

June 6-8, 2023 | Chambéry, France & Online

Beyond silicon: thin-film tandem as an opportunity for photovoltaics supply chain diversification and faster power system decarbonization out to 2050

Alessandro Martulli, PhD Student, Hasselt University, Belgium

Co-authors:

Fabrizio Gota (KIT, Germany), Neethi Rajagopalan (VITO/DOW, Belgium), Toby Meyer (Solaronix, Switzerland), Cesar Ramirez Quiroz (FOM/Nice Solar, Denmark), Daniele Costa (VITO, Belgium), Ulrich Paetzold (KIT, Germany), Robert Malina (Uhasselt, Belgium), Bart Vermang (UHasselt/IMEC, Belgium), Sebastien Lizin (UHasselt, Belgium)

European Union's Horizon 2020 research and innovation programme, grant agreement Nº 850937.

Background: Solar PV techs and supply chain

- Silicon: dominant PV technology
- China: dominant of silicon PV supply chain

Background: Pros and Cons of China concentration

PROS

PERCISTAND

- About 90% solar cost decline
- Solar = most affordabable source of electricity

CONS

- Market concentration
- Geographic concentration (China)
- ightarrow Supply chain vulnerable to shocks
- \rightarrow Import dependency

Worldwide energy prices over the last decade	South China Morning Post	SUBSCRIBE Q =
Generation costs in cents (US\$)	Business	
35.9 Solar 3.7 (-90%) 35 13.5 Wind 4.0 (-70%) 30 12.3 Nuclear 16.3 (+33%)	China's 2022 heatwave China heatwa FOLLOW batteries and impacts key p	ve hits supply chain for lithium solar panels as Sichuan power cut producers
25 11.1 — Coal — 11.2 (+1%) 8.3 — Gas — 5.9 (-29%) 20	• Leading producers i Lithium and Yahua L shutdown Bloomberg Europe Edition ~	icluding GCL-Poly Energy Holdings, Tongwei Solar, Tianqi ithium are complying with a government-ordered
15	• Live Now Markets Economics Industries Technology	Politics Wealth Pursuits Opinion Businessweek Equality Green Subscriber Only
0 2009 Source: WNISR, Lazard	Green Polysilicon Blast at Ch Polysilicon prices No. 4 producer G	Makers Shares Soar After inese Plant could rise 17% on supply impact: Daiwa CL-Poly shuts Xinjiang plant after explosions
CMK CONTRO ENVIRONMENTAL SCIENCES HVIDAUSSELT	By Bloomberg News July 21, 2020 at 4:46 AM <i>GMT+2</i> Alessandro Martulli – alessandro.martulli@uhasselt.be tandemPV Wo	GMT+2 Updated on July 21, 2020 at 5:40 PM

PV Supply chain diversification

• Solar PV crucial technology to reduce energy GHG intensity

Supply chain diversification needed

- Growing interest of EU and US policymakers to reduce dependence and stimulate domestic manufacturing
 - Inflation Reduction Act (US)
 - Green Deal Industrial Plan (EU)

IEEE Spectrum FOR THE TECHNOLOGY INSIDER

Q Type to search

NEWS ENERGY

The Inflation Reduction Act vs. China's PV Dominance >U.S. energy policy takes a stand for domestic solar industry

BY <u>PRACHI PATEL</u> | 15 OCT 2022 | 3 MIN READ | 💭

Alternative technologies

Silicon SJ (95% of market)	Thin-film SJ	Tandem (novel)
PERC	CIGS	Perovskite/CIS
SHJ	CdTe	Perovskite/PERC
	Perovskite (novel)	Perovskite/SHJ

- Thin-film could be alternative to complement silicon supply
 - Thin film tandems (perovskite/CIS) show good performance (high-efficiency)
 - Thin film equipment suppliers location: Europe/US
 - Thin film R&D location: Europe/US

Can thin-film tandem PVs be competitive with silicon-based PVs (SJ and tandems)?

- Economic
- Environmental

- I. Quantify costs and GHG emissions of PV technologies produced in:
 - EU
 - China
 - US
- 2. Determine whether thin-film tandems can be competitive with dominant silicon PVs made in China
- 3. Project the analysis to 2050

- tandemPV-INTERNATIONAL WORKSHOP June 6-8, 2023[Chambéry, France & Online

Economic and environmental indicators employed

• Module-level: analysis until PV module production

Minimum sustainable price (MSP) = $\left[\frac{USD\$}{W}\right]$

Carbon footprint (GWP) =
$$\left[\frac{kg \ CO2 \ eq}{W}\right]$$

- System-level: deployment of PV modules in PV system to generate electricity
 - Supported by Energy Yield calculations: annual energy generated at three climatic locations

Levelized cost of electricity (LCOE) = $\left[\frac{USD\$}{kWh}\right]$

Greenhouse gas emission factor (GEF) = $\left[\frac{g \ CO2 \ eq}{kWh}\right]$

Results – Module level

Main considerations

- Contrasting results are found for MSP and GHG
- Large scale production of PERC (IGW) lowest costs
- Perovskite/CIS (thin-film tandems, made in EU/US) can reach similar costs to perovskite/PERC made in EU/US
- EU made perovskite/CIS have 22% probability to have lower costs than perovskite/PERC (China)
- US made perovskite/CIS have 34% probability ot have lower costs than perovskite/PERC (China)
- Perovskite/CIS (EU) have approx. 60% less GHG than PERC and HJT SJ made in China
- Perovskite/CIS (US) have approx. 52% less GHG than PERC and HJT SJ made in China

Results – System level

Main considerations

- Figure shows LCOE and GEF for PV modules made in EU (and installed in EU) and PV modules made in China (imported and installed in EU)
- Utility-scale power plants: EU manufactured technologies have higher LCOE
- Residential-scale: EU manufactured perovskite/CIS can be cost competitive with imported silicon PVs
- Perovskite/PERC (China) 2-4% lower cost per kWh than perovskite/CIS made in EU
- GHG emissions per kWh of perovskite/CIS are 37-40% lower than perovskite/PERC made in China

Results – System level

Main considerations

- Figure shows LCOE and GEF for PV modules made in US (and installed in US) and PV modules made in China (imported and installed in US)
- Similar findings as for the EU case (previous slide)
- Perovskite/PERC (China) I-2% lower cost per kWh than perovskite/CIS made in EU
- GHG emissions per kWh of perovskite/CIS are 33-35% lower than perovskite/PERC made in China

Results – out to 2050

Main considerations

2050

2050

Expected transitions towards low-carbon . energy mix in China in the next decades

INTERNATIONAL WORKSHO June 6-8, 2023 Chambéry, France & Onli

- Perovskite/CIS made in EU will still retain ٠ best GHG performance by 2050
- 19-21% lower than silicon tandems made in China and imported-installed in EU
- perovskite/CIS cost competitiveness with perovskite/silicon can be envisioned:
 - Provided increasing market shares
 - Provided increases in efficiency

Results – out to 2050

Main considerations

- Similar as EU scenario
- Perovskite/CIS made in US will still retain best GHG performance by 2050
- 18-20% lower than silicon tandems made in China and imported-installed in US
- perovskite/CIS cost competitiveness with perovskite/silicon can be envisioned:
 - Provided increasing market shares
 - Provided increases in efficiency

Conclusions

- In the following decades, additional PV manufacturing capacity will need to installed to meet growing demand
- Our findings support development of thin-film production capacity could complement this additional supply
 - Enable supply chain diversification
 - Faster power system decarbonization
- I. Perovskite/CIS (EU) have one of the lowest GHG performances (as low as 0.21 kgCO2eq./W)
- 2. Minimum Sustainable Price can be competitive with perovskite/silicon made in China
- 3. LCOE of perovskite/CIS made in EU or US can be competitive with perovskite/PERC or PERC PV imported from China
- 4. GHG emissions per kWh of perovskite/CIS (EU or US) is between 33-40% lower than perovskite/PERC imported from China
- 5. Out to 2050, cost competitiveness can be retained and GHG emission advantage can be up to 20%

Thank you for the attention. Questions?

