190 54,000 84,452 1,000 749,000 

Age 46 50 10 25 66 

Driving Style 2,250 2,000 0,430 2,000 3,000 
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Driver's Confidence 2,140 2,000 0,700 1,000 3,000 

Speed 15,937 18,491 11,848 0,000 43,750 

Wipers 0,010 0,000 0,097 0,000 1,000 

Phase 3 

Speeding_STZ1 0,885 1,000 0,295 0,000 1,000 

Speeding_STZ2 0,011 0,000 0,067 0,000 1,000 

Speeding_STZ3 0,104 0,000 0,282 0,000 1,000 

Trip duration 92,083 59,000 102,783 1,000 791,000 

Age 44 46 10 25 56 

Driving Style 2,250 2,000 0,433 2,000 3,000 

Driver's Confidence 2,040 2,000 0,707 1,000 3,000 

Speed 15,086 17,977 11,283 0,000 39,820 

Wipers 0,008 0,000 0,087 0,000 1,000 

Phase 4 

Speeding_STZ1 0,820 1,000 0,360 0,000 1,000 

Speeding_STZ2 0,014 0,000 0,073 0,000 1,000 

Speeding_STZ3 0,167 0,000 0,350 0,000 1,000 

Trip duration 99,532 68,000 100,835 1,000 779,000 

Age 46 47 11 25 66 

Driving Style 2,300 2,000 0,459 2,000 3,000 

Driver's Confidence 2,190 2,000 0,743 1,000 3,000 

Speed 16,379 19,412 12,102 0,000 41,220 

Wipers 0,005 0,000 0,071 0,000 1,000 

 

UK (Cars) 
Table 113: Descriptive statistics for the available parameters in database used for UK car drivers 

Variables Min Mean Std. Deviation Max 1st quartile 2nd quartile 3rd quartile 

Phase 1 (total observations 113705) 

iDreams_Headway_Map_level_1_mean 0 0,151 0,266 1 0 0 0,2 

iDreams_Headway_Map_level_1_0_mean 0 0,764 0,351 1 0,6 1 1 

iDreams_Headway_Map_level_23_mean 0 0,085 0,215 1 0 0 0 

ME_Car_wipers_median 0 0,063 0,243 1 0 0 0 

ME_Car_high_beam_median 0 0,004 0,063 1 0 0 0 
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Variables Min Mean Std. Deviation Max 1st quartile 2nd quartile 3rd quartile 

DrivingEvents_Map_evt_ha_mean 0 0,444 0,454 1 0 0,267 1 

ME_LDW_Map_type_R_mean 0 0,163 0,365 1 0 0 0 

SQ_Vehicle_age 3 9,48 3,138 16 7 9 11 

EQ17_General_sleep_rating 0 0,035 0,184 1 0 0 0 

EQ1a_Adaptive_cruise_control 0 0,011 0,103 1 0 0 0 

EQ1b_Forward_collision_warning 0 0,067 0,249 1 0 0 0 

EQ4b_Speed_limit 1 1,747 0,937 4 1 1 2 

EQ4e_Mobile_phone 0 0,702 0,664 3 0 1 1 

EQ4g_Illegal_overtake 0 0,348 0,53 2 0 0 1 

EQ5_Driving_style 1 2,39 0,712 4 2 2 3 

EQ6_Driving_confidence 2 4,038 0,653 5 4 4 4 

Hour 0 12,844 4,263 23 9 13 16 

Day_of_week 0 2,947 1,859 6 1 3 4 

Month 3 7,847 3,03 11 4 10 10 

Phase 2 (total observations 116917) 

iDreams_Headway_Map_level_1_0_mean 0 0,78 0,339 1 0,633 1 1 

iDreams_Headway_Map_level_1_mean 0 0,51 0,425 1 0 0,5 1 

iDreams_Headway_Map_level_23_mean 0 0,072 0,193 1 0 0 0 

ME_Car_wipers_median 0 0,08 0,27 1 0 0 0 

ME_Car_high_beam_median 0 0,004 0,066 1 0 0 0 

DrivingEvents_Map_evt_ha_mean 0 0,435 0,452 1 0 0,233 1 

ME_LDW_Map_type_R_mean 0 0,142 0,343 1 0 0 0 

SQ_Vehicle_age 3 9,227 2,952 16 7 9 11 

EQ17_General_sleep_rating 0 0,056 0,229 1 0 0 0 

EQ1a_Adaptive_cruise_control 0 0,015 0,123 1 0 0 0 

EQ1b_Forward_collision_warning 0 0,085 0,28 1 0 0 0 

EQ4b_Speed_limit 1 1,741 0,895 4 1 1 2 

EQ4e_Mobile_phone 0 0,727 0,717 3 0 1 1 

EQ4g_Illegal_overtake 0 0,365 0,543 2 0 0 1 

EQ5_Driving_style 1 2,391 0,733 4 2 2 3 

EQ6_Driving_confidence 2 4,063 0,638 5 4 4 4 

Hour 0 13,144 4,401 23 9 14 16 
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Variables Min Mean Std. Deviation Max 1st quartile 2nd quartile 3rd quartile 

Day_of_week 0 2,852 1,928 6 1 3 5 

Month 4 8,751 3,038 12 5 11 11 

Phase 3 (total observations 119112) 

iDreams_Headway_Map_level_1_mean 0 0,138 0,254 1 0 0 0,167 

iDreams_Headway_Map_level_1_0_mean 0 0,788 0,333 1 0,667 1 1 

iDreams_Headway_Map_level_23_mean 0 0,074 0,198 1 0 0 0 

ME_Car_wipers_median 0 0,098 0,297 1 0 0 0 

ME_Car_high_beam_median 0 0,005 0,067 1 0 0 0 

DrivingEvents_Map_evt_ha_mean 0 0,432 0,452 1 0 0,233 1 

ME_LDW_Map_type_R_mean 0 0,154 0,357 1 0 0 0 

SQ_Vehicle_age 3 9,267 3,149 16 7 9 11 

EQ17_General_sleep_rating 0 0,054 0,225 1 0 0 0 

EQ1a_Adaptive_cruise_control 0 0,02 0,141 1 0 0 0 

EQ1b_Forward_collision_warning 0 0,083 0,275 1 0 0 0 

EQ4b_Speed_limit 1 1,831 0,909 4 1 2 2 

EQ4e_Mobile_phone 0 0,715 0,663 3 0 1 1 

EQ4g_Illegal_overtake 0 0,367 0,555 2 0 0 1 

EQ5_Driving_style 1 2,431 0,749 4 2 2 3 

EQ6_Driving_confidence 2 4,091 0,66 5 4 4 4 

Hour 0 12,909 4,356 23 10 13 16 

Day_of_week 0 2,963 1,935 6 1 3 5 

Month 1 8,452 3,644 12 6 7 12 

Phase 4 (total observations 187948) 

iDreams_Headway_Map_level_1_0_mean 0 0,795 0,325 1 0,667 1 1 

iDreams_Headway_Map_level_1_mean 0 0,551 0,42 1 0,067 0,667 1 

iDreams_Headway_Map_level_23_mean 0 0,062 0,176 1 0 0 0 

ME_Car_wipers_median 0 0,056 0,23 1 0 0 0 

ME_Car_high_beam_median 0 0,005 0,067 1 0 0 0 

DrivingEvents_Map_evt_ha_mean 0 0,431 0,449 1 0 0,233 1 

ME_LDW_Map_type_R_mean 0 0,116 0,315 1 0 0 0 

SQ_Vehicle_age 3 10,089 3,552 16 7 9 13 

EQ17_General_sleep_rating 0 0,033 0,178 1 0 0 0 
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Variables Min Mean Std. Deviation Max 1st quartile 2nd quartile 3rd quartile 

EQ1a_Adaptive_cruise_control 0 0,022 0,147 1 0 0 0 

EQ1b_Forward_collision_warning 0 0,063 0,243 1 0 0 0 

EQ4b_Speed_limit 1 1,806 0,866 4 1 2 2 

EQ4e_Mobile_phone 0 0,758 0,642 3 0 1 1 

EQ4g_Illegal_overtake 0 0,331 0,541 2 0 0 1 

EQ5_Driving_style 1 2,379 0,714 4 2 2 3 

EQ6_Driving_confidence 2 4,171 0,705 5 4 4 5 

Hour 0 13,076 4,322 23 10 14 16 

Day_of_week 0 2,984 1,891 6 1 3 5 

Month 1 3,629 2,892 9 1 2 7 

 

Germany (Cars) 
Table 114: Descriptive statistics for the available parameters in database used for Germany car drivers 

Variables Min 1st quartile Median Mean 3rd quartile Max 

Phase 1 (total observations 48629) 

grpby_seconds 0 270 720 1333 1560 14610 

iDreams_Headway_Map_level_.1_mean 1 1 1 1 1 1 

iDreams_Headway_Map_level_.1_sum 2 30 30 29,98 30 30 

iDreams_Headway_Map_level_0_mean  0 0 0 0 0 

iDreams_Headway_Map_level_0_sum 0 0 0 0 0 0 

iDreams_Headway_Map_level_1_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_1_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_3_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_3_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_total_mean 0 0 0 0,0473 0 1 

iDreams_Headway_Map_level_total_sum 0 0 0 1.419 0 30 

iDreams_Overtaking_Map_level_0_mean 1 1 1 1 1 1 

iDreams_Overtaking_Map_level_0_sum 2 30 30 29,98 30 30 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

iDreams_Overtaking_Map_level_1_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_1_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_total_mean 0 0 0 0,0461 0 1 

iDreams_Overtaking_Map_level_total_sum 0 0 0 1.383 0 30 

iDreams_Speeding_Map_level_0_mean 0 0 0 0,317 1.000 1 

iDreams_Speeding_Map_level_0_sum 0 0 0 9.523 30.000 30 

iDreams_Speeding_Map_level_1_mean 0 0 1.000 0,691 1.000 1 

iDreams_Speeding_Map_level_1_sum 0 0 30 20,74 30 30 

iDreams_Speeding_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_3_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_3_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_total_mean 0 10.000 10.000 0,8718 10.000 1 

iDreams_Speeding_Map_level_total_sum 0 30 30 26,15 30 30 

iDreams_Fatigue_Map_level_0_mean 0 1 1 0,79 1 1 

iDreams_Fatigue_Map_level_0_sum 0 30 30 23,68 30 30 

iDreams_Fatigue_Map_level_1_mean 0 0 0 0,25 0 1 

iDreams_Fatigue_Map_level_1_sum 0 0 0 7,36 0 30 

iDreams_Fatigue_Map_level_2_mean 0 0 0 0,14 0 1 

iDreams_Fatigue_Map_level_2_sum 0 0 0 4,2 0 30 

iDreams_Fatigue_Map_level_3_mean 0 0 0 0 0 0 

iDreams_Fatigue_Map_level_3_sum 0 0 0 0 0 0 

iDreams_Fatigue_Map_level_total_mean 0 0 0 0,1385 0 1 

iDreams_Fatigue_Map_level_total_sum 0 0 0 4.155 0 30 

DrivingEvents_Map_lvl_L_mean 0 0,433 1.000 0,736 1.000 1 

DrivingEvents_Map_lvl_M_mean 0 0 0 0,242 0,4 1 

DrivingEvents_Map_lvl_H_mean 0 0 0 0,062 0 1 

ME_Car_speed_mean 0 0 0 0 0 0 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

ME_Car_wipers_median 0 0 0 0 0 0 

ME_Car_high_beam_median 0 0 0 0 0 0 

ME_AWS_hw_measurement_mean 0 0 0 0 0 0 

ME_AWS_tsr_level_mean 0 0 0 0 0 0 

ME_AWS_fcw_mean 0 0 0 0 0 0 

ME_AWS_pcw_mean 0 0 0 0 0 0 

ME_AWS_pedestrian_dz_mean 0 0 0 0 0 0 

ME_AWS_time_indicator_median 1.000 1.000 1.000 1.709 3.000 3.000 

ME_TSR_tsr_1_speed_median 0 5 9 64,33 39 254 

GPS_spd_mean 0 26,05 52,68 53,2 71,74 198,58 

GPS_distances_sum 0 221 450,6 455,7 611,5 14239,8 

DrivingEvents_Map_evt_ha_mean 0 0 0,567 0,509 1.000 1 

DEM_evt_ha_lvl_L_mean 0 0 0 0,403 1.000 1 

DEM_evt_ha_lvl_L_sum 0 0 0 12,09 30 30 

DEM_evt_ha_lvl_M_mean 0 0 0 0,088 0 1 

DEM_evt_ha_lvl_M_sum 0 0 0 2.631 0 30 

DEM_evt_ha_lvl_H_mean 0 0 0 0,018 0 1 

DEM_evt_ha_lvl_H_sum 0 0 0 0,55 0 30 

DrivingEvents_Map_evt_hc_mean 0 0 0 0,309 0,967 1 

DEM_evt_hc_lvl_L_mean 0 0 0 0,154 0 1 

DEM_evt_hc_lvl_L_sum 0 0 0 4.623 0 30 

DEM_evt_hc_lvl_M_mean 0 0 0 0,143 0 1 

DEM_evt_hc_lvl_M_sum 0 0 0 4.301 0 30 

DEM_evt_hc_lvl_H_mean 0 0 0 0,012 0 1 

DEM_evt_hc_lvl_H_sum 0 0 0 0,355 0 30 

DrivingEvents_Map_evt_hb_mean 0 0 0 0,209 0,233 1 

DEM_evt_hb_lvl_L_mean 0 0 0 0,197 0,167 1 

DEM_evt_hb_lvl_L_sum 0 0 0 5.913 5.000 30 

DEM_evt_hb_lvl_M_mean 0 0 0 0,009 0 1 

DEM_evt_hb_lvl_M_sum 0 0 0 0,264 0 30 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

DEM_evt_hb_lvl_H_mean 0 0 0 0,003 0 1 

DEM_evt_hb_lvl_H_sum 0 0 0 0,082 0 30 

Drowsiness_level_median 35 35 35 35,1 35 39 

IBI_value_mean 421,9 728,5 794,8 797,6 861,5 1788,1 

ME_LDW_Map_type_L_mean -9999 -9999 -9999 -9999 -9999 -9999 

ME_LDW_Map_type_R_mean -9999 -9999 -9999 -9999 -9999 -9999 

Phase 2 (total observations 48629) 

grpby_seconds 0 240 570 1141 1230 13500 

iDreams_Headway_Map_level_.1_mean 1 1 1 1 1 1 

iDreams_Headway_Map_level_.1_sum 26 30 30 30 30 30 

iDreams_Headway_Map_level_0_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_0_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_1_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_1_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_3_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_3_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_total_mean 0 0 0 0,0591 0 1 

iDreams_Headway_Map_level_total_sum 0 0 0 1.773 0 30 

iDreams_Overtaking_Map_level_0_mean 1 1 1 1 1 1 

iDreams_Overtaking_Map_level_0_sum 26 30 30 30 30 30 

iDreams_Overtaking_Map_level_1_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_1_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_total_mean 0 0 0 0,0588 0 1 

iDreams_Overtaking_Map_level_total_sum 0 0 0 1.763 0 30 

iDreams_Speeding_Map_level_0_mean 0 0 0 0,243 0,175 1 

iDreams_Speeding_Map_level_0_sum 0 0 0 7,29 5,25 30 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

iDreams_Speeding_Map_level_1_mean 0 1.000 1.000 0,768 1.000 1 

iDreams_Speeding_Map_level_1_sum 0 30 30 23,05 30 30 

iDreams_Speeding_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_3_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_3_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_total_mean 0 10.000 10.000 0,8771 10.000 1 

iDreams_Speeding_Map_level_total_sum 0 30 30 26,31 30 30 

iDreams_Fatigue_Map_level_0_mean 0 1 1 0,78 1 1 

iDreams_Fatigue_Map_level_0_sum 0 30 30 23,36 30 30 

iDreams_Fatigue_Map_level_1_mean 0 0 0 0,32 1 1 

iDreams_Fatigue_Map_level_1_sum 0 0 0 9,48 30 30 

iDreams_Fatigue_Map_level_2_mean 0 0 0 0,07 0 1 

iDreams_Fatigue_Map_level_2_sum 0 0 0 1,97 0 30 

iDreams_Fatigue_Map_level_3_mean 0 0 0 0,02 0 1 

iDreams_Fatigue_Map_level_3_sum 0 0 0 0,61 0 30 

iDreams_Fatigue_Map_level_total_mean 0 0 0 0,1304 0 1 

iDreams_Fatigue_Map_level_total_sum 0 0 0 3.912 0 30 

DrivingEvents_Map_lvl_L_mean 0 0,367 1.000 0,725 1.000 1 

DrivingEvents_Map_lvl_M_mean 0 0 0 0,254 0,5 1 

DrivingEvents_Map_lvl_H_mean 0 0 0 0,058 0 1 

ME_Car_speed_mean 0 0 0 0 0 0 

ME_Car_wipers_median 0 0 0 0 0 0 

ME_Car_high_beam_median 0 0 0 0 0 0 

ME_AWS_hw_measurement_mean 0 0 0 0 0 0 

ME_AWS_tsr_level_mean 0 0 0 0 0 0 

ME_AWS_fcw_mean 0 0 0 0 0 0 

ME_AWS_pcw_mean 0 0 0 0 0 0 

ME_AWS_pedestrian_dz_mean 0 0 0 0 0 0 

ME_AWS_time_indicator_median 1.000 1.000 1.000 1.497 2.000 3.000 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

ME_TSR_tsr_1_speed_median 0 5 7 64,27 39 254 

GPS_spd_mean 0 23,35 52,07 50,43 68,85 224,05 

GPS_distances_sum 0 199,2 439,2 432,2 585,2 30601,2 

DrivingEvents_Map_evt_ha_mean 0 0 0,567 0,511 1.000 1 

DEM_evt_ha_lvl_L_mean 0 0 0,033 0,404 1.000 1 

DEM_evt_ha_lvl_L_sum 0 0 1 12,12 30 30 

DEM_evt_ha_lvl_M_mean 0 0 0 0,089 0 1 

DEM_evt_ha_lvl_M_sum 0 0 0 2.681 0 30 

DEM_evt_ha_lvl_H_mean 0 0 0 0,017 0 1 

DEM_evt_ha_lvl_H_sum 0 0 0 0,519 0 30 

DrivingEvents_Map_evt_hc_mean 0 0 0 0,318 0,933 1 

DEM_evt_hc_lvl_L_mean 0 0 0 0,15 0,033 1 

DEM_evt_hc_lvl_L_sum 0 0 0 4.511 1.000 30 

DEM_evt_hc_lvl_M_mean 0 0 0 0,155 0 1 

DEM_evt_hc_lvl_M_sum 0 0 0 4,66 0 30 

DEM_evt_hc_lvl_H_mean 0 0 0 0,012 0 1 

DEM_evt_hc_lvl_H_sum 0 0 0 0,357 0 30 

DrivingEvents_Map_evt_hb_mean 0 0 0 0,197 0,167 1 

DEM_evt_hb_lvl_L_mean 0 0 0 0,188 0,133 1 

DEM_evt_hb_lvl_L_sum 0 0 0 5.634 4.000 30 

DEM_evt_hb_lvl_M_mean 0 0 0 0,008 0 1 

DEM_evt_hb_lvl_M_sum 0 0 0 0,235 0 30 

DEM_evt_hb_lvl_H_mean 0 0 0 0,001 0 1 

DEM_evt_hb_lvl_H_sum 0 0 0 0,026 0 30 

Drowsiness_level_median 35 35 35 35,17 35 39 

IBI_value_mean 342,8 738,1 809,2 806,5 877,3 1636,7 

ME_LDW_Map_type_L_mean -9999 -9999 -9999 -9999 -9999 -9999 

ME_LDW_Map_type_R_mean -9999 -9999 -9999 -9999 -9999 -9999 

Phase 3 (total observations 36606) 

grpby_seconds 0 240 630 1329 1500 12270 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

iDreams_Headway_Map_level_.1_mean 1 1 1 1 1 1 

iDreams_Headway_Map_level_.1_sum 1 30 30 29,96 30 30 

iDreams_Headway_Map_level_0_mean 0 0 0 0 0 0 

iDreams_Headway_Map_level_0_sum 0 0 0 0 0 0 

iDreams_Headway_Map_level_1_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_1_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_3_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_3_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_total_mean 0 0 0 0,0211 0 1 

iDreams_Headway_Map_level_total_sum 0 0 0 0,6327 0 30 

iDreams_Overtaking_Map_level_0_mean 1 1 1 1 1 1 

iDreams_Overtaking_Map_level_0_sum 1 30 30 29,96 30 30 

iDreams_Overtaking_Map_level_1_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_1_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_total_mean 0 0 0 0,021 0 1 

iDreams_Overtaking_Map_level_total_sum 0 0 0 0,6294 0 30 

iDreams_Speeding_Map_level_0_mean 0 0 0 0,234 0 1 

iDreams_Speeding_Map_level_0_sum 0 0 0 7.022 0 30 

iDreams_Speeding_Map_level_1_mean 0 1.000 1.000 0,777 1.000 1 

iDreams_Speeding_Map_level_1_sum 0 30 30 23,32 30 30 

iDreams_Speeding_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_3_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_3_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_total_mean 0 1 1 0,8829 1 1 

iDreams_Speeding_Map_level_total_sum 0 30 30 26,49 30 30 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

iDreams_Fatigue_Map_level_0_mean 0 0 1.000 0,687 1.000 1 

iDreams_Fatigue_Map_level_0_sum 0 0 30 20,6 30 30 

iDreams_Fatigue_Map_level_1_mean 0 0 0 0,31 1 1 

iDreams_Fatigue_Map_level_1_sum 0 0 0 9,29 30 30 

iDreams_Fatigue_Map_level_2_mean 0 0 0 0,33 1 1 

iDreams_Fatigue_Map_level_2_sum 0 0 0 10,01 30 30 

iDreams_Fatigue_Map_level_3_mean 0 0 0 0 0 0 

iDreams_Fatigue_Map_level_3_sum 0 0 0 0 0 0 

iDreams_Fatigue_Map_level_total_mean 0 0 0 0,141 0 1 

iDreams_Fatigue_Map_level_total_sum 0 0 0 4.229 0 30 

DrivingEvents_Map_lvl_L_mean 0 0,533 1.000 0,752 1.000 1 

DrivingEvents_Map_lvl_M_mean 0 0 0 0,235 0,367 1 

DrivingEvents_Map_lvl_H_mean 0 0 0 0,064 0 1 

ME_Car_speed_mean 0 0 0 0 0 0 

ME_Car_wipers_median 0 0 0 0 0 0 

ME_Car_high_beam_median 0 0 0 0 0 0 

ME_AWS_hw_measurement_mean 0 0 0 0 0 0 

ME_AWS_tsr_level_mean 0 0 0 0 0 0 

ME_AWS_fcw_mean 0 0 0 0 0 0 

ME_AWS_pcw_mean 0 0 0 0 0 0 

ME_AWS_pedestrian_dz_mean 0 0 0 0 0 0 

ME_AWS_time_indicator_median 1.000 1.000 1.000 1.456 2.000 3.000 

ME_TSR_tsr_1_speed_median 0 4 7 62,37 39 254 

GPS_spd_mean 0 27,65 52,68 54,86 77,51 200,69 

GPS_distances_sum 0 234,2 450,6 468,7 657,3 14773,7 

DrivingEvents_Map_evt_ha_mean 0 0 0,533 0,501 1.000 1 

DEM_evt_ha_lvl_L_mean 0 0 0 0,41 1 1 

DEM_evt_ha_lvl_L_sum 0 0 0 12,3 30 30 

DEM_evt_ha_lvl_M_mean 0 0 0 0,075 0 1 

DEM_evt_ha_lvl_M_sum 0 0 0 2.256 0 30 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

DEM_evt_ha_lvl_H_mean 0 0 0 0,015 0 1 

DEM_evt_ha_lvl_H_sum 0 0 0 0,459 0 30 

DrivingEvents_Map_evt_hc_mean 0 0 0 0,311 0,933 1 

DEM_evt_hc_lvl_L_mean 0 0 0 0,156 0,033 1 

DEM_evt_hc_lvl_L_sum 0 0 0 4.685 1.000 30 

DEM_evt_hc_lvl_M_mean 0 0 0 0,141 0 1 

DEM_evt_hc_lvl_M_sum 0 0 0 4.226 0 30 

DEM_evt_hc_lvl_H_mean 0 0 0 0,014 0 1 

DEM_evt_hc_lvl_H_sum 0 0 0 0,426 0 30 

DrivingEvents_Map_evt_hb_mean 0 0 0 0,221 0,267 1 

DEM_evt_hb_lvl_L_mean 0 0 0 0,209 0,2 1 

DEM_evt_hb_lvl_L_sum 0 0 0 6.256 6.000 30 

DEM_evt_hb_lvl_M_mean 0 0 0 0,011 0 1 

DEM_evt_hb_lvl_M_sum 0 0 0 0,326 0 30 

DEM_evt_hb_lvl_H_mean 0 0 0 0,001 0 1 

DEM_evt_hb_lvl_H_sum 0 0 0 0,038 0 30 

Drowsiness_level_median 35 35 35 35,21 35 39 

IBI_value_mean 338,9 722,3 783,8 787,9 848,3 1265,6 

ME_LDW_Map_type_L_mean -9999 -9999 -9999 -9999 -9999 -9999 

ME_LDW_Map_type_R_mean -9999 -9999 -9999 -9999 -9999 -9999 

Phase 4 (total observations 48784) 

grpby_seconds 0 270 660 1162 1410 11220 

iDreams_Headway_Map_level_.1_mean 0,97 1 1 1 1 1 

iDreams_Headway_Map_level_.1_sum 29 30 30 29,99 30 30 

iDreams_Headway_Map_level_0_mean 0 0 0 0 0 0,03 

iDreams_Headway_Map_level_0_sum 0 0 0 0,14 0 1 

iDreams_Headway_Map_level_1_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_1_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

iDreams_Headway_Map_level_3_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_3_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Headway_Map_level_total_mean 0 0 0 0,0428 0 1 

iDreams_Headway_Map_level_total_sum 0 0 0 1.285 0 30 

iDreams_Overtaking_Map_level_0_mean 1 1 1 1 1 1 

iDreams_Overtaking_Map_level_0_sum 30 30 30 30 30 30 

iDreams_Overtaking_Map_level_1_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_1_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Overtaking_Map_level_total_mean 0 0 0 0,0412 0 1 

iDreams_Overtaking_Map_level_total_sum 0 0 0 1.235 0 30 

iDreams_Speeding_Map_level_0_mean 0 0 0 0,236 0 1 

iDreams_Speeding_Map_level_0_sum 0 0 0 7.067 0 30 

iDreams_Speeding_Map_level_1_mean 0 1.000 1.000 0,772 1.000 1 

iDreams_Speeding_Map_level_1_sum 0 30 30 23,16 30 30 

iDreams_Speeding_Map_level_2_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_2_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_3_mean -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_3_sum -9999 -9999 -9999 -9999 -9999 -9999 

iDreams_Speeding_Map_level_total_mean 0 1 1 0,8881 1 1 

iDreams_Speeding_Map_level_total_sum 0 30 30 26,64 30 30 

iDreams_Fatigue_Map_level_0_mean 0 1 1 0,8 1 1 

iDreams_Fatigue_Map_level_0_sum 0 30 30 24,08 30 30 

iDreams_Fatigue_Map_level_1_mean 0 0 0 0,17 0 1 

iDreams_Fatigue_Map_level_1_sum 0 0 0 5,04 0 30 

iDreams_Fatigue_Map_level_2_mean 0 0 1 0,57 1 1 

iDreams_Fatigue_Map_level_2_sum 0 0 30 17,11 30 30 

iDreams_Fatigue_Map_level_3_mean 0 0 0 0 0 0 

iDreams_Fatigue_Map_level_3_sum 0 0 0 0 0 0 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

iDreams_Fatigue_Map_level_total_mean 0 0 0 0,1138 0 1 

iDreams_Fatigue_Map_level_total_sum 0 0 0 3.414 0 30 

DrivingEvents_Map_lvl_L_mean 0 0,5 1 0,744 1 1 

DrivingEvents_Map_lvl_M_mean 0 0 0 0,25 0,467 1 

DrivingEvents_Map_lvl_H_mean 0 0 0 0,055 0 1 

ME_Car_speed_mean 0 0 0 0 0 0 

ME_Car_wipers_median 0 0 0 0 0 0 

ME_Car_high_beam_median 0 0 0 0 0 0 

ME_AWS_hw_measurement_mean 0 0 0 0 0 0 

ME_AWS_tsr_level_mean 0 0 0 0 0 0 

ME_AWS_fcw_mean 0 0 0 0 0 0 

ME_AWS_pcw_mean 0 0 0 0 0 0 

ME_AWS_pedestrian_dz_mean 0 0 0 0 0 0 

ME_AWS_time_indicator_median 1.000 1.000 1.000 1.529 2.000 3.000 

ME_TSR_tsr_1_speed_median 0 4 7 60,54 39 254 

GPS_spd_mean 0 25,45 51,16 52,39 73,94 172,63 

GPS_distances_sum 0 215,2 430,3 447,1 627,8 8162,7 

DrivingEvents_Map_evt_ha_mean 0 0 0,333 0,465 1.000 1 

DEM_evt_ha_lvl_L_mean 0 0 0 0,378 1.000 1 

DEM_evt_ha_lvl_L_sum 0 0 0 11,34 30 30 

DEM_evt_ha_lvl_M_mean 0 0 0 0,077 0 1 

DEM_evt_ha_lvl_M_sum 0 0 0 2.307 0 30 

DEM_evt_ha_lvl_H_mean 0 0 0 0,01 0 1 

DEM_evt_ha_lvl_H_sum 0 0 0 0,314 0 30 

DrivingEvents_Map_evt_hc_mean 0 0 0 0,345 1.000 1 

DEM_evt_hc_lvl_L_mean 0 0 0 0,178 0,033 30 

DEM_evt_hc_lvl_L_sum 0 0 0 5.336 1.000 30 

DEM_evt_hc_lvl_M_mean 0 0 0 0,155 0 1 

DEM_evt_hc_lvl_M_sum 0 0 0 4.661 0 30 

DEM_evt_hc_lvl_H_mean 0 0 0 0,012 0 1 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

DEM_evt_hc_lvl_H_sum 0 0 0 0,351 0 30 

DrivingEvents_Map_evt_hb_mean 0 0 0 0,23 0,3 1 

DEM_evt_hb_lvl_L_mean 0 0 0 0,218 0,233 1 

DEM_evt_hb_lvl_L_sum 0 0 0 6.525 7.000 30 

DEM_evt_hb_lvl_M_mean 0 0 0 0,01 0 1 

DEM_evt_hb_lvl_M_sum 0 0 0 0,304 0 30 

DEM_evt_hb_lvl_H_mean 0 0 0 0,002 0 1 

DEM_evt_hb_lvl_H_sum 0 0 0 0,069 0 30 

Drowsiness_level_median 35 35 35 35,07 35 39 

IBI_value_mean 374,8 737,3 798,5 805,4 868,3 1776,4 

ME_LDW_Map_type_L_mean -9999 -9999 -9999 -9999 -9999 -9999 

ME_LDW_Map_type_R_mean -9999 -9999 -9999 -9999 -9999 -9999 

 

Greece (Cars) 
Table 115: Descriptive statistics for the available parameters in database used for Greek car drivers 

Variables Min 1st quartile Median Mean 3rd quartile Max NAs Description 

Phase 1 

trip_distance 0.5 6.4 10.9 32.8 22.2 334.7 NA   

time_indicator 1.0 1.0 2.0 1.8 3.0 3.0 NA 1: day , 2: dusk, 3: night 

VC_acc_medium_sum 0.0 0.0 0.0 0.0 0.0 2.0 NA   

VC_acc_high_sum 0.0 0.0 0.0 0.0 0.0 3.0 NA   

VC_acc_no_low_sum 27.0 30.0 30.0 30.0 30.0 30.0 NA   

VC_dc_medium_sum 0.0 0.0 0.0 0.0 0.0 2.0 NA  

VC_dc_high_sum 0.0 0.0 0.0 0.0 0.0 3.0 NA   

VC_dc_no_low_sum 27.0 30.0 30.0 30.0 30.0 30.0 NA   

Speed_high_sum 0.0 0.0 0.0 0.1 0.0 2.0 NA   

Speed_medium_sum 0.0 0.0 0.0 0.0 0.0 2.0 NA   

Speed_no_low_sum 27.0 30.0 30.0 29.9 30.0 30.0 NA   

distraction_sum 0.0 0.0 0.0 0.0 0.0 3.0 NA   
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Variables Min 1st quartile Median Mean 3rd quartile Max NAs Description 

VC_acc_medium_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_acc_high_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_acc_no_low_mean 0.9 1.0 1.0 1.0 1.0 1.0 NA   

VC_dc_medium_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_dc_high_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_dc_no_low_mean 0.9 1.0 1.0 1.0 1.0 1.0 NA   

Speed_high_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

Speed_medium_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

Speed_no_low_mean 0.9 1.0 1.0 1.0 1.0 1.0 NA   

distraction_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

Gender 0.0 0.0 0.0 0.4 1.0 1.0 NA 0: Male, 1: Female 

SQ_Nationality 1.0 1.0 1.0 1.0 1.0 1.0 NA 1: Greek 

SQ_Year_of_birth 1964.0 1993.0 1995.0 1993.0 1998.0 2000.0 NA   

SQ_Age 22.0 24.0 27.0 29.2 29.0 58.0 NA   

SQ_ Age_got_driving_license 18.0 18.0 18.0 18.9 19.0 27.0 NA   

SQ_Years_driving 2.0 5.0 8.0 10.3 11.0 40.0 NA   

SQ_Vehicle_brand 1.0 6.0 14.0 13.5 21.0 22.0 NA   

SQ_Vehicle_age 0.0 4.0 7.0 9.4 16.0 22.0 116.0   

STC_Second_Nat 0.0 0.0 0.0 0.0 0.0 0.0 NA 0: Νο, 1: Yes 

STC_Highest_lev_education 1.0 2.0 2.0 2.5 3.0 5.0 NA 
1:Higher education , 2:Highest education , 3: Master of 
Science, 4:PhD,  5:Secondary education  

STC_Current_occupation 1.0 2.0 3.0 3.2 4.0 5.0 NA 
1:Civil servant, 2:Freelancer / self-employed, 3: Military 
service, 4:Student,  5:Private employee 

STC_Employment_stat 1.0 1.0 1.0 1.9 4.0 4.0 NA 
1:Employed full time, 2:Employed part time, 3: Military 
service, 4: Student 

STC_Net_income 1.0 1.0 3.0 3.4 5.0 7.0 NA 
1: Less than €1.000, 2: €1.000 - €2.000, 3: €2000 - €3.000, 
4: €3000 - €4.000, 5: €4000 - €5.000, 6: More than €5.000 

STC_Med_condition_decleration 0.0 1.0 1.0 0.9 1.0 1.0 NA 
Can you declare that you are not suffering from a medical 
condition that would be considered a legal exclusion to 
drive? 0: Νο, 1: Yes 
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Variables Min 1st quartile Median Mean 3rd quartile Max NAs Description 

STC_Fuel_type 1.0 2.0 3.0 2.5 3.0 3.0 NA 1:diesel, 2: hybrid, 3: petrol 

 STC_Gearbox 1.0 1.0 2.0 1.7 2.0 2.0 NA 1:Manual,  2: Automatic 

Phase 3 

trip_distance 0.5 6.8 11.8 38.4 26.8 319.7 NA   

time_indicator 1.0 1.0 2.0 1.7 2.0 3.0 NA 1: day , 2: dusk, 3: night 

VC_acc_medium_sum 0.0 0.0 0.0 0.0 0.0 2.0 NA   

VC_acc_high_sum 0.0 0.0 0.0 0.0 0.0 3.0 NA   

VC_acc_no_low_sum 27.0 30.0 30.0 30.0 30.0 30.0 NA  

VC_dc_medium_sum 0.0 0.0 0.0 0.0 0.0 2.0 NA  

VC_dc_high_sum 0.0 0.0 0.0 0.0 0.0 3.0 NA  

VC_dc_no_low_sum 27.0 30.0 30.0 30.0 30.0 30.0 NA  

Speed_high_sum 0.0 0.0 0.0 0.1 0.0 2.0 NA   

Speed_medium_sum 0.0 0.0 0.0 0.0 0.0 2.0 NA   

Speed_no_low_sum 27.0 30.0 30.0 29.9 30.0 30.0 NA   

distraction_sum 0.0 0.0 0.0 0.0 0.0 3.0 NA   

VC_acc_medium_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_acc_high_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_acc_no_low_mean 0.9 1.0 1.0 1.0 1.0 1.0 NA   

VC_dc_medium_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_dc_high_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_dc_no_low_mean 0.9 1.0 1.0 1.0 1.0 1.0 NA   

Speed_high_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

Speed_medium_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

Speed_no_low_mean 0.9 1.0 1.0 1.0 1.0 1.0 NA   

distraction_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

    Gender 0.0 0.0 0.0 0.4 1.0 1.0 NA 0: Male, 1: Female 

SQ_Nationality 1.0 1.0 1.0 1.0 1.0 1.0 NA 1: Greek 

SQ_Year_of_birth 1964.0 1990.0 1995.0 1992.0 1998.0 2000.0 NA   

    SQ_Age 22.0 24.0 27.0 29.9 33.0 58.0 NA   
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Variables Min 1st quartile Median Mean 3rd quartile Max NAs Description 

SQ_ Age_got_driving_license 18.0 18.0 18.0 18.9 19.0 27.0 NA   

SQ_Years_driving 3.0 5.0 9.0 11.0 14.0 40.0 NA   

SQ_Vehicle_brand 1.0 7.0 15.0 13.9 21.0 22.0 NA   

SQ_Vehicle_age 0.0 5.0 7.0 9.7 16.0 22.0 NA   

STC_Second_Nat 0.0 0.0 0.0 0.0 0.0 0.0 NA 0: Νο, 1: Yes 

STC_Highest_lev_education 1.0 2.0 2.0 2.5 3.0 5.0 NA 
1:Higher education , 2:Highest education , 3: Master of 
Science, 4:PhD,  5:Secondary education  

STC_Current_occupation 1.0 2.0 2.0 3.1 4.0 5.0 NA 
1:Civil servant, 2:Freelancer / self-employed, 3: Military 
service, 4:Student,  5:Private employee 

STC_Employment_stat 1.0 1.0 1.0 1.8 3.0 4.0 NA 
1:Employed full time, 2:Employed part time, 3: Military 
service, 4: Student 

STC_Net_income 1.0 1.0 5.0 3.6 5.0 7.0 NA 
1: Less than €1.000, 2: €1.000 - €2.000, 3: €2000 - €3.000, 
4: €3000 - €4.000, 5: €4000 - €5.000, 6: More than €5.000 

STC_Med_condition_decleration 0.0 1.0 1.0 0.9 1.0 1.0 NA 
Can you declare that you are not suffering from a medical 
condition that would be considered a legal exclusion to 
drive? 0: Νο, 1: Yes 

STC_Fuel_type 1.0 2.0 3.0 2.5 3.0 3.0 NA 1:diesel, 2: hybrid, 3: petrol 

 STC_Gearbox 1.0 1.0 1.0 1.3 2.0 2.0 NA 1:Manual,  2: Automatic 

Phase 4 

trip_distance 0.5 7.0 11.6 31.8 27.6 299.9 NA   

time_indicator 1.0 1.0 2.0 1.7 2.0 3.0 NA 1: day , 2: dusk, 3: night 

VC_acc_medium_sum 0.0 0.0 0.0 0.0 0.0 2.0 NA   

VC_acc_high_sum 0.0 0.0 0.0 0.0 0.0 3.0 NA   

VC_acc_no_low_sum 27.0 30.0 30.0 30.0 30.0 30.0 NA  

VC_dc_medium_sum 0.0 0.0 0.0 0.0 0.0 2.0 NA  

VC_dc_high_sum 0.0 0.0 0.0 0.0 0.0 3.0 NA  

VC_dc_no_low_sum 27.0 30.0 30.0 30.0 30.0 30.0 NA   

Speed_high_sum 0.0 0.0 0.0 0.1 0.0 2.0 NA   

Speed_medium_sum 0.0 0.0 0.0 0.0 0.0 2.0 NA   

Speed_no_low_sum 27.0 30.0 30.0 29.9 30.0 30.0 NA   
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Variables Min 1st quartile Median Mean 3rd quartile Max NAs Description 

distraction_sum 0.0 0.0 0.0 0.0 0.0 3.0 NA   

VC_acc_medium_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_acc_high_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_acc_no_low_mean 0.9 1.0 1.0 1.0 1.0 1.0 NA   

VC_dc_medium_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_dc_high_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

VC_dc_no_low_mean 0.9 1.0 1.0 1.0 1.0 1.0 NA   

Speed_high_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

Speed_medium_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

Speed_no_low_mean 0.9 1.0 1.0 1.0 1.0 1.0 NA   

distraction_mean 0.0 0.0 0.0 0.0 0.0 0.1 NA   

    Gender 0.0 0.0 0.0 0.4 1.0 1.0 NA 0: Male, 1: Female 

SQ_Nationality 1.0 1.0 1.0 1.0 1.0 1.0 NA 1: Greek 

SQ_Year_of_birth 1964.0 1990.0 1995.0 1992.0 1999.0 2000.0 NA   

    SQ_Age 22.0 23.0 27.0 29.5 33.0 58.0 NA   

SQ_ Age_got_driving_license 18.0 18.0 18.0 18.8 19.0 27.0 NA   

SQ_Years_driving 3.0 5.0 8.0 10.7 11.0 40.0 NA   

SQ_Vehicle_brand 1.0 11.0 15.0 14.0 21.0 22.0 NA   

SQ_Vehicle_age 0.0 4.0 7.0 9.6 15.0 22.0 NA   

STC_Second_Nat 0.0 0.0 0.0 0.0 0.0 0.0 NA 0: Νο, 1: Yes 

STC_Highest_lev_education 1.0 2.0 2.0 2.4 3.0 5.0 NA 
1:Higher education , 2:Highest education , 3: Master of 
Science, 4:PhD,  5:Secondary education  

STC_Current_occupation 1.0 2.0 4.0 3.2 4.0 5.0 NA 
1:Civil servant, 2:Freelancer / self-employed, 3: Military 
service, 4:Student,  5:Private employee 

STC_Employment_stat 1.0 1.0 1.0 2.1 4.0 4.0 NA 
1:Employed full time, 2:Employed part time, 3: Military 
service, 4: Student 

STC_Net_income 1.0 1.0 5.0 3.8 5.0 7.0 NA 
1: Less than €1.000, 2: €1.000 - €2.000, 3: €2000 - €3.000, 
4: €3000 - €4.000, 5: €4000 - €5.000, 6: More than €5.000 
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Variables Min 1st quartile Median Mean 3rd quartile Max NAs Description 

STC_Med_condition_decleration 0.0 1.0 1.0 0.9 1.0 1.0 NA 
Can you declare that you are not suffering from a medical 
condition that would be considered a legal exclusion to 
drive? 0: Νο, 1: Yes 

STC_Fuel_type 1.0 2.0 3.0 2.5 3.0 3.0 NA 1:diesel, 2: hybrid, 3: petrol 

 STC_Gearbox 1.0 1.0 1.0 1.3 2.0 2.0 NA 1:Manual,  2: Automatic 

 

Portugal (Buses) 
Table 116: Descriptive statistics for the available parameters in database used for Portuguese bus drivers 

Variables Min 1st quartile Median Mean 3rd quartile Max 

Phase 1 

   duration 785.00 7217.00 7217.00 6359.00 7217.00 16598.00 

iDreams_Headway_Map_level_.1_mean -1.00 -1.00 -1.00 -0.98 -1.00 0.20 

iDreams_Headway_Map_level_0_mean -1.00 0.00 0.00 0.00 0.00 0.20 

iDreams_Headway_Map_level_1_mean -1.00 0.00 0.00 0.00 0.00 0.20 

iDreams_Headway_Map_level_2_mean -1.00 0.00 0.00 0.00 0.00 0.20 

iDreams_Headway_Map_level_3_mean -0.64 0.00 0.00 0.00 0.00 0.15 

Headway_level_initial -1.00 -1.00 -1.00 -0.98 -1.00 3.00 

Headway_level -1.00 -1.00 -1.00 -0.98 -1.00 0.20 

Headway_avg_level -1.00 -1.00 -1.00 -0.98 -1.00 3.00 

iDreams_Speeding_Map_level_0_mean 0.00 0.00 0.00 0.01 0.00 0.94 

iDreams_Speeding_Map_level_1_mean 0.00 0.00 0.00 0.00 0.00 0.94 

iDreams_Speeding_Map_level_2_mean 0.00 0.00 0.00 0.00 0.00 0.94 

iDreams_Speeding_Map_level_3_mean 0.00 0.00 0.00 0.00 0.00 0.94 

Speeding_level_Initial 0.00 0.00 0.00 0.01 0.00 3.00 

Speeding_level 0.00 0.00 0.00 0.01 0.00 0.94 

Speeding_avg_level 0.00 0.00 0.00 0.01 0.00 3.00 

iDreams_Overtaking_Map_level_0_mean 0.00 0.00 0.00 0.00 0.00 0.20 

iDreams_Overtaking_Map_level_1_mean 0.00 0.00 0.00 0.00 0.00 0.16 

iDreams_Overtaking_Map_level_2_mean 0.00 0.00 0.00 0.00 0.00 0.00 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

Ovetaking_level_initial 0.00 0.00 0.00 0.00 0.00 2.00 

Overtaking_level 0.00 0.00 0.00 0.00 0.00 0.20 

Overtaking_avg_level 0.00 0.00 0.00 0.00 0.00 1.00 

iDreams_Fatigue_Map_level_0_mean 0.00 0.00 0.00 0.01 0.00 2.83 

iDreams_Fatigue_Map_level_1_mean 0.00 0.00 1.00 0.71 1.00 2.83 

iDreams_Fatigue_Map_level_2_mean 0.00 0.00 0.00 0.04 0.00 2.83 

iDreams_Fatigue_Map_level_3_mean 0.00 0.00 0.00 0.07 0.00 2.84 

Fatigue_level_initial 0.00 1.00 1.00 0.83 1.00 3.00 

Fatique_level 0.00 1.00 1.00 0.83 1.00 2.84 

Fatigue_avg_level 0.00 1.00 1.00 0.83 1.00 3.00 

DrivingEvents_Map_evt_ha_mean 0.00 0.00 0.00 0.03 0.00 0.44 

DrivingEvents_Map_evt_hb_mean -0.89 0.00 0.00 -0.05 0.00 0.00 

Driving_events_maxg -0.89 -0.24 -0.13 -0.02 0.22 0.53 

   GPS_alt -54.60 82.80 140.60 145.00 212.10 333.50 

   GPS_hdg 0.00 105.20 175.90 184.00 275.80 360.00 

   GPS_spd 0.00 0.00 28.34 31.87 50.19 107.42 

  ME_AWS_fcw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_hw_level 0.00 0.00 0.00 0.12 0.00 2.00 

ME_AWS_hw_measurement 0.00 0.00 0.00 0.05 0.00 2.50 

ME_AWS_hw_repeatable 0.00 0.00 0.00 0.00 0.00 0.00 

ME_AWS_hw_valid 0.00 0.00 0.00 0.12 0.00 1.00 

  ME_AWS_hmw 0.00 0.00 0.00 0.00 0.00 1.00 

  ME_AWS_ldw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_ldw_left 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_ldw_off 0.00 1.00 1.00 0.92 1.00 1.00 

ME_AWS_ldw_right 0.00 0.00 0.00 0.00 0.00 1.00 

  ME_AWS_pcw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_pedestrian_dz 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_tamper 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_time_indicator 1.00 1.00 2.00 1.99 3.00 3.00 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

ME_AWS_tsr_level 0.00 0.00 0.00 0.15 0.00 7.00 

ME_AWS_tsr_on 0.00 0.00 0.00 0.05 0.00 1.00 

ME_AWS_zero_speed 0.00 0.00 1.00 0.71 1.00 1.00 

 tsr_1_speed 1.00 4.00 11.00 92.11 254.00 254.00 

  tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

avg_tsr_1_speed 72.52 83.43 88.74 92.19 99.00 120.39 

rolling_tsr_1_speed 2.00 7.00 64.00 92.11 129.50 254.00 

avg_tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

rolling__tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

 tsr_2_speed 3.00 201.00 254.00 229.90 254.00 254.00 

  tsr_2_sup 0.00 0.00 0.00 0.36 0.00 20.00 

avg_tsr_2_speed 224.80 227.10 229.90 229.90 231.90 238.60 

rolling_tsr_2_speed 5.00 227.00 254.00 229.90 254.00 254.00 

avg_tsr_2_sup 0.00 0.28 0.41 0.36 0.47 0.63 

rolling_tsr_2_sup 0.00 0.00 0.00 0.36 0.00 20.00 

 tsr_3_speed 3.00 254.00 254.00 250.90 254.00 254.00 

  tsr_3_sup 0.00 0.00 0.00 0.10 0.00 20.00 

avg_tsr_3_speed 248.10 249.50 251.10 250.90 252.70 254.00 

rolling_tsr_3_speed 5.00 254.00 254.00 250.90 254.00 254.00 

avg_tsr_3_sup 0.00 0.03 0.09 0.10 0.19 0.23 

rolling__tsr_3_sup 0.00 0.00 0.00 0.10 0.00 13.00 

 tsr_4_speed 7.00 254.00 254.00 253.90 254.00 254.00 

  tsr_4_sup 0.00 0.00 0.00 0.01 0.00 20.00 

avg_tsr_4_speed 252.80 254.00 254.00 253.90 254.00 254.00 

rolling_tsr_4_speed 130.50 254.00 254.00 253.90 254.00 254.00 

avg_tsr_4_sup 0.00 0.00 0.00 0.01 0.00 0.10 

rolling__tsr_4_sup 0.00 0.00 0.00 0.01 0.00 10.00 

Phase 2 

   duration 974.00 974.00 2007.00 4074.00 2007.00 17041.00 

iDreams_Headway_Map_level_.1_mean -1.00 -1.00 -1.00 -0.97 -1.00 0.20 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

iDreams_Headway_Map_level_0_mean -1.00 0.00 0.00 -0.01 0.00 0.20 

iDreams_Headway_Map_level_1_mean -1.00 0.00 0.00 0.00 0.00 0.20 

iDreams_Headway_Map_level_2_mean -0.98 0.00 0.00 0.00 0.00 0.20 

iDreams_Headway_Map_level_3_mean -0.94 0.00 0.00 0.00 0.00 0.17 

Headway_level_initial -1.00 -1.00 -1.00 -0.98 -1.00 3.00 

Headway_level -1.00 -1.00 -1.00 -0.98 -1.00 0.20 

Headway_avg_level -1.00 -1.00 -1.00 -0.98 -1.00 3.00 

iDreams_Speeding_Map_level_0_mean 0.00 0.00 0.00 0.02 0.00 1.44 

iDreams_Speeding_Map_level_1_mean 0.00 0.00 0.00 0.01 0.00 1.44 

iDreams_Speeding_Map_level_2_mean 0.00 0.00 0.00 0.00 0.00 1.27 

iDreams_Speeding_Map_level_3_mean 0.00 0.00 0.00 0.00 0.00 1.44 

Speeding_level_Initial 0.00 0.00 0.00 0.04 0.00 3.00 

Speeding_level 0.00 0.00 0.00 0.04 0.01 1.44 

Speeding_avg_level 0.00 0.00 0.00 0.04 0.00 3.00 

iDreams_Overtaking_Map_level_0_mean 0.00 0.00 0.00 0.00 0.00 0.20 

iDreams_Overtaking_Map_level_1_mean 0.00 0.00 0.00 0.00 0.00 0.20 

iDreams_Overtaking_Map_level_2_mean 0.00 0.00 0.00 0.00 0.00 0.15 

Ovetaking_level_initial 0.00 0.00 0.00 0.00 0.00 2.00 

Overtaking_level 0.00 0.00 0.00 0.00 0.00 0.20 

Overtaking_avg_level 0.00 0.00 0.00 0.00 0.00 1.00 

iDreams_Fatigue_Map_level_0_mean 0.00 0.00 0.00 0.02 0.00 2.84 

iDreams_Fatigue_Map_level_1_mean 0.00 0.00 0.00 0.01 0.00 2.84 

iDreams_Fatigue_Map_level_2_mean 0.00 0.00 0.00 0.18 0.00 2.84 

iDreams_Fatigue_Map_level_3_mean 0.00 0.00 0.00 0.94 3.00 3.00 

Fatigue_level_initial 0.00 0.00 0.00 1.15 3.00 3.00 

Fatique_level 0.00 0.00 0.06 1.15 3.00 3.00 

Fatigue_avg_level 0.00 0.00 0.00 1.15 3.00 3.00 

DrivingEvents_Map_evt_ha_mean 0.00 0.00 0.00 0.03 0.00 0.44 

DrivingEvents_Map_evt_hb_mean -0.89 0.00 0.00 -0.05 0.00 0.00 

Driving_events_maxg -0.89 -0.23 -0.12 -0.01 0.21 0.54 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

   GPS_alt -3.50 101.90 170.40 163.40 227.30 351.40 

   GPS_hdg 0.00 102.80 185.30 186.30 275.50 360.00 

   GPS_spd 0.00 0.00 24.08 31.71 49.82 145.48 

  ME_AWS_fcw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_hw_level 0.00 0.00 0.00 0.13 0.00 2.00 

ME_AWS_hw_measurement 0.00 0.00 0.00 0.05 0.00 2.50 

ME_AWS_hw_repeatable 0.00 0.00 0.00 0.00 0.00 0.00 

ME_AWS_hw_valid 0.00 0.00 0.00 0.12 0.00 1.00 

  ME_AWS_hmw 0.00 0.00 0.00 0.00 0.00 1.00 

  ME_AWS_ldw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_ldw_left 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_ldw_off 0.00 1.00 1.00 0.94 1.00 1.00 

ME_AWS_ldw_right 0.00 0.00 0.00 0.00 0.00 1.00 

  ME_AWS_pcw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_pedestrian_dz 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_tamper 0.00 0.00 0.00 0.00 0.00 0.00 

ME_AWS_time_indicator 1.00 1.00 1.00 1.93 3.00 3.00 

ME_AWS_tsr_level 0.00 0.00 0.00 0.13 0.00 7.00 

ME_AWS_tsr_on 0.00 0.00 0.00 0.02 0.00 1.00 

ME_AWS_zero_speed 0.00 0.00 1.00 0.75 1.00 1.00 

 tsr_1_speed 1.00 4.00 11.00 92.12 254.00 254.00 

  tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

avg_tsr_1_speed 72.52 83.43 88.74 92.32 99.00 120.39 

rolling_tsr_1_speed 2.00 7.00 64.00 92.12 129.50 254.00 

avg_tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

rolling__tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

 tsr_2_speed 3.00 201.00 254.00 229.80 254.00 254.00 

  tsr_2_sup 0.00 0.00 0.00 0.36 0.00 20.00 

avg_tsr_2_speed 224.80 227.10 229.00 229.80 231.90 238.60 

rolling_tsr_2_speed 5.00 227.00 254.00 229.80 254.00 254.00 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

avg_tsr_2_sup 0.00 0.28 0.41 0.36 0.47 0.63 

rolling_tsr_2_sup 0.00 0.00 0.00 0.36 0.00 20.00 

 tsr_3_speed 3.00 254.00 254.00 250.90 254.00 254.00 

  tsr_3_sup 0.00 0.00 0.00 0.10 0.00 20.00 

avg_tsr_3_speed 248.10 249.50 251.10 250.90 252.70 254.00 

rolling_tsr_3_speed 5.00 254.00 254.00 250.90 254.00 254.00 

avg_tsr_3_sup 0.00 0.03 0.09 0.10 0.19 0.23 

rolling__tsr_3_sup 0.00 0.00 0.00 0.10 0.00 13.00 

 tsr_4_speed 7.00 254.00 254.00 253.90 254.00 254.00 

  tsr_4_sup 0.00 0.00 0.00 0.01 0.00 20.00 

avg_tsr_4_speed 252.80 254.00 254.00 253.90 254.00 254.00 

rolling_tsr_4_speed 130.50 254.00 254.00 253.90 254.00 254.00 

avg_tsr_4_sup 0.00 0.00 0.00 0.01 0.00 0.10 

rolling__tsr_4_sup 0.00 0.00 0.00 0.01 0.00 10.00 

Phase 3 

   duration 115.00 11186.00 12617.00 15952.00 27908.00 27908.00 

iDreams_Headway_Map_level_.1_mean -1.00 -0.99 -0.99 -0.90 -0.95 0.08 

iDreams_Headway_Map_level_0_mean -0.99 0.00 0.00 -0.02 0.00 0.08 

iDreams_Headway_Map_level_1_mean -0.99 0.00 0.00 -0.01 0.00 0.08 

iDreams_Headway_Map_level_2_mean -0.99 0.00 0.00 0.00 0.00 0.08 

iDreams_Headway_Map_level_3_mean -0.99 0.00 0.00 0.00 0.00 0.08 

Headway_level_initial -1.00 -1.00 -1.00 -0.93 -1.00 3.00 

Headway_level -1.00 -0.99 -0.99 -0.93 -0.96 0.08 

Headway_avg_level -1.00 -1.00 -1.00 -0.93 -1.00 3.00 

iDreams_Speeding_Map_level_0_mean 0.00 0.01 0.02 0.07 0.05 1.00 

iDreams_Speeding_Map_level_1_mean 0.00 0.00 0.00 0.03 0.00 1.00 

iDreams_Speeding_Map_level_2_mean 0.00 0.00 0.00 0.00 0.00 1.00 

iDreams_Speeding_Map_level_3_mean 0.00 0.00 0.00 0.00 0.00 1.00 

Speeding_level_Initial 0.00 0.00 0.00 0.10 0.00 3.00 

Speeding_level 0.00 0.01 0.02 0.10 0.15 1.00 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

Speeding_avg_level 0.00 0.00 0.00 0.10 0.00 3.00 

iDreams_Overtaking_Map_level_0_mean 0.00 0.00 0.00 0.01 0.01 0.26 

iDreams_Overtaking_Map_level_1_mean 0.00 0.00 0.00 0.00 0.00 0.26 

iDreams_Overtaking_Map_level_2_mean 0.00 0.00 0.00 0.00 0.00 0.00 

Ovetaking_level_initial 0.00 0.00 0.00 0.01 0.00 3.00 

Overtaking_level 0.00 0.00 0.00 0.01 0.01 0.26 

Overtaking_avg_level 0.00 0.00 0.00 0.01 0.00 1.50 

iDreams_Fatigue_Map_level_0_mean 0.00 0.00 0.00 0.11 0.00 2.96 

iDreams_Fatigue_Map_level_1_mean 0.00 0.00 0.00 0.13 0.00 2.99 

iDreams_Fatigue_Map_level_2_mean 0.00 0.00 0.00 0.64 1.84 2.99 

iDreams_Fatigue_Map_level_3_mean 0.00 0.00 0.00 1.09 2.96 3.00 

Fatigue_level_initial 0.00 1.00 2.00 1.99 3.00 3.00 

Fatique_level 0.00 1.46 1.95 1.97 2.96 3.00 

Fatigue_avg_level 0.00 1.00 2.00 1.99 3.00 3.00 

DrivingEvents_Map_evt_ha_mean 0.00 0.00 0.00 0.03 0.00 0.44 

DrivingEvents_Map_evt_hb_mean -0.65 0.00 0.00 -0.05 0.00 0.00 

Driving_events_maxg -0.65 -0.24 -0.12 -0.01 0.22 0.53 

   GPS_alt -39.60 94.60 155.00 154.30 215.70 350.60 

   GPS_hdg 0.00 110.00 182.30 188.30 280.90 360.00 

   GPS_spd 0.00 0.00 26.67 31.30 50.37 107.05 

  ME_AWS_fcw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_hw_level 0.00 0.00 0.00 0.14 0.00 2.00 

ME_AWS_hw_measurement 0.00 0.00 0.00 0.06 0.00 2.50 

ME_AWS_hw_repeatable 0.00 0.00 0.00 0.00 0.00 0.00 

ME_AWS_hw_valid 0.00 0.00 0.00 0.14 0.00 1.00 

  ME_AWS_hmw 0.00 0.00 0.00 0.00 0.00 1.00 

  ME_AWS_ldw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_ldw_left 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_ldw_off 0.00 1.00 1.00 0.92 1.00 1.00 

ME_AWS_ldw_right 0.00 0.00 0.00 0.00 0.00 1.00 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

  ME_AWS_pcw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_pedestrian_dz 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_tamper 0.00 0.00 0.00 0.00 0.00 0.00 

ME_AWS_time_indicator 1.00 1.00 3.00 2.08 3.00 3.00 

ME_AWS_tsr_level 0.00 0.00 0.00 0.16 0.00 7.00 

ME_AWS_tsr_on 0.00 0.00 0.00 0.02 0.00 1.00 

ME_AWS_zero_speed 0.00 0.00 1.00 0.71 1.00 1.00 

 tsr_1_speed 1.00 4.00 11.00 91.69 254.00 254.00 

  tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

avg_tsr_1_speed 72.52 83.43 88.03 91.95 99.00 120.39 

rolling_tsr_1_speed 2.00 6.50 64.00 91.71 129.50 254.00 

avg_tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

rolling__tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

 tsr_2_speed 3.00 201.00 254.00 229.90 254.00 254.00 

  tsr_2_sup 0.00 0.00 0.00 0.36 0.00 20.00 

avg_tsr_2_speed 224.80 227.10 229.00 229.80 231.90 238.60 

rolling_tsr_2_speed 5.00 227.00 254.00 229.90 254.00 254.00 

avg_tsr_2_sup 0.00 0.28 0.41 0.36 0.47 0.63 

rolling_tsr_2_sup 0.00 0.00 0.00 0.36 0.00 20.00 

 tsr_3_speed 3.00 254.00 254.00 250.90 254.00 254.00 

  tsr_3_sup 0.00 0.00 0.00 0.10 0.00 20.00 

avg_tsr_3_speed 248.10 249.50 251.10 250.90 252.70 254.00 

rolling_tsr_3_speed 5.00 254.00 254.00 250.90 254.00 254.00 

avg_tsr_3_sup 0.00 0.03 0.09 0.10 0.19 0.23 

rolling__tsr_3_sup 0.00 0.00 0.00 0.10 0.00 13.00 

 tsr_4_speed 7.00 254.00 254.00 253.90 254.00 254.00 

  tsr_4_sup 0.00 0.00 0.00 0.01 0.00 20.00 

avg_tsr_4_speed 252.80 254.00 254.00 253.90 254.00 254.00 

rolling_tsr_4_speed 130.50 254.00 254.00 253.90 254.00 254.00 

avg_tsr_4_sup 0.00 0.00 0.00 0.01 0.00 0.10 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

rolling__tsr_4_sup 0.00 0.00 0.00 0.01 0.00 10.00 

Phase 4 

   duration 638.00 12094.00 13905.00 12552.00 14853.00 22958.00 

iDreams_Headway_Map_level_.1_mean -1.00 -0.97 -0.93 -0.74 -0.72 0.17 

iDreams_Headway_Map_level_0_mean -0.97 0.00 0.00 -0.04 0.00 0.17 

iDreams_Headway_Map_level_1_mean -0.97 0.00 0.00 -0.01 0.00 0.17 

iDreams_Headway_Map_level_2_mean -0.97 0.00 0.00 0.00 0.00 0.17 

iDreams_Headway_Map_level_3_mean -0.97 0.00 0.00 0.00 0.00 0.17 

Headway_level_initial -1.00 -1.00 -1.00 -0.80 -1.00 3.00 

Headway_level -1.00 -0.97 -0.93 -0.80 -0.82 0.17 

Headway_avg_level -1.00 -1.00 -1.00 -0.80 -1.00 3.00 

iDreams_Speeding_Map_level_0_mean 0.00 0.00 0.08 0.13 0.14 1.05 

iDreams_Speeding_Map_level_1_mean 0.00 0.00 0.00 0.09 0.00 1.05 

iDreams_Speeding_Map_level_2_mean 0.00 0.00 0.00 0.00 0.00 1.05 

iDreams_Speeding_Map_level_3_mean 0.00 0.00 0.00 0.01 0.00 1.05 

Speeding_level_Initial 0.00 0.00 0.00 0.23 0.00 3.00 

Speeding_level 0.00 0.06 0.12 0.23 0.29 1.05 

Speeding_avg_level 0.00 0.00 0.00 0.23 0.00 3.00 

iDreams_Overtaking_Map_level_0_mean 0.00 0.00 0.01 0.02 0.01 0.26 

iDreams_Overtaking_Map_level_1_mean 0.00 0.00 0.00 0.00 0.00 0.26 

iDreams_Overtaking_Map_level_2_mean 0.00 0.00 0.00 0.00 0.00 0.13 

Ovetaking_level_initial 0.00 0.00 0.00 0.02 0.00 3.00 

Overtaking_level 0.00 0.00 0.01 0.02 0.02 0.26 

Overtaking_avg_level 0.00 0.00 0.00 0.02 0.00 1.50 

iDreams_Fatigue_Map_level_0_mean 0.00 0.00 0.00 0.16 0.00 3.00 

iDreams_Fatigue_Map_level_1_mean 0.00 0.00 0.00 0.20 0.00 2.95 

iDreams_Fatigue_Map_level_2_mean 0.00 0.00 0.00 0.55 1.60 3.00 

iDreams_Fatigue_Map_level_3_mean 0.00 0.00 0.00 0.85 2.59 3.00 

Fatigue_level_initial 0.00 1.00 2.00 1.74 3.00 3.00 

Fatique_level 0.00 1.00 1.76 1.76 2.64 3.00 
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Variables Min 1st quartile Median Mean 3rd quartile Max 

Fatigue_avg_level 0.00 1.00 2.00 1.74 3.00 3.00 

DrivingEvents_Map_evt_ha_mean 0.00 0.00 0.00 0.03 0.00 0.42 

DrivingEvents_Map_evt_hb_mean -0.53 0.00 0.00 -0.05 0.00 0.00 

Driving_events_maxg -0.53 -0.23 0.12 0.00 0.22 0.54 

   GPS_alt 1.50 86.30 134.40 138.20 193.60 338.70 

   GPS_hdg 0.00 97.67 173.10 179.38 270.00 360.00 

   GPS_spd 0.00 2.96 30.56 32.09 48.89 107.79 

  ME_AWS_fcw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_hw_level 0.00 0.00 0.00 0.11 0.00 2.00 

ME_AWS_hw_measurement 0.00 0.00 0.00 0.04 0.00 2.50 

ME_AWS_hw_repeatable 0.00 0.00 0.00 0.00 0.00 0.00 

ME_AWS_hw_valid 0.00 0.00 0.00 0.11 0.00 1.00 

  ME_AWS_hmw 0.00 0.00 0.00 0.00 0.00 1.00 

  ME_AWS_ldw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_ldw_left 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_ldw_off 0.00 1.00 1.00 0.94 1.00 1.00 

ME_AWS_ldw_right 0.00 0.00 0.00 0.00 0.00 1.00 

  ME_AWS_pcw 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_pedestrian_dz 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_tamper 0.00 0.00 0.00 0.00 0.00 1.00 

ME_AWS_time_indicator 1.00 1.00 1.00 1.79 3.00 3.00 

ME_AWS_tsr_level 0.00 0.00 0.00 0.12 0.00 7.00 

ME_AWS_tsr_on 0.00 0.00 0.00 0.05 0.00 1.00 

ME_AWS_zero_speed 0.00 1.00 1.00 0.77 1.00 1.00 

 tsr_1_speed 1.00 4.00 11.00 92.60 254.00 254.00 

  tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

avg_tsr_1_speed 72.52 83.43 88.74 92.24 99.00 120.39 

rolling_tsr_1_speed 2.00 7.00 64.00 92.60 129.50 254.00 

avg_tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 

rolling__tsr_1_sup 0.00 0.00 0.00 0.00 0.00 0.00 
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 tsr_2_speed 3.00 201.00 254.00 229.90 254.00 254.00 

  tsr_2_sup 0.00 0.00 0.00 0.36 0.00 20.00 

avg_tsr_2_speed 224.80 227.10 229.90 229.90 231.90 238.60 

rolling_tsr_2_speed 5.00 227.00 254.00 229.90 254.00 254.00 

avg_tsr_2_sup 0.00 0.28 0.41 0.36 0.47 0.63 

rolling_tsr_2_sup 0.00 0.00 0.00 0.36 0.00 20.00 

 tsr_3_speed 3.00 254.00 254.00 250.80 254.00 254.00 

  tsr_3_sup 0.00 0.00 0.00 0.10 0.00 20.00 

avg_tsr_3_speed 248.10 249.50 251.10 250.80 252.70 254.00 

rolling_tsr_3_speed 5.00 254.00 254.00 250.80 254.00 254.00 

avg_tsr_3_sup 0.00 0.03 0.09 0.10 0.19 0.23 

rolling__tsr_3_sup 0.00 0.00 0.00 0.10 0.00 13.00 

 tsr_4_speed 7.00 254.00 254.00 253.90 254.00 254.00 

  tsr_4_sup 0.00 0.00 0.00 0.01 0.00 20.00 

avg_tsr_4_speed 252.80 254.00 254.00 253.90 254.00 254.00 

rolling_tsr_4_speed 130.50 254.00 254.00 253.90 254.00 254.00 

avg_tsr_4_sup 0.00 0.00 0.00 0.01 0.00 0.10 

rolling__tsr_4_sup 0.00 0.00 0.00 0.01 0.00 10.00 
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