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Host population demographics and patterns of host-to-host interactions are
important drivers of heterogeneity in infectious disease transmission. To
improve our understanding of how population structures and changes
therein influence disease transmission dynamics at the individual and popu-
lation level, we model a dynamic age- and household-structured population
using longitudinal microdata drawn from Belgian census and population
registers. At different points in time, we simulate the spread of a close-
contact infectious disease and vary the age profiles of infectiousness and sus-
ceptibility to reflect specific infections (e.g. influenza and SARS-CoV-2)
using a two-level mixing model, which distinguishes between exposure to
infection in the household and exposure in the community. We find that
the strong relationship between age and household structures, in combi-
nation with social mixing patterns and epidemiological parameters, shape
the spread of an emerging infection. Disease transmission in the adult popu-
lation in particular is to a large degree explained by differential household
compositions and not just household size. Moreover, we highlight how
demographic processes alter population structures in an ageing population
and how these in turn affect disease transmission dynamics across
population groups.
1. Background
Host population demographics and patterns of host-to-host interactions are
important drivers of heterogeneity in infectious disease transmission. To
describe the dynamics of infections transmitted via close-contact interactions,
particular attention has been given to social mixing patterns, which can be cap-
tured by demographic structures. The frequency and pattern of social mixing
with relevance for the spread of close-contact infectious diseases are highly
dependent on age. Children, teenagers and young adults have more contacts
and are disproportionately more likely to mix with people of their own age
than with adults older than 25 years. Adults also display age-assortative
mixing, but their average contact frequency is lower and their contacts are
less concentrated in their own age group than those of youngsters [1,2]. Conse-
quently, age patterns are seen in susceptibility and exposure to many
pathogens [3]. Additionally, changes in the immune system throughout the life
course can add to these age-specific differences. Children tend to bemore suscep-
tible to infections given that their immune system is still maturing, while in older
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adults, the ageing of the immune system (immunosenescence)
may increase their susceptibility to infection and to more
severe disease upon infection [4]. Likewise, the infectiousness
of infected individuals may also vary by age [5,6].

Population structures beyond age further add to the
heterogeneity in social mixing patterns and in disease trans-
mission dynamics. Due to the high frequency, long duration
and intimacy of within-household contacts, household trans-
mission constitutes a substantial risk factor in infectious disease
dynamics [7,8]. Moreover, households often contain people
from different generations (e.g. parents and children) belonging
to different subpopulations outside the household, which, for
example, can facilitate the spread of an infection from schools
to workplaces [9]. Consequently, age- and household-structured
models of infectious disease transmission with social mixing
have proven highly valuable for modelling the transmission of
close-contact infectious diseases (e.g. [10–15]).

Still, it remains challenging tomodel anage- andhousehold-
structured population, and in particular the changes therein,
in a well-founded and feasible manner. Detailed household
data are usually unavailable, which often makes it necessary
to recreate households by relying on probability matching
and/or to make simplifying assumptions, like limiting
to specific household sizes or types (e.g. nuclear families).
Less common living arrangements such as long-term care
facilities (LTCFs) or multi-generational households are often
disregarded, although they may be important for disease
transmission [16]. Moreover, only few studies incorporate
evolving age and household structures in the host population
or consider multiple populations with different compositions
(e.g. [11,17–20]). While demographic change can be reasonable
to disregard when the period under consideration is short,
it may be necessary to allow for changing population structures
when investigating disease transmission dynamics and control
strategies in different populations or over a longer time frame
(i.e. years or decades depending on the population, infection
and research question), where demographic changes become
more apparent. Moreover, a thorough understanding of the
relationship between disease transmission dynamics and host
population structures, as well as the demographic processes
underlying these structures, may be important for assessing
how future demographic changes potentially could affect
transmission dynamics.

Demographic change has in many countries led to
an increasing median age of the population (population
ageing), which has become a global phenomenon [21].
Many of the most developed countries have been ageing for
decades as a result of declining fertility rates and increasing
life expectancy, and the ageing of the large generations born
in the mid-twentieth century is currently causing a temporary
acceleration of population ageing [22].

We investigate how emerging infections are spreading
in a relatively old (i.e. high median age), and still ageing,
host population. We use longitudinal microdata drawn
from Belgian census and population registers, including
individual-level information on age, sex, household member-
ship and kinship links. The data feed into a demographic
microsimulation, which includes dynamic demographic
processes for fertility,mortality, migration and household tran-
sitions, making it possible to model the Belgian population
over time with evolving age and household structures.

We subsequently combine the demographic microsimula-
tion with a two-level mixing model, which distinguishes
between exposure to infection in the household and exposure
in the community at large. We base contact networks
within households on empirical data, rather than making
the common assumption of random mixing. We simulate
the spread of an emerging close-contact infectious disease
in 2020, 2030, 2040 and 2050, which allows sufficient time
for noticeable changes in age and household structures to
emerge. Furthermore, we vary the age profiles of infectious-
ness and susceptibility to reflect specific infections,
including influenza and SARS-CoV-2.

We aim to explore how the relationship between age
and household structures affects disease transmission
dynamics of an epidemic at the individual and the popula-
tion level. Moreover, we show how demographic processes
alter the population structures in an ageing population
and investigate how this affects the transmission dynamics
across population groups.

The paper is organized as follows: in §2, we give specific
details on the demographic microsimulation, including the
demographic data and processes considered. Similarly, we
describe the disease transmission model with two levels of
mixing along with the model parameters. Section 3 presents
the population structures and changes therein and documents
the disease incidence by age and household composition.
Furthermore, the impact of epidemiological heterogeneities
within the population is visualized in a scenario analysis.
Finally, in §4, we discuss the results as well as the strengths
and limitations of the study.
2. Methods
We model the host population and the spread of an infection
at the individual level using microsimulation, also referred to
as individual-based modelling or agent-based modelling [23].
Each individual in the population is represented explicitly and
assigned a set of relevant attributes (e.g. age, sex, marital
status, household membership, disease state). The population
evolves over time as a result of individual events and events
emerging from interactions between individuals (e.g. marriage,
death, social contact, disease transmission). All events are tied
to the individual, meaning that the life course and health trajec-
tory of each person is tracked [24]. Consequently, outbreaks at
the population level emerge from the interactions between the
individuals. Next, we describe the initial population and the pro-
cesses used to determine the occurrence of demographic events
and disease transmission events.

2.1. Demographic microsimulation
We developed a demographic microsimulation to simulate the
Belgian population from 2011 to 2051. The initial population in
themicrosimulation is based on the Belgian census from 1 January
2011, fromwhichwe drewa household-based sample correspond-
ing to about 10% of the total population. For each individual, we
have information on their date of birth, sex, coded ID of parents,
birth trajectory (parity and date of most recent birth if applicable),
household ID and household position (e.g. in union, child, single
parent). Thus, individuals can be linked to each other through
household membership and kinship.

In each time step (i.e. day), individuals can enter and leave
the population as a result of births, deaths and migration.
Moreover, the household position of an individual may change
and transitions between households or the creation of a new
household can take place. Household transitions include children
leaving the parental household, union formation or dissolution
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and older adults moving to LTCFs. The household transition and
other demographic events of one individual may thus also affect
the household position of other individuals. A single parent, for
example, changes household position to single after the last child
moves out and an individual in a union becomes single (parent)
after their partner dies.

The demographic events take place by comparing an individ-
ual’s probability of a given event with a random number
between zero and one. The event is executed if the probability
is larger than or equal to the random number. The probability
of a demographic event taking place varies by individual charac-
teristics, including age, sex and household position, and changes
over time except for the household transition rates. Finally,
ageing takes place at the end of the time step and the population
is updated accordingly.

We assume that mortality, fertility and migration levels in the
microsimulation resemble the observed and projected rates by
the Belgian Statistical Office (StatBel) and the Belgian Federal
Planning Bureau (FPB). This implies below-replacement level
fertility (i.e. a total fertility rate (TFR) below 2.1 [25]), as the TFR
in the simulation is decreasing from approximately 1.8 in 2011
to 1.5 in 2020 followed by a slow increase to about 1.62 by 2050.
Moreover, we assume continuous improvements in longevity,
especially for males for which the life expectancy at birth
is increasing from 77.7 years in 2011 to 85.4 years in 2050
[26,27]. Consequently, the population will continue ageing, with
implications for the household structures.

We keep track of all demographic events in an event log file,
which makes it possible to recreate the population and the
changes therein. The host population in the disease transmission
model thus evolves in a deterministic manner, making it possible
to solely ascribe differential outcomes in a given simulation year
to the disease transmission parameters.

The demographic data, model and source code are described
in detail in the electronic supplementary material.

2.2. Disease transmission model
Although we allow demographic events to take place on a daily
basis, substantial effects of population ageing will only emerge
after several years, as demographic change is a slow process.
We have therefore chosen to simulate disease outbreaks every
10 years. In 2020, 2030, 2040 and 2050, 10 randomly chosen indi-
viduals become infected, in an otherwise fully susceptible
population, on 1 January of each respective year. We consider
an infectious disease transmitted via close contact, which can be
represented by a susceptible–infectious–recovered (SIR) model,
and consider several scenarios for age-specific susceptibility and
infectiousness. The probability of becoming infected, and thus
moving from the susceptible to infectious state, is calculated
using a two-level mixing model, where an individual can acquire
infection as a result of interactions with an infected household
member (local contact) or an infected individual in the general
population (global contact) [28]. For each combination of par-
ameter settings in the two-level mixing model, we run 30
simulations, but in the analysis, we disregard those where an
outbreak never takes place (i.e. total attack rate of less than 0.5%).

2.2.1. Within- and between-household interactions
We use a contact matrix to estimate social interactions (i.e. a proxy
for an at-risk event at which infection can be transmitted) between
non-household members in the general population. The contact
matrix is based on social contact data collected in a survey
in Belgium in 2010–2011 [2] and made available through the
SOCRATES data tool [29] (electronic supplementary material,
figure S1). Contacts between household members were excluded,
as these are captured by the household level of themodel, but con-
tacts taking place in the household with non-household members
were included. Additionally, supplementary professional contacts
(SPC) were excluded.

Tomodel interactions amonghouseholdmembers,we construct
a household contact network for each household in the population.
Specifically, each householdmember is represented by a vertex, and
a link between two vertices indicates a contact between those two
householdmembers. The links are constructed using an exponential
random graph model developed by Krivitsky et al. [30], which was
fitted to data from two contact surveys conducted in Belgium in
2010–2011 [2,9]. The model accounts, among other things, for the
type of household and the age-sex composition. The probability of
a contact between two household members, however, is indepen-
dent of past contacts between them. In each time step (i.e. day),
we apply the fittedmodel fromKrivitsky et al. [30] to the households
in the simulated population and simulate who comes into contact
with whom within each household. The mean network density
(the number of links in a household relative to the number
of possible links [31]) by household size and type are shown in
electronic supplementary material, figure S2. Contacts between
household members are often repetitive because of the high contact
density in the households. In the general population, repetitive
contacts are less likely because of the large population size. Never-
theless, they may still be important, but data on the share of
repetitive contacts are lacking.

2.2.2. Risk of infection
Each susceptible individual i acquires infection at time t with
probability pi(t),

pi(t) ¼ 1� Q

j=i j[hi
(1� bhsizjaij(t)Ij(t)) �

Q

j�hi
(1� bpsizjcij(t)Ij(t)),

ð2:1Þ
where hi denotes the household of individual i and the
parameters βh and βp represent the probabilities of disease trans-
mission given contact between a susceptible and infectious
individual within the household and in the general population,
respectively. We vary the transmission parameters to reflect
different settings (e.g. high versus low household transmission).
The relative susceptibility and infectiousness given the ages of
individual i and j are represented by si and zj, respectively,
while Ij(t) takes the value one if individual j is infected at time
t and zero otherwise. The contact network in household hi is rep-
resented by an adjacency matrix A of which the element aij(t)
equals one if household members i and j come into contact
with each other at time t, and zero otherwise. A new adjacency
matrix is generated in each time step.

The social contact matrix from electronic supplementary
material, figure S1 contains the mean number of contacts per
day in the general population between each age group, mij,
thus we compute the probability by which individual i and j
come into contact with each other on a given day (time t is dis-
cretized in days) based on the age groups to which i and j
belong, cij(t), as follows:

cij(t) ¼
mij

Nj(t)
: ð2:2Þ

We assume disease transmission in the general population to
be frequency-dependent, meaning that the average number of
effective contacts made by each person remains unchanged as
the population grows. Thus, to keep the age-specific contacts
constant over time, the element mij is divided by Nj(t), the size
of the age group of j at time t. In each time step, the probability
of infection (1) is computed for all susceptible individuals in the
population and their disease state is updated accordingly.

We are not taking factors like seasonality, weekends and school
holidays into account, as we are focusing on the role of population
heterogeneity in the spread of an infection. The interplay between
these factors remain a topic for further research.
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2.2.3. Infectious period
We assume that the infectious period follows a gamma distri-
bution with a mean of 3.8 days and a standard deviation of 2
days, reflecting the infectious period for influenza [7,32,33]. For
each newly infected individual, a value is drawn from the
distribution and rounded to the nearest integer. An infected indi-
vidual recovers and obtains immunity when the infectious
period has passed.
2.2.4. Age-specific susceptibility and infectiousness
We consider different scenarios for age-specific susceptibility and
infectiousness. Whereas this is primarily an explorative set of scen-
arios, some of these age-specific susceptibility and infectiousness
profiles were motivated by specific infections, including influenza
and respiratory syncytial virus (RSV) (e.g. scenario S4 [34]),
SARS-CoV-2 (e.g. scenario S1 or S3 [35–37]). Other considered
elements include the general phenomenon of immunosenescence
depicting higher susceptibility at older age (e.g. scenario S2). More-
over, we use the scenarios to assess the role different population
groups play in the spread of an infection. The age-specific suscep-
tibility and infectiousness scenarios are shown in figure 1 in
relative terms, meaning that a value below one corresponds to
reduced susceptibility or infectiousness and a value larger than
one implies increased susceptibility or infectiousness for individ-
uals in the given age group. Susceptibility is age-dependent
(different from one) in scenario S1–S4, while infectiousness is age-
dependent in scenario I1–I4. We compare the different scenarios
with a baseline case where infectiousness and susceptibility are
equal across all ages.
3. Results
3.1. Population dynamics
Age and household size are closely connected as seen in
figure 2. Children and adolescents most often live with their
parent(s) and siblings, meaning that households of size three
and larger are most common at young ages, which implies a
similar pattern in the parental age groups (e.g. ages 30–55).
The average household size starts to decrease in late adoles-
cence, as children leave the parental household, and increases
again from the late twenties with the entry into parenthood.
Again, a similar pattern is seen in the parental generation
(e.g. age 50+), but with a continuous decrease in mean house-
hold size until the mid-seventies, when widowhood and
the need for LTCFs become more prevalent. Consequently,
single-person households and very large households (i.e.
LTCFs) become more frequent in the oldest age groups.

The population structures do not change dramatically
over time, as the Belgian population in 2020 already has an
old age structure and we are not assuming extreme changes
in the vital rates in the simulation period of 30 years. Never-
theless, the simulated population continues ageing between
2020 and 2050 as seen in figure 3 (left panel). The share of
the population older than 60 years increases by 22% between
2020 and 2050, while the share in the oldest age group alone
(i.e. 81+) increases by more than 75%. This is the result of past
long-term trends of declining fertility and increasing longev-
ity, which continue to a certain degree in the simulation
period. Moreover, the ageing of the large generations born
in the mid-twentieth century causes a temporary acceleration
of the population ageing. The changes in the age distribution
are also reflected in the household size distribution as seen in
figure 3 (right panel). The proportion of the population living
in a single-person household increases as the population
ages, since the proportion of people living alone is higher
in the older age groups. The proportion living in households
of size two is increasing from 2020 to 2040, which is mainly
due to the increased survival of elderly males in a union.

While an increasing share of the population lives in small
households of size one to three, the proportion of larger
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households of size four to six is decreasing. Households of
those sizes are to a large extent occupied by nuclear families
in the age range of 0–50 years (see electronic supplementary
material, figure S3–S4), which makes up a decreasing pro-
portion of the simulated population from 2020 to 2050. The
proportion of the population living in households of size
seven and larger remains quite stable during the simulation
period, but it is the result of two opposite trends. The pro-
portion of parents with a large number of children, and
therefore with a large household, is decreasing, while
people living in LTCFs (i.e. elderly population), make up an
increasing proportion of the population.

The age-specific household size distributions slightly
change over time (see electronic supplementary material,
figure S3–S4). The average household size for children and
their parents (i.e. younger than 50 years) is decreasing. This
is a consequence of single parent families becoming more
prevalent and a decreasing TFR prior to 2020, followed by a
slow, but not full, recovery (see electronic supplementary
material, figure S5). Meanwhile, the average household
size in age group 50–70 is increasing as the likelihood that
their household accommodates (adult) children increases,
due to past changes in the timing of childbearing. A change
in the household size distribution is also seen in the
elderly population as a result of improvements in longevity.
Consequently, single-person households and collective
households (i.e. LTCFs) are increasingly being replaced by
two-person households.

3.2. Disease transmission dynamics
3.2.1. Attack rate
The proportion of the population that contracts the infection
during an outbreak (the attack rate) responds to changes in
the transmission parameters (βh and βp in equation (2.1))
in a nonlinear pattern (see electronic supplementary material,
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figure S6). The relative increase in the attack rate diminishes
as the transmission probabilities increase, especially when
the transmission probability given contact within the house-
hold increases. Potential household infections are limited by
the size of the household and more than 15% of the simulated
population live in single-person households. Thus, as the
household transmission probability keeps increasing, every-
one with an infected household member will eventually
become infected as well.

The attack rates in each susceptibility and infectiousness
scenario deviate from the baseline scenario since some popu-
lation groups face an increased or decreased risk of acquiring
or transmitting the infection given the specific scenario.
However, the differences between the scenarios diminish as
the transmission probabilities increase.
3.2.2. Age- and household-specific transmission dynamics:
baseline scenario

The age-specific attack rates in the baseline scenario are shown
in figure 4 for varying probabilities of household (closed versus
open circle) and community transmission (upper versus lower
panel) and at the different time points.We see that some popu-
lation groups are more likely to get infected than others, also
when discarding age-specific differences in susceptibility
and infectiousness. The proportion of children and adolescents
getting infected is larger than that of any other age group.
The adult population also faces relatively large attack rates,
which decrease from age 50 onwards. This reflects the age pat-
tern in social contacts outside the household (see electronic
supplementary material, figure S1).

Nevertheless, social mixing in the general population alone
cannot explain the age distribution in the attack rates. The age
group 20–29, for example, has more contacts in the general
population than the age group 30–49, yet lower attack rates.
This is due to the difference in household composition of
these age groups. Individuals in their 20s are much more
likely to live in households of size one or two, and thereby
have a lower number of possible household contacts than
people of age 40–49, who often live in larger households, as
seen in figure 2.

Moreover, the household members of the two groups
tend to differ in case of a larger household. People aged
30–49 living in a household of size three or larger often
have young children living with them, while the 20- to
29-year-olds are more likely to live together with their parents
or unrelated adults in a house-sharing arrangement (see
electronic supplementary material, figure S4). The mean den-
sity of the contact network is higher in the first household
composition than in the latter because of the presence of
young children (see electronic supplementary material,
figure S2). Finally, children and teenagers are more likely to
bring an infection into the household given their high
number of contacts in the general community, including
schools, thus putting the parents at an increased risk (assuming
that susceptibility and infectiousness are independent of age).

The attack rates in the oldest age groups can also only be
explained by considering household structure. The attack rate
is higher in age group 90+ than in 80–89, despite both
age groups having identical social contact rates outside the
household. From the age of 80 onwards, small households
of size one and two are increasingly replaced by very large
households (figure 2), such as LTCFs.

Household-specific attack rates (i.e. the proportion of
household members acquiring infection) are shown in
figure 5 by household size (x-axis) and household trans-
mission probability (open versus closed circle). Moreover,
we distinguish between a risk set containing all households
(upper panel) and a risk set only containing households
with at least one infected household member during the out-
break (lower panel). Generally, the household-specific attack
rate increases by household size (figure 5 upper panel).
This result is a combination of how likely an infection is to
enter the household and how easily it spreads within that
household. The number of individuals that can bring an
infection into the household increases with the household
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size; however, the likelihood of it happening also depends on
the social contact patterns of each household member. The
infection is more likely to spread to households with at
least one child younger than 13 years than to households of
the same size without children, because children have a rela-
tively large number of contacts in the community (see
electronic supplementary material, figure S7).

After the infection has entered a household, the further
spread is affected by the household size and composition.
The within-household transmission is visualized in the
lower panel of figure 5, as the estimates are limited to house-
holds with at least one infected individual. In that case,
the differences across household sizes are substantially
smaller and the mean proportion of household members
getting infected even decreases from household size two
to three. The decrease, however, is only observed for
households without a young child. The presence of a child
in the household affects the within-household transmission
across all household sizes of less than eight, as young
children tend to have more contacts with their household
members (i.e. parents, siblings) than teenagers and young
adults do with theirs (see electronic supplementary material,
figure S8).

3.2.3. Effect of demographic change on transmission dynamics:
baseline scenario

The proportion of the population acquiring the infection during
an outbreak is decreasing from 2020 to 2040 in all scenarios but
the trend stabilizes or reverses between 2040 and 2050 (see elec-
tronic supplementary material, figure S6). This is the result
of changing household structures and population ageing. The
elderly population, which over time makes up an increasing
proportion of the population, has relatively few contacts
on average since the majority lives in small households and
has few contacts in the general population. Consequently,
the elderly population has a lower risk of acquiring and
transmitting an infection than younger age groups.
Additionally, the changing household compositions in the
population younger than 50 years of age resulting from low
fertility levels and an increasing proportion of single parent
families, decreases their risk of infection over time, with
implications for the overall incidence. Meanwhile, the pro-
portion infected of age group 50–70 remains more or less
stable, despite an increasing proportion living in households
larger than size two. Finally, improved longevity implies that
the elderly population (especially females) becomes more
likely to live with their partner than alone or in LTCFs,
which affects the incidence in the oldest age group (90+).

The relationship between risk of infection and household
size persists as the population is ageing, but the proportion of
infected household members is decreasing over time across
all household sizes (figure 5 upper panel). Meanwhile, the
within-household transmission remains stable over time
(figure 5 lower panel).

3.2.4. Effect of age-specific infectiousness and susceptibility
We further investigate the role different age groups play in the
spread of an infectious disease. In figure 6, we compare the
age-specific attack rates in 2020 across the susceptibility and
infectiousness scenarios with those of the baseline scenario (i.e.
corresponding to figure 4). This is visualized for varying popu-
lation transmission probabilities (upper versus lower panel).

Differences from the baseline attack rate are not only seen in
the age groups with modified susceptibility or infectiousness,
but also in the rest of the population to varying degrees.
The susceptibility and infectiousness of children affect all
population groups, and the parental generation in particular
(e.g. age group 30–39), to a markedly larger degree than
changes in the susceptibility and infectiousness of the elderly
population. In scenario S1 (I1), children have a relatively
low susceptibility (infectiousness) which affects all other age
groups substantially, while the relatively high susceptibility
(infectiousness) from age 65 onwards in scenario S2 (I2) has a
much smaller effect on the incidence in other age groups.
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This is also seen by comparing scenarios S1 and S3 (I1
and I3), where the attack rates below the age of 60 do not
differ substantially, despite the increased susceptibility (infec-
tiousness) of the elderly population in the latter scenario.
Even the elderly population itself is only somewhat affected
by changes in their infectiousness. However, it applies to
children as well as the elderly, that a change in their infec-
tiousness only has a slightly larger impact on the incidence
in the rest of the population compared with the same
change in susceptibility.

As the population transmission probability (upper versus
lower panel in figure 6) increases, the absolute difference
between each scenario and the baseline attack rate diminishes,
except for the age group 70 and older when subject to
increased susceptibility, as in scenarios S2, S3 and S4. This is
particularly pronounced in scenario S3, where children have
relatively low susceptibility while the old age groups have
high susceptibility. As the transmission probabilities increase,
the attack rates in age groups 70–79 and 80+ in S3 shift
from being below to being above those of the baseline
scenario. The attack rates change slightly over time in all
scenarios, but the position of each scenario relative to
the other scenarios and the baseline remains unchanged
(electronic supplementary material, figures S9 and S10).
4. Discussion
An understanding of demographic structures in the host
population and how these influence disease transmission
can be important for determining which population
subgroups are most at risk and most effective to target in an
intervention [38]. Moreover, an understanding of the demo-
graphic processes underlying the population structures may
be important for assessing how future demographic changes
potentially could affect transmission dynamics.

Using longitudinal microdata drawn from Belgian census
and population registers, we model a host population with
evolving age and household structures using microsimula-
tion and illustrate how population ageing and changing
household dynamics may further unfold in the next decades.
We combine the demographic microsimulation with an epi-
demic model with two levels of mixing and illustrate a
strong link between age and household structures and the
implications thereof for the risk of infection for different
population subgroups during an epidemic. Additionally, we
quantify the potential impact of changing age and household
structures on disease transmission.

The age structures in the social contact patterns are mir-
rored in the age-specific attack rates as the youngest age
groups, with the most community contacts, have the highest
risk of infection. The attack rates in the adult population, how-
ever, are to a larger degree explained by the differences in
household compositions between young adults, middle-
aged adults and older adults, which are related to the timing
of demographic events. Young adults in their 20 s face a rela-
tively low risk of infection on average, but it increases with the
entry into parenthood, when assuming that susceptibility and
infectiousness are independent of age. The child will even-
tually have a relatively high number of contacts outside the
household (e.g. in day-care, school) as well as frequent contact
with the parent(s) within the household, making the risk of
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infection high compared with other population groups. These
relationships change to some degree in the different scenarios
for age-specific infectiousness and susceptibility.

The incidence in families with children and/or adolescents
decreased during the simulation period as a consequence of
changing household compositions. In the decade prior to the
first outbreak simulations, 2010–2019, the TFR decreased fol-
lowed by a slow, but not full, recovery during the remaining
simulation period, similarly to observed and projected rates
by StatBel and FPB [27]. Changing fertility levels combined
with an increase in single parent families affected the house-
hold compositions and indirectly disease transmission. This
also affects disease transmission in other population groups
since families with (school-age) children are important drivers
in an epidemic.

As the children grow up and, in most cases, eventually
leave the parental household, the number of household
contacts of the now middle-aged parental generation is
decreasing again, often in combination with decreasing com-
munity contacts, leading to lower attack rates. However, we
found that the proportion of middle-aged people with
(adult) children living in their household is increasing during
the simulation. This change is related to the postponement
of parenthood since the probability of leaving the parental
household is assumed to be constant over time. Parents are
increasingly older when the last child leaves the parental
household because the average age at childbirth was increas-
ing prior to 2011 when our simulation begins [39]. Several
years later, these past fertility trends affect the household com-
position of the middle-aged population and indirectly their
risk of infection. The increasing household size was expected
to increase the risk of infection in the middle-aged population,
but the effect is more or less counterbalanced by the decrease
in the overall incidence induced by the changing household
compositions in the younger age groups.

It should be noted that the relative distribution of births
by the age of the mother is only slightly changing in the
first decades of the simulation and eventually stabilizes.
However, the average age at childbirth in Belgium has
increased since 2011 and this is expected to continue in the
future, to some degree [27]. Hence, the average age at child-
birth, and indirectly the age at which children leave the
parental household, is likely to increase more than in our
microsimulation.

The risk of infection in the elderly population was also
found to be highly dependent on their living arrangement.
Community contacts are decreasing with age and a large pro-
portion of old people live alone or only with their partner,
which minimizes the number of occasions where transmission
of a close-contact infection can take place. However, from the
age of 80 onwards, the proportion of the population living in
LTCFs, which tend to be very large households, increases con-
siderably and so does the risk of infection. Consequently, the
age pattern in the attack rates in the elderly population is
shaped by the proportion living in collective households.

During the simulation period, collective households and
single-person households in the population older than 80
years of age are increasingly being replaced by two-person
households, as a result of improved longevity, particularly of
males. We assume that the sex differential in mortality
decreases during the simulation period as a result of larger
improvements in men’s mortality than in that of women.
This implies that an increasing proportion of elderly women
are living with a partner instead of alone, which intuitively
should increase their risk of infection. However, the prob-
ability of moving to LTCFs, which are very large households
associated with a high risk of infection, is substantially
higher for elderly people living alone than for those living
with a partner. Consequently, gradually fewer elderly people
move to LTCFs and therefore incur a substantially lower risk
of infection.

The future living arrangements and mortality of the
elderly population are, like all other demographic processes,
associated with uncertainty [40]. However, the sex differential
in mortality has been decreasing and this is considered likely
to continue, to some extent, in the future. The resulting
changes in the household structures of the elderly population
seen in our microsimulation are in agreement with existing
studies of past and future trends in the living arrangements
and mortality of older adults [41,42].

In addition to social contact patterns, age and household
structures, we also explored how epidemiological hetero-
geneities within the population may influence the spread of
an infection. We incorporated different scenarios for suscepti-
bility to infection when exposed and infectiousness when
infected according to age. As anticipated given the social
contact patterns and household structures, the susceptibility
and infectiousness of children and adolescents were
highly influential for the disease transmission in the whole
population and in the parental generation in particular.
Changes to these epidemiological parameters in the elderly
population clearly affected that age group, but exerted
much less influence on other age groups.

The elderly population, however, is affected differently
by changes in the transmission parameters than the rest of
the population, when subject to elevated susceptibility. As
the probability of transmission given an effective contact
increases, the underestimation of the attack rate in the elderly
population when omitting age-dependent susceptibility
(baseline scenario) increases, while it decreases in the rest of
the population, and in all other scenarios. Generally, many
older adults escape infection due to their limited number of
contacts within and outside the household. However, as the
transmission probabilities increase, a proportionately larger
share of households with elderly people are reached by the
infection and more individuals within the households
become infected if their susceptibility is elevated. Thus, the
impact of epidemiological heterogeneities (e.g. age-specific
susceptibility) is not only dependent on the transmission par-
ameters but also on other heterogeneities in the population,
including social contact patterns and household structures.

Overall, we find that the strong relationship between age
and household structures at the individual and population
level, in combinationwith socialmixing patterns and epidemio-
logical parameters, shape the spread of an emerging infection.
Disease transmission in the adult population in particular is
influenced by differential household compositions. Moreover,
we highlight how demographic processes alter population
structures with differential impact on the disease transmission
dynamics across population groups. Nevertheless, our study
faces several limitations with regard to demographic modelling
as well as infectious disease modelling.

We recognize that the demographic processes in the
microsimulation are simplifications of highly complex pro-
cesses and that the inherent uncertainty in population
projections preferably is described in the form of probability
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distributions [43,44]. Moreover, the sensitivity in the associ-
ation between demographic and epidemiological outcomes
could have been explored. However, expanding our demo-
graphic microsimulation is not considered necessary to
fulfil the aim of this paper, which is to document the
impact of population structures and the changes therein on
the spread of an emerging infection. For future research, how-
ever, it would be relevant to compare the microsimulation
and two-level mixing model with other epidemic models
with household-structured host population (e.g. [45]).

In our model of infectious disease transmission, we
assume a fully susceptible population, restricting our study
to emerging infections. Expanding the study to endemic
infectious diseases requires not only information on age-
specific patterns of prior immunity but also information on
how immunity is distributed in households. Alternatively, a
population at an endemic disease equilibrium can be gener-
ated, for example by simulating disease transmission over a
long period of time before the actual analysis [11,13]. How-
ever, this would require a rather complex technique and/or
detailed (historical) demographic data. Moreover, if the
fertility and mortality schedules remain constant while
generating an endemic disease equilibrium, the population
eventually acquires the age distribution of the stable popu-
lation associated with those underlying schedules of vital
rates, which may not resemble the population of interest [25].

Another limitation in our model of disease transmission
concerns the social contact patterns. If SPCs had been included
in the social contact matrix, the incidence in the population of
working age would have been slightly higher, however, the
relationships found between population groups would
remain. Additionally, we assume that the contact patterns in
the community and within the households remain constant
over time despite the demographic changes. Methods for
adjusting social contact matrices to evolving demographic
structures have been proposed, but these are not based on
empirical evidence for how contact patterns behave over
longer time frames as population structures evolve [46,47]. A
comparison of two social contact surveys in Belgium five
years apart suggests that the contact rates can be assumed
stable, but the demographic change in this period is of course
limited [2].
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