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BACKGROUND: A recently developed urinary peptidomics biological aging clock can be used to study accelerated human aging. From 1990 to 2019,
exposure to airborne particulate matter (PM) became the leading environmental risk factor worldwide.

OBJECTIVES: This study investigated whether air pollution exposure is associated with accelerated urinary peptidomic aging, independent of calendar
age, and whether this association is modified by other risk factors.

METHODS: In a Flemish population, the urinary peptidomic profile (UPP) age (UPP-age) was derived from the urinary peptidomic profile measured
by capillary electrophoresis coupled with mass spectrometry. UPP-age-R was calculated as the residual of the regression of UPP-age on chronological
age, which reflects accelerated aging predicted by UPP-age, independent of chronological age. A high-resolution spatial-temporal interpolation
method was used to assess each individual’s exposure to PM10, PM2:5, black carbon (BC), and nitrogen dioxide (NO2). Associations of UPP-age-R
with these pollutants were investigated by mixed models, accounting for clustering by residential address and confounders. Effect modifiers of the
associations between UPP-age-R and air pollutants that included 18 factors reflecting vascular function, renal function, insulin resistance, lipid metab-
olism, or inflammation were evaluated. Direct and indirect (via UPP-age-R) effects of air pollution on mortality were evaluated by multivariable-
adjusted Cox models.
RESULTS: Among 660 participants (50.2% women; mean age: 50.7 y), higher exposure to PM10, PM2:5, BC, and NO2 was associated with a
higher UPP-age-R. Studying effect modifiers showed that higher plasma levels of desphospho-uncarboxylated matrix Gla protein (dpucMGP),
signifying poorer vitamin K status, steepened the slopes of UPP-age-R on the air pollutants. In further analyses among participants with
dpucMGP ≥4:26 lg=L (median), an interquartile range (IQR) higher level in PM10, PM2:5, BC, and NO2 was associated with a higher UPP-age-
R of 2.03 [95% confidence interval (CI): 0.60, 3.46], 2.22 (95% CI: 0.71, 3.74), 2.00 (95% CI: 0.56, 3.43), and 2.09 (95% CI: 0.77, 3.41) y,
respectively. UPP-age-R was an indirect mediator of the associations of mortality with the air pollutants [multivariable-adjusted hazard ratios
from 1.094 (95% CI: 1.000, 1.196) to 1.110 (95% CI: 1.007, 1.224)] in participants with a high dpucMGP, whereas no direct associations were
observed.

DISCUSSION: Ambient air pollution was associated with accelerated urinary peptidomics aging, and high vitamin K status showed a potential protec-
tive effect in this population. Current guidelines are insufficient to decrease the adverse health effects of airborne pollutants, including healthy aging
trajectories. https://doi.org/10.1289/EHP13414

Introduction
Over the past 20 y, global life expectancy at birth increased from
67.2 to 73.5 y.1 In line with this remarkable increase in longevity,
global exposure to harmful environmental pollutants declined.2
However, from 1990 to 2019, particulate matter (PM) shifted from
the fifth rank to the most perilous environmental risk factor and

is associated with a 67.7% increase in the number of disability-
adjusted life-years (DALYs).

PM with an aerodynamic diameter ≤10 lm (PM10) is fractio-
nated into PM with an aerodynamic diameter ≤2:5 lm (PM2:5),
referred to as fine particulate; within this fraction, ultrafine par-
ticles (<0:1 lm) reach the smallest airways and alveoli and have
been shown to cross the blood–air barrier.3 Black carbon (BC), a
constituent of PM, is generated through the incomplete combus-
tion of fossil fuels and biomass, resulting in a sooty residue which,
after inhalation, has been detected in urine, reproductive organs,4
placenta, and fetal organs.5 In addition to particulates, the air pol-
lution mixture contains gaseous pollutants such as nitrogen diox-
ide (NO2).

Aging is a heterogenic phenotype with varying inputs from
genetic, cellular, and biochemical processes.6 Hallmarks of the
insults caused by environmental pollutants greatly overlap with
the molecular features of aging, indicating a tight connection
between exposure, aging, and disease outcomes.7 Air pollutants
have been associated with chronic inflammation and increased
oxidative stress, and these are key mechanisms shared by acceler-
ated aging.8 The latter is evidenced by associations observed
between air pollution exposure and markers of accelerated bio-
logical aging, including shorter telomere lengths,9 mitochondrial
dysfunction,10 higher epigenetic age.11

*Joint senior authors who contributed equally.
Address correspondence to Jan A. Staessen, Alliance for the Promotion of

Preventive Medicine, Leopoldstraat 59, BE 2800 Mechelen, Belgium.
Telephone: +32-15-41-1747, +32-47-632-4928 (cell). Facsimile: +32-15-41-
4542. Twitter: jasta49. Email: jan.staessen@appremed.org
Supplemental Material is available online (https://doi.org/10.1289/EHP13414).
H.M. is the cofounder and co-owner of Mosaiques Diagnostics (Hannover,

Germany). A.L. is an employee of Mosaiques-Diagnostics. All other authors
declare no competing interests.
Received 31 May 2023; Revised 28 September 2023; Accepted 15

November 2023; Published 11 December 2023.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehpsubmissions@niehs.nih.gov. Our
staff will work with you to assess and meet your accessibility needs within 3
working days.

Environmental Health Perspectives 127011-1 131(12) December 2023

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP13414.Research

https://doi.org/10.1289/EHP13414
mailto:jan.staessen@appremed.org
https://doi.org/10.1289/EHP13414
http://ehp.niehs.nih.gov/accessibility/
mailto:ehpsubmissions@niehs.nih.gov
https://doi.org/10.1289/EHP13414


Urine contains more than 20,000 endogenous peptides, which
are partly generated along the nephron or which pass into the tu-
bular fluid through the glomerular barrier.12 Sequencing these
urinary peptides identifies the parental proteins. Thus, the urinary
peptidomic profile (UPP) provides a body-wide molecular signa-
ture of ongoing pathophysiological processes.12 Recently, a UPP
aging clock (UPP-age) that includes 54 age-related urinary pep-
tides was developed.13 Accelerated urinary peptidomic aging
(reflected by a higher UPP-age-R, which is the UPP-age residual-
ized on chronological age) was observed in patients with diabe-
tes, COVID-19, or chronic kidney disease and predicted all-
cause and cardiovascular mortality in the general population.13

To our knowledge no previous study has addressed how environ-
mental insults, and ambient air pollution in particular, affect the
UPP landscape and, therefore, how UPP might be applied in
monitoring the health effects of environmental contaminants. To
address this knowledge gap, data from a population cohort with
long-term follow-up were analyzed.13 The research focused on
the relation of the multidimensional UPP biomarker of acceler-
ated aging (UPP-age-R)13 with long-term exposure to PM10,
PM2:5, BC, and NO2. Risk factors may enhance susceptibility to
air pollution-induced molecular effects, and therefore potential
effect modifiers (including risk biomarkers for vascular function,
renal function, insulin resistance, lipid metabolism and inflamma-
tion) of the association between accelerated UPP aging and air
pollution were tested. Finally, the mediating role of accelerated
UPP aging in the link between air pollution exposure and mortal-
ity in vulnerable subgroups of the population was evaluated.

Methods

Study Design and Population
This study used data from the prospective population Flemish Study
on Environment, Genes, and Health Outcomes (FLEMENGHO),
which complies with the Helsinki declaration and is registered at the
Belgian Data Protection Authority (III 11/1234/13; 22 August
2013). General study procedures have been outlined in detail
previously.13,14 The ethics committee of the University Hospitals
Leuven, Belgium, approved the secondary use of FLEMENGHO
data (B32220083510).13 From 20 August 1985, to 14 December
1990 (Figure S1), a random sample of the households living in a geo-
graphically defined area of northern Belgium (Figure S2) was investi-
gatedwith the goal to recruit an equal number of participants in each of
six subgroups stratified by sex and age (20–39 y, 40–59 y, and ≥60 y
of age). All household members 20 y of age or older were invited to
take part, provided that the quota of their sex-age group had not yet
been satisfied. From 3 April 1996 to 12 May 2004, recruitment
of families continued, including young people 10–19 y of age.
Participants younger than 18 y provided informed assent, and their
parents or custodians gave informed consent (Figure S1). Of 4,286
people invited to participate in FLEMENGHO, 3,343 consented
(participation rate: 78.0%). From 30May 2005 until 31 May 2010,
participants were invited to a follow-up examination, if their last
known address was within 15 km of the local examination center
(Eksel, Belgium) and if they had not withdrawn consent in any of
the previous examination cycles (1985–2004).

The current study includes 828 FLEMENGHO participants who
renewed consent for the 2005–2010 reexamination. Of these, 168
were excluded from analysis, because UPP had not been performed
(n=24), because they had outlying [three standard deviations
(SDs) greater than the mean of all consenting participants] values of
body mass index (BMI), plasma glucose, or serum creatinine
(n=17), or because modeled air pollution data were unavailable
(n=127). Thus, the study sample statistically analyzed 660 partici-
pants (Figure S3).

Clinical and Biochemical Measurements
All clinical, biochemical measurements and urine sample collec-
tions were performed once during the 2005–2010 follow-up visit
(Figure S1). The date of urine collection during this study phase
served as the baseline for mortality follow-up. Blood pressure was
the average of five consecutive auscultatory readings obtained after
participants had rested for 5 min in a seated position. Study nurses
administered a standardized questionnaire about each participant’s
medical history, smoking (yes/no), and intake of antihypertensive
drugs (yes/no). Antihypertensive drugs included diuretics (thia-
zides, loop diuretics, and aldosterone antagonists), beta-blockers,
inhibitors of the renin–angiotensin system (angiotensin converting
enzyme inhibitors and angiotensin receptor blockers), vasodilators
(calcium-channel blockers and alpha-blockers), and other blood
pressure–lowering agents. Waist circumference was measured to
the nearest centimeter. Body fat percentage was measured using
bioelectrical impedance (Bodystat QuadScan 4000, Bodystat).

Venous blood samples were obtained during the 2005–2010
clinical examination, after 8 h of fasting. After centrifugation and
aliquoting, blood-derived specimens were stored at −80�C. On av-
erage, 1 wk after visiting the local examination center, participants
collected at home an exactly timed 24-h urine sample in a 2,500-mL
wide-neck plastic container (Sarstedt article number 77.576).
Sodium azide (3 g) was added as preservative. Participants were
asked to store bottles in a cool place (i.e., in a cellar, outside). After
sample collection, the urine was mixed and divided in 5× 10-mL
aliquots. Aliquots were stored at –40�C upon analysis. A single cer-
tified laboratory assessed the routine biochemistry, using quality-
controlled automated methods. The estimated glomerular filtration
rate (eGFR)was computed from serum creatinine, measured by a
modification of Jaffe’s methods with isotope-dilution calibra-
tion.15 According to the Chronic Kidney Disease Epidemiology
Collaboration equation,16 eGFR=141×minimum (Scrt=j, 1)
a × maximum (Scrt=j, 1)−1:209 × 0.993 age × 1.018 (if female),
where Scrt is the serum creatinine concentration in lmol=L, j is
61.9 for women and 79.6 for men, and a is −0:329 for women
and −0:411 for men; minimum indicates the minimum of Scrt=j or
1 and maximum indicates the maximum of Scrt=j or 1. Homeostatic
Model Assessment for Insulin Resistance (HOMA-IR)17 was calcu-
lated from fasting glucose and insulin. Circulating biomarkers reflect-
ing vascular function [vascular endothelial growth factor (VEGF)
and Plasminogen activator inhibitor-1 (PAI1)], lipid metabolism
(leptin and resistin), inflammation [C-reactive protein, tumor necro-
sis factor-a (TNFa), and tumor necrosis factor receptor 1 (TNFR1)],
and renal injury [neutrophil gelatinase-associated lipocalin (NGAL)]
were measured within 1 h of defrosting on a single serum aliquot,
using Bio-Chip Array Technology by Randox Laboratories Ltd.
Desphospho-uncarboxylated matrix Gla protein (dpucMGP), a
biomarker reflecting vitamin K status, was measured on citrated
plasma by enzyme-linked immunosorbent assay (ELISA).18

Higher dpucMGP values indicate poor vitamin K status.18

Demographic Measurements
Socioeconomic status was coded according to the comprehensive
scale published by the UK Office of Population Censuses and
Surveys.19 The 20 categories of the UK scale19 were inverted and
recoded to grades ranging from 1 to 3, which reflected the hierar-
chy from the least to the most affluent layers of the population.20

Based on the home address, the study participants were assigned to
148 statistical sectors with an average surface of 1:55 km2; these
sectors are the smallest units for which the National Institute of
Statistics (www.statbel.fgov.be/en) compiles information on aver-
age on 643 items. The data resource was interrogated to obtain the
median annual household income data by sector (2012).
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Incidence of Mortality
At annual intervals, the vital status of FLEMENGHO partici-
pants was ascertained by record linkage with the National
Population Registry in Brussels, Belgium. The International
Classification of Diseases, 10th edition (ICD-10) codes for
cause of death were obtained from the Flemish Registry of
Death Certificates. All-cause (ICD-10: A00–Y89) and cardio-
vascular mortality (ICD-10: I00–I99) were the co-primary end
points. The cause of death was validated against the records
held by general practitioners, or the digital records maintained by
four regional hospitals and the University Hospitals Leuven, all
serving the catchment area. The date of urine collection in 2005–
2010 served as the baseline, and surviving participants were cen-
sored on 30 June 2019.

Urinary Peptidomics Profiling and Definition of UPP-age-R
Sample preparation and CE-MS analysis. Sample preparation
and capillary electrophoresis–mass spectrometry (CE-MS) analy-
sis were performed essentially as described.21 Stored 10-mL
urine aliquots were thawed and 700 lL urine was mixed with
700 lL of 2 M urea and 10mM NH4OH containing 0.02% so-
dium dodecyl sulfate (SDS). Subsequently, samples were
ultrafiltered using a Centristat 20 kDa cutoff centrifugal filter
device (Satorius) to eliminate high molecular weight proteins.
The obtained filtrate was desalted against 2mM NH4OH using
a PD 10 gel filtration column (GE Healthcare Bio-Sciences
Corp.) to remove urea, electrolytes and salts as well as to
enrich polypeptides. The samples were lyophilized and stored
at 4°C before usage. Shortly before CE-MS analysis, the sam-
ples were resuspended in 10 lL high-performance liquid chro-
matography (HPLC)-grade H2O.

A P/ACE MDQ capillary electrophoresis system (Beckman
Coulter) was coupled with a MicrOTOF compact MS (Bruker
Daltronics, Inc.) using an Agilent Technologies ESI Sprayer. A so-
lution of 20% acetonitrile (Sigma-Aldrich) in HPLC-grade water
(Roth) supplemented with 0.94% formic acid (Sigma-Aldrich) was
used as running buffer. Capillaries (Polymicro) were uncoated
fused silica, 50 lM inner diameter (360 lM outer diameter), with
90-cm length, and rinsed with running buffer (20% methanol,
0.94% formic acid) for 3 min prior to sample injection. Samples
were injected into CE-MS with 2 psi for 99 s, resulting in injection
volumes of ∼ 280 nL. Separation was performed by applying
25 kV on the injection side (resulting in a current of ∼ 13 lA), and
the capillary temperature was set to 35°C for the entire length of
the capillary up to the ESI interface. After each analysis, the CE
capillary was rinsed for 5 min with 0:1 M NaOH, followed by a
5-min wash with water and subsequently with running buffer. For
CE-MS analysis, the electrospray ionization voltage was between
4.0 to 4:5 kV. Spectra were recorded over an m/z range of 350–
3,000 and accumulated every 3 s.

CE-MS data processing.After the CE-MS analysis, mass spec-
tral ion peaks representing identical molecules at different charge
states were deconvoluted into single masses using MosaFinder soft-
ware.22 Only signals with z>1 observed in a minimum of three
consecutive spectra with a signal-to-noise ratio of at least 4 were
considered. The resulting peak list characterizes each polypeptide
by its mass and migration time. Data were calibrated using
3,151 internal standards as reference data points for mass and
migration time by applying global and local linear regression,
respectively. Reference signals of 29 abundant peptides were
used as internal standards for calibration of signal intensity
using local linear regression.23 These 29 endogenous “house-
keeping” peptides were selected based on their high abundance
and lack of association with disease. This procedure is highly

reproducible and addresses both analytical and dilution varian-
ces in a single calibration step. The latter approach outperforms
standardization based on the urinary creatinine concentration,
which only accounts for sample dilution as previously described in
detail.23 To ensure comparable performance, a standard urine sam-
ple is analyzed every second day as quality control. The perform-
ance of the analytical platform was assessed and described in
detail previously.21 In short, among 60 independent analytic runs
of a single urine sample, the coefficient of variation was 1%.24 The
obtained peak list characterizes each polypeptide by its calibrated
molecular mass (Da), calibrated CE migration time (min), and nor-
malized signal intensity. All detected peptides were deposited,
matched, and annotated in a Microsoft SQL database, allowing
further statistical analysis.

Sequencing of peptides. Peptides were sequenced using CE-
MS/MS or liquid chromatography–tandem mass spectrometry (LC-
MS/MS) analysis, as described in detail.12 MS/MS experiments
used an Ultimate 3000 nano-flow system (Dionex/LC Packings)
or a P/ACE MDQ capillary electrophoresis system (Beckman
Coulter), both connected to a Q Exactive Plus Hybrid Quadrupole-
Orbitrap Mass Spectrometer (ThermoFisher Scientific). The mass
spectrometer is operated in data-dependent mode to automatically
switch between MS and MS/MS acquisition. Survey full-scan MS
spectra (from m/z 300–2000) were acquired in the Orbitrap. Ions
were sequentially isolated for fragmentation. Data files were
searched against the UniProt human nonredundant database using
Proteome Discoverer 2.4 and the SEQUEST search engine.
Relevant settings were no fixed modifications, and oxidation of me-
thionine and proline as variable modifications. The minimum pre-
cursor mass was set to 790 Da and the maximum precursor mass
set to 6,000 Da with a minimum peak count of 10. The high-
confidence peptides were defined by cross-correlation (Xcorr) >1:9
and rank= 1. The false discovery rate (FDR) was set to 1%, and the
precursor mass tolerance and fragment mass tolerance were 5 ppm
and 0.05 Da, respectively. For further validation of obtained peptide
sequences, the correlation between peptide charge at the working
pH of 2 and CE-migration time was used to minimize false-positive
derivation rates.25 Calculated CE-migration time of the sequence
candidate based on its peptide sequence (number of basic amino
acids) was compared to the experimental migration time.

Calculation of UPP-age-R. Urinary peptidomics profiling as
described above was used to develop a urinary peptidomics clock
of aging as described in detail previously.13 In brief, in a first
step, UPP-age was calculated as the linear combination of 54
age-associated urinary peptides derived from 17 proteins, using
elastic net regression coefficients and intercept of the trained
model relating UPP-age with chronological age as defined previ-
ously (details of the used coefficients for calculating UPP-age are
provided in Table S1).13 As an index of accelerated aging inde-
pendent of chronological age, UPP-age-R was calculated as the
residual of the regression of UPP-age on chronological age
(Figure S4).

Residential Ambient Air Pollution
The exposure of individual FLEMENGHO participants to PM10,
PM2:5, BC, and NO2 (in lg=m3) was modeled from each partici-
pant’s residential address at the time of the air quality measurements
(2010–2014). Air pollution levels were estimated using a high-
resolution spatial-temporal interpolation method (kriging)26 that
takes into account land-cover data obtained from satellite images
[CORINE database (https://www.eea.europa.eu/publications/COR0-
landcover)] and pollution data of fixed monitoring stations in com-
bination with a dispersion model.27,28 This approach provides daily
exposure values calculated on a dense irregular receptor grid and
interpolated to a 10-m×10-m raster, using input from the Belgian
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telemetric air quality networks and emissions from point- (e.g., indus-
tries) and line sources (e.g., highways). The air quality network
includes 65 monitoring stations for PM10, 34 for PM2:5, 14 for BC,
and 44 for NO2. Models covered daily estimated air pollution data
averaged over a 5-y period (2010–2014), which reflects the long-
term spatial air pollution and is representative of earlier periods.29–33
Model performance was evaluated by leave-one-out cross-validation
across monitoring stations. The spatiotemporal explained variance
was 70% for PM10, 80% for PM2:5, 74% for BC, and 78% for NO2.

Statistical Analyses
Database management and statistical analysis were done using
SAS (version 9.4; SAS Institute Inc.; maintenance level 5). The
Kolmogorov-Smirnov test was applied to test deviation from the
normal distribution. The distributions of biomarkers were rank nor-
malized by sorting measurements from the smallest to the highest
value and then applying the inverse cumulative normal function.34
However, to keep consistency with previous FLEMENGHO publi-
cations, the distribution of c-glutamyltransferase was logarithmi-
cally transformed. The central tendency and spread of continuously
distributed variables were presented as mean±SD, geometric
mean [interquartile range (IQR)] for c-glutamyltransferase, or me-
dian (IQR), as appropriate. p-Values for the trends across thirds of
PM10 distribution were evaluated by linear regression or Cochrane-
Armitage trend test where appropriate. Pearson correlation coeffi-
cients or Spearman rank correlations were applied to express asso-
ciations between variables. Statistical significance was a two-sided
p-value of 0.05 or less.

The association of UPP-age-R with air pollutants was assessed
using a generalized linear mixed model, accounting for the cluster-
ing between individuals sharing the same residential address as a
random effect. In addition, the model accounted for sex, age, BMI,
mean arterial pressure, plasma glucose, c-glutamyltransferase
(marker of excessive alcohol intake35) current smoking, the total-
to-high-density lipoprotein serum cholesterol ratio, eGFR, and
socioeconomic status as fixed effects. For reasons of consistency
with previous analyses in the FLEMENGHO population,13,36
covariables were selected a priori showing a potential link with air
pollution exposure and UPP-age-R. The multivariable-adjusted
associations between UPP-age-R and air pollutants were expressed
as a difference in UPP-age-R (in years) for an IQR higher level in
the air pollutant. Q-Q plots of the residuals were used to evaluate
the assumptions of linear models.

Effect modification of how risk markers might affect the
multivariable-adjusted relation of UPP-age-R with air pollutants
was formally tested by introducing a statistical interaction term,
UPP-age-R × risk marker in the mixed models. A two-pronged
approach was followed. The interaction was first tested for each
individual risk marker. Next, principal component analysis was
applied to generate summary variables that grouped risk markers
for vascular function [systolic and diastolic blood pressure,
VEGF, PAI1, and vitamin K status (dpucMGP)], renal function
(eGFR and NGAL), insulin resistance (plasma glucose, serum in-
sulin, and HOMA-IR), lipid metabolism (BMI, waist circumfer-
ence, percentage body fat, leptin and resistin), and inflammation
(high-sensitive C-reactive protein, TNFa, and TNFR1). Because
dpucMGP showed a strong interaction with air pollution exposure,
the UPP-age-R, air pollution association was further evaluated in
analyses stratified by themedian of dpucMGP. Sensitivity analyses
addressed the consistency of the associations between UPP-age-R
and air pollution by dpucMGP stratification. First, sex stratification
was performed, because biological aging differs between men and
women, as evidenced by biological changes women experience
when they transition to postmenopausal status and by the longer
life expectancy of women in comparison with men. Second, we

evaluated whether intake of vitamin K antagonists influenced our
results by excluding participants who used vitamin K antagonists
(coumarins). Third, we evaluated whether effect modification was
not driven by diabetic patients, who are more vulnerable to air pol-
lution, or by smoking status. Smokers inhale additional toxic par-
ticles. Finally, because vitamin K levels and air pollutionmay have
a large socioeconomic related component, we adjusted for the me-
dian annual income per cluster as an additional socioeconomic
variable. Because air pollution exposure is related to a higher UPP-
age-R and we previously showed that a higher UPP-age-R is a pre-
dictor of total and cardiovascular mortality independent of chrono-
logical age,13 we therefore explored whether UPP-age-R is a
potential mediator linking air pollution to mortality. For mediation
analysis we used a published SAS macro for survival data as
described by Valeri and VanderWeele.37 This procedure was
accomplished by decomposing the total effect into a direct effect
(i.e., air pollution effect on mortality at a fixed level of the media-
tor, UPP-age-R) and an indirect effect (i.e., air pollution effect on
mortality that operates through the mediator, UPP-age-R). These
direct and indirect effects were estimated from multivariable-
adjusted proportional hazards regression models for an IQR incre-
ment in air pollution exposure.

Results

Study Population Characteristics
All FLEMENGHO participants were White Europeans and at base-
line (2005–2010) had a mean age of 50.7 y (SD: 15.4; range: 16.2–
85.1 y). The cohort included 331 women (50.2%), 272 patients with
hypertension (41.2%), of whom 167 (61.4%) were on antihyperten-
sive drug treatment, and 23 patients with diabetes (3.5%). The annual
mean air pollution levels were 18:0 lg=m3 (IQR: 16:2–20:0lg=m3)
for PM10, 13:0 lg=m3 (12:3–13:9 lg=m3) for PM2:5, 0:74 lg=m3

(0:59–0:90 lg=m3) for BC, and 17:2 lg=m3 (14.5–19:8lg=m3) for
NO2. The Pearson correlation coefficients between the levels of
the air pollutants ranged from 0.88 to 0.97 (Table S2). UPP-age
was strongly correlated with chronological age (Pearson r=0:86;
p<0:0001; Figure S4). Evaluation of the characteristics of partici-
pants across thirds of the distribution of the annual mean air pollu-
tion levels, using PM10 as marker, revealed significant trends
(p≤ 0:015) in means of age and various age-related variables
(Table 1). Chronological age (46.5 y vs. 53.4 y), UPP-age (47.6 y
vs. 52.6 y), systolic blood pressure (125.9 vs. 128:7 mmHg),
mean arterial pressure (94.8 vs. 95:6 mmHg), plasma glucose
(4.78 vs. 4:98mmol=L), and total serum cholesterol (5.11 vs.
5:24mmol=L) were lower in the highest air pollution level in com-
parison with the lowest. Conversely eGFR was higher (89.1 vs.
81:6 mL=min=1:73m2) at higher air pollution levels. UPP-age-R
was not associated with the air pollution categories (p=0:50). The
median annual income averaged per statistical sector (24.4 vs.
24:9 ke) was lower for participants in the higher air pollution cate-
gory (Table 1). Similar trends were observed when using thirds of
the PM2:5, BC, or NO2 distribution (Tables S3–S5).

Accelerated Urinary Peptidomics Aging in Association with
Air Pollution
In both unadjusted and fully adjusted analyses, accelerated aging
as captured by UPP-age-R was positively associated with PM10,
PM2:5, BC, and NO2 (Table 2). In fully adjusted models, a higher
UPP-age-R was observed for an IQR higher level in the air pollu-
tant, which amounted to 1.04 y (95% CI: 0.11 to 1.98 y; p=0:029)
for PM10, 1.17 y (95% CI: 0.16 to 2.18 y; p=0:023) for PM2:5,
1.02 y (95% CI: 0.08 to 1.97 y; p=0:034) for BC, and 0.87 y
(95% CI: −0:01 to 1.74 y; p=0:051) for NO2 (Table 2).
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dpucMGP as Effect Modifier

Risk factors were aggregated into five categories reflecting their
target operability: the vasculature, the kidney, glucose and lipid

metabolism, and inflammation. The correlation matrix, including
the individual and aggregated risk factors, is summarized in Figure
S5. Of the 18 individual (Table S6) and the 5 aggregated (Table S7)
risk factors, only dpucMGP significantly and consistently affected

Table 1. Characteristics of 660 FLEMENGHO participants by thirds of the distribution of averaged annual (2010–2014) PM10 levels.

Characteristic Low Medium High p-Value

PM10 limits, lg=m3 13.3 to <16:4 16.4 to <19:0 19.0–22.9 NA
Number in category 219 220 221 NA
Number of participants (%)
Sex 0.72
Women 113 (51.6%) 112 (50.9%) 106 (48.0%)
Men 106 (48.4%) 108 (49.1%) 115 (52.0%)

Smoking 0.83
Yes 40 (18.3%) 45 (20.5%) 44 (19.9%)
No 179 (81.7%) 175 (79.5%) 177 (80.1%)

Hypertension 0.0053
Yes 91 (41.6%) 107 (48.6%) 74 (33.5%)
No 128 (58.4%) 113 (51.4%) 147 (66.5%)
Antihypertensive drug intake 59 (26.9%) 61 (27.7%) 47 (21.3%) 0.23

Diabetes mellitus 0.11
Yes 12 (5.5%) 7 (3.2%) 4 (1.8%)
No 207 (94.5%) 213 (96.8%) 217 (98.2%)

Mean± SD of characteristic
Age, years 53.4 (14.6) 52.6 (14.6) 46.5 (15.9) <0:0001
UPP-age, years 52.6 (13.4) 52.2 (14.2) 47.6 (13.8) 0.00015
UPP-age-R, years −0:40 (6.4) −0:11 (8.1) 0.37 (6.4) 0.50
Body mass index, kg=m2 26.3 (4.0) 26.4 (3.8) 26.4 (4.4) 0.96
Waist circumference, cm 89.9 (12.4) 90.3 (11.4) 90.0 (13.2) 0.95
Systolic pressure, mm Hg 128.7 (17.5) 132.2 (17.6) 125.9 (16.1) 0.00063
Diastolic pressure, mm Hg 79.1 (10.0) 80.4 (9.5) 79.3 (9.5) 0.29
Mean arterial pressure, mm Hg 95.6 (11.1) 97.7 (10.4) 94.8 (10.3) 0.015
Demographic variables
Socioeconomic status, grade 1.21 (0.62) 1.25 (0.62) 1.30 (0.67) 0.34
Median annual income, ke 24.9 (1.8) 24.9 (1.4) 24.4 (2.3) 0.019
Biochemical data
Serum creatinine, lmol=L 85.9 (14.9) 84.9 (12.6) 87.1 (13.3) 0.24
eGFR, mL=min=1:73 m2 81.6 (16.5) 82.1 (14.8) 89.1 (18.0) <0:0001
Plasma glucose, mmol=L 4.98 (0.78) 4.94 (0.57) 4.78 (0.41) 0.0010
Total serum cholesterol, mmol=L 5.24 (0.94) 5.43 (0.98) 5.11 (0.96) 0.0018
HDL serum cholesterol, mmol=L 1.41 (0.34) 1.47 (0.38) 1.43 (0.34) 0.19
Total-to-HDL serum cholesterol ratio 3.90 (1.03) 3.89 (1.00) 3.72 (0.97) 0.12
dpucMGP, lg=L 4.86 (3.48) 5.09 (4.47) 4.54 (2.32) 0.25
Serum c-glutamyltransferase, U/L 22.0 (16.0–35.0) 21.0 (14.0–32.0) 22.0 (15.0–31.0) 0.53
Air pollutants
PM10, lg=m3 15.7 (0.64) 17.3 (0.77) 20.9 (1.02) —
PM2:5, lg=m3 12.1 (0.24) 12.7 (0.36) 14.1 (0.52) —
BC, lg=m3 0.56 (0.06) 0.69 (0.08) 0.96 (0.11) —
NO2, lg=m3 14.6 (1.12) 15.8 (1.55) 21.0 (2.87) —

Note: To convert dpucMGP from lg=L into pmol=L, multiply by 94.299. Smoking was the current use of any smoking materials on a daily basis. Socioeconomic status was coded accord-
ing to the UKOffice of Population Censuses and Surveys and simplified into a linear scale with scores ranging from 1 to 3 showing increasing affluence. Hypertension was a blood pressure
of≥140 mmHg systolic or≥90 mmHg diastolic or use of antihypertensive drugs. Diabetes was a fasting plasma glucose of≥7:0mmol=L, a self-reported diagnosis, diabetes documented
in practice or hospital records, or use of antidiabetic drugs. c-Glutamyltransferase was measured as index of alcohol intake and logarithmically transformed and presented as geometric
mean (IQR). p-Values are for linear trend across the thirds of the distribution of averaged annual (2010–2014) PM10 levels.— indicates that given the high correlation between the air
pollutants (Table S2), the trend p-value was not computed. BC, black carbon; dpucMGP, desphospho-uncarboxylated matrix Gla protein; eGFR, glomerular filtration rate derived
from serum creatinine, using the Chronic Kidney Disease Epidemiology Collaboration equation; FLEMENGHO, Flemish Study on Environment, Genes, and Health Outcomes; NA,
not applicable; HDL, high-density lipoprotein; IQR, interquartile range; NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic diameter≤2:5 lm; PM10, particulate mat-
ter with aerodynamic diameter≤10 lm; UPP-age, urinary peptidomic profile age; UPP-age-R, residual of the regression of UPP-age on chronological age.

Table 2. Association of UPP-age-R with an IQR higher level of air pollutants in 660 FLEMENGHO participants.

Unadjusted Adjusted

Air pollutant (+IQR) Estimate (95% CI) p-Value Estimate (95% CI) p-Value

PM10 (+3:79 lg=m3) 1.06 (0.12, 2.01) 0.027 1.04 (0.11, 1.98) 0.029
PM2:5 (+1:59 lg=m3) 1.21 (0.19, 2.23) 0.019 1.17 (0.16, 2.18) 0.023
BC (+0:31 lg=m3) 1.07 (0.11, 2.02) 0.029 1.02 (0.08, 1.97) 0.034
NO2 (+5:25lg=m3) 0.88 (0.01, 1.76) 0.049 0.87 (−0:01, 1.74) 0.051

Note: Estimates, given as difference in UPP-age-R (in years) with 95% CI, were derived by mixed models that accounted for clustering between participants sharing the same residen-
tial address as random effect. Unadjusted models did not account for other variables. Adjusted models additionally accounted for sex, age, body mass index, mean arterial pressure,
plasma glucose, c-glutamyltransferase, current smoking, the total-to-high-density lipoprotein serum cholesterol ratio, glomerular filtration rate, and socioeconomic status as fixed
effects. BC, black carbon; CI, confidence interval; FLEMENGHO, Flemish Study on Environment, Genes, and Health Outcomes; IQR, interquartile range; NO2, nitrogen dioxide;
PM2:5, particulate matter with aerodynamic diameter ≤2:5 lm; PM10, particulate matter with aerodynamic diameter ≤10 lm; UPP-age, urinary peptidomic profile age; UPP-age-R, re-
sidual of the regression of UPP-age on chronological age.
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the multivariable-adjusted association between UPP-age-R and the
four air pollutants, with higher dpucMGP showing stronger asso-
ciations of air pollutants and UPP-age-R. The linear interaction
terms between dpucMGP and the air pollutant were significant
with p-values of 0.0032 for PM10, 0.0075 for PM2:5, 0.012 for BC,
and 0.0074 for NO2. The Spearman rank correlation coefficients of
dpucMGP with the air pollutants were not significant: −0:027
(p=0:54) for PM10; −0:034 (p=0:38) for PM2:5; −0:032 for BC;
and−0:016 (p=0:68) forNO2.

The combined contribution of the air pollutants and dpucMGP
to UPP-age-R was therefore investigated in multivariable-adjusted
analyses of the whole study population and in similarly adjusted
analyses stratified by median dpucMGP (4:26 lg=L). First, in the
whole study population, UPP-age-R tended to be higher with both
air pollutants and dpucMGP (Figure 1). Second, individuals with
high dpucMGP (above 4:26 lg=L) in comparison with low
dpucMGP had a substantially higher risk profile (Table S8), and in
these participants an IQR higher level in the air pollutants was
associated with a higher UPP-age-R of 2.03 (95% CI: 0.60, 3.46;
p=0:0062), 2.22 (95% CI: 0.71, 3.74; p=0:0048), 2.00 (95% CI:
0.56, 3.43; p=0:0073), and 2.09 (95% CI: 0.77, 3.41; p=0:0024)
y for PM10, PM2:5, BC, and NO2, respectively (Figure 2). In con-
trast, if dpucMGP was <4:26 lg=L (Figure 2), no association
between air pollution andUPP-age-Rwas observed (p≥ 0:43).

The geocorrelation coefficients between UPP-age-R and the air
pollutants at the individual level or aggregated by municipality are
listed in Table S9 for the whole study population and for individu-
als stratified by the median dpucMGP level. In analyses including
the participants with dpucMGP of 4:26 lg=L or higher (n=330),
the geocorrelations of multivariable-adjusted UPP-age-Rwith PM10,
PM2:5, BC, and NO2, were 0.155 (p=0:0048), 0.159 (p=0:0036),
0.151 (p=0:0061), and 0.168 (p=0:0022), respectively (Table S9

and Figure S6); the corresponding correlation coefficients at the ag-
gregate level (Table S9 and Figure S7) were 0.721 (p=0:023), 0.636
(p=0:054), 0.697 (p=0:031), and 0.600 (p=0:073).

In sensitivity analyses (Table S10), we analyzed the robust-
ness of the associations between UPP-age-R and the different air
pollutants in participants with high dpucMGP. Confirmatory
associations were observed between UPP-age-R and the air pollu-
tants in men and women, in models excluding patients on treat-
ment with coumarins or having diabetes, or excluding current
smokers, or in models in which annual income averaged per sta-
tistical sector was added as explanatory covariable.

Mediation Analysis
The median follow-up of the whole cohort amounted to 12.4 y
(IQR: 10.7–13.1 y; 10th–90th percentile interval: 10.1–13.7 y)
with the number of follow-up years being slightly higher (Wilcoxon
p-value: 0.024) among participants with dpucMGP below 4:26 lg=L
[median: 12.4 y (IQR: 10.7–13.2 y); total number of person-years:
3,961] than in those with dpucMGP levels of 4:26 lg=L or higher
[12.2 y (IQR: 10.7–13.1 y); total number of person-years: 3,853]. The
number of deaths occurring during follow-up was 11/330 (3.3%) and
4/330 (1.2%) due to cardiovascular disease in the low dpucMGP
group and 38/330 (11.5%) and 15/330 (4.6%), respectively, in the
high dpucMGPgroup.

The multivariable-adjusted hazard ratios, relating mortality to
a 10-y higher UPP-age-R in the whole cohort were 1.84 (95% CI:
1.21, 2.73; p=0:0042) for total mortality and 2.23 (95% CI:
1.20, 4.13; p=0:0011) for cardiovascular mortality. Whether
UPP-age-R mediated the association between total and cardiovas-
cular mortality and the air pollutants was examined in a media-
tion analysis stratified by the median dpucMGP group (Table

Figure 1. Heat maps showing the difference in UPP-age-R associated with the combined contributions of the air pollutants and dpucMGP in 660
FLEMENGHO participants. Differences in UPP-age-R were derived by mixed models, which included both the air pollutants and dpucMGP as independent
variables. All models accounted for clustering between participants sharing the same residential address as random effect and for sex, age, body mass index,
mean arterial pressure, plasma glucose, c-glutamyltransferase, current smoking, the total-to-high-density lipoprotein serum cholesterol ratio, glomerular filtra-
tion rate, and socioeconomic status as fixed effects. Panels (A), (C), (E), and (G) provide the percentage of study participants (n=660 in total) in each box of
the cross-classification between dpucMGP, plotted along the horizontal axis and the air pollutant plotted along the vertical axis. Panels (B), (D), (F), and (H)
show changes in UPP-age-R (in years) in association with dpucMGP and PM10 (B), PM2:5 (D), BC (F) and NO2 (H) concentrations. p-Values represent the sig-
nificance of the linear associations between the air pollutant or dpucMGP with UPP-age-R in full adjusted models. Note: BC, black carbon; dpucMGP,
desphospho-uncarboxylated matrix Gla protein; FLEMENGHO, Flemish Study on Environment, Genes, and Health Outcomes; NO2, nitrogen dioxide; PM2:5,
particulate matter with aerodynamic diameter ≤2:5 lm; PM10, particulate matter with aerodynamic diameter ≤10 lm; UPP-age, urinary peptidomic profile
age; UPP-age-R, residual of the regression of UPP-age on chronological age.
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S11), which is summarized in Figure 3. In participants with
dpucMGP levels below 4:26 lg=L, none of the hazard ratios
modeling the indirect (via UPP-age-R) and direct associations
between total mortality and the air pollutants reached significance
(Table S11). In participants with dpucMGP levels of 4:26 lg=L

or higher, UPP-age-R was an indirect mediator of the associa-
tions of total and cardiovascular mortality with the air pollutants
with indirect multivariable-adjusted hazard ratios of ranging from
1.107 (95% CI: 1.002, 1.222; p=0:045), 1.107 (95% CI: 1.004,
1.221; p=0:041), 1.094 (95% CI: 1.000, 1.196; p=0:049), 1.110

Figure 2. Association of UPP-age-R with air pollutants in 660 FLEMENGHO participants stratified by the median (4:26 lg=L) level of dpucMGP. Red
squares are unadjusted estimates with 95% CI bars. Blue circles are adjusted estimates with 95%CI bars and were derived by mixed models, which accounted
for clustering between participants sharing the same residential address as random effect and for sex, age, body mass index, mean arterial pressure, plasma glu-
cose, c-glutamyltransferase, current smoking, the total- to high-density lipoprotein serum cholesterol ratio, glomerular filtration rate, and socioeconomic status
as fixed effects. Estimates provided as a difference in UPP-age-R (in years) for an IQR higher level in PM10 [+3:79 lg=m3, (A)]; PM2:5 [+1:59 lg=m3, (B)];
BC [+0:31lg=m3, (C)]; and NO2 [+5:25 lg=m3, (D)]. Numerical estimates are provided with ±SE and p-value. n=330 for dpucMGP<4:26 lg=L and
n=330 for dpucMGP≥4:26 lg=L. Note: BC, black carbon; CI, confidence interval; dpucMGP, desphospho-uncarboxylated matrix Gla protein;
FLEMENGHO, Flemish Study on Environment, Genes, and Health Outcomes; IQR, interquartile range; NO2, nitrogen dioxide; PM2:5, particulate matter with
aerodynamic diameter ≤2:5 lm; PM10, particulate matter with aerodynamic diameter ≤10 lm; SE, standard error; UPP-age, urinary peptidomic profile age;
UPP-age-R, residual of the regression of UPP-age on chronological age.
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(95% CI: 1.007, 1.224; p=0:036) for PM10, PM2:5, BC, and NO2,
respectively. For cardiovascular mortality the corresponding indirect
multivariable-adjusted hazard ratios were 1.155 (95% CI: 1.000,
1.335; p=0:050), 1.155 (95% CI: 1.002, 1.332; p=0:047), 1.136
(95% CI: 0.998, 1.294; p=0:054), 1.158 (95% CI: 1.005, 1.335;
p=0:043) for PM10, PM2:5, BC, and NO2, respectively (Figure 3
and Table S11). In the high dpucMGP stratum, none of the hazard
ratios reflecting a direct association of total and cardiovascular mor-
tality with the air pollutants were observed (Figure 3; Table S11).

Discussion
UPP-age-R is a urinary peptidomic biomarker, which has been
developed in FLEMENGHO and which has been extensively
validated in population and patient cohorts.13 Independent of
chronological age, UPP-age-R predicted total and cardiovascu-
lar mortality. The primary novel finding of the current study is
that UPP-age-R is positively associated with airborne pollutants
including PM10, PM2:5, BC, and NO2, and that these associa-
tions are stronger in participants with poor vitamin K status, as
captured by a high plasma dpucMGP level. The correlations
between UPP-age-R per each individual’s residential address
and airborne exposure were all ≥0:151 (p=0:0061). In partici-
pants with a high plasma dpucMGP, the multivariable-adjusted
associations of total and cardiovascular mortality with the air
pollutants were indirectly mediated via UPP-age-R, whereas the
direct associations were not significant.

To the best of our knowledge, the current study is the first to
examine the relation between accelerated aging and exposure to
airborne particulate using a UPP-derived biomarker (UPP-age-R).
The present observations are in linewith other studies based on epi-
genetic aging clocks.38–41 In the German KORA F4 study (mean

age: 61 y), an IQR (0:97lg=m3) increment in ambient PM2:5 was
associated with an increase of 0.32 to 0.35 y in an epigenetic aging
clock (Horvath clock).38 In the Lothian Birth Cohort, the corre-
sponding estimate was +0:299 y per lg=m3 in PM2:5.42 In the
Normative Aging Study,39,41 PM2:5 exposure was associated
with a 0.64-y increment in Horvath aging clock per 2:16 lg=m3

(IQR) increment in exposure. In comparison with the epigenetic
approaches, UPP-age-R is noninvasive and easily administrable,
because it only requires a midmorning urine sample without the
need for blood sampling and involves the measurement of
20,000 omics signals, much less than the 0.5–1.0 million signals
making up epigenetic markers. In addition, peptides are more
strongly related to clinical phenotypes in comparison with
upstream epigenetic signals, which provide a more straightfor-
ward biological interpretation of underlying, and potentially tar-
getable, pathways in health and disease.

From a mechanistic point of view, inhaled particles can cause
not only local inflammation of the airways and alveoli, but also
systemwide a chronic low-grade inflammatory state as a result of
“a spillover effect” and via the circulation of nano-sized par-
ticles.3,5 This effect might cause accelerated biological aging as
captured here by a higher UPP-age-R. PM generates reactive ox-
ygen species (ROS), either directly by ROS formation on the par-
ticle surface via Fenton reactions or indirectly through altered
functions of NADPH-oxidases, mitochondria, and activation of
inflammatory responses via the release of proinflammatory medi-
ators [TNF-a, interleukin-6 (IL-6), and interleukin-1 b(IL-1b)]
by alveolar macrophages.43–45 The concept that air pollutants can
cause systemic inflammation is further supported by experimental
studies reporting higher expression of NF-jB, the key inflamma-
tion mediator, which induces the expression of pro-inflammatory
genes.46,47 Over an individual’s lifetime, long-term exposure to
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Figure 3. Estimated direct and indirect (via UPP-age-R) effects of air pollutant exposure on total and cardiovascular mortality in 330 FLEMENGHO partici-
pants with dpucMGP of 4:26 lg=L (median) or higher. Multivariable-adjusted HRs with corresponding p-values were calculated by Cox proportional hazards
regression. Models accounted for sex, age, body mass index, mean arterial pressure, the total-to-high-density-lipoprotein cholesterol ratio, plasma glucose,
c-glutamyltransferase, current smoking, glomerular filtration rate, and socioeconomic status. HRs express the relative risk for a IQR higher level in PM10
[+3:79 lg=m3, (A)]; PM2:5 [+1:59lg=m3, (B)], BC [+0:31 lg=m3, (C)]; and NO2 [+5:25lg=m3, (D)]. The incidence of total and cardiovascular mortality
amounted to 38/330 (11.5%) and 15/330 (4.5%), respectively. Note: BC, black carbon; dpucMGP, desphospho-uncarboxylated matrix Gla protein;
FLEMENGHO, Flemish Study on Environment, Genes, and Health Outcomes; HR, hazard ratio; NO2, nitrogen dioxide; PM2:5, particulate matter with aerody-
namic diameter ≤2:5 lm; PM10, particulate matter with aerodynamic diameter ≤10 lm; UPP-age, urinary peptidomic profile age; UPP-age-R, residual of the
regression of UPP-age on chronological age.

Environmental Health Perspectives 127011-8 131(12) December 2023



airborne PM probably contributes to “inflammaging,”48 charac-
terized by an increase in blood inflammatory markers reflective
of a chronic low-grade inflammation, which in turn entails a
higher risk for chronic morbidities, disabilities, frailty, and pre-
mature death.49

The observation that high dpucMGP levels (reflecting poor
vitamin K status) steepens the relation betweenUPP-age-R and the
air pollutants is novel but not surprising, given a large body of
available evidence. Vitamin K-dependent proteins (VKDPs)
include hepatic VKDPs, which are mainly involved in blood coag-
ulation, and extrahepatic VKDPs, which have numerous functions
related to the high affinity of their Gla residues for calcium. The ex-
trahepatic VKDP osteocalcin regulates bone formation and miner-
alization.50 Vascular smooth muscle cells and the endothelium
synthesize a small secretory protein (11 kD), which is namedMGP
(matrix Gla protein) because it contains five c-carboxyglutamate
(Gla) amino acid residues. Activation ofMGP by vascular stress or
other stimuli requires two posttranslational modifications: serine
phosphorylation and vitamin K-dependent c-glutamate carboxyla-
tion.51 ActivatedMGP is amultifaceted protector of themicro- and
macrovasculature, renal function, and tissue integrity.18 In the cur-
rent study, poor vitamin K status was associated with a substan-
tially elevated risk factor load and higher UPP-age-R (Table S8).
In FLEMENGHO, higher dpucMGP predicted total, noncancer,
and cardiovascular mortality, but lower coronary risk.14 A
Mendelian randomization analysis, using functional variants of
the MGP gene as instrumental variables, suggested causality for
the associations with noncancer mortality and coronary events.14

Strengths and Limitations
This study has strong points. UPP-age-R has been replicated and
validated for its association with risk factors, the intensity of drug
treatment to control risk factors, and the incidence of mortality and
adverse health outcomes.13 Nevertheless, UPP-age-R might be
more dynamic in comparison with epigenetic-derived clocks,
because it is closely related to the clinical phenotype and might be
dysregulated in severe disease phenotypes. In addition, the UPP-
age-R is currently further limited in its wide application in compar-
ison with epigenetic BeadChip–derived aging clocks because
it depends on the specific presented CE-MS methodology.
FLEMENGHO is a long-term study (Figure S1) with random sam-
pling of the population from a geographically defined area in north-
ern Belgium (Figure S2) and is therefore representative of western
European countries. Furthermore, each individual’s exposure to
airborne PMwas estimated, using a high-resolution spatiotemporal
interpolation method. Obviously, the current study must also be
interpreted in the context of its limitations. First, UPP-age-R
(2005–2010) was measured prior to the air pollution data (2010–
2014). However, studies conducted in the Netherlands,29 Italy,30,33
Canada,31 and the United Kingdom32 demonstrated that the land-
use models applied in the current study are representative of long-
term air pollution exposure for periods of 10 y or longer prior to the
actual modeling and that spatial contrasts in air pollution do not
substantially change over time.29–33 Second, being an observatio-
nal cohort study, FLEMENGHO was not designed to unravel the
molecular mechanism underlying the associations between UPP-
age-R and the airborne particulate. Third, this study, using a mod-
est sample size, shows the potential protective effects of vitamin K
in the general population; however, these findings should be fur-
ther externally confirmed using independent and large population-
based studies. In addition, this study cannot prove causality for the
protective effects of vitamin K, which should be elucidated using
in vitro and in vivo experimental models. Nevertheless, we show
that participants with a poor vitamin K status have a higher risk
profile and appear to be more susceptible to the air pollution–

inducedmolecular aging effects. In addition, due to the rather small
study area, we observed high correlations between the different air
pollutants and a lower variation within exposure levels, partly
explaining similar and consistent findings for the different pollu-
tants used. This high correlation between air pollutants made it
impossible in the current study to construct a multipollutant model
to unravel independent or combined exposure effects. Finally,
whereas by definition UPP-age-R is independent of calendar age,
dpucMGP increaseswith chronological age,18 raising the possibility
that advancing age might explain the effect modification picked up
by dpucMGP. However, in the derivation of UPP-age-R as function
of air pollution, the observed interaction between vitamin K status
and exposure to airborne pollutants was independent of age.

Public Health Implications
High levels of plasma dpucMGP are a proxy for vitamin K defi-
ciency, in FLEMENGHO levels ranging from ∼ 1:4 to ∼ 4:6 lg=L
(∼ 130 to ∼ 437 pmol=L), were optimal in terms of the risk formor-
tality and cardiovascular disease,14 and the 4:6-lg=L threshold
corresponded with 63rd percentile of dpucMGP distribution.
DpucMGP increases with age,18 and other causes of a high
dpucMGP include intestinal diseases negatively affecting the gut
microflora and poor nutrition, in particular in the deprived seg-
ments of the population. However, which levels of plasma
dpucMGP should be acted on for optimal health remains an issue
to be resolved.18 Given the worldwide demographic transition
with growing longevity1 and given that exposure to airborne pollu-
tants is currently the predominant environmental risk factor,2 vita-
min K supplementation might be recommended among the
lifestyle measures promoting healthy aging. Dietary sources of
vitamin K include leafy vegetables (phylloquinone; vitamin K1)
and fermented foods (menaquinones; vitamin K2), such as cheese
and soybeans fermented with Bacillus subtilis var. natto (natto).52

In humans, gut bacteria also produce vitamin K.53 In contrast to di-
etary vitamins, which are absorbed in the proximal tract of the
small intestine, the predominant uptake of microbiotically synthe-
sized vitamins occurs in the colon.54 Abuse of antibiotics impairs
the synthesis of vitamin K by the gut flora. There is currently no
evidence from randomized trials, for instance with cluster ran-
domization of geographical units with similar exposure to air-
borne PM, to support this recommendation. However, vitamin K
has desired anti-inflammatory properties55 via suppressing
NFjB=NRF signaling,56 prevention of lipid peroxidation,57 glu-
tathione depletion–induced oxidative cell death,58 and other
mechanisms.59

Conclusions
Ambient air pollution is associated with accelerated aging as
reflected by the urinary peptidome (UPP-age-R), high vitamin K
status having a potential protective effect. Furthermore, in partici-
pants with a high dpucMGP, reflecting poor vitamin K, mediation
analysis showed total and cardiovascular mortality to be associated
with air pollutants via UPP-age-R. Current guidelines to decrease
the adverse health effects associated with airborne PM might
include advice on protective effect modifiers, such as vitamin K
intake. Regulators, such as the World Health Organization, may
advise, in addition to tightening acceptable exposure to air pollu-
tants, lifestyle changes to decrease vitamin K deficiency, which
affects over one-third of Europeans and perhaps higher proportions
in non-European populations.60
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