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Abstract 

Background Increasing life expectancy and persistently low fertility levels have led to old population age structures 
in most high-income countries, and population ageing is expected to continue or even accelerate in the coming 
decades. While older adults on average have few interactions that potentially could lead to disease transmission, 
their morbidity and mortality due to infectious diseases, respiratory infections in particular, remain substantial. We 
aim to explore how population ageing affects the future transmission dynamics and mortality burden of emerging 
respiratory infections.

Methods Using longitudinal individual-level data from population registers, we model the Belgian population 
with evolving age and household structures, and explicitly consider long-term care facilities (LTCFs). Three scenarios 
are presented for the future proportion of older adults living in LTCFs. For each demographic scenario, we simulate 
outbreaks of SARS-CoV-2 and a novel influenza A virus in 2020, 2030, 2040 and 2050 and distinguish between house-
hold and community transmission. We estimate attack rates by age and household size/type, as well as disease-
related deaths and the associated quality-adjusted life-years (QALYs) lost.

Results As the population is ageing, small households and LTCFs become more prevalent. Additionally, families 
with children become smaller (i.e. low fertility, single-parent families). The overall attack rate slightly decreases 
as the population is ageing, but to a larger degree for influenza than for SARS-CoV-2 due to differential age-specific 
attack rates. Nevertheless, the number of deaths and QALY losses per 1,000 people is increasing for both infections 
and at a speed influenced by the share living in LTCFs.

Conclusion Population ageing is associated with smaller outbreaks of COVID-19 and influenza, but at the same time 
it is causing a substantially larger burden of mortality, even if the proportion of LTCF residents were to decrease. These 
relationships are influenced by age patterns in epidemiological parameters. Not only the shift in the age distribution, 
but also the induced changes in the household structures are important to consider when assessing the potential 
impact of population ageing on the transmission and burden of emerging respiratory infections.
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Background
The population age structures in most high-income 
countries have for decades been shifting towards older 
ages (i.e. population ageing) as a result of increasing life 
expectancy and persistent below-replacement fertility 
levels. Currently, a temporary acceleration of population 
ageing is seen in many countries due to the ageing of the 
large generations born in the mid-twentieth century [1]. 
Moreover, population ageing has become a global phe-
nomenon and the proportion of older adults in many 
low- and middle-income countries is increasing at an 
unprecedented speed [2–5].

The rising burden of non-communicable diseases 
induced by population ageing has rightfully been given a 
lot of attention [6–8]. However, morbidity and mortality 
due to infectious diseases, respiratory infections in par-
ticular, remain substantial in the elderly population [9]. 
The progressive deterioration of immune functions with 
age (immunosenescene) increases older adults’ suscepti-
bility to infection and their risk of a severe outcome in 
case of disease [10]. The COVID-19 pandemic, for exam-
ple, has had a disproportionate impact on the older adult 
population and on those living in long-term care facilities 
(LTCFs) in particular [11–15]. Several aspects of LTCFs 
(e.g. communal meals, group activities, staff rotation) 
make them an optimal environment for rapid spread of 
many infectious diseases [16, 17]. Additionally, many 
LTCF residents have underlying chronic illnesses, which, 
in addition to their old age, may increase the severity of 
an infection [18, 19]. Nevertheless, LTCF residents only 
make up a minority of the older adult population in most 
high-income countries. The majority of old people typi-
cally live alone or with a partner. Moreover, social contact 
surveys from several European countries have shown that 
people aged 65 and older have the lowest mean number 
of contacts [20], and thus fewer interactions that poten-
tially could lead to disease transmission. Consequently, 
the incidence of infections transmitted via close contact 
may be relatively low in the oldest age groups, yet the dis-
ease burden is typically substantial [21–25].

This implies that high-income countries with ageing 
populations may face a decreasing overall incidence of 
an infectious disease (e.g. influenza), but it could coin-
cide with an increasing burden. However, the future 
burden of infectious diseases in older adults may, among 
other things, be influenced by the future health and liv-
ing arrangements at old age. It remains unclear whether 
the increases in life expectancy are accompanied by 
a proportionate increase in healthy life expectancy 
[26–29]. Health at old age and living arrangements are 
naturally connected, with relevance for infections trans-
mitted via close contact. The proportion of elderly peo-
ple living with a partner is expected to increase due to 

improved longevity, particularly of males [30]. Never-
theless, the proportion living in LTCFs is also likely to 
increase as the proportion of the oldest people (i.e. 85+) 
increases [31, 32].

Several studies have investigated the impact of popula-
tion ageing on the spread and burden of different infec-
tious diseases, including measles, influenza, pneumonia 
and herpes zoster (e.g. [33–41]). Nevertheless, only few 
studies consider a household-structured population and 
to our knowledge none of them incorporate LTCFs. We 
aim to improve the understanding of how changing age 
and household structures affect the future transmission 
dynamics and mortality burden of respiratory infec-
tions in an ageing population, and explicitly explore the 
role of living arrangements in the older adult population. 
Specifically, we consider the Belgian population, which, 
like most other high-income countries, has a relatively 
old age structure and is still ageing. We use a demo-
graphic microsimulation, which is based on longitudinal 
microdata drawn from Belgian census and population 
registers [42]. The microsimulation includes dynamic 
demographic processes for fertility, mortality, migration 
and household transitions, making it possible to model 
the Belgian population over time with evolving age and 
household structures. In addition to private households, 
collective households (e.g. LTCFs) are represented in the 
microsimulation. Due to the uncertainty surrounding the 
future health and living arrangements of older adults, we 
consider three demographic scenarios with respect to the 
proportion of LTCF residents in the population. We refer 
to the scenarios as low, medium and high to describe the 
proportion of older adults living in LTCFs relatively to 
the other scenarios.

We subsequently combine the demographic microsim-
ulation with a disease transmission model representing 
the spread of SARS-CoV-2 and a novel influenza A virus. 
The model is a two-level mixing model, which distin-
guishes between exposure to infection in the household 
and exposure in the community at large [42]. Addition-
ally, the model implements contact networks within 
households which are based on empirical data [43]. We 
simulate outbreaks of SARS-CoV-2 and influenza in a 
fully susceptible population in 2020, 2030, 2040 and 2050, 
which allows sufficient time for demographic change to 
emerge.

We first illustrate how the age and household structures 
are altered in an ageing population. Secondly, we explore 
how the changing population structures affect the spread 
of the two respiratory infections (i.e. incidence) and the 
burden of mortality in the form of disease-related deaths 
and quality-adjusted life-years (QALYs) lost. In health 
economics, QALY expectations (gains or losses) repre-
sent a commonly used summary measure of longevity 
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adjusted for the combined impact of death and morbid-
ity [44]. Finally, we investigate to what extent our find-
ings at the individual and population level are affected 
by changes in the living arrangements in the older adult 
population.

Methods
We model the host population at the individual level 
using a demographic microsimulation for Belgium, which 
is combined with a disease transmission model to simu-
late the spread of an infection. Each individual is repre-
sented by a set of attributes, including age, sex, household 
membership and disease state. In each time step (i.e. 
day), the individuals’ attributes may change due to demo-
graphic events and events resulting from interactions 
between individuals (e.g. birth, leaving parental house-
hold, union formation, death, social contact and disease 
transmission). The population is thus evolving over time 
and demographic changes and disease outbreaks emerg-
ing at the population level can be tied to individual events 
and interactions between individuals.

Demographic microsimulation
We simulate the Belgian population using the microsim-
ulation presented in [42]. The initial population is made 
up by a household-based sample from the Belgian cen-
sus in 2011 corresponding to about 10% of the popula-
tion. For each individual, we have information on their 
date of birth, sex, ID of parents, birth trajectory (parity 
and date of most recent birth if applicable), household ID 
and household position (e.g. in union, child, single par-
ent). Individuals can thus be linked to each other through 
household membership and kinship. The population 
evolves over time as individuals can enter and leave the 
population as a result of births, deaths and migration. 
Moreover, individuals can move between or create new 
households, for example as a part of union formation or 
dissolution. Finally, all individuals are ageing over time 
and the population is updated accordingly.

The probability of a demographic event taking place 
varies by individual characteristics, including age, sex and 
household position, and changes over time except for the 
household transition rates. We assume that the mortality, 
fertility and migration levels in the microsimulation are 
similar to the observed and projected rates by the Belgian 
Statistical Office (Statbel) and the Belgian Federal Plan-
ning Bureau (FPB). This implies below-replacement fer-
tility (a total fertility rate below 2.1 [45]) and continuous 
improvements in longevity, especially for males [46, 47] 
(see Figs. S1 and S2 in Additional file  1). Consequently, 
the population will continue ageing, with implications 
for the household structures. Fertility trajectory and/
or household position are included as covariates in the 

sub-models for fertility and mortality, as they have been 
shown to affect the probability of having a(nother) child 
and dying, respectively [48, 49]

We consider three demographic scenarios pertaining 
to the household structures in the older adult popula-
tion (i.e. people aged 75 and older). The large majority of 
LTCF residents live in a single-person household prior to 
moving to the LTCF, thus we created three scenarios by 
varying the probability of leaving a single-person house-
hold for people aged 75 and older. The cut-off is made at 
the age of 75 years since only a small proportion of the 
population reside in LTCFs at younger ages (see Fig. S3 
in Additional file  1). We refer to the scenarios as low, 
medium and high, as an indication of the proportion of 
the older adults living in LTCFs. The demographic data, 
model and source code are described in detail in [42] and 
section 1 in Additional file 1.

Disease transmission model
In addition to the demographic attributes, all individuals 
are assigned a disease state. Disease outbreaks take place 
in the simulated population in 2020, 2030, 2040 and 2050 
as ten randomly chosen individuals become infected, in 
an otherwise fully susceptible population, on January 1st 
of each respective year. The disease states are thus reset 
to susceptible and immunity obtained in a prior outbreak 
is disregarded as a new outbreak begins. The outbreaks 
are ten years apart to give sufficient time for demo-
graphic changes to emerge. We use an SEIR-like (Suscep-
tible-Exposed-Infectious-Recovered) model to describe 
the spread of respiratory diseases transmitted via close-
contact interactions with the examples of COVID-19 and 
influenza. The probability of becoming infected, and thus 
moving from the susceptible to exposed state, is calcu-
lated using a two-level mixing model, where an individual 
can become infected as a result of disease transmission 
within the household or in the general population [50].

Within‑ and between‑household interactions
We use the same techniques as described in [42] to model 
social interactions, which serve as a proxy for an at-risk 
event at which infection can be transmitted. Contacts 
between non-household members in the general popula-
tion are estimated using social contact data collected in a 
survey in Belgium in 2010-2011 [20] and made available 
as a contact matrix through the SOCRATES data tool 
[51] (see Fig. S6 in Additional file  1). Contacts between 
household members were excluded, as these are captured 
by the household level of the model, but contacts taking 
place in the household with non-household members 
were included. Additionally, supplementary professional 
contacts (SPC) were excluded. SPC is a category for indi-
viduals with more than 20 professional contacts per day 
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(e.g. bus drivers). These are likely to be less important 
than other types of contacts when it comes to the trans-
mission of close-contact infectious diseases [52].

For each household, we construct a contact network to 
model interactions among household members. Contacts 
are determined to take place using an exponential-family 
random graph model developed by Krivitsky et  al. [43], 
which was fitted to data from the social contact survey 
mentioned above [20] and a household contact sur-
vey [53], both conducted in Belgium in 2010-2011. The 
household contact network is, amongst other things, 
conditional on the type of household and the age-sex 
composition. In each time step (i.e. day), we apply the fit-
ted model from Krivitsky et al. [43] to generate a contact 
network for each household in the simulated population. 
The household contact networks may thus change every 
day. The mean network density (i.e. the number of links 
in a household relative to the number of possible links 
[54]) by household size and type are shown in Fig. S7 in 
Additional file 1.

Influenza
We formulate an SEIR model to describe the spread of 
a novel influenza virus such as the influenza A (H1N1)
pdm09 virus that emerged in 2009. When acquiring 
the infection, the individual is not infectious at first (i.e. 
exposed or latent period), but becomes infectious as the 
latent period ends and eventually recovers as the infec-
tious period comes to an end. Disease-related mortality is 
not considered explicitly in the model, but estimated after 
the simulation. Each susceptible individual i acquires the 
infection at time t with the probability:

where hi denotes the household of individual i and the 
parameters βh and βp represent the probability of dis-
ease transmission given contact between a susceptible 
and infectious individual within the household and in 
the general population, respectively. We select trans-
mission parameters, βh and βp , that result in a group-to-
group reproduction number ( R∗ [50]) of about 1.5, which 
resembles the basic reproduction number estimated 
for influenza A(H1N1)pdm09 [55–57]. This is further 
described in section  6 and 7 in Additional file  1. Ij(t) 
takes the value one if individual j is infectious at time t 
and is otherwise zero. The contact network in household 
hi is represented by an adjacency matrix  A  and the ele-
ment aij(t) equals one if household members i and j come 
into contact with each other at time t and is otherwise 

(1)

pi(t) = 1−

j �= i

j ∈ hi

1− βhaij(t)Ij(t) ·

j /∈hi

1− βpcij(t)Ij(t) ,

zero. A new adjacency matrix is generated in each time 
step.

The social contact matrix from Fig. S6 in Additional 
file  1 contains the mean number of contacts per day in 
the general population between each age group, mij , and 
the probability that individual i and j come into contact 
with each other at time t given the age groups to which 
they belong, cij(t) , is calculated as follows:

The element mij is divided by Nj(t) , the size of the age 
group of j at time t, to keep the age-specific contacts 
constant over time. This implies that we assume disease 
transmission in the general population to be frequency-
dependent, meaning that the number of effective con-
tacts made by each person remains unchanged as the 
population grows. In each time step, the probability of 
infection is computed for all susceptible individuals in the 
population and their disease state is updated accordingly.

The latent period is drawn from a uniform distribu-
tion with 1 day as minimum and 5 days as maximum. We 
assume that the infectious period follows a gamma dis-
tribution with a mean of 3.8 days and standard deviation 
of 2 days [58–60]. For each newly infected individual, a 
value is drawn from the distribution and rounded to 
the nearest integer. An infected individual recovers and 
obtains immunity when the infectious period has passed.

COVID‑19
In order to model the spread of SARS-CoV-2, we use a 
model similar to [61], which involves an extension of 
the SEIR model. Infectious individuals are initially pre-
symptomatic and some develop symptoms while others 
remain asymptomatic (see Fig. 1).

Each susceptible individual i acquires infection at time 
t with probability:

The same notation is used as for the influenza model, 
but the subscripts indicate whether the infectious indi-
vidual is symptomatic (s) or asymptomatic (a). Infected 
individuals without symptoms are assumed to be half as 
infectious compared to those with symptoms, however, 
we acknowledge that this parameter is associated with 
uncertainty [62, 63]. We select transmission parameters, 
βh and βp , that result in a group-to-group reproduction 

(2)cij(t) =
mij

Nj(t)
,

(3)

pi(t) = 1−
∏

j �= i

j ∈ hi

(

1− βh,aaij(t)Ij,a(t)si
)

·
∏

j �= i

j ∈ hi

(

1− βh,saij(t)Ij,s(t)si
)

·
∏

j /∈hi

(

1− βp,acij(t)Ij,a(t)si
)

·
∏

j /∈hi

(

1− βp,scij(t)Ij,s(t)si
)

.
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number of about 3, to reflect the estimated basic repro-
duction number in Belgium prior to lockdown [61, 64, 
65]. This is further described in section 6 and 7 in Addi-
tional file 1.
Ij,a(t) ( Ij,s(t) ) takes the value one if individual j is infec-

tious and asymptomatic (symptomatic) at time t and is 
otherwise zero. The parameter si represents age-specific 
susceptibility and is 0.5 if individual i is younger than 18 
years of age and is otherwise one, as we assume that chil-
dren and teenagers are half as susceptible as adults [66]. 
The incubation period contains a latent period and a pre-
symptomatic period. In the latent period, the individual 
is infected but not yet infectious, whereas the individual 
is infectious in the pre-symptomatic period, but shows 
no symptoms (yet). The incubation period is based on 
findings from [62, 67] and is assumed to follow a log-nor-
mal distribution with mean and standard deviation on 
the log scale of 1.43 and 0.66, respectively (see Fig. S10 
in Additional file 1). The incubation period spans over at 
least two days since we assume that infectiousness starts 
one day prior to symptom onset at the latest and one day 
after infection at the earliest.

Based on infectiousness profiles from [67], a discrete 
distribution for the pre-symptomatic infectious period 
was estimated in [61] (see Fig. S11 in Additional file 1). 
For each newly infected individual, we draw from the dis-
tributions for the incubation period and the pre-sympto-
matic period. The length of the latent period for a given 
individual is obtained by subtracting the sampled value 
for the pre-symptomatic period from that of the incuba-
tion period (after rounding to a discrete number of days).

The distribution of the infectious period (including 
pre-symptomatic period) is assumed to follow a normal 
distribution with a mean of six days and a standard devi-
ation of one (see Fig. S12 in Additional file 1). For each 
infected individual, the length of the infectious period 
is drawn from the distribution and the pre-symptomatic 

period is subtracted in order to obtain the remaining days 
of infectiousness. It is determined whether the individual 
shows symptoms during this period according to age-
specific probabilities estimated in [61] (see Fig. S13 in 
Additional file 1). The probability of being symptomatic is 
based on the age-specific relative susceptibility to symp-
tomatic infection reported in [68] assuming 50% of the 
overall cases in the population to be symptomatic. An 
infected individual recovers and obtains immunity when 
the infectious period has passed. We run 50 simulations 
using the COVID-19 and influenza models, respectively, 
but limit our analysis to those simulations where an out-
break takes place (i.e. total attack rate of at least 0.5%).

Disease‑related mortality
We estimate influenza-related deaths by applying the 
infection fatality rates (IFRs) for the influenza A(H1N1)
pdm09 pandemic estimated by Riley et al. [69] based on 
a serological survey of a cohort of households in Hong 
Kong (see Fig. S14 in Additional file  1). The rates are 
by age group, but no estimates are available for chil-
dren younger than three years. Consequently, we apply 
the IFR of the age group 3-19 to all ages younger than 
19, although this is likely to underestimate the fatali-
ties in the youngest children. For COVID-19, we use 
IFRs estimated by Molenberghs et  al. [15] for Belgium 
in the period March 8th to May 9th 2020. The IFRs are 
broken down by age and household type (see Fig. S15 
in Additional file  1). The considered household types 
are LTCFs and non-LTCFs. For ages younger than 60 
years, there is no distinction between the household 
types, likely due to the small number of LTCF resi-
dents of that age. LTCF residents are not directly iden-
tifiable in the demographic microsimulation. Therefore, 
we use the household position collective as a proxy. 
This household position covers residents in different 

Fig. 1 Disease transmission process for COVID-19. Symp.: Symptomatic
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types of institutions, including prisons and LTCFs, but 
we expect the large majority of older adults with that 
household position to actually be living in LTCFs.

Quality‑adjusted life years
To provide an estimate of the potential years of life lost 
due to premature death and the health-related quality 
of those years of life lost, we estimate the QALY losses 
attributable to COVID-19 and influenza fatalities using 
the method presented by Briggs et  al. [70]. Pre-existing 
comorbidities are associated with an increased risk of a 
fatal outcome upon infection with SARS-CoV-2 or influ-
enza [71–73], which is taken into account when estimat-
ing the QALY losses (see further details in section 10 in 
Additional file  1). However, we do not consider QALY 
losses from morbidity due to non-fatal infections.

Results
Population ageing
The population is ageing during the whole simulation 
period. Between 2020 and 2030, it is primarily due to an 
increasing proportion aged 65-79 years, while the age 
group 80 years and older increases fastest in the remain-
ing decades (see Fig. 2 left panel). This reflects the ageing 
of the large generations born in the mid-twentieth cen-
tury. Population ageing induces changes in the household 
size distribution (see Fig. 2 right panel). The elderly pop-
ulation primarily lives in small households (size 1-2) or 
very large households in the form of LTCFs (see Fig. S3 
in Additional file 1). Consequently, an increasing propor-
tion of the population lives in households of these sizes 
(1, 2 and 8+) as the population is ageing. Additionally, 
households of nuclear families are decreasing in size due 
to low fertility and an increase in single-parent families. 
It should be noted that the group size 8+ primarily is 

made up by LTCFs, which tend to have 25-100 residents 
in the simulated population.

The differences in the demographic scenarios only 
slightly affect the age distribution. The proportion aged 
80 years and older is marginally larger in the scenario low 
(square) than in medium (bar) and high (dot), because of 
the smaller proportion of LTCF residents, which have a 
higher all-cause mortality (for further information on 
all-cause mortality in the microsimulation see section  1 
in Additional file  1). The demographic scenarios have a 
more profound impact on the household size distribu-
tion. The proportion in household size 1 and 8+ in sce-
nario low (square) and high (dot) gradually diverge from 
the medium scenario (bar), but in opposite directions. 
Consequently, the proportion living in LTCFs (i.e. size 
8+) relative to the proportion living alone is highest in 
the scenario high and lowest in scenario low, while the 
medium scenario is in between. The other household 
sizes are more or less unaffected. Household size distri-
butions by age groups, scenario and simulation year can 
be seen in Figs. S4 and S5 in Additional file 1.

Transmission dynamics
As expected, the proportion of the population that 
becomes infected during an outbreak (attack rate) in 
the COVID-19 model is substantially larger than for 
influenza (see Fig. S16 in Additional file  1), due to the 
differences in the transmission parameters. The attack 
rate is decreasing over time in both models, but after 
2040, a slight increase is seen for influenza (see Fig. S17 
in Additional file  1). Older adults, which are increas-
ingly replacing the younger population, have relatively 
fewer contacts on average since the majority live in small 
households (see Fig. S3 in Additional file  1) and have 
fewer contacts in the general population (see Fig. S6 in 

Fig. 2 Age and household-size distribution by simulation year and scenario (medium: bar, low: square, high: circle)
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Additional file  1). Consequently, the older adult popu-
lation has a lower risk of acquiring and transmitting an 
infection than younger age groups.

The age-specific attack rates in the COVID-19 and 
influenza models naturally differ in magnitude, but other 
patterns are also seen (see Fig. 3, note different scales on 
y-axes). For COVID-19 (Fig.  3, upper panel), the attack 
rate is largest in the adult population, which reflects the 
lower susceptibility of children and the increasing prob-
ability of being symptomatic and thereby more conta-
gious with age. Meanwhile, influenza (Fig. 3, lower panel) 
is more prevalent in children and adolescents compared 
to adults, which is resulting from the age-specific differ-
ences in contact patterns within and outside the house-
hold. This indirectly affects the parental generation (i.e. 
ages 30-49), which has the highest incidence in the adult 
population. In both models, the attack rate in the elderly 
population is shaped by the proportion of the age groups 
living in LTCFs, as the risk of infection increases with 
household size (see Fig. S19 in Additional file 1).

These age patterns in the transmission processes 
imply that the impact of population ageing on the 
spread of COVID-19 and influenza differ. Since chil-
dren and adolescents are the main drivers in influenza 
transmission, the attack rate declines substantially as 
the nuclear families decrease in size (i.e. low fertility 
and increase in single-parent families) and are increas-
ingly being replaced by elderly people with a relatively 
low risk of infection (see Fig. S17 in Additional file 1). 
Meanwhile, the decrease in the attack rate of COVID-
19 is less pronounced, and barely observed for the 20- 
to 79-year-olds (see Fig. S18 in Additional file  1). The 
risk of community transmission in the young and mid-
dle-aged adult population remains substantial (i.e. at 
work-places) due to the increased probability of being 

symptomatic and the assumption of frequency-depend-
ent transmission. Moreover, old people (i.e. 70+) 
account for a larger share of infections with COVID-
19 than with influenza, thus the decrease in the overall 
attack rate of COVID-19 induced by population ageing 
is less pronounced.

Since the population is ageing, the age composi-
tion of the infected people in the population is also 
shifting, but not necessarily to the same degree. In 
Fig.  4, we compare the relative change in the age dis-
tribution (black bars) to the relative change in the age 
distribution of infected people (blue bars), both as a 
proportion of the total population size in simulation 
year 2030, 2040 and 2050 and using the correspond-
ing values for 2020 as the reference. Infected people 
younger than 65 years of age make up a decreasing 
proportion of the population, while the proportion of 
infected people aged 65 and older is increasing, as to 
be expected considering the changes in the age distri-
bution. The proportion of infected children and ado-
lescents (i.e. younger than 18 years) in the population 
is decreasing more than the overall proportion of the 
age group across all demographic scenarios and mod-
els. This results from the decreasing household size of 
nuclear families (see Fig. S4 in Additional file 1), which 
is associated with a lower risk of infection for children 
and their parents as described earlier. Nevertheless, in 
the COVID-19 model, young and middle-aged adults 
experience a more or less equal relative change in the 
proportions since community transmission is more 
pronounced. This is also the case for age group 50-64 
in the influenza model, but due to an increasing mean 
household size as the share living together with their 
adult children is increasing. The growth in the propor-
tion of infected 65 to 79-year-olds in the population is 

Fig. 3 Mean age-specific attack rates by simulation year, model and demographic scenario. Note the different scales on y-axes
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slower than the overall growth in the age group, as the 
share living in single-person households is increasing, 
especially for people in their seventies.

The relationship between the growth in the propor-
tion of infected people aged 80 and older in the popula-
tion and the general growth in the age group vary by 
demographic scenario. In the medium scenario, the 
growth rates are very similar, meaning that the age 
group is barely benefitting from the lower transmission 
in the young population. First of all, older adults have 
few contacts with children and adolescents. Second of 
all, the share of the age group 80+ living with a part-
ner instead of alone is increasing. Finally, the age group 
is increasingly made up by people aged 90 and older, 
which have a higher attack rate.

In the scenario with a relatively low and decreas-
ing share of the population living in LTCFs (first row 
in Fig.  4), the proportion of infected people aged 
80 years and older in the population is growing at a 
slower rate than the age group overall, while this rela-
tionship is reversed in the scenario with a high and 
slightly increasing share living in LTCFs (third row in 
Fig.  4). The differences between the scenarios low and 
high for age group 80+ are generally larger in the influ-
enza model than in the COVID-19 model. The risk of 
infection for an elderly person living in a small house-
hold compared to someone living in an LTCF differs 
substantially more in the influenza model than in the 
COVID-19 model, thus the response to the scenarios 
is more pronounced in the first case (see Fig. S20 in 

Additional file  1). This is again related to the age-spe-
cific susceptibility and infectiousness in the COVID-19 
model.

Burden of disease‑related mortality
Although the overall attack rate is decreasing over time, 
the number of deaths per 1,000 people in the population 
is increasing, due to the shift in the age distribution of the 
infected population (see Fig. S21 in Additional file 1). Since 
the applied fatality rates are associated with substantial 
uncertainty, we limit the analysis of disease-related deaths 
to a comparison across time, age and demographic sce-
narios. Deaths attributable to COVID-19 are highly con-
centrated in the older adult population (see Fig. 5, upper 
panel). Influenza-related deaths are also more pronounced 
in the older adult population, however, differences within 
the older age groups only reflect differential attack rates 
since the same IFR is applied to everyone aged 60 and 
older. The differences in fatalities between the demo-
graphic scenarios are induced by the aforementioned rela-
tionship between the proportion of infected older adults 
and the proportion of those living in LTCFs. Moreover, the 
applied IFRs for COVID-19 from [15] are broken down by 
household type (i.e. LTCF vs. non-LTCF), hence the num-
ber of COVID-19 deaths in our simulation is more sensi-
tive to changes in the population living in LTCFs.

Clearly, the average number and quality of years of life 
lost due to a premature death decrease with age. The mid-
dle-aged adults thus account for a larger share of the total 
QALY losses than of the fatalities (Fig.  6, row one and 

Fig. 4 Mean relative change in size of age group (black bars) and number of infected people in age group (blue bars) as proportion of total 
population compared to 2020. Demographic scenarios by row and models by column
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three, note different Y-axis scales). However, the largest 
QALY losses in absolute values are seen in the 60-79 year 
olds for both COVID-19 and influenza. When taking the 
age distribution into account, the QALY losses become 
more pronounced in the oldest age groups (see Fig.  6, 
row two and four). In both models, the total QALY losses 
are increasing over time and at a rate slightly higher than 
that of the increase in deaths (see Fig. S21 in Additional 
file 1). Moreover, the age-specific QALY losses per 1,000 

people are increasing in several age groups despite a sta-
ble or even decreasing disease-related death rate (see 
Fig.  6), because life expectancy is increasing. In 2020, 
for example, the average life expectancy of a 75 year old 
is about 12 years, while it is expected to increase to 15 
years by 2050 (see Fig. S22 in Additional file 1). However, 
the COVID-19 related QALY losses per 1,000 people 
in age group 90+ is decreasing between 2030 and 2050 
for the demographic scenarios with a low or medium 

Fig. 5 Mean age-specific disease-related death rate by year, model and demographic scenario. Note the different scales on y-axes

Fig. 6 Mean age-specific QALY losses in total and per 1,000 people by year and demographic scenario
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proportion of older adults living in LTCFs. The increasing 
life expectancy in this age group cannot compensate for 
the decrease in deaths associated with the changing liv-
ing arrangements.

Discussion
Increasing life expectancy and persistently low fertility 
levels have led to old population age structures in most 
high-income countries, and population ageing is ongo-
ing as the large generations born in the mid-twentieth 
century move into the older age categories [1]. Popula-
tion ageing has potential implications for the burden 
of infectious diseases as the morbidity and mortality 
of many infections are concentrated in the older adult 
population [9, 10], as seen in the COVID-19 pandemic. 
The demographic microsimulation and two-level mix-
ing model applied in our study allow to investigate the 
potential impact of population ageing on the transmis-
sion dynamics and burden of COVID-19 and influenza, 
while explicitly considering changes in the household 
structures, particularly among the older adults. Our 
focus on the future living arrangements in the older 
adult population is motivated by the disproportionate 
burden of the COVID-19 pandemic among LTCF resi-
dents [11, 12, 14, 15].

Our results suggest that population ageing on the 
one hand is associated with smaller total attack rates in 
COVID-19 and influenza epidemics, but on the other 
hand is causing a substantially larger disease burden of 
mortality, even if the proportion of older adults living 
in LTCFs were to decrease. Moreover, we find that not 
only the shift in the age distribution, but also the induced 
changes in the household structures are important to 
consider when assessing the potential impact of popula-
tion ageing on the transmission and burden of respira-
tory infections.

Respiratory infections are predominantly caught by 
close contact with an infectious individual and trans-
mission often takes place between household members 
[74, 75]. Since older adults in Belgium have few con-
tacts and the majority live alone or with their partner, 
the number of occasions where they could acquire a 
respiratory disease is relatively low. A decrease in the 
overall attack rate of COVID-19 and influenza is thus 
a logical consequence of population ageing. This rela-
tionship, however, is modified by the age pattern in the 
attack rates, which in turn is influenced by the suscep-
tibility to and infectiousness upon infection as well as 
contact patterns.

In our simulation, COVID-19 attack rates were high-
est in the young and middle-aged adult population, while 
influenza incidence was highest in children and adoles-
cents, which is in line with serological studies [76, 77]. 

Moreover, older adults made up a larger share of the 
infected population in the COVID-19 model than in the 
influenza model. Consequently, the increasing propor-
tion of older people in the population led to a greater 
relative decline in the overall number of influenza infec-
tions, which was amplified by the decreasing size of 
nuclear families, as they play an important role in influ-
enza transmission. The changing composition of nuclear 
families resulted from a decreasing fertility rate prior to 
2020, which recovered slowly, but not fully, in the remain-
ing simulation period, similar to observed and projected 
rates by Statbel and FPB [47]. Additionally, single-parent 
families became more prevalent. As a result of this, the 
average influenza incidence in children and the paren-
tal generation declined. This was less pronounced in the 
COVID-19 model, where the attack rate in the young and 
middle-aged adults were more or less unchanged due to 
substantial community transmission (i.e. at work-places).

Since older adults have the lowest number of commu-
nity contacts [78], their risk of infection is highly depend-
ent on their living arrangements. Older people in Belgium 
tend to either live in very small households (alone or with 
a partner) or in very large LTCFs. Several typical aspects 
of LTCFs, such as the size, shared meals, group activities, 
staff rotation, visitors, makes it easy for an infection to 
enter and spread rapidly [16, 17]. The variability in older 
adults’ risks of infection is thus considerably larger than 
in any other age group. This implies that the future inci-
dence in the older adult population is closely connected 
to changes in their household structures.

In the microsimulation, single-person households (e.g. 
a widow) in the age group 80+ are increasingly being 
replaced by two-person households (e.g. a couple), as 
the sex differential in mortality diminishes due to larger 
improvements in the life expectancy of males than in that 
of females. On the one hand, living with a partner instead 
of living alone increases the risk of infection as household 
transmission becomes a possibility. On the other hand, the 
probability of moving to a LTCF, which is associated with 
a substantially higher risk of infection, is markedly lower 
for elderly people living with a partner than for those liv-
ing alone. However, the future mortality, health and living 
arrangements in the older adult population are associated 
with a large degree of uncertainty [26–30, 79]. Therefore, 
we presented three demographic scenarios pertaining to 
the proportion of older adults living in LTCFs relative to 
the proportion living alone.

The attack rates in the old age groups follow the pro-
portion living in LTCFs and therefore differ substantially 
between the demographic scenarios. However, the sensi-
tivity of the attack rates to household structures among 
older adults was larger for influenza than for COVID-
19. This is again related to the different age patterns in 
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disease transmission. The risk of acquiring COVID-19 
remains relatively high for older non-LTCF residents 
because their susceptibility is high and the few contacts 
they do have will typically be with other old people, 
which are most likely to be symptomatic in case of infec-
tion and thereby more contagious. The influenza attack 
rate in older non-LTCF residents is markedly lower than 
other population groups, as children and adolescents are 
the main drivers of the spread and rarely live together 
with old people and generally have few contacts with 
them. Meanwhile, the attack rate for LTCF residents of 
COVID-19 as well as influenza are the highest in the 
population. Thus, the larger differential in the influenza 
attack rates between LTCF and non-LTCF residents 
imply that the overall attack rate of the older adults 
responds stronger, in relative terms, to changes in the liv-
ing arrangements.

Although population ageing is associated with a 
decreasing proportion of infected people in the total 
population, disease-related deaths and QALY losses are 
increasing substantially. The lost QALYs increase faster 
than the deaths because a projected increase in life 
expectancy is accounted for in the QALY estimations. 
The speed at which the burden increases is influenced 
by the living arrangements among older adults, which 
can be considered a proxy for the health at old age. How-
ever, even in a scenario with a diminishing proportion of 
LTCF residents, the burden of disease-related mortality 
increases considerably in the whole simulation period.

We emphasise that our study is an investigation of the 
effects of population ageing on transmission dynamics 
and burden of disease-related mortality, and the results 
should not be interpreted as predictions. Moreover, our 
findings should be seen in the light of several limitations. 
First, we restricted our study to emerging infectious dis-
eases by assuming that the initial population is fully sus-
ceptible and we did not consider behavioural changes 
(e.g. changing contact patterns) during the outbreak, 
which would reduce the size of the simulated outbreaks. 
Additionally, age patterns of prior immunity or mitiga-
tion strategies in certain population groups (e.g. LTCFs, 
schools) may shift the age distribution of the infected 
population and thereby modify the impact of population 
ageing. For example, some degree of pre-existing immu-
nity to influenza A (H1N1)pdm09 was found in older 
adults, which may have resulted from exposure to H1N1 
viruses earlier in life [76]. Nevertheless, we disregard 
these elements in order to obtain a clear understanding 
of the effects of population ageing alone.

Second, we do not distinguish between locations at 
which social contacts take place outside the households 
(i.e. schools, workplaces) and the patterns of social con-
tacts in the general population are assumed ot remain 

constant over time, since little is known about how con-
tact patterns are affected by changing population struc-
tures. Nevertheless, the household contact patterns 
change along with the household composition as we 
generate new household networks in each time-step (i.e. 
day). The extrapolation of household contact networks 
for private households to LTCFs may be questionable due 
to the different structures, compositions and relations 
within the households. However, the large outbreaks 
among LTCF residents in our simulation reflect estima-
tions of COVID-19 cases and the spread in LTCFs in Bel-
gium prior to the implementation of mitigation measures 
[15, 80].

Third, the model for influenza was less detailed than 
that of COVID-19 due to differences in the availabil-
ity of detailed epidemiological and clinical data, such as 
age-specific susceptibility and probability of developing 
symptoms.

Finally, our estimates of disease burden are based on 
adjusting the QALYs lost due to deaths attributable to 
COVID-19 and influenza, but do not include QALY 
losses from morbidity due to non-fatal COVID-19 or 
influenza. Furthermore, our QALY estimates are associ-
ated with a considerable degree of uncertainty pertain-
ing to the applied IFRs and the parameter settings in the 
QALY estimations. Moreover, we applied constant IFRs 
and parameters in the QALY estimations. The alterna-
tive parameter settings suggested in Briggs et al. [70] for 
the estimation of QALYs did not change the relationships 
we obtained. Nevertheless, the age-specific morbidity 
and mortality associated with respiratory diseases may 
change over time because of medical innovations and/or 
improved health at old age. Developments in healthy life 
expectancy, however, remain unclear [26–29]. We par-
tially addressed this uncertainty with the demographic 
scenarios in our analysis.

Conclusions
Population ageing is associated with smaller outbreaks of 
emerging respiratory infections such as SARS-CoV-2 and 
novel influenza A virus. Nevertheless, the burden of mor-
tality increases substantially, even if the population living 
in LTCFs, which typically face a high risk of infection as 
well as a fatal outcome, were to decrease. The variability 
in older adults’ risks of infection is considerably larger 
than in any other age group, which is related to their 
living arrangements. Not only the shift in the age distri-
bution, but also the induced changes in the household 
structures are important to consider when assessing the 
potential impact of population ageing on the transmis-
sion and burden of emerging respiratory infections. Age 
patterns in epidemiological parameters may exacerbate 
or alleviate these relationships.
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