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Abstract

Background: To support the COVID-19 pandemic response, many countries, includ-

ing Belgium, implemented baseline genomic surveillance (BGS) programs aiming to

early detect and characterize new SARS-CoV-2 variants. In parallel, Belgium main-

tained a sentinel network of six hospitals that samples patients with severe acute

respiratory infections (SARI) and integrated SARS-CoV-2 detection within a broader

range of respiratory pathogens. We evaluate the ability of the SARI surveillance to

monitor general trends and early signals of viral genetic evolution of SARS-CoV-2

and compare it with the BGS as a reference model.

Methods: Nine-hundred twenty-five SARS-CoV-2 positive samples from patients ful-

filling the Belgian SARI definition between January 2020 and December 2022 were

sequenced using the ARTIC Network amplicon tiling approach on a MinION platform.

Weekly variant of concern (VOC) proportions and types were compared to those

that were circulating between 2021 and 2022, using 96,251 sequences of the BGS.

Results: SARI surveillance allowed timely detection of the Omicron (BA.1, BA.2,

BA.4, and BA.5) and Delta (B.1.617.2) VOCs, with no to 2 weeks delay according to

the start of their epidemic growth in the Belgian population. First detection of VOCs

B.1.351 and P.1 took longer, but these remained minor in Belgium. Omicron BA.3

was never detected in SARI surveillance. Timeliness could not be evaluated for

B.1.1.7, being already major at the start of the study period.

Conclusions: Genomic surveillance of SARS-CoV-2 using SARI sentinel surveillance

has proven to accurately reflect VOCs detected in the population and provides a
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cost-effective solution for long-term genomic monitoring of circulating respiratory

viruses.
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genomic surveillance, influenza, pandemic preparedness, respiratory viruses, SARI surveillance,
SARS-CoV-2

1 | INTRODUCTION

Since the start of the SARS-CoV-2 pandemic in 2019, genomic sur-

veillance to detect emerging variants of concern (VOCs) and variants

of interest (VOIs) has been widely used, especially to guide public

health actions, initiate early characterization of emerging variants,

understand the spatio-temporal spread of the virus, and understand

the impact of emerging mutations on treatment efficacy.1–9 To date,

the World Health Organization (WHO) has designated five VOCs

worldwide after the start of the pandemic with the original Wuhan

strain.10–12 The SARS-CoV-2 Alpha variant (B.1.1.7) was first identi-

fied in the United Kingdom (UK) in late summer to early autumn 2020

and caused a rapid increase in COVID-19 cases in the UK by the end

of 2020.13,14 During the same period, a rapid resurgence of the epi-

demic was caused by the Beta (B.1.351) variant in South Africa,15–17

and in Brazil, the emergence of a novel VOC, referred to as Gamma

(P.1), was reported around early November 2020.16 The Delta variant

(B.1.617.2), which was first detected in India in January 2021, was

designated by the WHO as a VOC in May 2021.18 Omicron

(B.1.1.529; including lineages BA.1 to BA.5) is the most recently rec-

ognized VOC and was first reported by South Africa in November

2021.19

During the acute pandemic phase, it has been considered essen-

tial to detect, monitor, and assess virus variants that can result in

increased transmissibility and disease severity or have other adverse

effects on public health and social control measures.2,20 To obtain

timely and accurate information on the emergence and circulation of

VOCs and VOIs, robust surveillance systems, including a well-defined

sampling and sequencing strategy, were required and were implemen-

ted in many countries.21 It is within this context that the European

Center for Disease Prevention and Control (ECDC) recommended

two complementary sampling approaches. First, a representative sam-

pling of SARS-CoV-2 RT-PCR positive cases from existing population-

based surveillance systems and, second, a targeted sampling of SARS-

CoV-2 positive cases occurring in special settings or populations.2 In

order to comply with these recommendations, Belgium set up a

national baseline genomic surveillance (BGS) aiming at sequencing a

representative subset (5–10%) of all SARS-CoV-2 PCR positive sam-

ples in order to follow-up trends for the circulating viruses and to

detect emerging variants when they reach a certain proportion, typi-

cally around 1%.2,22–25 Additionally, an active genomic surveillance

was also set up to target specific indications, including unusual out-

breaks, persisting infections in immunocompromised patients, and

returning travelers from a zone at risk.23,24,26 Patients hospitalized

with severe acute respiratory infections (SARI) were at first not

included in these indications, although being a very important group

to evaluate the impact of SARS-CoV-2 on human health.27–30

Sentinel surveillance networks have been operating for influenza

virus for many years.27–29,31,32 In Belgium, SARI surveillance exists

since 2012 and consists presently of a network of six hospitals send-

ing respiratory samples and clinical information from patients fulfilling

the case definition to the National Influenza Centre. In particular, SARI

surveillance has proven to be very useful to evaluate the severity of

infections caused by different respiratory viruses, including influenza

virus.27–30,33–37 Our group also demonstrated that non-influenza

respiratory viruses (NIRV) have an important contribution to the bur-

den of SARI, with overall one third of the SARI cases showing positiv-

ity for one or more of the respiratory viruses tested (i.e., coronavirus,

human metapneumovirus, rhinovirus, enterovirus, and parainfluenza

virus or respiratory syncytial virus).27–29 The information retrieved

from the Belgian SARI network system did not only allow to evaluate

the severity of these respiratory viruses against the burden of influ-

enza but also to investigate the vaccine efficacy and epidemiology of

these viruses. Additionally, the provided data were considered to be

beneficial for clinical management of SARI patients.27–29

In this study, we evaluated the performance of a SARI-based

SARS-CoV-2 genomic surveillance for the five different VOCs based on

the Belgian sentinel hospital network during the pandemic. This evalua-

tion was performed based on different criteria, namely, the ability to

correctly follow major trends obtained from the exhaustive baseline

genomic surveillance, the ability to promptly detect major introduction

events, and the ability to detect minority variant populations.

After more than 2 years of crisis due to the SARS-CoV-2 pan-

demic, and with many countries now entering the recovery phase and

planning for long-term surveillance of respiratory pathogens, we dem-

onstrate here that the SARI surveillance network is an appropriate

and cost-effective tool to monitor the circulation of SARS-CoV-2 vari-

ants or variants of other respiratory pathogens.

2 | METHODS

Belgian sentinel SARI surveillance has been in place since 2012 and is

composed of six hospitals spread over the whole country (Figure 1,

map created using the Free and Open Source QGIS, version

3.22.5).27–29 The overall catchment population of the current network

is estimated at 992,310 inhabitants, which corresponds to 8.6% of the

Belgian population.
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At these hospitals, respiratory samples (nasopharyngeal swabs,

aspirates, or broncho-alveolar lavages) were taken from adults and chil-

dren fulfilling the Belgian SARI definition (adapted from the WHO

2014 SARI case definition). A SARI case is defined as a person suffering

from an acute respiratory illness with onset within the last 10 days of

(1) history of fever or measured fever of ≥38�C, (2) cough or dyspnea,

(3) and requiring hospitalization (24 h or more, at least an overnight

stay). Samples were sent to the National Influenza Centre (NIC) hosted

by the National Institute of Public Health (Sciensano) in Belgium, where

they were tested by RT-qPCR to detect seasonal influenza viruses

(Subtypes A and B), 16 other respiratory viruses and SARS-CoV-2.29

Whole Genome Sequencing (WGS) of SARS-CoV-2 was per-

formed on positive samples taken between 2020 and 2022, and with

sufficient high viral load (Ct ≤ 25) on a MinION platform (Oxford

Nanopore Technologies) following the ARTIC Network protocol v3.17

or Midnight 1200 bp primer panels (both IDT Technologies) as

described previously.38,39 cDNA synthesis was performed on RNA

extracts (EMAG®, BioMérieux) using the LunaScript® RT SuperMix kit

(New England Biolabs). After the PCR, amplicons of each sample were

pooled and we used the NEBNext® Ultra II End Repair/dA-Tailing

Module (New England Biolabs) to convert the fragmented DNA to

repaired DNA having 50 phosphorylated ends. Then, repaired ampli-

cons were barcoded with the Native Barcoding Expansion 96 kit

(EXP-NBD196, Oxford Nanopore Technologies) according to the

manufacturer’s protocol. Barcoded samples were pooled in one tube,

bead-purified (ProNex® Size-Selective Purification system, Promega),

and eluted. After addition of the sequencing adapters (AMII from

Oxford Nanopore Technologies) at the ends of the barcoded ampli-

cons, the library was subsequently prepared for sequencing by adding

loading beads and finally loaded into a primed R9.4.1 flow cell (Oxford

Nanopore Technologies). Complete sequences were recovered using

the ARTIC analysis pipeline, and clades and lineages were determined

using the open web application Nextclade provided by Nextstrain.40

Sequences with a bad QC score in Nextclade were excluded from the

analysis. Samples with lower viral load (Ct > 25) or for which insuffi-

cient material was available were excluded from the study.

Numbers of identified VOCs in SARI surveillance were calculated

per week according to the sampling date and compared to the weekly

SARS-CoV-2 VOCs circulating in the general population using the

baseline genomic surveillance data that are publically available at

the Belgium COVID-19 Dashboard.41 The 14-day forward moving

average for variant data (Belgium COVID-19 Dashboard, accessed

13/06/2023) was kindly transformed into reported numbers per

ISO-week by Sciensano. The concerned study period runs from the

official start of the genomic baseline surveillance at week 7 of 2021

(2021-W07) until 2022-W52. The timeliness and sensitivity for

VOC detection using SARI surveillance were evaluated by compar-

ing the week of the first detection for each VOC within the context

of its emergence and its maximal weekly detection level (%) in the

baseline genome surveillance, respectively. Weekly detection levels

(%) for each VOC were extracted from the baseline genomic surveil-

lance data by dividing the number of sequences reported for a spe-

cific VOC by the total number of sequences reported for the same

week. ISO weeks were used to perform this calculation. We defined

the epidemic growth phase of a VOC as the period for which the

exponential increase of its weekly reported proportion (%) is a con-

stant during at least 4 weeks in the BGS, which was calculated

using a linear regression curve.42–44 The slope value a of the linear

regression curve (equation format y = ax + b) within that time win-

dow represents the relationship between the detection levels (%) of

each VOC in relation with time, and thus provides a measure of

how quickly a VOC is growing. The R2 value was used as a measure

of the quality of the linear regression curve for the used dataset.

The weeks between the first detection of a VOC until the start of

the epidemic growth phase in the BGS were defined as the low

detection phase of this VOC (see Supporting Information S2). Data

were processed using Excel 2016 and R 4.2.3 (RStudio Version

2023.06.0).

3 | RESULTS

3.1 | General results and observations

SARS-CoV-2 was first detected within the SARI surveillance for a

patient sampled on March 1, 2020. This was the same day as the first

F I GU R E 1 Spatial location of the six
hospitals from the Belgian hospital-based
SARI surveillance network (BELSARI-net).
(1) AZ Sint Jan Brugge-Oostende (site
Brugge); (2) Universitair Ziekenhuis
Brussel; (3) CHU Saint-Pierre Brussel;
(4) Jessa Ziekenhuis Hasselt; (5) GHdC
Charleroi; (6) CHU UCL Namur (site
Godinne) (map created using the Free and
Open Source QGIS, version 3.22.5).
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(non-travel-related) detection of the virus in the general population.

Since then, out of 5,695 respiratory samples received between March

13, 2020, and December 31, 2022, 1,558 samples tested positive for

SARS-CoV-2 by qPCR, and 1,103 (71%) had a Ct value that enabled

sequencing. In total, 925 samples were sequenced successfully

(Supporting Information S1), covering the different SARS-CoV-2

waves of the pandemic in Belgium. Each week, 1 to 44 SARS-CoV-2

positive SARI samples were sequenced, except for some weeks where

none were sequenced. Only the second wave (August 2020 till

February 2021) was missed due to a temporary disruption of the SARI

surveillance system, which resumed in 2021-W04. Since the BGS

started officially from 2021-W07, 859 sequences from the SARI

surveillance were included in the analysis. Variant trends provided by

these 859 sequences from the SARI surveillance were compared with

those determined by the BGS including a total of 96,251 sequences

from 2021-W07 until 2022-W52. Lineage analysis showed a similar

pattern to that observed in the national baseline genomic surveillance

(Figure 2).

F I GU R E 2 SARS-CoV-2 VOC dynamics during the COVID-19 pandemic registered by the SARI surveillance (upper graph) and the national
baseline genomic surveillance (lower graph). Both surveillance systems shows similar patterns. The national baseline genomic surveillance
officially started in Week 7 of 2021, whereas SARI surveillance sequencing was retrospectively performed since 2020-W09. The results of the
baseline genomic surveillance are based on a total of 96,251 sequences, whereas those of the SARI surveillance system are based on
964 sequences. Wuhan-like strains and non-VOC variants (detected in 2020 by SARI surveillance) are included in “other variants.”
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The speed of epidemic growth was evaluated for each VOC using

the slope values at the epidemic growth phase in the baseline geno-

mic surveillance and was highest for BA.1 (23.21), followed by

B.1.617.2 (13.87) and BA.5 (12.10) having similar slopes, and BA.2

(10.91). P.1 (1.84) and BA.4 (1.92) numbers increased more slowly.

For B.1.1.7, the epidemic curve and its epidemic growth started

before the registration of the variants in the Sciensano Dashboard. A

prediction of the minimal epidemic growth rate was calculated using

the first reported Belgian B.1.1.7 sequence in GISAID (2020-W52) as

starting point and its prevalence value in the BGS at the first measure-

ment point 2021-W07 (65%), resulting in an estimated minimal slope

of 9.28 (Supporting Information S3). The low detection period before

the epidemic growth phase varied from 2 to 8 weeks, depending on

the VOC. Variants B.1.351 and BA.3 never showed an epidemic

growth phase (R2[BA.3, B.1.351] = undetermined), and for P.1, the

regression curve had a poor R2 score of 0.90. Except for B.1.617.2,

none of the other VOC reached a 100% weekly detection in the BGS

sequences, with maximal weekly detection levels of 85.1% (B.1.1.7),

4.6% (B.1.351), 14.9% (P.1), 95.3% (BA.1), 98.5% (BA.2), 0.14% (BA.3),

7.7% (BA.4), and 69.0% (BA.5) for the studied period (Figure 3; Sup-

porting Informations S2–S5).

For this study, we defined a variant as emerging within the

Belgian population based on the exponential properties (i.e., the slope

and value for R2) of its weekly frequency detection curve and its

weekly calculated detection level within the total number of

sequences as calculated from the baseline surveillance genomic data.

We have set empirically following criteria: R2 > 0.95, slope > 5 and

maximal weekly detection level >15%. The R2 value of 0.95 is a gen-

eral accepted value to define a reliable regression model. The slope

value has been arbitrary chosen and set at five, as a proof-of-concept

to express an important increase in VOC numbers (five times) per time

unit (1 week). Where ECDC uses a threshold of 10% to indicate the

start of the seasonal epidemic of influenza based on sentinel

specimens,45 we decided to use 15% as threshold for SARS-CoV-2

because of the non-sentinel character of our dataset. Based on this

definition, Variants B.1.617.2, BA.1, BA.2, and BA.5 are considered

emerging and referred to as major VOCs, whereas the remaining vari-

ants (B.1.351, P.1, BA.3, and BA.4) are considered minor and did not

successfully circulate (Figure 3). Variant B.1.1.7 is also considered as a

major VOC since it fulfills the definition when using the estimated

minimal epidemic growth rate as described previously (Supporting

Informations S3 and S4).

F I GU R E 3 The maximal weekly detection percentages ( ) in the national genomic baseline surveillance for each of the different VOCs
(Alpha, Beta, Gamma, Delta, Omicron, and its relatives) and the slope (● / �) and R2 (◆) values of linear regression curves for each (see the
supporting information) were combined to define an emerging variant. A VOC was considered emerging if complying with the following empirical
criteria: R2 > 0.95 (dashed line), slope > 5 (dotted line), and >15% weekly incidence (full line). Based on this definition, Variants B.1.1.7, B.1.617.2,
BA.1, BA.2, and BA.5 are considered emerging VOCs, while P.1, BA.3, and BA.4 did not emerge. A slope could not be calculated for VOC B.1.351,
as its epidemic growth was not exponential.
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3.2 | Description of the observations per VOC in
SARI and the comparison to BGS

The BGS started officially in 2021-W07, when both VOCs B.1.1.7

and B.1.351 were already circulating at important levels so that no

comparison is possible with SARI surveillance samples as for what

concerns their first detection. As shown in Figure 4, the primary

detection of SARS-CoV-2 VOC B.1.1.7 in SARI surveillance occurred

in week 2021-W08, which is 4 weeks after the SARI surveillance

resumed in 2021. This is 8 weeks after this variant was first

reported in GISAID for Belgium and when its prevalence in the BGS

reached 63.2%. This variant was detected in SARI surveillance sam-

ples until 2021-W23. Beta VOC B.1.351 was detected 6 weeks later

in the SARI surveillance as compared to first reported sequence in

GISAID. Within SARI surveillance, B.1.351 was identified 14 times

on a total of 81 sequences (17.3%) during the period 2021-W05 to

2021-W14 where it co-circulated with the more prevalent VOC

B.1.1.7 (61 out of 81 sequences, 75.3%). VOC P.1 (Gamma) was

first detected in 2021-W04 in the BGS and could only be picked up

10 weeks later in SARI samples, where its latest detection was in

2021-W21. During that period (2021-W14 to 2021-W21), only

5 out of 60 sequences (8.3%) were found to be P.1 in SARI, with

most sequences (52/60, 86.6%) still being B.1.1.7. VOC P.1 did not

truly emerge in Belgium, had no exponential increase (R2 < 0.95),

and reached a maximum weekly detection level of only 14.95% in

the BGS. Similarly, the Delta variant B.1.617.2 was also detected

with a delay of 10 weeks in SARI surveillance as compared to its

first detection in the BGS. Within BGS, this VOC had an extremely

long phase of 9 weeks at low detection as compared to the other

VOCs, before it spread in the entire population and was detected in

SARI samples.

Omicron variants started circulating in 2021-W48 in the Belgian

population, with BA.1 and BA.2 circulating mainly from January to

June 2022 and being replaced by BA.4 and BA.5 afterwards. SARI

surveillance allowed the detection of BA.2 at its exponential rise,

which was 4 weeks after its first detection in the BGS. Omicron vari-

ant BA.5, was even detected within a single week after its first

detection in the BGS and still being before the exponential rise of

the variant. BA.1 and BA.4 were detected 1 week after the variant

started increasing in the Belgian population and within 3 weeks after

their first detection in BGS. However, Omicron Variant BA.3 was

never detected in SARI samples, while it was detected in the BGS

but at very low frequencies (max 0.14% among weekly sequences)

and without really emerging in the country (Figure 4).

4 | DISCUSSION

During the SARS-CoV-2 pandemic, many countries integrated

SARS-CoV-2 surveillance in their existing sentinel surveillance sys-

tems successfully and allowed those countries to evaluate different

epidemiological aspects of this new respiratory pathogen.9,30,37,46,47

The Belgian National Influenza Centre also integrated SARS-CoV-2

detection in the existing hospital SARI surveillance for influenza.29

This allowed sequencing of SARS-CoV-2 positive samples and thus

variant genomic surveillance during the pandemic, resulting in a total

of 964 sequences over the period 2020-W09 until 2022-W52. Since

the official start of the BGS in 2021-W07 until end 2022, a total of

96,251 SARS-CoV-2 sequences were reported by the COVID-19

Belgium Genomics Consortium to the Belgium national public health

institute, Sciensano.26,41 Our data show that SARI surveillance suc-

ceeded in detecting the circulating VOCs in a representative manner

according to the circulation in the general population using

859 sequences generated for that same period. This study thereby

demonstrates the potential of the existing SARI surveillance in the

genomic surveillance of SARS-CoV-2 VOCs during the pandemic and

supports its continued use in a post-pandemic era.

In SARI surveillance, the B.1.1.7 variant was detected 8 weeks

after the first reported sequence in GISAID for Belgium from a return-

ing traveler (EPI_ISL_791333) that was sampled on December

21, 2020 (2020-W52). At that time, indications for sampling were

based on active surveillance and although sequencing efforts

were mainly research-oriented before the generic BGS was estab-

lished on February 15 to cover the general population, this resulted in

over 3,700 available sequences by the end of 2020 and a total of

317 sequences reported on the Sciensano Dashboard for

2021-W07.26,41 Since the sampling in SARI surveillance only resumed

in 2021-W04 and that weekly only one to three SARS-CoV-2 posi-

tives were appropriate for sequencing between 2021-W04 to

2021-W07, sensitivity of SARI surveillance was at that time too low

to early detect this VOC although its general prevalence was already

significant. Our data show that the other major VOCs B.1.617.2, BA.1,

BA.2, and BA.5 were detected in SARI surveillance within the low

detection period or with a 1 to 2 weeks delay after the start of their

epidemic growth phase as observed in the BGS. For both Omicron

derived recombinants BQ1 and BF7, which were considered by WHO

as variants of interest (VOI) and variants under monitoring (VUM),

respectively, and which are both major variants in the BGS, a timely

detection in SARI surveillance was observed as well (results not

shown).41 The B.1.617.2 variant was detected first in India in

December 2020 and was, unlike the major circulating Alpha variant

B.1.1.7 at that time, no longer characterized by a S gene dropout in

the qPCR used for SARS-CoV-2 detection in human samples.18,48

Preferential sequencing of samples lacking the S gene drop-out and

from travelers coming from India to capture the introduction of this

variant in the country within the BGS was probably common prac-

tice.24 This could explain both the rapid detection (BGS 2/959

sequences [0,2%] in week 2021-W14) and the long period of circula-

tion at low levels as observed in the BGS, before its exponential epi-

demic growth from 2021-W22 onwards, while not detecting the

variant in SARI samples before 2021-W24. During that period

(2021-W14 to 2021-W22), only a small number of SARS-CoV-2 posi-

tive SARI samples were sequenced at the NIC (with a maximum of

24 sequenced samples on a weekly base for that period), and this

might have been insufficient to detect this low circulating variant

rapidly.
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F I GU R E 4 Legend on next page.
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Sequencing in SARI surveillance relies solely on the SARS-CoV-2

positivity rate of its samples as it is a case definition-based sentinel

surveillance system. Although this implied that the weekly number of

sequences were low, SARI surveillance did succeed to detect the

minor variants shortly after their numbers started increasing exponen-

tially in the BGS, except for BA.3, but this VOC never showed an epi-

demic growth phase. Meanwhile, the BGS aimed at continuously

sequencing 5% of all the SARS-CoV-2 PCR positive samples in an

attempt to comply with the national recommendations (5–10% posi-

tives sequenced) and ECDC guidance documents and generated con-

tinuously high numbers of sequences.2,23,24 This system is however

dependent on the total number of tested COVID-19 cases, which in

his turn depends on the testing strategy in Belgium and leads to varia-

tions in sensitivity. During epidemic peaks of infections, the imposed

threshold of 5% could not be reached consistently.26 On the other

hand, in periods of lower virus circulation or testing, sequencing cov-

erage reached 14% of positive cases, thereby resulting in a very high

sensitivity of the BGS. This sensitivity is especially important for the

detection of emerging variants before they reach 1% of the circulating

strains as was observed for the B.1.617.2 variant.2,24,41 Also, the data

gathered from the baseline genomic surveillance allowed the Belgian

Sequencing Consortium to conduct or participate to several active

surveillance studies concerning phylogenetic analyses, VOC-

associated disease severity assessments and outbreak investigations

such as in nursing homes and others.26,49–54

Regardless the strict non-pharmaceutical interventions that were

implemented in Belgium from March 13, 2020, onwards, the SARS-

CoV-2 pandemic strongly affected the SARI surveillance system due

to overburden of the hospitals which were unable to provide timely

samples and patient information. Samples within this study were often

retrospectively sequenced, and sampling dates were used to establish

the figures in this publication. The pandemic also resulted in a

decrease in patient samples sent, with on average 50 samples per

week (2020-W14 to 2022-W52) as compared to normal influenza

seasons (during 10 weeks > 100 samples per week; 4 weeks between

50 and 100 samples per week in 2019–2020 season).55 From

2020-W17 to 2020-W20 (influenza season 2019–2020), the system

was even completely interrupted and sampling for the 2020–2021

influenza season could only start from 2021-W04 onwards. From that

week on, the SARI surveillance has been running continuously, all

weeks of the year. Our results show that even with a relatively low

number of samples and delay in timing of sequencing, SARI surveil-

lance succeeded in detecting the minor and major VOCs that eventu-

ally emerged in Belgium in a timely manner. To be able to detect viral

variants during both their endemic or pandemic circulation, a year-

round SARI surveillance, subject however to some organizational

improvements, should be envisaged and encouraged. This should ide-

ally involve an increase of the number of the participating hospitals to

improve the catchment population and being more representative for

the whole country but should also require better resources for sam-

pling and faster sample shipment. Not only pandemic preparedness

and response will be strengthened, but also the public health manage-

ment of the yearly epidemics of a number of respiratory viruses will

benefit from this system.27–29,56 The performance of the SARI surveil-

lance system can be increased by including different pathogen-

specific labs or institutions.

Besides the difference in sequencing strategy, an important dif-

ference between both surveillance systems lies in the sampling strat-

egy itself. While the BGS collects SARS-CoV-2 positive samples from

over 40 diagnostic laboratories, relies on decentralized sequencing,

but centralized data repository and analysis, sampling in SARI surveil-

lance is based on six sentinel sites recruiting samples based on the

clinical presentation that is limited to patients that fulfill the SARI case

definition.26,28,57 In the context of SARI surveillance in Belgium, test-

ing and sequencing are centralized in the public health laboratories of

Sciensano. As the SARS-CoV-2 pandemic evolved, both natural immu-

nity due to virus exposure and induced immunity from vaccination

programs increased within the population and conferred protection

against severe disease, and it will continue to do so in a

post-pandemic era.57,58 Together with the changing characteristics of

variants while adapting to its host to evade immune response, SARS-

CoV-2 will circulate in the general population without necessarily

causing hospitalization to the same extent as observed during

the SARS-CoV-2 pandemic, thereby limiting severe infections more to

the high-risk groups (i.e., people aged >60 years or with underlying

health conditions) related to this pathogen.59–62 This could result in a

lower detection of variants causing mild disease in the targeted popu-

lation of the SARI surveillance, while variants causing more severe dis-

ease might be overrepresented. However, it will become less

important to capture these variants causing mild disease in a timely

manner, since specific measures are no longer put in place to protect

the general population from these particular variants. Anyway,

patients suffering from mild respiratory infections are well covered by

the existing ILI (influenza-like illness) surveillance that involves a net-

work of sentinel general practitioners in Belgium since 1979.63 This

ILI surveillance could complement the SARI surveillance network, the

latter still focusing on variants causing severe respiratory infections.

Since both SARI and ILI surveillances sampling are symptom based,

F I GU R E 4 Comparison of SARS-CoV-2 genomic surveillance in SARI samples and the Belgian baseline genomic surveillance. The proportions
of the five VOC (B.1.1.7 [Alpha], B.1.351 [Beta], P.1 [Gamma], B.1.617.2 [Delta], and BA.1/BA.2/BA.3/BA.4/BA5 [Omicron]) are presented as the
percentage of the total number of weekly sequences from January 2021 (Week 7) until December 2022 (Week 52). Dotted lines with empty
triangles represent the SARI genomic surveillance sequences; continuous lines with bullets represent the Baseline Genomic surveillance
sequences. For readability reasons, Wuhan-like strains and non-VOC variants detected in SARI surveillance in 2020 are not included in the figure.
Genomic SARI surveillance shows timely detection for each VOC as compared to the baseline surveillance, except for BA.3 (omicron), which was
not detected. The observed trends in the proportion of weekly positives of a variant in SARI surveillance are comparable to the waves observed
in the baseline surveillance.
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they both have the advantage of lowering the risk in biased sample

selection which at some times will be the case for the baseline surveil-

lance, where samples with specific characteristics of variants of inter-

est or concern might be prioritized for sequencing to rapidly detect

introduction of a variant in the country.26,28 Also, as the national test-

ing indications change from testing all suspected COVID-19 patients

to only testing very specific subgroups, the representativeness of a

BGS will change over time, while the representativeness of the SARI

surveillance remains the same.

Viruses evolve continuously and the BGS aims for the rapid detec-

tion of new introductions in the general population and emergence of

new variants in near real-time, in order to inform the local authorities

and allow a prompt risk assessment.3,48 While immediate launch of bio-

medical research has shown to be efficient on multiple occasions, public

health actions such as travel restrictions and targeted testing and trac-

ing during the pandemic following the detection of a new variant have

however not proven to allow a sustained containment.9,11,12,26,64 Upon

its first detection, a variant is often already circulating at low to moder-

ate levels within the population, so often variant-specific measures

have only limited effect on the further spread.6,9,64,65 Also, within risk

assessment, hazard assessment not only relies on the virological infor-

mation of a variant retrieved from testing of viral isolates, but also on

epidemiological information retrieved after a variant has been circulat-

ing for some time, thereby using the numbers of deaths and hospital-

ized cases that were registered. SARI surveillance aims to gather

information on the circulating strains in human cases suffering from a

severe respiratory infection during the endemic, epidemic and/or pan-

demic circulation of a virus.32 Although SARI surveillance is less timely

and sensitive compared to the baseline genomic surveillance in its cur-

rent format, it gives a well-founded assessment on the disease impact

of pathogen circulation in a country. This allows for monitoring of

locally circulating viruses for antiviral sensitivity or strain identification

for the vaccine composition for the upcoming season, both existing

already for influenza and possibly applicable for SARS-CoV-2 and other

pathogens as well.9,27–29,31,66–68

As suggested by Brito et al.,21 a nationwide strategy allowing to

sequence at least 0.5% of the positive cases, with a turnaround time

(time in days between sample collection and genome submission) of

less than 21 days, could be a benchmark for viral pathogens genomic

surveillance efforts. This means that to maintain its sensitivity, a

national BGS would require a high capacity to continuously sequence

these important numbers of samples, and the organization of their

transport to the sequencing centers to allow near real-time surveil-

lance should be guaranteed as well. In a different approach, sentinel

surveillance provides an alternative solution to measure the impact

of a virus or virus variant in the population using a lower number of

sequences.9 Moreover, the SARI sampling strategy remains unaf-

fected by changes in testing indications. Another major benefit of

using SARI and ILI surveillance in genomic SARS-CoV-2 variant detec-

tion is the availability of clinical patient information allowing for fur-

ther analysis on severity and/or vaccine effectiveness using the same

data. The clinical information sent alongside with the samples has not

been used in the current study since it is out of the scope of this

publication. Besides, the respiratory specimens sampled in SARI and

ILI surveillance undergo long-term storage and allow for retrospective

analysis, as demonstrated in the current study.

We think that sentinel ILI and SARI surveillance networks consti-

tute a useful tool to monitor the circulation of SARS-CoV-2 variants,

or other respiratory pathogens, subject however to some organiza-

tional and logistical adjustments to achieve this purpose and as

described in the ECDC guidelines.31

5 | CONCLUSIONS

In conclusion, our results show that sentinel SARI surveillance can

give a valuable reflection of the circulation of the different SARS-

CoV-2 variants of concern during pandemic and endemic periods,

especially for variants related to severe respiratory infections. Sentinel

SARI surveillance may represent a relatively cost-effective and sus-

tainable tool to contribute to genomic surveillance, including in low-

and middle-income countries.

To reflect circulation of variants causing mild disease in the gen-

eral population, complementary analysis of ILI surveillance samples

from a network of general practitioners could be considered, which is

in line with the ECDC recommendation to use existing, sentinel sur-

veillance systems for genomic surveillance of viral pathogens.

Improved and scalable genomic sentinel surveillance systems at a

national level, such as integrated ILI and SARI surveillance networks

for respiratory pathogens, should be considered as a valuable and reli-

able option to strengthen the pandemic preparedness and response.

Such systems are important not only for monitoring of SARS-CoV-2

but also other respiratory pathogens such as influenza virus and RSV.
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