
PHYSICAL REVIEW RESEARCH 5, 043067 (2023)
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We introduce a class of stochastic engines in which the regime of units operating synchronously can boost the
performance. Our approach encompasses a minimal setup composed of N interacting units placed in contact with
two thermal baths and subjected to a constant driving worksource. The interplay between unit synchronization
and interaction leads to an efficiency at maximum power between the Carnot ηc and the Curzon-Ahlborn
bound ηCA. Moreover, these limits can be respectively saturated maximizing the efficiency, and by simultaneous
optimization of power and efficiency. We show that the interplay between Ising-like interactions and a collective
ordered regime is crucial to operate as a heat engine. The main system features are investigated by means of a
linear analysis near equilibrium, and developing an effective discrete-state model that captures the effects of the
synchronous phase. The robustness of our findings extends beyond the all-to-all interactions and paves the way
for the building of promising nonequilibrium thermal machines based on ordered structures.
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I. INTRODUCTION

The ambition to build efficient engines is not only
prominent, but also pressing in thermodynamics since the pio-
neering work by Sadi Carnot [1], and gained new momentum
with the development of nonequilibrium thermodynamics of
small-scale systems [2,3]. Unlike thermodynamics, fluctua-
tions become fundamental at the nanoscale and the study of
their role attracted large attention, both theoretically [4–7]
and experimentally [8–10]. As irreversibility is unavoidable,
the search for new strategies in the realm of nonequilibrium
stochastic thermodynamics is crucial and strongly desirable.
Bearing this in mind, several distinct approaches have been
proposed. Among them, we highlight the study of the max-
imum attainable power [11–19] and efficiency [16,20], the
modulation of the system-bath interaction time [21,22], and
the dynamical control via shortcuts to adiabaticy [23–25] or
isothermality [26].

The above examples deal with engines composed of a
single or a few units. However, nature is plenty of complex
systems composed of many interacting entities, in which co-
operative effects often play a crucial role. Examples span
multiple biological scales [27], from microbes [28] to the
human brain [29], and have been studied in a broad range
of research fields, from nonequilibrium effects in chemical
processes [30–33] to synchronization in biological networks
[34–38]. This vast spectrum of applications highlights that
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the demand for implementable and robust optimal strategies
to engineer collective engines is important and timely. Al-
though the interplay between collective effects and system’s
performances has been extensively studied in quantum sys-
tems [39–44], the development of classical setups built from
interacting units is comparatively much less known and still
remains at a primary stage [19,45–49].

We introduce a general class of collective engines, inspired
by ferromagnetic equilibrium models [50–53]. They have a
longstanding importance in the context of collective effects
and are at the heart of numerous theoretical and experimen-
tal advances, having distinct models (e.g., the Ising, Potts,
XY, and Heisenberg) as ideal platforms for describing fer-
romagnetism. Optimizing power and efficiency by changing
driving and coupling parameters, we show that synchronized
operations under ordered (ferromagnetic) arrangements play a
central role in improving system performances. The main fea-
tures and optimization routes of the engine proposed here can
be unveiled both using a linear analysis close to equilibrium
and an effective discrete-state model capturing all relevant
effects. Finally, we highlight that our results are robust be-
yond the case of all-to-all interactions and pave the way for
the building of promising nonequilibrium thermal machines
based on ordered structures.

II. GENERAL MODEL AND THERMODYNAMICS

Since our goal is to investigate main features and ad-
vantages of the cooperative behavior emerging from ordered
agents, we design a system composed of N all-to-all in-
teracting units. Each unit can occupy q different states, so
that a microstate i of the system is an N-dimensional vector
containing the states of all units. This system is placed in
contact with two baths at different temperatures (ν = 1 is the
cold one, ν = 2 the hot) to work as a heat engine. Moreover,
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FIG. 1. (Left) Schematics of q = 3 engines. Arrows in the reservoirs indicate the direction of the driving F , which is clockwise at high
temperature and counterclockwise at low temperature. (a) Model A (ε↓↑ �= 0). The efficiency η̂ = η/ηc is shown for different α as a function
of the coupling strength ε in the strong collective phase (smaller ε). Lines are exact results, while dots represents the effective model (see
Sec. V). Power output per unit P is presented in the upper inset, while the lower inset is a semilog plot of 1 − pst

↓ to show the robustness of the
effective description. (b) Same as (a), but in the presence of weak collective effects (larger ε). The symbol � in (b) indicates the critical point εc

separating the regimes of collective and independent units. As a result, collective ordered operations favor a heat engine behavior. Parameters
in (a) and (b): β1 = 2, β2 = 1, and F = 2. (c) Model A. η̂ and P (inset) vs F for different β1. Vertical lines mark the crossover between heat
engine and pump regimes, also indicated by •. Parameters in (c): α = 3, ε = −6, β2 = 1. As previously, symbols correspond to the effective
model. (d) Model B (ε↓↑ = 0). For F = 1, β2 = 1, and different β1, the efficiency is shown as a function of ε, indicating only a dud regime in
this case, as Ising-like interactions are absent. As ε increases, model B shows a pump behavior (inset).

worksources originate from γF distinct driving forces that also
depend on the bath, i.e., F (ν)

γ with γ = 1, . . . , γF . In Fig. 1(a),
we present a sketch of the model for q = 3. The dynamics of
microstates is governed by the master equation

ṗ j =
2∑

ν=1

∑
i �= j

(
ω

(ν)
ji pi − ω

(ν)
i j p j

)
,

ω
(ν)
ji = 	e− βν

2 {Ej−Ei+
∑

γ F (ν)
γ d (ν)

γ , ji},

where ω
(ν)
ji is the transition rate from i to j due to the bath

ν, and d (ν)
γ ,i j are antisymmetric coefficients associated with

nonconservative driving (see Appendix A). Denoting by N (i)
β ,

β = 1, . . . , q, the occupation number of the state β in the
microstate i, a transition to j leads to N ( j)

β = N (i)
β − 1 and

N ( j)
β ′ = N (i)

β ′ + 1, where β and β ′ depend on initial and final
microstates. The total energy Ei is given by the all-to-all

expression

Ei =
q∑

β=1

εβN (i)
β + 1

2N

q∑
(β,β ′<β )

[
εββN (i)

β

(
N (i)

β − 1
) + 2εββ ′N (i)

β Nβ ′
]
,

(1)

where εβ, εββ , and εββ ′ denote individual and interaction en-
ergies for units in the same and different states, respectively.
The presence of εββ ′ makes the proposed model intrinsically
more general than those proposed in [46,47] in the context of
work-to-work converters.

From these preliminaries, the first law of thermodynamics
is formulated from the time evolution of mean energy 〈E〉 =∑

j E j p j , which is given by d〈E〉/dt = 〈P〉 + 〈Q̇1〉 + 〈Q̇2〉,
where the mean power 〈P〉 and heat fluxes from the bath ν are

〈P〉 = −
∑
(ν,γ )

F (ν)
γ

∑
(i, j)

d (ν)
γ , jiJ

(ν)
ji , (2)

〈Q̇ν〉 =
∑
(i, j)

(
Ej − Ei +

∑
γ

F (ν)
γ d (ν)

γ , ji

)
J (ν)

ji , (3)
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expressed in terms of the probability current J (ν)
i j =

ω
(ν)
ji pi − ω

(ν)
i j p j . The nonequilibrium steady state (NESS) is

characterized by the probabilities {pst
j } satisfying 〈P〉 + 〈Q̇1〉 +

〈Q̇2〉 = 0 and associated with a positive entropy production
into the environment 〈σ̇ 〉 = −β1〈Q̇1〉 − β2〈Q̇2〉. Although
exact, 〈σ̇ 〉 can be further simplified when some channels are
faster than others [54]. Employing the steady-state condition,
〈σ̇ 〉 can be rewritten as 〈σ̇ 〉 = β1〈P〉 + (β1 − β2)〈Q̇2〉,
allowing us to characterize the engine performance through
two (equivalent) definitions of efficiency, η = −〈P〉/〈Q̇2〉
and from the entropy production, η̂ = −η−1

c 〈P〉/〈Q̇2〉,
solely differing from each other for the Carnot bound
ηc = 1 − β2/β1. A heat engine partially converts the heat
extracted from the hot thermal bath (〈Q̇2〉 > 0) into power
output (〈P〉 < 0), hence exhibiting, by construction, a positive
and bounded efficiency, 0 � η � ηc (0 � η̂ � 1). Conversely,
the pump regime is characterized by an amount of work
〈P〉 > 0, which is partially used to sustain a heat flux from
the cold to hot bath, i.e., 〈Q̇2〉 < 0, hence ηc < η < ∞
(1 < η̂ < ∞). Finally, for η < 0 the engine works in the
so-called dud regime, i.e., the engine does not generate power.

To investigate the system’s behavior, it is useful to map
microstates i into occupation numbers N (i)

β . To this aim, we
need to perform a coarse-graining procedure (discussed below
and in Appendix A). Then, the analysis will be first carried out
for N → ∞, deriving the evolution for the mean occupation
density of the state β, pβ = 〈∑i N (i)

β /N〉. Later on, we will ex-
tend it to finite N , studying how finite-size effects disappears
to converge to a mean-field behavior. The thermodynamic
quantities in the limit N → ∞ are similar in form to those
presented above for finite N . Indeed, the power P and heat
〈Q̇ν〉 per unit are given by

P = −
∑
(ν,γ )

F (ν)
γ

∑
(β,β ′ )

d (ν)
ββ ′J

(ν)
ββ ′ ,

〈Q̇ν〉 =
∑

(β,β ′ )

⎛
⎝Eβ − Eβ ′ +

∑
γ

F (ν)
γ d (ν)

ββ ′

⎞
⎠J (ν)

ββ ′ , (4)

with the energy difference Eβ − Eβ ′ is the same quantity
appearing also in the exponent of the transition rates in the
mean-field approach (see Appendix A). Notice that, in Eq. (4),
we use a different notation with respect to Eqs. (2) and (3)
since these quantities are in general different due to the coarse-
graining procedure [55–57].

III. MINIMAL ORDERED MODEL FOR COLLECTIVE
HEAT ENGINES

In full generality, the expression of the energy in Eq. (1)
presents a huge number of parameters to be considered, pre-
cisely 2q + q(q − 1)/2. For the sake of simplicity, we restrict
our analysis to the cases q = 2 and q = 3, which can be
respectively mapped into spin models S = 1/2, β = {↓,↑},
and S = 1, β = {↓, 0,↑}. We also consider two choices for
the interaction parameters εββ ′ , inspired by two cornerstones
in statistical physics, Ising and Potts models [50,58], here
respectively named model A and B, for clarity. Hence, in
model A with q = 3, we take ε↑↑ = ε↓↓ = ε, ε↑↓ = −αε, and

(a)

(b)

FIG. 2. q = 2 engine (model A). For β1 = 2, β2 = F = 1, and
distinct α, panels (a) and (b) respectively show the efficiency η̂ and
the power per unit P vs the interaction strength ε. Black circles in-
dicate the optimal efficiency, ηME = ηc (η̂ME = 1) in this setting (see
Sec. IV). Symbols correspond to the effective two-state description,
presented in Sec. V. Insets: Plot of pst

↓ (a) and semilog plot pst
↑ (b)

vs ε.

ε↑0 = ε↓0 = ε00 = 0, with εββ ′ symmetric for every β, β ′.
Here, α tunes the interaction strength between units in dif-
ferent states. Conversely, model B is defined by εββ ′ = εδβ,β ′ ,
with no interaction between units in different states, resem-
bling the setting employed in [46,47]. We always consider
the self-interaction terms εβ to be all equal. In analogy to
other engine setups [45,46], and also compatibly with models
of biochemical motors, such as kinesin [59,60], photo-acids
[61,62], and ATP-driven chaperones [63,64], the worksource
is implemented by introducing a bias for the occurrence of
certain transitions, forcing, in this context, each unit to rotate
in its state-space (see Figs. 1 and 2 for q = 3 and q = 2, re-
spectively). Practically, this bias is realized by setting d (ν)

γ ,i j =
(−1)ν if the transition from j to i is clockwise, where the
opposite rate is determined by the antisymmetric property. We
further simplify the system by taking 	 = 1 and only one kind
of driving, i.e., γF = 1 and F (ν) = F for both ν.

Figure 1 shows the main features of model A and B
for q = 3 and N → ∞, in which pst

β ∈ {pst
↑, pst

↓, pst
0 }. In such

a mean-field limit, the system is described by a nonlinear
master equation that cannot be self-consistently solved (see
Appendix A). In Figs. 1(a) and 1(b), we show efficiency and
power output per unit for model A. This setting allows for
the existence of a collective ordered phase for large negative
ε. In this regime, the system behaves as a heat engine [see
Fig. 1(a)]. As ε increases, units deviate from a synchronized
phase and a pump behavior emerges. For α = 1, units starts
operating independently after a phase transition, indicated by
� in Fig. 1(b), while for other α there is a crossover between
these collective and independent regimes. Moreover, Fig. 1(c)
shows that F can be used as a parameter to control the system,
as when F increases a pump behavior emerges even in the
collective ordered phase. As shown below in Sec. VIII, power
and heat fluxes are independent from ε when units operate
independently, indicating that, in the collective phase, ε can
be chosen appropriately to lead to a better performance even
as a pump and hence hinting at the relevance of a synchronous
phase for this class of engines. Conversely, no heat regime
is present for model B [see Fig. 1(d)], when only Potts-like
interactions are present. If units operate independently, the
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FIG. 3. Model A and q = 3. Left panel depicts the power heat
map as a function of driving F and coupling ε. HE, P, and D indicate,
respectively, heat engine, pump, and dud regimes. The solid line
shows the maximum power with respect to F at fixed ε, while
the dashed line accounts for the maximization with respect to ε.
These two lines cross at the global maximum power. Right panel
shows the efficiency η̂ heat map as a function of F and ε. Solid and
dashed lines again indicate maximization with respect to F and ε,
respectively. In both panels, the dot-dashed lines only indicate the
boundaries of heat engine regimes. Parameters: β1 = 2, β2=1, α=1.

engine can only work as a pump in this case. Although model
B has been proposed as a work-to-work converter, exhibiting
maximum power in the collective regime [46], the absence of
Ising-like interactions makes the synchronous phase useless
to operate as a heat engine. For these reasons, model A will
be used as reference model from now on. Analogous findings
are also reported for q = 2 (model A) in Fig. 2. Indeed, we
show the efficiency η̂ and the power per unit P as a function
of the interaction strength ε for different α’s, highlighting the
presence of the transition from heat engine to pump regime.

IV. OPTIMIZING POWER AND EFFICIENCY

To investigate the optimal working regimes of the proposed
model, we extend our results to a wider spectrum of values of
the coupling parameter ε and the driving F . Figures 3 and
4 show the resulting heat maps again for q = 3 and q = 2
(model A), respectively. Heat engine (blue-red) and pump
(purple) regimes are separated by an intermediate region in
which units operate dudly (orange). Power and efficiency can
be optimized with respect to F (solid lines) or ε (dashed lines),
where the other quantity is held fixed. It is worth noting that
the power output in the heat engine regime presents a global
maximum where the two optimization lines cross (dark red
spot). This point coincides with the power obtained by si-
multaneous optimization with respect to F and ε. Conversely,
no optimal point exists for the efficiency in the (F, ε) space,
and the heat engine operates more efficiently as |ε| and F
are increased. This result hints at the possibility to boost the
performance of a stochastic heat engine by favoring the emer-
gence of collective order. We highlight that, when q = 2 (and
α = 1), the system exhibits a qualitatively similar behavior
with respect to the case q = 3.

FIG. 4. Heat maps for P and η̂ for the same parameters as in
Fig. 2. Heat engine, pump, and dud regimes are described by symbols
HE, P, and D, respectively. Continuous and dotted lines denote the
maximization of power respectively holding F and ε fixed. The dot-
dashed line corresponds to the crossover from heat engine to pump
regimes, in which η = ηc in this setup (q = 2).

As suggested by Fig. 1, an alternative route for optimiza-
tion prescribes, at finite ε and F , to increase the value of the
coupling between different states α. In Fig. 5, we show the
maximum efficiency ηME, the efficiency at maximum power
ηMP, and the one obtained by simultaneous optimization η∗

MP,
as a function of α for model A and q = 3. It is worth noting
that ηME approaches (and eventually reaches) the ideal Carnot
efficiency ηc, while η∗

MP saturates the Curzon-Ahlborn bound,
ηCA = 1 − √

β2/β1, as the coupling strength is increased.
Furthermore, the efficiency at maximum power lies between
these two bounds: ηCA < ηMP < ηc. It is worth noting that,
for q = 2, the Carnot efficiency is reached for all values of α

provided that P = 〈Q̇2〉 = 0, as also shown by black circles in
Fig. 2. Together with the results presented in the heat maps,
we can state that, considering a general interacting model
admitting an ordered phase, the performance as a heat engine

FIG. 5. Maximum efficiency ηME (black circles), efficiency at
maximum power ηMP (blue squares), and efficiency at global max-
imum power η∗

MP (red diamonds), as a function of the coupling
between different states α. Solid lines are guides for the eye. The
black and red dashed lines correspond Carnot ηc and Curzon-
Ahlborn ηCA efficiencies, respectively.
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benefits from a synchronized behavior, in combinations with
the presence of Ising-like couplings.

V. EFFECTIVE DESCRIPTION IN THE REGIME
OF STRONG COLLECTIVE EFFECTS

Despite being exact in all cases, the nonlinear form of the
master equation prevents the derivation of closed expressions
for probabilities and clear insights about the influence of each
parameter. To grasp the main features of the system in the
regime of strong collective effects, we develop an effective
discrete-state description, which is valid in the ordered collec-
tive regime. By taking α > 0, ε < 0, and −ε  F > 0, this
effective description can be derived employing the matrix-tree
theorem [65]. We start describing the system as a coarse-
grained q-state model. Starting with q = 2 to fix the ideas, the
ordered phase is twofold degenerate and characterized by the
predominance of spins of one type (↓ or ↑). As a consequence,
a two-state system exhibiting collective order can only be in
two states, ↓ or ↑. It can be described using a coarse-grained
master equation with two transition channels, i.e., driven by
bath 1 or 2. The form of the steady-state solution is

pst
↓ ≈ ω

(1)
↓↑ + ω

(2)
↓↑

ω
(1)
↓↑ + ω

(2)
↓↑ + ω

(1)
↑↓ + ω

(2)
↑↓

. (5)

The explicit expression of the transition rates is shown in
Appendix A. Equation (5) is an implicit equation, as transition
rates depend on p↓. By focusing on the case pst

↓ ≈ 1 (the other
opposite case can be immediately obtained by swapping ↓
with ↑), and performing the ε → −∞ limit, we have

pst
↓ ≈ 1

1 + e
1
2 {(β1+β2 )(α+1)ε+F (β1−β2 )} . (6)

Taking into account that β2 < β1, F > 0 and −ε  F , as we
are in the regime of strong collective effects, we can approx-
imate the above expression as pst

↓ ≈ 1
2 e{(β1+β2 )(1+α)ε}e

(β1−β2 )F
2 .

This can also be derived from the fact that pst
↓ ≈ 1 −

(ω(1)
↑↓ + ω

(2)
↑↓ )/(ω(1)

↓↑ + ω
(2)
↓↑ ) ≈ 1 − ω

(1)
↑↓/ω

(2)
↓↑ , under the afore-

mentioned assumptions. By inserting the approximate expres-
sion for pst

↓ into the formulas in Eq. (4), one arrives at the
following expression for the effective power per unit, Peff

when q = 2:

Peff = F

2
e− 1

2 β2[(α+1)εM+F ][e 1
2 [(β1+β2 )F−(β1−β2 )(α+1)εM] − 1

]
× [

(1 + M )e
1
2 [−(β1−β2 )F+(β1+β2 )(α+1)εM] − M + 1

]
.

Analogously, we obtain the following expression for the ef-
fective heat flux from the bath 2, 〈Q̇2〉eff :

〈Q̇2〉eff = −(F + (α + 1)Mε)

[
sinh

(
β2

2
(F + (α + 1)Mε)

)

+ M cosh

(
β2

2
(F + (α + 1)Mε)

)]
,

with M = pst
↓ − pst

↑ is the order parameter. It is worth mention-
ing that |M| reduces to 1 − 2eβ(1+α)ε in the equilibrium regime
(β1 = β2 and F = 0), becoming equal to the magnetization
per spin of the Ising model for sufficiently low temperatures

FIG. 6. Model A, q = 3. Semilog plot of 1 − pst
↓ vs ε for distinct

sets of β1 and F . Continuous lines are exact results for N → ∞,
while symbols corresponds to the solution evaluated from the ef-
fective model. Black, red, and green curves show results for β1 =
5/2, 10/3 and 2, respectively. In all cases β2 = 1.

β  βc = (1 + α)ε/kB. Figure 2 shows the validity of our
approximate expressions for pst

↓ for distinct sets α when q = 2
(symbols in the figure).

Our effective description can be employed also when q =
3, always considering model A. First, we consider the coarse-
grained three-state system, where each state corresponds to a
spin state. Then, directly from the transition rates, we observe
that, when the system is in one of the degenerate collective
states, say ↓, i.e., pst

↓ ≈ 1, the transitions from ↑ to ↓ and 0
are almost unidirectional for F > 0 and −ε  F . As a con-
sequence, we can approximate the coarse-grained three-state
system as a two-state model with only 0 and ↓. Finally, we
deal with this system following the same steps as in the q = 2
scenario, obtaining

pst
↓ ≈ 1

1 + e
1
2 {(β1+β2 )ε+(β1−β2 )F } , (7)

with pst
0 ≈ 1 − pst

↓ . Once again, as before, we can also write

pst
↓ ≈ 1 − ω

(1)
0↓ /ω

(2)
↓0 = 1 − e

1
2 {(β1+β2 )ε+(β1−β2 )F }, which gives

our approximation for strong collective effects. Figure 6
shows the validity of our approximate expressions for pst

↓ for
distinct sets of temperatures β1, β2, and F , when q = 3.

The corresponding expression for power per unit is given
by

Peff =F
[
(1 + M )

(
e

β1
2 �

(α)
− − e− β2

2 �
(α)
+ − e− β1

2 �− + e
β2
2 �+

)
− M

(
e

β1
2 �−−e− β2

2 �+−e− β1
2 (�(α)

+ +Mε) + e
β2
2 (�(α)

− −Mε)
)]

,

(8)

where �± = F ± Mε and �
(α)
± = F ± αMε, with M = pst

↓ −
pst

↑ ≈ 1 − e
1
2 {(β1+β2 )ε+(β1−β2 )F } > 0. Also in this case, from

Eq. (4), we obtain the following expression for 〈Q̇2〉eff :

〈Q̇2〉eff = − (1 + M )
[
�+e

1
2 β2�+ − �

(α)
+ e− 1

2 β2�
(α)
+

]
+ M

[
(�(α)

− − Mε)e
1
2 β2(�(α)

− −Mε) − �+e− 1
2 β2�+

]
.

(9)
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The efficiency is readily evaluated taking their ratio. In the
limit of large α, it reads

ηeff = F

�+

[
1 − exp

(− β1

2 �−
) + 2M cosh

(
β1

2 �−
)

exp
(

β2

2 �+
) + 2M cosh

(
β2

2 �+
)

]
. (10)

The validity of this approach is also shown in Fig. 1 for differ-
ent values of α (symbols). The effective discrete-state model
provides a very good description of both the heat engine and
pump regimes. However, small discrepancies arise when pst

↑ is
not negligible (e.g., for small −ε and F ).

VI. LINEAR THERMODYNAMICS

The main features of the system proposed here can also
be investigated through a linear analysis close to equilibrium,
e.g., β1 − β2 � 1 and F � 1. By resorting to the ideas of lin-
ear stochastic thermodynamics [16,66–69], we introduce the
following thermodynamic forces f1 = β1 − β2 and f2 = β1F ,
in such a way that the entropy production 〈σ̇ 〉 is expressed in
the bilinear form

〈σ̇ 〉 = (β1 − β2)〈Q̇2〉 + β1P = J1 f1 + J2 f2, (11)

where J1 = 〈Q̇2〉 and J2 = P/F denote the thermodynamic
fluxes. Such fluxes can be expressed in terms of the
Onsager coefficients, J1 = L11 f1 + L12 f2 and J2 = L21 f1 +
L22 f2, which satisfy the conditions L11, L22 � 0 and L12 =
L21. From the equation above, the efficiency η̂ promptly reads

η̂ = − β1P
(β1 − β2)〈Q̇2〉

= −L21 f2 f1 + L22 f 2
2

L11 f 2
1 + L12 f1 f2

, (12)

from which η = η̂ ηc follows immediately. As previously, heat
engine (P < 0) and pump (P > 0) regimes impose bound-
aries to the optimization with respect to f2, whose absolute
value must lie in the interval 0 � | f2| � | fm|, where fm =
−L21 f1/L22, i.e., the so-called stopping force for which P =
0. As previously, the optimization can be performed to obtain
maximum power PMP (with efficiency ηMP) or maximum ef-
ficiency ηME (with power PME), by changing the force f2 to
optimal values f2,MP and f2,ME, respectively. These optimal
output forces can be expressed in terms of the Onsager coeffi-
cients as

f2,ME = L11

L12

⎛
⎝−1 +

√
1 − L2

12

L11L22

⎞
⎠ f1, (13)

and

f2,MP = −1

2

L12

L22
f1, (14)

respectively, where the property L21 = L12 has been consid-
ered. By inserting f2,ME or f2,MP into the expression for η̂, we
obtain η̂ME and the efficiency at maximum power η̂MP given
by

η̂ME = −1 + 2L11L22

L2
12

⎛
⎝1 −

√
1 − L2

12

L11L22

⎞
⎠, (15)

and

η̂MP = L2
12

4L11L22 − 2L2
12

. (16)

Similarly, we can derive the expressions for PMP and PME.
All these quantities are not independent of each other, instead
they satisfy the following relationships:

η̂MP = η̂ME

1 + η̂2
ME

and
PME

PMP
= 1 − η̂2

ME, (17)

where the symmetry between crossed Onsager coefficients
L12 = L21 has been taken into account. It is convenient to
introduce the coupling parameter κ = L12/

√
L11L22 [12,70],

in such a way that optimal efficiencies η̂MP and η̂ME are solely
expressed in terms of this quantity as follows:

η̂ME = −1 + 2

κ2
(1 −

√
1 − κ2), (18)

and

η̂MP = 1

2

κ2

2 − κ2
, (19)

respectively. Since 〈σ̇ 〉 � 0, it follows that κ must be con-
strained in the interval −1 � κ � 1, implying that both η̂MP

and η̂ME are confined to 0 � η̂MP � 1/2 and 0 � η̂ME � 1,
respectively. Notice that κ = ±1 implies that the determi-
nant of the (2 × 2) Onsager matrix is equal to zero. This, in
turn, implies proportionality between the two thermodynamic
fluxes, i.e., J1 ∝ J2, for all forces f1 and f2. Figure 7 shows
that all the signatures about collective effects are also captured
by the linear regime, describing very well the system behavior
near the equilibrium regime [panels (b) and (c)]. Remarkably,
the increase of efficiencies towards the Carnot bound as ε

and F increase, as described in the main text, is understood
from the interplay among Onsager coefficients Li j [shown in
panel (a) as a function of ε], that leads to κ → −1 (inset of
panel (d)). Also, η̂ME and η̂MP closely follow the analytical
expressions presented in Eqs. (18) and (19) [see Fig. 7(d)].
Since |κ| monotonically increases with ε, both ηME and ηMP

approach to their ideal values when collective ordered effects
are stronger, highlighting the importance of unit synchroniza-
tion to increase engine performance.

As a last comment, it is worth pointing out there is no
a-priori advantage for the system when operating near crit-
icality. Since κ , i.e., a measure of the degree of collective
effects, vanishes as the system approaches to the criticality
(as ε increases), both η̂ and power P also decreases [see
Fig. 7(d)]. This is also consistent with Eqs. (15) and (16).

VII. MANY VERSUS FEW INTERACTING UNITS
AND BEYOND THE ALL-TO-ALL CASE

Although our findings have been derived in the N → ∞
limit for all-to-all interactions, the main hallmarks have found
to be robust when finite-size effects and other topologies are
considered. Figures 8(a) and 8(b) show, for model A and q =
3, numerical results for the all-to-all case at increasing N . We
notice a reduced range of parameters for which the system op-
erates as a heat engine, but no significant qualitative changes.
In Appendix B, we also explore the limiting case N = 2 and

043067-6



POWERFUL ORDERED COLLECTIVE HEAT ENGINES PHYSICAL REVIEW RESEARCH 5, 043067 (2023)

(a) (b)

(c) (d)

FIG. 7. For model A, q = 3 and α = 1, we show the thermody-
namics of the system close to the equilibrium regime. Panel (a) show
the Onsager coefficients Li j vs the interaction parameter ε. In (b) and
(c), respectively η̂ and P vs f2 are reported for f1 = 9 × 10−3. Con-
tinuous lines are exact results, while symbols correspond to Eq. (12).
The heat engine behavior is delimited by f2 = fm. Panel (d) shows
the behavior of maximum efficiency η̂ME and efficiency at maximum
power η̂MP vs κ , where continuous lines follow Eqs. (18) and (19).
The inset show how κ changes as a function of ε, and • denotes the
phase transition to the independent regime taking place at εc ≈ −1.5
[see also the same symbol in (a)].

we find similar results, showing that a minimal setup of N = 2
interacting units already captures the essential ingredients of
the model. It is worth noting that the system starts approaching

(a) (b)

(c)

(d)

FIG. 8. (a) Efficiency η̂ in the heat engine regime for increas-
ing system size N . The black continuous line represents the case
N → +∞. (b) The all-to-all case (continuous line) is compared with
a square lattice of increasing size N = L2 (dots). (c) Same as (a)
for the power output per unit P = 〈P〉/N . (d) Same as (b) for P.
Numerical values have been obtained through Gillespie algorithm.
Parameters: β1 = 2, β2 = 1, F = 1, and α = 3.

(a)

(d)(c)

(b)

FIG. 9. Performance of model A for q = 3 on a square lattice of
linear size L (k = 4 nearest neighbors). (a) Efficiency η̂ as a function
of ε for α = 1, in the presence of a discontinuous transition between
heat engine and pump regime. (b) Efficiency as a function of ε for
α = 3, in the presence of a crossover behavior. (c) Power output per
unit P as a function of ε for α = 1. The inset shows the behavior of
|M| with ε. (d) P as a function of ε for α = 3. The inset shows the
order parameter as a function of ε. In all panels, symbols indicate
numerical results for the system size N = L2, while continuous lines
the all-to-all case. Parameters: β1 = 2, β2 = 1, F = 2. Numerical
results have been obtained through Gillespie algorithm.

the mean-field behavior already for N � 10, in similarity to
work-to-work transducers [46]. A very interesting feature is
an increase in the finite-size efficiency at small ε, due to the
fact that 〈Q̇2〉/N monotonically decreases with N , while the
absolute value of P = 〈P〉/N increases within a certain range
of parameters.

The all-to-all case also remarkably describes very precisely
the behavior of interactions forming a regular arrangement.
We restrict, for simplicity, our analysis to model A and q = 3
in a square lattice of linear size L. Each site i is associated
with a spin variable σi = ±1, 0 and Eq. (1) then becomes

Ei = 1

2k

N∑
i=1

k∑
j=1

εσiσi+ j
[
δσi,σi+ j + αδσi,−σi+ j

]
, (20)

where k = 4 for the square lattice. Despite the absence of
exact results in such case, system’s behavior and thermody-
namic properties can be evaluated numerically by employing
the Gillespie algorithm [71]. In panels (c) and (d) of Fig. 8 and
in Fig. 9, we draw distinct comparisons with the all-to-all case,
for distinct parameters and by increasing the system size. All
of them agree almost perfectly, highlighting that the all-to-all
case is insightful also when considering lattice models. This
observation not only reinforces the generality of the model
proposed here to grasp the interplay between collective ef-
fects and system’s performance, but also the reliability of our
results for finite-size systems.

VIII. CROSSOVER FROM HEAT ENGINE
TO PUMP REGIMES

Figure 10 depicts the relationship between synchronization
degree and system efficiency η̂ for the same parameters as
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FIG. 10. For the same parameters of Fig. 1(a), we show the order
parameter M = pst

↓ − pst
↑ vs system efficiency η̂ for collective (HE,

i.e., heat engine) and independent (P, i.e., pump) regime. (Inset)
Zoom of the curves in the heat engine regime, • indicates where
the maximum value of efficiency is attained. Arrows represent the
direction of increasing ε.

in Fig. 1. This result is consistent with the fact that the sys-
tem operates as a heat engine and pump respectively when
units operate collectively and almost (or completely) inde-
pendently. In all cases, as ε increases towards positive values
(arrows in Fig. 10), the system hits a threshold εc giving rise to
the independent mode operations. This threshold can emerge
in different ways, such as via a discontinuous phase transition
(q = 2, model A and B; q = 3, model B) or a continuous
one (q = 3, model A, α = 1), or even as a crossover with
no phase transitions (q = 3, model A, α �= 1). Although our
general findings are valid in all cases, in the presence of a
phase transition it is possible to obtain closed expression for
P and 〈Q̇ν〉 per unit. As shown in Appendix C, the disordered
regime in such cases is characterized by equal probabilities
p∗

↓ = p∗
0 = p∗

↑ = 1/3 for ε � εc. By inserting this condition
into Eq. (4), it follows that

P = 2F

[
sinh

(
Fβ1

2

)
+ sinh

(
Fβ2

2

)]
and

〈Q̇ν〉 = −2F sinh

(
Fβν

2

)
, (21)

both being independent on ε. Similar formulas can be ob-
tained for q = 2 and ε → ∞, solely differing from them
by a factor 2. The corresponding efficiency, in both cases,
is η = 1 + ( sinh(β1F/2)/ sinh(β2F/2))−1. All these expres-
sions state that only a pump regime is possible when units
operate independently. Although both collective and indepen-
dent operations allow the emergence of a pump regime, power
and heat fluxes are independent from ε when units operate in-
dependently, Eq. (21), indicating that, in the collective phase,
ε can be chosen appropriately to lead to a better performance
even as a pump. This result strengthen further the role of
interactions and collective operations in an engine model with
Ising-like interactions.

IX. CONCLUSIONS

We introduced a minimal class of reliable thermal engines
composed of several interacting units. We showed that, when
they operate in a synchronized way, the engine can exhibit

distinct regimes, along with maximal powers and efficiencies,
in stark contrast to what happens when units operate indepen-
dently. Despite the nontrivial interplay between interactions,
driving, and collective effects, all main features can be cap-
tured using linear analysis and a discrete-state effective model,
which proved to be very useful to characterize these engines.
Our results clearly show the importance of a collective ordered
phase to have powerful stochastic heat engines. The overall
approach presented here is very general and opens the door
to exciting directions for future research. First, the exten-
sion to different network topologies might be important not
only to build more realistic and possibly more efficient setups,
but also to check the robustness of these results, obtained
in the case of all-to-all interactions, when the couplings are
more sparse. Furthermore, it will be interesting to draw a
comparison with other stochastic engine models, such as the
sequential ones, in which the system is subjected to distinct
conditions for different time periods and not simultaneously.
Finally, a very fascinating open question remains to set univer-
sal bounds for power, efficiency, and dissipation, possibly ex-
pressed in terms of interaction parameters and strength of col-
lective effects. They might provide important insights about
the importance of synchronized operations to boost the perfor-
mance of interacting systems in different contexts, from bio-
chemical engines [72–74] to information processing [75,76].
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APPENDIX

Appendixes are structured as follows: In Appendix A we
describe the transition rates for finite N and N → ∞ interact-
ing units. Appendix B depicts the thermodynamic quantities
for the minimal setup composed of N = 2 interacting unities.
As an additional investigation, the linear stability of the disor-
dered solution for q = 3 is investigated in Appendix C.

APPENDIX A: TRANSITION RATES

As stated in the main text, collective effects from or-
dered structures have been investigated for two models (A
and B), for q = 2 and q = 3. When q = 2, model B can be
derived from model A setting α = 0. The system dynamics is
governed by the master equation ṗ j = ∑2

ν=1

∑
i �= j (ω

(ν)
ji pi −

ω
(ν)
i j p j ), where the transition rates from i to j are given by

ω
(1)
ji = 	e− β1

2 {∓ε(1+α)(1− 2Ni↑(↓)∓1

N )∓F } and

ω
(2)
ji = 	e− β2

2 {∓ε(1+α)(1− 2Ni↑(↓)∓1

N )±F }, (A1)

where the sign of ∓ε(1 + α) accounts for the fact that N ( j)
↑ =

N (i)
↑ ± 1 and N (i)

↓ = Ni↓ ∓ 1. Analogously, the sign of the
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FIG. 11. Model A, q = 3. Left and right panels show the power per unit P = 〈P〉/N and efficiency η̂ for N = 2 for different values of F .
Continuous lines are exact solutions obtained from the microscopic master equation, while symbols come from numerical simulations using
the Gillespie algorithm. Parameters: α = 1, β1 = 1, and β2 = 0.4.

driving depends on initial and final states and on the bath to
which the system is coupled, i.e., ∓F for the cold bath (ν = 1)
and ±F for the hot bath (ν = 2). If N is finite, the dynamics
can be simulated using a standard Gillespie algorithm [71].

In the thermodynamic limit N → ∞, we can employ
a mean-field approach. We introduce the mean occupation
density of a given state, p↑(↓) = 〈∑i N (i)

↑(↓)/N〉, which are
characterized only by the index of states, massively reducing
the complexity of the equations. By employing the mean-field
approximation of writing down any n-point correlations as
the product of n averages, p↑(↓) is ruled by the master equa-
tion ṗβ = ∑2

ν=1 J (ν)
ββ ′ , where J (ν)

ββ ′ = ω
(ν)
ββ ′ pβ ′ − ω

(ν)
β ′β pβ with

transition rates listed below:

ω
(1)
↑↓ = 	e− β1

2 {−ε(1+α)(1−2p↑ )−F } and
(A2)

ω
(2)
↑↓ = 	e− β2

2 {−ε(1+α)(1−2p↑ )+F },

ω
(1)
↓↑ = 	e− β1

2 {ε(1+α)(1−2p↑ )+F } and
(A3)

ω
(2)
↓↑ = 	e− β2

2 {ε(1+α)(1−2p↑ )−F }.

FIG. 12. Model A, q = 3 and N = 2. From left to right, top
panels depict power per unit P = 〈P〉/N and efficiency η̂ heat maps.
Heat engine and dud regimes are denoted by HE and D, respectively.
For a better visualization, the pump regime has not been indicated.
Parameters: α = 1, β1 = 1, and β2 = 0.4.

Transition rates are evaluated in a similar fashion for q = 3.
Starting with model A, they are identical to q = 2 for transi-
tions of type ↑→↓ and ↓→↑, whereas the energy difference
reads ε(N (i)

k − αN (i)
� )/N for transitions like 0 →↑ (↓), where

k =↑ (↓) and � =↓ (↑). All the remaining ones can be anal-
ogously computed. Likewise, for model B, a given transition
N ( j)

� = N (i)
� − 1 and N (i)

k = N (i)
k + 1 (where k, � ∈ (↑, 0,↓))

has energy difference given by ε(N (i)
k − N (i)

� + 1)/N [46,47].
Numerical simulations are performed as before, but now there
are 2 q (q − 1) = 12 distinct transitions. As for q = 2, the
limit N → ∞ is promptly obtained and described by the
master equation ṗβ = ∑2

ν=1

∑
β ′ �=β J (ν)

ββ ′ [β ∈ (↓, 0,↑)]. For
model A, some of the transition rates are

ω
(1)
↑↓ = 	e− β1

2 {−ε(1+α)(p↓−p↑ )+F },

ω
(1)
↑0 = 	e− β1

2 {ε(p↑−αp↓ )−F } and

ω
(1)
0↓ = 	e− β1

2 {ε(αp↑−p↓ )−F } . (A4)

For model B, we have

ω
(1)
↑↓ = 	e− β1

2 {ε(p↑−p↓ )+F },

ω
(1)
↑0 = 	e− β1

2 {ε(p↑−p0 )−F } and

ω
(1)
0↓ = 	e− β1

2 {ε(p0−p↓ )−F } (A5)

where all the others can be easily computed along the same
line, remembering also that ω

(2)
i j is promptly obtained from

ω
(1)
i j just by replacing F → −F .

APPENDIX B: HEAT MAPS FOR Q = 3 AND N = 2 ENGINES

This section discusses two important aspects introduced
in the main text: The reliability of numerical simulations for
finite N and the fact that a minimal setup of N = 2 interacting
units already captures the essential ingredients of the model.
Results are shown for β1 = 1 and β2 = 0.4 only for the sake
of a better visualization. Figure 11 compares thermodynamic
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FIG. 13. For q = 3 and distinct F ’s, left and right top panels
show the phase diagrams �β = β1 − β2 vs εc for model A and B,
respectively. They are obtained from the linear stability analysis
of the disordered phase. For the sake of comparison, the bottom
panels show (for F = 1) the location of phase transitions from the
order-parameter behaviors. From left to right β1 − β2 = 0, 1/3, 1, 3,
and 9. In all cases, we set β2 = 1.

quantities evaluated from numerical simulations (Gillespie al-
gorithm) and those from exact steady probabilities computed
from the microscopic master equation for N = 2. Figure 12
extends the heat maps to N = 2, showing that despite the
substantial reduced performance, all characteristics from col-
lective effects are already present in this minimal setup.

APPENDIX C: LINEAR STABILITY OF DISORDERED
PHASE SOLUTION FOR MODELS A AND B FOR Q = 3

For completeness, we provide additional information about
the crossover between collective and independent regimes for
model A (when α = 1) and B for q = 3, which manifests
through continuous and discontinuous phase transitions, re-
spectively. These phenomena can be analyzed in a similar
way to their equilibrium counterparts, by means of two order
parameters, M for model A and φ = (3pmax − 1)/2 (pmax =
max{pst

↓ , pst
0 , pst

↑}) for model B, with the first one character-
ized by the classical exponent β = 1/2 [77,78]. However,
contrasting to the equilibrium Potts model, nonequilibrium
ingredients modify the phase transition for model B from a
continuous to a discontinuous one, as shown in Fig. 13(b).

A systematic investigation can be performed by means of a
linear expansion of the master equation around a fixed point as

follows ṗm = ∑
n Amn pn, where A is the Jacobian matrix with

elements Amn = ∂ (ω(1)
mn + ω(2)

mn )/∂ pn|pn=p∗ evaluated at fixed
points

∑
n Amn p∗

n = 0. In particular, the solution p∗
n is linearly

stable if the real parts of the eigenvalues of the Jacobian matrix
are negative. In both cases, the independent regime is charac-
terized by equal population p∗

↓ = p∗
0 = p∗

↑ = 1/3 for ε � εc.
In both cases introduced above, the corresponding eigenvalues
can be written as λ± = λ0 ± λ1, with λ0 given by

λ0 = − (3 + β1ε) cosh

(
β1 F

2

)
− (3 + β2ε) cosh

(
β2F

2

)
,

(C1)

whereas λ1, for model A, reads

λ1 =
[

6 + ε2(β2
1 + β2

2

) + (
β2

1ε2 − 3
)

cosh(β1F )

− 3 cosh(β2F ) + β2ε
2

(
4β1 cosh

(
β1F

2

)
cosh

(
β2F

2

)

+ β2 cosh(β2F )

)
+ 12 sinh

(
β1F

2

)
sinh

(
β2F

2

)]1/2

,

(C2)

while, for model B, we have

λ1 = i
√

3

[
sinh

(
β1F

2

)
− sinh

(
β2F

2

)]
. (C3)

Since λ1 is imaginary for model B, the linear stability of
disordered solution is granted provided λ0 < 0. Conversely,
for model A, due to the fact that β1 and β2 are always positive,
λ− is always negative. Conversely, λ+ is always negative for
sufficiently large and positive ε, with the order-disorder phase
transition corresponding to a transcritical bifurcation when
λ+ = 0. Clearly, λ+ becomes positive as ε decreases, meaning
that the independent regimes turns unstable.

Figure 13 depicts the phase diagrams �β = β1 − β2 ver-
sus ε for different F obtained from the linear analysis. In
particular, for F = 0, λ+’s and λ−’s read −6 and −2[3 +
ε(β1 + β2)] (model A) and −[6 + ε(β1 + β2)] (model B),
respectively, consistent to phase transitions taking place at
εc = −3/(β1 + β2) and εc = −6/(β1 + β2). The crossover
from collective to independent regime smoothly changes with
the driving and it is more sensitive to the difference of tem-
peratures. Note the excellent agreement between the values
of εc obtained from the linear analysis and those from order
parameter behaviors (bottom panels for F = 1).
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