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Abstract: The i-DREAMS project established a ‘Safety Tolerance Zone (STZ)’ to maintain operators
within safe boundaries through real-time and post-trip interventions, based on the crucial role of
the human element in driving behavior. This paper aims to model the inter-relationship among
driving task complexity, operator and vehicle coping capacity, and crash risk. Towards that aim, data
from 80 drivers, who participated in a naturalistic driving experiment carried out in three countries
(i.e., Belgium, Germany, and Portugal), resulting in a dataset of approximately 19,000 trips were
collected and analyzed. The exploratory analysis included the development of Generalized Linear
Models (GLMs) and the choice of the most appropriate variables associated with the latent variables
“task complexity” and “coping capacity” that are to be estimated from the various indicators. In
addition, Structural Equation Models (SEMs) were used to explore how the model variables were
interrelated, allowing for both direct and indirect relationships to be modeled. Comparisons on the
performance of such models, as well as a discussion on behaviors and driving patterns across different
countries and transport modes, were also provided. The findings revealed a positive relationship
between task complexity and coping capacity, indicating that as the difficulty of the driving task
increased, the driver’s coping capacity increased accordingly, (i.e., higher ability to manage and adapt
to the challenges posed by more complex tasks). The integrated treatment of task complexity, coping
capacity, and risk can improve the behavior and safety of all travelers, through the unobtrusive and
seamless monitoring of behavior. Thus, authorities should utilize a data system oriented towards
collecting key driving insights on population level to plan mobility and safety interventions, develop
incentives for road users, optimize enforcement, and enhance community building for safe traveling.

Keywords: task complexity; coping capacity; crash risk; generalized linear models; structural
equation models

1. Introduction

Road safety is a pressing global concern as road crashes tragically claim the lives of
approximately 1.3 million people each year and result in countless injuries [1]. Factors
such as human behavior, road design, vehicle safety features, environmental conditions,
and socioeconomic disparities significantly influence the occurrence and severity of road
crashes [1]. A substantial portion of these crashes can be attributed to driving behavior,
making drivers a vital area of focus in traffic safety research [2]. Recognizing the significance
of this issue, the European Union and the World Health Organization have set ambitious

Sensors 2023, 23, 9663. https://doi.org/10.3390/s23249663 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23249663
https://doi.org/10.3390/s23249663
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0002-3180-8291
https://orcid.org/0000-0003-0151-7864
https://orcid.org/0000-0002-7167-4630
https://orcid.org/0000-0003-1837-0125
https://orcid.org/0000-0002-1386-2932
https://orcid.org/0000-0003-2622-4398
https://orcid.org/0000-0002-2196-2335
https://doi.org/10.3390/s23249663
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23249663?type=check_update&version=1


Sensors 2023, 23, 9663 2 of 23

targets to reduce fatal traffic crashes by 50% from 2021 to 2030, with emerging technology
playing a pivotal role in achieving road safety improvements [3].

A multitude of risk factors influence road safety, including the driver’s state, envi-
ronmental conditions, and traffic circumstances [4]. Despite advancements in technology
and infrastructure, human error remains a significant contributor to traffic collisions [5].
However, the ongoing progress in autonomous vehicles holds promise for enhancing road
safety by reducing reliance on human drivers [6]. Additionally, intelligent driving behavior
monitoring systems, equipped with real-time interventions, have shown remarkable effec-
tiveness in enhancing road safety [7]. By combining the benefits of autonomous vehicles
and intelligent monitoring systems, there is a strong potential for mitigating the impact of
human error and creating a safer road environment for all road users.

Numerous studies have focused on understanding the impact of various factors on
unsafe driving and have sought to develop suitable models for identifying risky driving
behavior and establishing intervention frameworks within vehicles. While there have been
proposals for various interventions during and post-trip [8,9], the personalization of these
interventions and a direct connection between real-time driving behavior and intervention
activation remain areas for improvement.

The i-DREAMS project, funded by the European Commission Horizon 2020 initiative
(https://idreamsproject.eu/, accessed on 5 December 2023), aims to address these chal-
lenges by establishing, developing, testing, and validating a ‘Safety Tolerance Zone’ (STZ)
to ensure safe driving behavior. By continuously monitoring risk factors associated with
task complexity (e.g., traffic conditions and weather) and coping capacity (e.g., driver’s
mental state, driving behavior, and vehicle status), i-DREAMS aims to determine the appro-
priate level within the STZ and implement interventions to maintain drivers’ operations
within acceptable safety limits. The STZ comprises of three levels: ‘Normal’, ‘Dangerous’,
and ‘Avoidable Accident’. The ‘Normal’ level indicates a low likelihood of a crash, while
the ‘Dangerous’ level suggests an increased possibility of a crash without inevitability. The
‘Avoidable Accident’ level signifies a high probability of a crash, but it also allows sufficient
time for drivers to take action and prevent it. The distinction between the ‘Dangerous’ and
‘Avoidable Accident’ levels lies in the more urgent need for intervention in the ‘Avoidable
Accident’ level.

In line with the primary objective of the i-DREAMS project, this study aims to explore
the dynamic interplay between task complexity and coping capacity, encompassing both
vehicle state and operator state factors. For that purpose, data collected from a naturalistic
driving experiment with a sample of 80 drivers were utilized and data from Belgian truck
drivers, German drivers, and Portuguese bus drivers were collected and analyzed. For
the current study, certain risk explanatory factors and the most reliable indications were
evaluated, such as time, distance traveled, headway, speed, forward collision, time of day
(lighting indicators), or weather conditions. SEM and GLM analyses were implemented.

The paper is structured in the following manner. At the beginning, a detailed in-
troduction to the project and its general objective is highlighted with a literature review
presented concerning the analysis of driving behavior utilizing statistical methods. The
research methodology is outlined, including an explanation of collecting the data and the
theoretical foundations of the underlying models employed. Finally, the results of the study
are presented, followed by significant conclusions regarding the association between key
factors like task complexity and coping capacity on risk.

2. Literature Review

The ongoing progress in autonomous vehicles, coupled with the implementation of
intelligent driving behavior monitoring systems, presents a transformative opportunity for
road safety. Autonomous vehicles leverage cutting-edge sensors and artificial intelligence,
enabling them to process vast amounts of data swiftly and make split-second decisions,
thus reducing the likelihood of crashes caused by human factors. Moreover, intelligent
monitoring systems, with their ability to actively intervene in real-time, further enhance
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road safety by curbing risky behaviors. Moreover, intelligent monitoring systems, with
their ability to actively intervene in real time, further enhance road safety by curbing risky
behaviors [10].

Recent research also suggests that enhancing driver mindfulness could play a cru-
cial role in improving road safety. Professional drivers, who often face high levels of
stress and impulsivity, can benefit from mindfulness interventions tailored to their specific
needs [11]. These interventions can help drivers develop self-awareness, improve their
ability to focus on the present moment, and make more deliberate choices, ultimately
reducing impulsive actions and stress perception. Integrating mindfulness practices with
advancements in autonomous vehicles and intelligent monitoring systems could offer
a holistic approach to enhancing road safety, addressing both technological and human
factors simultaneously [11].

An interesting work conducted by Vrábel et al. [12] examined the relationship between
alcohol and driver’s reaction time by analyzing video from two synchronized cameras.
Results indicated that driver’s reaction time had a direct impact on the stopping distance.
Similarly, Hudec et al. [13] investigated the interconnection between fatal traffic crashes
and the driving schools being completed by these drivers. With the key findings revealed
through the identification, recognition, and analysis of these traffic crashes, as well as
proper actions, it is possible to make some progress towards eliminating their impact.

In addition, another study [14] analyzed traffic crashes caused by technical failure
of a vehicle on the basis of long-term data. It was revealed that this cause constituted a
low proportion of the total number of road traffic crashes. However, in order to eliminate
these traffic crashes and their consequences, it would be beneficial to maintain the best
possible technical condition of the vehicles and to contribute to road safety. Moreover,
Makka et al. [15] assessed the risks associated with the transport of dangerous flammable
substances. The results indicated that mobile resources represented a significant source of
risk through the transport of dangerous goods in the event of an emergency occurrence
associated with their leakage.

The integration of Structural Equation Modeling (SEM) and Generalized Linear Models
(GLMs) provides a comprehensive framework to delve into the intricate dynamics between
task complexity, coping capacity, and driving risk. The use of both methodologies allows
for a multifaceted exploration of the factors influencing road safety outcomes, contributing
to the development of evidence-based interventions for safer driving practices.

Studies have utilized SEM to incorporate crash severity-related features, as well as the
number of vehicles involved, into a latent construct termed “crash size” to have a compre-
hensive and more reliable measure of actual crash severity. SEM is a multivariate statistical
method that integrates factor analysis and path analysis. It concretizes latent variables
that are difficult to directly observe through several observed variables and establishes the
relationship among those latent variables [16]. Moreover, the crash contributing factors
have been integrated into unmeasurable variables, namely, driver, road, and vehicle, which,
in turn, allows researchers to compare the relative contribution of each latent variable in
the crash size [17].

SEM is adept at unraveling complex interconnections among multiple latent variables,
providing a comprehensive view of how these factors jointly influence crash risk. SEM’s
capability of modeling indirect effects has attracted the attention of naturalistic driving
studies [18] and real-time crash prediction models [19] to account for the complex associa-
tions between inter-correlated variables. In the context of this research, SEM serves as a
powerful tool to explore the multifaceted interactions among vehicle attributes, operator
characteristics, and contextual factors, all of which collectively shape the dynamics of risk
under varying conditions. Notably, SEM facilitates the integration of operator characteris-
tics, vehicle states, and environmental aspects, thereby fostering a deeper comprehension
of their combined influence on driving behavior and crash severity.

The application of Generalized Linear Models (GLMs) stands as a pivotal asset in com-
prehending the intricate interplay between task complexity, coping capacity, and driving
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risk [20]. GLMs offer a specialized analytical toolset tailored to the multifaceted challenges
posed by road safety data. These datasets often deviate from the norm with non-normal
distributions and intricate patterns, presenting a significant analytical hurdle. GLMs, how-
ever, adeptly navigate this complexity. Firstly, they demonstrate remarkable adaptability,
accommodating the skewed distribution of variables commonly encountered in road safety
research, such as crash frequencies, while ensuring the robustness and accuracy of analyses
remain intact. Secondly, GLMs effectively model categorical outcomes [21], a frequent
occurrence in this field, enabling a deeper exploration of how task complexity and cop-
ing capacity influence various levels of risk. Furthermore, GLMs address the issue of
heteroscedasticity often observed in road safety data, where the variance of driving risk
may vary across different levels of task complexity and coping capacity, ensuring that
relationships between these variables and driving risk are precisely captured [20,21]. Lastly,
GLMs offer the crucial capability of modeling nonlinear relationships, allowing researchers
to unravel complex, nonlinear associations that are frequently found in real-world road
safety scenarios but might elude linear models.

By incorporating GLMs into the research methodology, a powerful and tailored ap-
proach to examine the intricate relationships between task complexity, coping capacity,
and driving risk is gained. GLMs are well-suited to handling the heterogeneity present
in road safety data due to variations in road types, regions, and driving conditions. Their
adaptability to the specific challenges of road safety data ensures the analyses remain robust
and accurate. Ultimately, this integration facilitates a more comprehensive and nuanced
understanding of how these factors interrelate, paving the way for the development of
targeted interventions aimed at enhancing road safety and effectively reducing the risk
of crashes.

The integration of Structural Equation Modeling (SEM) and Generalized Linear Mod-
els (GLM) in road safety research offers an intricate yet highly effective framework for
understanding the multifaceted dynamics between task complexity, coping capacity, and
driving risk. SEM empowers researchers to explore latent variables and complex rela-
tionships, aiding in the identification of critical factors that contribute to crash severity.
It also excels in modeling indirect effects and examining causal relationships, making it
invaluable for studies involving inter-correlated variables. On the other hand, GLMs prove
indispensable in tackling the non-normality, heteroscedasticity, and non-linear patterns
often found in road safety data, ensuring the accuracy and robustness of analyses. By
incorporating these methodologies, research not only gains a deeper comprehension of
road safety dynamics but also paves the way for evidence-based interventions that can
foster safer driving practices and mitigate the risk of crashes. The synergistic application
of SEM and GLM represents a powerful approach to advancing road safety research and
enhancing our collective efforts to make roadways safer for all.

3. Experiment Description

A naturalistic driving experiment was carried out involving 80 drivers from Belgium
(professional truck drivers), Germany (amateur car drivers), and Portugal (professional
bus drivers) and a large database of 19,000 trips and 847,711 min was created to investigate
the most prominent driving behavior indicators available, including speeding, headway,
duration, distance, and harsh events (i.e., harsh acceleration and harsh braking). The total
number of drivers, trips, and minutes per country and transport mode is presented in
Figure 1 below and a part of the dataset used is located in the Appendix A at the end.

The i-DREAMS on-road experiments were designed utilizing numerous validated
concepts adapted from the prior literature, with an emphasis on evaluating interventions
that assist drivers to operate within the safety boundaries of the STZ. Driving behavior and
the influence of real-time interventions (i.e., in-vehicle warnings) and post-trip interventions
(i.e., post-trip feedback and gamification) on driving behavior were thoroughly investigated
as part of the on-road experiment. Figure 2 illustrates each of the phases of the i-DREAMS
on-road experiment.
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Figure 3 demonstrates the most relevant variables utilized for defining task complexity
and coping capacity (vehicle and operator state), as well as the variables employed to
represent risk. These variables are instrumental to this study, essential for capturing the
complex dynamics of the interrelationship between the driving task complexity, operator
and vehicle coping capacity, and crash risk.
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Regarding weather-related hazards such as rain, snow, or debris, car wipers are
considered an important factor in weather conditions. The rate at which the wipers operate
can also serve as an indicator of the severity of the weather conditions. For instance, heavy
rain or snow can be related to the fast-moving rate of wipers. In contrast, in case the wipers
move slowly, it might indicate that there are mild weather conditions. In general, car wipers
represent a crucial safety component in a vehicle, aiding drivers in safely maneuvering
through diverse weather conditions.
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Furthermore, the use of high-beam headlights serves as an indicator of lighting condi-
tions as they are employed to deliver the highest level of illumination during low-light or
nighttime driving scenarios. High-beam headlights are specifically engineered to project a
more extended beam of light down the road, thereby assisting drivers in identifying poten-
tial obstacles or pedestrians that might otherwise be challenging to discern with low-beam
headlights. In summary, high-beam headlights constitute a critical vehicle feature that aids
drivers in safely maneuvering through varying lighting conditions.

For ‘vehicle state’, three core aspects are considered: technical specifications (including
metrics like average speed, braking power, and acceleration performance), actuators and
admitted actions (measured through accelerator, brakes, steering wheel usage), and current
status (evaluated based on fuel efficiency, scheduled maintenance, real-time data from
onboard systems, Telematics/GPS, smartphones, and additional information from ADAS
systems such as headway and collision monitoring, pedestrian warning, lane keeping
monitoring, onboard cameras, and more).

Regarding ‘operator state’, six key aspects are taken into account: mental state (as-
sessed using metrics on alertness, attention, emotions, etc.), behavior (measured through
metrics like speeding, harsh acceleration/braking/cornering, seat belt usage), competen-
cies (evaluated based on metrics concerning risk assessment, attention regulation, self-
appraisal, etc.), personality (measured through metrics on adventure-seeking, disinhibition,
experience-seeking, boredom susceptibility, etc.), sociodemographic profile (including vari-
ables like age, gender, experience, socio-economic status, nationality, ethnicity, cultural
identity, etc.), and health status (measured based on metrics regarding current symp-
toms, neurologic and cardiovascular indicators, medication usage, and other health-related
factors). These components collectively contribute to our understanding of coping capacity.

4. Equipment Description

In order to collect a range of vehicle and driver-related driving attributes, the project
used a system composed of several devices used for collecting data and then implementing
real-time interventions. More specifically, data from the Mobileye system (Mobileye, 2022),
a dash camera, and the Cardio gateway (CardioID Technologies, 2022), which records
driving behavior (e.g., speed, acceleration, deceleration, steering), along with GNSS signals
were used. In particular, the Mobileye system is a network sensor and a camera-based
system mounted on the windshield that measures parameters like headway monitoring,
lane position monitoring, traffic sign recognition, and pedestrian recognition. The system
can be connected to the CAN bus and enables integration with several ADAS ecosystem
products. The Cardio gateway is a system based on sensors which is connected to the
Mobileye equipment through the CAN bus of the vehicle and can transfer data through
different communication technologies (BLE, CAN, I2C, SPI, WiFi). Information about
the current warning stage, as defined by Mobileye, was also collected for comparison
with the i-DREAMS warning stage (i.e., normal driving, danger phase, avoidable accident
phase). At the same time, information about the current state of the i-DREAMS platform
was collected.

An OBD-II device supporting all OBD-II protocols was installed in each vehicle. A
modern vehicle supports hundreds of parameters, which are recorded by the OBD-II
device which accommodates the proper Software Development Kit (SDK) to extract the
necessary data, as well as a rich set of APIs (Application Programming Interfaces) to
communicate with third-party systems. This OBD-II integrates 2G or 3G GSM/GPRS
technology through which all data recorded from the vehicle through its sensors are
transmitted to remote servers (Cloud). The mobile network is used for data transmission
without any user involvement.

CardioID also provided a web API to support data access within the i-DREAMS
project. The API completely followed the REST architectural style, and the data were
available in a JSON format. For car drivers, Cardio Watch was also used to provide more
reliable data about car drivers’ fatigue and sleepiness compared to Cardio Wheel which
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requires both hands on the steering wheel to provide fatigue index data. In case of trucks
and buses, this technology was used as drivers’ does not need to bothered about wearing
Cardio Watch which also required timely charging of their batteries.

OSEVEN provided a state-of-the-art android-based smartphone application that also
monitors and collects driving behavior of individuals using a variety of parameters. The
app uses different smartphone sensors to collect such data. The app was used by drivers
recruited for on-field trials. Drivers recruited for the experiments were required to install
this app on their smartphone. The app does not collect any data but was used to display
processed data so that driving behavior can be influenced, especially for trucks and buses.
For cars, the O7 app provided this functionality along with collection of detailed data.
Due to differences between modes, their operation, technological capabilities, and vehicle
design, the data collection methods and measures differ between the on-road field trials.

5. Algorithm and Experiment’s Methodology Description

Raw data for a particular trip were collected via CardioID gateway, Mobileye, wrist-
band, or CardioWheel. These trip data were fused using a feature-based data fusion
technique, namely geolocation through synchronization and support vector machines. The
system provided by CardioID integrates several data streams, generated by the different
sensors that make up the inputs of the i-Dreams system. After data validation, confirming
that no unordered or repeated points exist in the data set, events generated by the analysis
of accelerometer data and by the Mobileye were geolocated through synchronization with
the GPS information. Moreover, time on task was fused with heart rate variability (HRV) as
features used by CardioID’s sleepiness machine learning model to produce the sleepiness
state output. Data fusion was also implemented on processed data in i-DREAMS. The
processed data had already been fused once before processing (i.e., all of the previously
mentioned data fusion techniques on raw data).

However, such fused data still needed aggregation for specific data analysis needs
in i-DREAMS. The aggregation method depends on the type of data and their purpose
for analysis. For example, in the case of event data, the aggregation method used is the
counting of events in a specified interval; in the case of continuous data such as speed,
headway, etc., the aggregation was performed by calculating their mean, minimum, and
maximum in a specific interval. Also, the nature of KSS (being discrete) requires a median
as the aggregation method. In addition, trip level data also contain scores information
on various risk indicators (which is derived from the event type and their frequency). A
number of python scripts were developed to convert the available trip data (collected in
the i-Dreams back-office) into its fused form so that the data are ready for analysis.

6. Methods
6.1. Generalized Linear Models (GLMs)

GLMs represent a versatile extension of standard linear regression. They accom-
modates response variables with error distribution models that deviate from the normal
distribution. GLMs extend linear regression by establishing a connection between the linear
model and the response variable through a link function and by permitting the variance of
each measurement to be influenced by its predicted value [22].

In a GLM, each outcome Y of the dependent variables is assumed to be generated
from a particular distribution in an exponential family, e.g., normal, binomial, Poisson,
and gamma distributions, among others. The mean, µ, of the distribution depends on the
independent variables, X, through:

E(Y|X) = µ = g− 1(Xβ), (1)

where E(Y|X) is the expected value of Y conditional on X; Xβ is the linear predictor, a linear
combination of unknown parameters β; and g is the link function.



Sensors 2023, 23, 9663 8 of 23

In this framework, the variance is typically a function, V, of the mean:

Var(Y|X) = V(g− 1(Xβ)), (2)

It is convenient if V follows from an exponential family of distributions, but it may
simply be that the variance is a function of the predicted value.

The unknown parameters, β, are typically estimated with maximum likelihood, maxi-
mum quasi-likelihood, or Bayesian techniques.

GLMs were formulated as a way of unifying various other statistical models, including
linear regression, logistic regression, and Poisson regression. In particular, ref. [23] proposed
an iteratively reweighted least squares method for maximum likelihood estimation of the
model parameters. Maximum-likelihood estimation remains popular and is the default
method on many statistical computing packages. Other approaches, including Bayesian
approaches and least squares fits to variance-stabilized responses, have been developed.

A key point in the development of the GLM was the generalization of the normal
distribution (on which the linear regression model relies) to the exponential family of
distributions. This idea was developed by [24]. Consider a single random variable y
whose probability (mass) function (if it is discrete) or probability density function (if it is
continuous) depends on a single parameter θ. The distribution belongs to the exponential
family if it can be written as follows:

f (y; θ) = s(y)t(θ)e(a(y)b(θ)), (3)

where a, b, s, and t are known functions. The symmetry between y and θ becomes more
evident if the equation above is rewritten as follows:

f (y; θ) = exp[a(y)b(θ) + c(θ) + d(y)], (4)

where s(y) = exp[d(y)] and t(θ) = exp[c(θ)].
If a(y) = y then the distribution is said to be in the canonical form. Furthermore,

any additional parameters (besides the parameter of interest θ) are regarded as nuisance
parameters forming parts of the functions a, b, c, and d, and they are treated as though they
are known. Many well-known distributions belong to the exponential family, including
Poisson, normal, or binomial distributions. On the other hand, examples of well-known and
widely used distributions that cannot be expressed in this form are Student’s t-distribution
and the uniform distribution.

It should be mentioned that the Variance Inflation Factor (VIF) is a measure of the
amount of multicollinearity in regression analysis. Multicollinearity exists when there is a
correlation between multiple independent variables in a multiple regression model. The
default VIF cutoff value is 5; only variables with a VIF less than 5 will be included in the
model (VIF < 5). However, in certain cases, even if the VIF is less than 10 it can be accepted.

6.2. Structural Equation Models (SEMs)

Structural Equation Modelling or path analysis is a multivariate method used to test
hypotheses regarding the influences among interacting observed and unobserved variables.
The observed variables are measurable, while unobserved variables are latent constructs.

Structural equation models consist of two components: a measurement model and a
structural model. The measurement model is used to assess how well various observable
exogenous variables can measure the latent variables, as well as the measurement errors
associated with them. The structural model is used to investigate the relationships among
the model variables, enabling the modeling of both direct and indirect linkages. In this
regard, SEMs distinguish themselves from regular regression techniques by deviating from
direct relationships between variables.
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The general formulation of an SEM is as follows [25,26]:

η = βη + γξ + ε, (5)

In Equation (5), η represents a vector of endogenous variables, ξ represents a vector of
exogenous variables, β and γ are vectors of coefficients to be estimated, and ε represents a
vector of regression errors.

The measurement models can be described as follows [27]:

x = Λxξ + δ, for the exogenous variables (6)

y = Λyη + ζ, for the endogenous variables (7)

In Equations (6) and (7), x and δ represent vectors associated with the observed exoge-
nous variables and their errors, while y and ζ are vectors that represent vectors associated
with the observed endogenous variables and their errors. Λx and Λy are structural coeffi-
cient matrices that capture the effects of the latent exogenous and endogenous variables on
the observed variables.

To depict the structural model, path analysis is often employed, illustrating how a set
of “explanatory” variables can influence a “dependent” variable. The paths can be visually
represented to indicate whether the explanatory variables are correlated causes, mediated
causes, or independent causes of the dependent variable.

6.3. Model Goodness-of-Fit Measures

In the context of model selection, model Goodness-of-Fit measures comprise an impor-
tant part of any statistical model assessment. Several goodness-of-fit metrics are commonly
used, including the goodness-of-fit index (GFI), the (standardized) Root Mean Square
Error Approximation (RMSEA), the comparative fit index (CFI), and the Tucker–Lewis
Index (TLI). Such criteria are based on differences between the observed and modeled
variance–covariance matrices. A detailed description of the aforementioned metrics is
presented below.

The Akaike Information Criterion (AIC), which accounts for the number of included
independent variables, is used for the process of model selection between models with
different combinations of explanatory variables [28].

AIC = −2L(θ) + q, (8)

where q is the number of parameters and L(θ) is the log-likelihood at convergence. Lower
values of AIC are preferred to higher values because higher values of −2L(θ) correspond
to a greater lack of fit.

The Bayesian Information Criterion (BIC) is used for model selection among a finite
set of models; models with a lower BIC are generally preferred.

BIC = −2L(θ) + qln(N), (9)

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
provide measures of model performance that account for model complexity. AIC and BIC
combine a term reflecting how well the model fits the data with a term that penalizes the
model in proportion to its number of parameters.

The Comparative Fit Index (CFI) is based on a noncentral x2 distribution. It evaluates
the model fit by comparing the fit of a hypothesized model with that of an independence
model. The values of the CFI range from 0 to 1, indicating a good fit for the model when the
value exceeds 0.95 [29]. In general, values more than 0.90 for the CFI are generally accepted
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as indications of very good overall model fit (CFI > 0.90). The formula is represented
as follows:

CFI = 1−
max

(
xH

2 − d f H , 0
)

max(xH2 − d f H , xI2 − d f I)
, (10)

where x2
H is the value of x2 and dfH is the degrees of freedom in the hypothesized model,

and x2
I is the value of x2 and dfI is the degrees of freedom in the independence model.

The Tucker–Lewis Index (TLI) considers the parsimony of the model. Therefore, if the
fit indices of the two models are similar, a simpler model (i.e., greater degrees of freedom) is
chosen. TLISI is an unstandardized value, so it can have a value less than 0 or greater than
1. It indicates a good fit for the model when the value exceeds 0.95 [29]. In general, values
more than 0.90 for the TLI are generally accepted as indications of a very good overall
model fit (TLI > 0.90). The formula is represented as follows:

TLI =
xI

2

d f I
− xH

2

d f H
xI 2

d f I
− 1

, (11)

where x2
H is the value of x2 and dfH is the degrees of freedom in the hypothesized model,

and x2
I is the value of x2 and dfI is the degrees of freedom in the independence model.

Currently, one of the most widely used goodness-of-fit indices is the Root Mean Square
Error Approximation (RMSEA). The RMSEA measures the unstandardized discrepancy
between the population and the fitted model, adjusted by its degrees of freedom (df).
Different proposals have been made as to the correct use of the RMSEA. The most common
approach is to calculate and interpret the sample’s RMSEA [30]. The RMSEA is considered
a “badness-of-fit measure”, meaning that lower index values represent a better-fitting
model. The RMSEA index ranges between 0 and 1. Its value 0.05 or lower is indicative of a
model fit with observed data. p close value tests the null hypothesis that the RMSEA is no
greater than 0.05. If the p close value is more than 0.05, the null hypothesis is accepted that
the RMSEA is no greater than 0.05 and indicates the model closely fits the observed data
(RMSEA < 0.05). The formula is represented as follows:

RMSEA =

√
xH2 − d f H
d f H(n− 1)

, (12)

where x2
H is the value of x2 and dfH is the degrees of freedom in the hypothesized model;

n is the sample size.
The Root Mean Squared Error (RMSE) is one of the most commonly used measures

for evaluating the quality of predictions. It shows how far predictions fall from measured
true values using Euclidean distance.

The formula of the RMSE, which is the square root of the average squared error, is
represented as follows:

RMSE =

√
1
N ∑ e2

t (13)

where N is the number of forecasted points and et is the error (i.e., observedt—forecastedt).
The Goodness of Fit Index (GFI) is a measure of fit between the hypothesized model

and the observed covariance matrix. The adjusted Goodness of Fit Index (AGFI) corrects
the GFI, which is affected by the number of indicators of each latent variable [31]. The
GFI and AGFI range between 0 and 1, with a value of over 0.9 generally indicating an
acceptable model fit. In general, values more than 0.90 for GFI are generally accepted as
indications of a very good overall model fit (GFI > 0.90).

Lastly, the Hoelter index is calculated to find if the chi-square is insignificant or not. If
its value is more than 200 for the model, then the model is considered to be a good fit with
observed data (Hoelter > 200). Values of less than 75 indicate a very poor model fit. The
Hoelter only makes sense to interpret if N > 200 and the chi-square is statistically significant.
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7. Results
7.1. GLM Results

Generalized Linear Models (GLMs) were utilized to examine the connection between
a crucial speed-related performance metric for truck drivers in Belgium, car drivers in
Germany, and bus drivers in Portugal. In order to implement the GLM analyses it must be
noted that the data used were from all four phases of each country experiment. The link
between speeding and risk is well-established within the road safety field, and consequently,
speeding frequently serves as a standard dependent variable in research related to human
factors in transportation.

7.1.1. Belgian Trucks

The first GLM investigated the relationship between speeding and several explanatory
variables of task complexity and coping capacity (operator state) in Belgium. Specifically,
the developed model employs the dependent variable “speeding”, represented by a binary
variable: coded as 1 to indicate the presence of a speeding event and as 0 if there is no such
event. Regarding task complexity, the model incorporates variables such as time indicators,
wipers, and high beam. Meanwhile, for assessing coping capacity (operator state), the
model considers variables including distance traveled and instances of harsh acceleration.
It should be noted that certain explanatory variables related to vehicle state, such as fuel
type, vehicle age, or gearbox type, and socio-demographic characteristics like gender, age,
or educational level, were found to lack statistical significance at a 95% confidence level.
Consequently, these variables have been excluded from the models. The model parameter
estimates are presented in Table 1.

Table 1. Parameter estimates and multicollinearity diagnostics of the GLM (Belgian trucks).

Variables Estimate Standard Error z-Value Pr(|z|) VIF

(Intercept) 3.668 0.043 85.768 <0.001 -
Time indicator 0.908 0.078 11.683 <0.001 1.882

Weather 0.009 4.217 × 10−4 20.952 <0.001 1.228
High beam—Off −0.018 7.062 × 10−4 −25.286 <0.001 1.470

Harsh acceleration 2.661 0.181 14.689 <0.001 1.013
Distance −6.128 × 10−4 7.273 × 10−5 −8.426 <0.001 1.678

Summary statistics

AIC 17,404.428
BIC 17,413.817

Degrees of freedom 88,377

It should be noted that the intercept variable signifies the expected value of the de-
pendent variable when all independent variables are set to zero. In particular, it rep-
resents the baseline or starting point of the relationship between the dependent and
independent variables.

According to the data presented in Table 1, it becomes evident that all explanatory
variables exhibit statistical significance at a confidence level of 95%. Furthermore, there
are no concerns about multicollinearity as the Variance Inflation Factor (VIF) values are
significantly below the threshold of 5. Regarding the coefficient analysis, it was uncovered
that indicators associated with task complexity, such as the time indicator and the use of
wipers, displayed positive correlations with speeding. The time indicator, in particular,
signifies different times of the day (day represented as 1, dusk as 2, and night as 3),
indicating that higher speeding events occur at night compared to during the day. This
might be caused by a smaller number of vehicles on the road, lower visibility, and a
misleading sense of security that comes with driving in the dark. It is worth noting that
wipers (wipers off coded as 0, wipers on coded as 1) were also found to have a positive
correlation with speeding. This suggests that there is a higher occurrence of speeding
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incidents during adverse weather conditions, such as rainy weather. This phenomenon
could be attributed to the challenges posed by wet and slippery roads, making it harder
to maintain control of the vehicle. Furthermore, rain can impair visibility, making it more
difficult to spot other vehicles or obstacles on the road. Considering the indicator for
high beam usage (indicating lighting conditions, with no high beam detected), a negative
correlation was identified. This implies that when the high beam was not in use (typically
during daytime driving), fewer speeding incidents were recorded. This finding aligns
with the earlier observation regarding the time of day, indicating that higher instances of
speeding tend to occur at night compared to other times of the day.

Regarding the indicators reflecting coping capacity (operator state), there was a posi-
tive association between harsh accelerations and the dependent variable (speeding). This
implies that an increase in the number of abrupt accelerations corresponds to an uptick in
speeding occurrences. This finding holds significance as it reinforces the statistically signifi-
cant positive correlation between speeding and instances of aggressive driving behavior.
Lastly, the total distance traveled was found to be negatively correlated with speeding. This
might be attributed to the notion that the longer a person drives, the more likely they are to
experience fatigue, leading them to drive at reduced speeds and exercise greater caution.

7.1.2. German Cars

The second GLM examined how speeding relates to various explanatory factors of
task complexity and coping capacity (pertaining to both vehicle and operator state) within
the context of Germany. For task complexity, the variables used are time indicator and high
beam, for coping capacity (vehicle state), the variables used are a type of fuel and vehicle
age, while for coping capacity (operator state), the variables used are distance traveled,
duration, harsh acceleration, drowsiness, gender, and age. The model parameter estimates
are summarized in Table 2.

Table 2. Parameter estimates and multicollinearity diagnostics of the GLM (German cars).

Variables Estimate Standard Error z-Value Pr(|z|) VIF

(Intercept) 1.105 0.057 19.549 <0.001 -
Duration 0.003 3.414 × 10−5 73.366 <0.001 1.262
Distance 5.735 × 10−4 3.723 × 10−5 15.404 <0.001 1.029

Harsh acceleration 1.282 × 10−4 1.974 × 10−6 64.951 <0.001 1.222
Fuel type—Petrol 0.219 0.010 21.446 <0.001 1.328

Vehicle Age 3.162 × 10−4 3.340 × 10−6 9.469 <0.001 1.277
Gender—Female −0.275 0.021 −13.025 <0.001 1.256

Age −0.003 0.001 −2.289 0.022 1.076
Drowsiness 1.009 × 10−5 2.656 × 10−6 3.800 <0.001 1.113

Time indicator 8.547 × 10−5 1.925 × 10−6 44.405 <0.001 1.080
High beam—On 0.817 0.059 13.963 <0.001 1.073

Summary statistics

AIC 127,971.813
BIC 127,981.881

Degrees of freedom 174,299

Based on Table 2, it can be observed that all explanatory variables are statistically
significant at a 95% confidence level; there is no issue of multicollinearity (VIF < 5). With
regard to the coefficients, it was revealed that the indicators of task complexity, such as
time and high beam (indicating lighting conditions; no high beam detected) were positively
correlated with speeding. Regarding the indicators of coping capacity (vehicle state),
fuel type and vehicle age were positively correlated with speeding. Furthermore, it was
demonstrated that indicators of coping capacity (operator state), such as harsh accelerations,
distance, duration, and drowsiness, had a positive relationship with the dependent variable
(i.e., speeding), indicating that as the values of the aforementioned independent variables
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increase, speeding also increases. This is a noteworthy finding of the current research as
it confirms that harsh driving behavior events present a statistically significant positive
correlation with speeding.

Taking into consideration socio-demographic characteristics, gender and age were
negatively correlated with speeding. In particular, the negative value of the “Gender”
coefficient implied that as the value of the variable was equal to 1 (males coded as 0,
females as 1), the speeding percentage was lower. Results revealed that the vast majority
of male drivers displayed less cautious behavior during their trips and exceeded more
often the speed limits than female drivers. It is also remarkable that the negative value of
the “Age” coefficient implied that as the value of the variable increased (a higher value
indicates increased age and, therefore, increased years of participant’s experience), the
speeding percentage was lower. Young drivers appeared to have riskier driving behavior
than older drivers and were more prone to exceed the speed limits.

7.1.3. Portuguese Buses

The third GLM investigated the relationship between speeding and several explanatory
variables of task complexity and coping capacity (vehicle and operator state) in Portugal.
More specifically, for task complexity, the variable used is time indicator, while for coping
capacity (operator state), the variables used are distance traveled, harsh acceleration, harsh
braking, and fatigue. It should be mentioned that the explanatory variables of vehicle state,
such as fuel type, vehicle age, or gearbox, or socio-demographic characteristics, such as
gender, age, or educational level, are not statistically significant at a 95% confidence level;
thus, these variables are not included in the models. The model parameter estimates are
summarized in Table 3.

Table 3. Parameter estimates and multicollinearity diagnostics of the GLM (Portuguese buses).

Variables Estimate Standard Error z-Value Pr(|z|) VIF

(Intercept) 3.441 0.020 168.858 <0.001 -
Time indicator 0.164 0.008 21.306 <0.001 1.002
Harsh braking 0.294 0.082 3.594 <0.001 1.051

Harsh acceleration 0.490 0.112 4.371 <0.001 1.052
Fatigue −0.095 0.008 −12.527 <0.001 1.378

Distance 0.010 1.038 × 10−4 99.797 <0.001 1.379

Summary statistics

AIC 153,657.374
BIC 153,668.223

Degrees of freedom 380,656

It can be observed that all explanatory variables are statistically significant at a 95%
confidence level; there is no issue of multicollinearity (VIF < 5). With regard to the co-
efficients, it was revealed that the indicators of task complexity, such as time indicator,
were positively correlated with speeding. Time indicator refers to the time of the day
(day coded as 1, dusk coded as 2, night coded as 3), which means that higher speeding
events occur at night compared to during the day. This may be due to fewer cars on the
road, lower visibility, and a false sense of security that comes with driving in the dark.
Regarding the indicators of coping capacity (operator state), distance, and harsh events
(i.e., harsh acceleration and harsh braking) had a positive relationship with the dependent
variable (i.e., speeding), indicating that as the total distance traveled and the number of
harsh events increases, speeding also increases. Lastly, fatigue was negatively correlated
with speeding, which implies that the more fatigued the driver is the slower and more
cautiously they drive.
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7.2. SEM Results

In order to investigate the relationship between the latent variables of task complexity,
coping capacity, and risk (represented as the three stages of the STZ), four distinct SEM
models were developed.

7.2.1. Belgian Trucks

Figure 4 illustrates the results for each phase. The latent variable risk is measured by
the means of the STZ levels for acceleration (level 1 ‘normal driving’ used as the reference
case), with negative correlations of risk with the STZ indicators. The negative sign shows
that the latent variable risk could in fact be representing an inverse of risk, more like normal
driving. The structural model between the latent variables shows some interesting findings:
first, task complexity and coping capacity are interrelated with a positive correlation. This
positive correlation indicates that higher task complexity is associated with higher coping
capacity, implying that drivers’ coping capacity increases as the complexity of the driving
task increases.
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Task complexity increase is associated with higher (risk) normal driving (lower risk),
which is not intuitive. Although the initial assumption was that task complexity would
increase risk or decrease normal driving, once its effect is moderated by that of coping
capacity the opposite is the case. It is noted, however, that the task complexity latent
variable is measured by environmental indicators (i.e., rainy weather) and situational
indicators (i.e., speed) which are known to induce compensatory behaviors by drivers, in
particular expressed as reduced speed during more demanding conditions.

At the same time, coping capacity is negatively associated with normal driving or in-
verse of risk, again an interesting finding. It could be assumed that a higher coping capacity
might reduce risk or improve normal driving, but this is not the case here. Furthermore,
the coping capacity indicators in our sample include static demographic and self-reported
behavior indicators and therefore are more representative of driver personality and general
driving styles and less so of the real-time operator state during the experiment. For instance,
indicators related to the level of sleepiness, fatigue, or distraction were either not available
or not significant in this model. Therefore, it can be concluded that younger, more confident
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truck drivers exhibited (higher risk) lower normal driving in this experiment, in terms
of exceeding the STZ acceleration boundaries, without however taking into account the
variations in their state during these trips.

It is observed that the relationships among risk, task complexity, and coping capacity
are consistent between the different phases (except for phase 3 where coping capacity
and risk have a positive relationship). In particular, in phase 3, the structural relationship
between coping capacity and (inverse) risk changes to a positive coefficient. This finding
may not be directly interpreted, but it is possible that the presence of real-time and post-
trip i-DREAMS interventions in phase 3 led to a different interaction between the latent
variables coping capacity and risk, which would need additional indicators available to
conclude. Also, the magnitude of the correlation between the latent variables coping
capacity and task complexity reduces to an extremely small value.

The loading of ‘trip duration’ in phase 2 changes to a positive sign, which shows an
improvement in the coping capacity of drivers in the presence of real-time interventions.
However, in the later phases 3 and 4, this trend is back to phase 1. The loadings of the
observed proportions of the STZ of acceleration are consistent between the different phases
(the loadings of the second STZ level have consistently higher negative signs across all
phases, while the loadings of the third STZ level have consistently lower signs across all
phases). The loading of the first STZ level becomes notably higher in the fourth phase of
the experiment. This may indicate that drivers tend to have normal driving in the fourth
phase in the presence of all interventions.

Looking at the observed risk factors, it was demonstrated that for harsh accelerations
in Belgian trucks, the correlation of coping capacity and task complexity was in general
positive along the same magnitude for all phases

7.2.2. German Cars

To begin with, the risk is measured by means of the STZ levels for speeding (level
1 ‘normal driving’ used as the reference case; level 2 refers to ‘dangerous driving’, while
no incidents with regard to level 3 ‘avoidable accident driving’ were found). In particular,
positive correlations of risk with the STZ indicators were found. It should be noted that the
identified model indicated that level 3 of the speeding variable does not have significant
loading in the measurement model for the latent variable risk and thus, this level was not
included in the final model. Level 1 and level 2 of speeding (or STZ 1 and STZ 2 indicators)
have positive loadings in correlation to the latent variable risk, respectively.

The latent variable task complexity is measured by means of the environmental indi-
cator of time of the day. It should be noted that based on the definition of task complexity,
road layout, time, location, traffic volumes, and weather variables should be included in
the analysis. However, road type (i.e., urban, rural, highway), location, traffic volumes
(i.e., high, medium, low), and weather were not available in the German dataset. Thus,
only the time indicator was able to be used in the models applied. To that aim, exposure
indicators, such as trip duration and distance traveled, were included in the task complexity
analysis. In particular, time of the day, distance, and duration were found to have a positive
correlation with task complexity.

Furthermore, it is shown that the latent coping capacity is measured by means of both
vehicle state indicators, such as age of the vehicle, gearbox (i.e., automatic or manual),
and type of fuel (i.e., diesel, hybrid electric, petrol). At the same time, operator state
indicators, such as “Gender” (indicating the gender of the driver; male or female) and
“Age” (indicating the age of the driver) are included in the SEM applied.

The structural model between the latent variables shows some interesting findings:
First, task complexity and coping capacity are interrelated with a positive correlation
(regression coefficient = 0.03), which reduces in magnitude as the drivers progress from
phases 1 and 2 through phases 3 and 4. This positive correlation indicates that higher
task complexity is associated with higher coping capacity, implying that drivers’ coping
capacity increases as the complexity of the driving tasks increases. Overall, the structural
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model between task complexity and risk shows a positive coefficient, which means that
increased task complexity relates to increased risk according to the model (regression
coefficient = 2.19). On the other hand, the structural model between coping capacity and
risk shows a negative coefficient, which means that increased coping capacity relates to
decreased risk according to the model (regression coefficient = −0.05).

It is identified that the measurement equations of task complexity and coping capacity
are consistent between the different phases. At the same time, the loadings of the observed
proportions of the STZ of speeding are consistent between the different phases. The
structural model between task complexity and inverse risk (normal driving) are positively
correlated among the four phases, while coping capacity and risk were found to have a
negative relationship in all phases of the experiment.

In Germany, the model for speeding revealed a positive correlation between task
complexity and coping capacity, but with the largest correlation in phase 2 of the experiment,
where real-time warnings were introduced. At the end of the experiment (phase 4), coping
capacity was found to have its largest correlation with risk, while task complexity had its
greatest loading during phase 3 of the experiment.

The results for all phases are shown in Figure 5 below.
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7.2.3. Portuguese Buses

With regard to Portuguese buses, negative correlations of risk with the STZ indicators
were found.

The latent variable task complexity is measured by means of the environmental
indicator of the time of the day and total duration. In addition, exposure indicators, such
as trip duration, were included in the task complexity analysis. In particular, time of the
day and duration were found to have a positive correlation with task complexity.

Moreover, it is shown that the latent coping capacity is measured by means of operator
state indicators, such as average speed, distance, harsh acceleration, and harsh braking. It
should be noted that vehicle state indicators, such as vehicle age, gearbox, fuel type, or
socio-demographic characteristics were not provided.
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The structural model between the latent variables shows some interesting findings:
First, task complexity and coping capacity are interrelated with a positive correlation
(regression coefficient = 0.96), which reduces in magnitude as the drivers progress from
phases 1 and 2 through phases 3 and 4. This positive correlation indicates that higher
task complexity is associated with higher coping capacity, implying that drivers’ coping
capacity increases as the complexity of the driving tasks increases. Overall, the structural
model between task complexity and risk shows a positive coefficient, which means that
increased task complexity relates to increased risk according to the model (regression
coefficient = 5.36). On the other hand, the structural model between coping capacity and
risk shows a negative coefficient, which means that increased coping capacity relates to
decreased risk according to the model (regression coefficient = −5.02).

The results for all phases are shown in Figure 6 below. It is observed that the mea-
surement equations of task complexity and coping capacity are consistent between the
different phases. The structural model between task complexity and inverse risk (normal
driving) is positively correlated in phases 1, 3, and 4, while a negative correlation in phase
2 was identified. At the same time, coping capacity and risk were found to have a negative
relationship in all phases of the experiment.
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In Portugal, task complexity was positively associated with the latent variable risk,
which was defined by different levels of headway. The higher the complexity, the higher
the chance to drive normally and more carefully. On the other hand, coping capacity was
negatively associated with risk (or normal driving), which implied that higher coping
capacity might encourage normal driving and reduce risk. Task complexity and coping
capacity were interrelated with a positive correlation, which reduced in magnitude as the
drivers progressed from Phase 1 through Phase 4. Similar patterns of professional drivers
(in terms of loadings and signs among phases for Belgian truck and Portuguese bus drivers)
were observed.

Table 4 summarizes the model fit of the SEM applied for different counties (Germany,
Belgium, Portugal), transport modes (cars, trucks, buses), and experimental phases.
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Table 4. Model fit summary for different counties, transport modes, and experimental phases.

Model Fit Measures Phase 1 Phase 2 Phase 3 Phase 4

Belgian (Trucks)

AIC 2730.212 6417.821 3177.783 6089.699
BIC 2730.234 6417.839 3177.802 6089.713
CFI 0.921 0.813 0.882 0.843
TLI 0.881 0.719 0.778 0.764

RMSEA 0.062 0.088 0.064 0.077
Hoelter’s critical N (α =0.05) 386 197 372 256
Hoelter’s critical N (α = 0.01) 456 232 439 302

German (Cars)

AIC 813,827.574 676,463.527 282,420.347 525,983.888

BIC 814,118.257 676,746.197 282,625.175 526,243.996

CFI 0.981 0.960 0.996 0.978

TLI 0.974 0.944 0.993 0.966

RMSEA 0.079 0.117 0.059 0.100

Hoelter’s critical N (α = 0.05) 234.136 106.728 507.651 153.470

Hoelter’s critical N (α = 0.01) 270.935 123.417 637.688 180.957

Portugal (Buses)

AIC 3.328 × 106 1.699 × 106 1.511 × 106 1.594 × 106

BIC 3.328 × 106 1.699 × 106 1.511 × 106 1.595 × 106

CFI 0.983 0.985 0.998 0.964

TLI 0.974 0.978 0.997 0.946

RMSEA 0.053 0.052 0.019 0.051

Hoelter’s critical N (α = 0.05) 533.123 556.489 4284.444 582.268

Hoelter’s critical N (α = 0.01) 629.053 656.631 5188.355 687.057

8. Discussion

With the escalation of task complexity, drivers could encounter heightened cognitive
burden and fragmented focus, which could potentially result in diminished situational
awareness and delayed reaction times. These elements have the potential to compromise
the capacity for effective decision making and elevate the chances of errors or collisions.

The findings revealed that increasing task complexity was related to an increased
crash probability due to a variety of causes. For instance, drivers may feel overwhelmed
by the demands of complex tasks, causing them to focus less on the road and other traffic
participants. This may lead to a delayed identification of crucial incidents and insufficient
reactions. Furthermore, intricate tasks could necessitate drivers to allocate additional
mental resources, potentially causing them to shift their focus away from crucial driving
tasks. For instance, interacting with in-vehicle technology or navigation systems can
increase cognitive workload and lead to decreased focus on the primary task of driving.

The results of this research align with the study of Onate-Vega et al. 2020 [32], in
which visual-manual distraction results in a higher standard deviation of speed, indicating
increased speed variability. Additionally, Wang et al. 2022 [33] agrees with the results
of this research as it is mentioned that highly complex secondary tasks overwhelm the
driver’s capacity, leading to crashes.

Conversely, an increased risk of crashes is observed in situations where a driver’s
coping capacity is insufficient to effectively manage complex tasks. This reduced coping
capacity is evident through slower reaction times, impaired judgment, and difficulties in
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prioritizing information. Such limitations can lead to errors, misjudgments, and collisions
when the demands of the driving task exceed the driver’s coping capacity.

It is important to highlight that the association between task complexity and risk, as
well as coping capacity and risk, could be influenced by the context and the nature of the
task or activity involved. In general, higher task complexity may increase the potential for
errors or crashes as it can lead to greater cognitive or physical demands on the individual
performing the task. Nonetheless, it is worth noting that heightened experience or training
have the potential to alleviate the risks linked to greater task complexity. Likewise, an
enhanced coping capacity can contribute to a decreased risk of crashes or mistakes as it
furnishes individuals with the necessary resources or strategies for effectively navigating
demanding or stressful situations. However, the efficiency of these coping strategies may
hinge on the particular circumstances and an individual’s capability to employ them in
practical, real-world scenarios. In summary, it is crucial to take into consideration the
unique factors and context when evaluating the interplay among task complexity, coping
capacity, and risk.

The models developed have the potential to be utilized more extensively by both
researchers and professionals. For instance, researchers and practitioners could incorporate
additional variables such as road type, a broader range of personality traits, and diverse
driving profiles. Moreover, there is room for improvement in the data used for these models.
Enhancements could involve incorporating additional measurements such as readings from
electrocardiograms and electroencephalograms, as well as data related to traffic conflicts
and transportation emissions. Lastly, it would be beneficial to explore supplementary
methodologies, such as imbalanced learning and models that account for unobserved
differences among individuals. These approaches could provide valuable insights into
understanding how task complexity, coping capacity, and crash risk are interconnected.

In summary, the inter-relationship between driving task complexity, coping capacity,
and crash risk is a versatile and critical area of study in traffic safety research. Driving
task complexity refers to the level of demand and cognitive strain placed on drivers
due to various factors like traffic volume, road conditions, weather, and the presence of
distractions. In contrast, coping capacity encompasses an individual driver’s capacity to
skillfully manage and adapt to these intricate driving tasks. This encompasses aspects
such as driver experience, skills, perceptual abilities, decision-making processes, and the
availability of suitable coping strategies. The interaction between driving task complexity
and coping capacity had a direct impact on crash risk. Drivers who find themselves
overwhelmed by high task complexity and possess limited coping capacity may encounter
reduced situational awareness, delayed reaction times, compromised decision-making
abilities, and an elevated likelihood of making mistakes or being involved in collisions. On
the other hand, drivers with better coping capacity can effectively handle complex driving
tasks, mitigate risks, and maintain safer driving behaviors.

Future research could also examine the usefulness of deep learning (DL) techniques
on this matter, such as Long Short-Term Memory (LSTM) [34,35]. DL models are increas-
ingly utilized due to their ability to capture complex temporal dependencies of features,
thus potentially improving the accuracy and predictive capabilities of driver behavior
classification models. Furthermore, the examination of additional data sources, as well
as the comparison of naturalistic driving and simulator experiment datasets involving
drivers from different countries or transport modes, would assist in the comprehensive
understanding and evaluation of the models utilized.

9. Conclusions

The ultimate goal of the analyses in this work was to identify the impact that the
balance between task complexity and coping capacity has on the risk of a crash. To that end,
80 drivers participated in a naturalistic driving experiment carried out in three countries
(i.e., Belgium, Germany, and Portugal) and a large dataset of 19,000 trips was collected
and analyzed. Explanatory variables of risk and the most reliable indicators, such as time
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headway, distance traveled, speed, forward collision, time of the day (lighting indicators),
or weather conditions, were assessed.

To fulfill the aforementioned objective, exploratory analyses, such as GLMs, were
developed, and the most appropriate variables associated with the latent variables “task
complexity” and “coping capacity” were estimated. Moreover, SEMs were also used to
explore how the model variables were interrelated.

The results demonstrated that as task complexity levels increased, so did coping
capacity. This suggests that drivers tend to effectively manage their ability to anticipate and
handle potential challenges when faced with demanding conditions while driving. It was
observed that task complexity and inverse risk exhibited a positive correlation in all phases
of the experiment, signifying that greater task complexity corresponded to increased risk.
Conversely, coping capacity and inverse risk displayed a negative relationship across all
phases, indicating that higher coping capacity was associated with reduced risk. Overall,
the interventions had a positive impact on risk reduction by enhancing the coping capacity
of the drivers.

The integrated treatment of task complexity, coping capacity, and risk can improve the
behavior and safety of all travelers through the unobtrusive and seamless monitoring of
behavior. Thus, authorities may use data systems at the population level to plan mobility
and safety interventions, set up road user incentives, optimize enforcement, and enhance
community building on safe traveling.

In order to develop targeted interventions and countermeasures to enhance traffic
safety and reduce crash risk on roadways, it is important to investigate and model the afore-
mentioned inter-relationship between task complexity, coping capacity, and crash risk. This
involves improving road infrastructure, establishing appropriate signs and road markings,
providing education to the drivers about the impact of task complexity on their perfor-
mance, and promoting the development of coping strategies to manage complex driving
situations. Lastly, technological advancements in vehicle automation and driver assistance
systems can play a role in mitigating crash risk by reducing the cognitive load associated
with complex tasks and providing support to drivers in challenging driving conditions.
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Appendix A

Table A1. Dataset Sample.

grpby_seconds 0 30 60 90 120 150 180 210

trip_uuid_ 223aRz8e5oTxyFA
fYVLi4S

223aRz8e5oTxyFA
fYVLi4S

223aRz8e5oTxyFA
fYVLi4S

223aRz8e5oTxyFA
fYVLi4S

223aRz8e5oTxyFA
fYVLi4S

223aRz8e5oTxyFA
fYVLi4S

223aRz8e5oTxyFA
fYVLi4S

223aRz8e5oTxyFA
fYVLi4S

trip_start_

2021-07-26
13:16:40+00:002021-
07-26
13:16:40+00:002021-
07-26
13:16:40+00:00

2021-07-26
13:16:40+00:002021-
07-26
13:16:40+00:002021-
07-26
13:16:40+00:00

2021-07-26
13:16:40+00:002021-
07-26
13:16:40+00:002021-
07-26
13:16:40+00:00

2021-07-26
13:16:40+00:002021-
07-26
13:16:40+00:002021-
07-26
13:16:40+00:00

2021-07-26
13:16:40+00:002021-
07-26
13:16:40+00:002021-
07-26
13:16:40+00:00

2021-07-26
13:16:40+00:002021-
07-26
13:16:40+00:002021-
07-26
13:16:40+00:00

2021-07-26
13:16:40+00:002021-
07-26
13:16:40+00:002021-
07-26
13:16:40+00:00

2021-07-26
13:16:40+00:002021-
07-26
13:16:40+00:002021-
07-26
13:16:40+00:00

trip_end_ 2021-07-26
13:23:51+00:00

2021-07-26
13:23:51+00:00

2021-07-26
13:23:51+00:00

2021-07-26
13:23:51+00:00

2021-07-26
13:23:51+00:00

2021-07-26
13:23:51+00:00

2021-07-26
13:23:51+00:00

2021-07-26
13:23:51+00:00

iDreams_Headway
_Map_level
_−1_meanv

−9999 1 0.866667 1 1 0.566667 0 0.666667

iDreams_Headway
_Map_level
_0_mean

−9999 0 0.1 0 0 0.1 0.133333 0.333333

iDreams_Headway
_Map_level
_1_mean

−9999 0 0.033333 0 0 0.333333 0.8 0

iDreams_Headway
_Map_level
_2_mean

−9999 0 0 0 0 0 0.066667 0

iDreams_Headway
_Map_level
_3_mean

−9999 0 0 0 0 0 0 0

iDreams_Speeding
_Map_level
_0_mean

−9999 0 0 0 0.0333 0.0333 0.0333 0.0333

iDreams_Speeding
_Map_level
_1_mean

−9999 0 0 0 0.0333 0.0333 0.0333 0.0333
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