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Abstract

Background: Investigating low-prevalence diseases such as multiple sclerosis is challenging because of the rather small number
of individuals affected by this disease and the scattering of real-world data across numerous data sources. These obstacles impair
data integration, standardization, and analysis, which negatively impact the generation of significant meaningful clinical evidence.

Objective: This study aims to present a comprehensive, research question–agnostic, multistakeholder-driven end-to-end data
analysis pipeline that accommodates 3 prevalent data-sharing streams: individual data sharing, core data set sharing, and federated
model sharing.

Methods: A demand-driven methodology is employed for standardization, followed by 3 streams of data acquisition, a data
quality enhancement process, a data integration procedure, and a concluding analysis stage to fulfill real-world data-sharing
requirements. This pipeline’s effectiveness was demonstrated through its successful implementation in the COVID-19 and multiple
sclerosis global data sharing initiative.

Results: The global data sharing initiative yielded multiple scientific publications and provided extensive worldwide guidance
for the community with multiple sclerosis. The pipeline facilitated gathering pertinent data from various sources, accommodating
distinct sharing streams and assimilating them into a unified data set for subsequent statistical analysis or secure data examination.
This pipeline contributed to the assembly of the largest data set of people with multiple sclerosis infected with COVID-19.

Conclusions: The proposed data analysis pipeline exemplifies the potential of global stakeholder collaboration and underlines
the significance of evidence-based decision-making. It serves as a paradigm for how data sharing initiatives can propel advancements
in health care, emphasizing its adaptability and capacity to address diverse research inquiries.
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Introduction

Chronic diseases such as multiple sclerosis (MS) [1] present
significant obstacles for research, primarily because of their
limited prevalence, resulting in smaller study populations [2].
The scarcity of the affected individuals is reinforced when
considering the dispersion of real-world data (RWD) across
diverse repositories. This scarce RWD, sourced during routine
clinical care [3,4], further coupled with heterogeneity in formats,
quality standards, and regulatory guidelines, make the
comprehensive collection and extraction of meaningful clinical
insights even more challenging [5,6].

Despite these challenges, well-managed RWD have the potential
to reveal significant patterns concerning diseases, patient
experiences, and treatment outcomes [7,8]. For instance, during
the early stages of the COVID-19 pandemic, innovative data
acquisition strategies overcame data scarcity, unlocking the
potential of RWD for meaningful analysis [9-11]. These specific
instances underline the broader concern: the RWD landscape
is rife with challenges that are often understated.

Current literature tends to oversimplify the intricate processes
involved in managing RWD. These include standardization,
acquisition, quality enhancement, integration, storage,
governance, visualization, and eventual analysis and
interpretation. Although these facets are crucial, they are often
treated as isolated components rather than integral parts of an
interconnected system, with certain areas occasionally
overlooked [5].

Recent studies on COVID-19 bring this gap into sharper focus.
Khalid and colleagues [12] focused on building analytical
models by using observational health data through machine
learning but did not fully emphasize the vital aspect of data
acquisition in the pipeline management. By contrast, Nishimwe
and colleagues [13] concentrated on data integration, gathering
data from various hospitals, but did not delve into thorough
in-depth data analysis. A study by Junior and colleagues [14]
aimed to cover the whole data analytics pipeline but primarily
focused on standardizing data from 2 different countries, giving
less attention to crucial parts of RWD management, such as

data acquisition, preprocessing, quality enhancement, and
analysis. This fragmented focus points to the need for a more
comprehensive strategy that neither compromises nor overlooks
any part of the RWD management process. The absence of a
holistic framework, coupled with the growing diversity and
volume of RWD sources, intensifies the challenges in health
care data sharing and the conversion of RWD into actionable
evidence, underscoring the need for standardized management
[6].

In light of these challenges, the global data sharing initiative
(GDSI) emerges as an exemplary solution that addresses
multiple facets of RWD management, specifically in the context
of COVID-19 and MS. Prompted by the urgent need to
understand COVID-19’s effects on people with MS, GDSI was
launched [15]. By integrating data from over 80 countries, GDSI
generated globally relevant insights [7,16-19]. This large-scale
effort resulted in the formation of the most extensive
international cohort of COVID-19 cases among people with
MS. In addition to enriching our understanding of the
COVID-19 and MS interaction, GDSI showcased the enormous
potential of large-scale international collaboration. Furthermore,
the initiative set a methodological standard in global health
research by introducing a data analysis pipeline with applications
beyond MS.

This paper delves deep into GDSI’s comprehensive RWD
analysis pipeline, offering an end-to-end approach that spans
from introducing a data dictionary to meticulous data
acquisition, and ultimately, to deriving insightful clinical
interpretations. One distinguishing aspect of our study lies in
the pragmatic execution of this intricate end-to-end analysis
pipeline. As depicted in Figure 1, we have implemented a hybrid
3-layer data acquisition architecture—all in strict compliance
with the legal and ethical standards that govern data collection
and dissemination. Designed for versatility and inclusivity, this
architecture aimed to capture every data point possible.
Concurrently, an astute approach to data integration was used,
whereby these diverse data streams were seamlessly unified.
This robust unified data set was then readied for further analysis
and exploration.
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Figure 1. The global data sharing initiative data streams detailing the initiative’s inclusive approach through a hybrid 3-layer data acquisition architecture:
(1) direct entry, where individuals upload their data via a web-based form; (2) core data set sharing, where registries upload patient-level data to the
central platform under signed data transfer agreements and ethics approvals; and (3) federated model sharing, allowing registries with restrictive policies
to participate without directly submitting patient-level data to the central platform.

Methods

Overview of GDSI’s Data Analysis Pipeline
The robustness and scale of GDSI’s endeavor were mirrored
by its foundational approach. As depicted in Figure 2, GDSI’s
RWD analysis pipeline provided the essential framework for
comprehensive data management and analysis. Centralized

around a core platform, this pipeline progressed through 5 key
stages (1) introducing a specialized data dictionary to
standardize the data; (2) data acquisition, which details the
methods used to gather the data; (3) an integral step for
enhancing data quality; (4) data integration, responsible for
aggregating various sources; and (5) the final stage, where the
consolidated data are analyzed.
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Figure 2. The global data sharing initiative’s end-to-end real-world data analysis pipeline. Step I illustrates the standardization process, which serves
as the foundation of this architecture. In this phase, data custodians are requested to map their data to the “COVID-19 in multiple sclerosis core data
set” (here referred to as the data dictionary). This process applies only to the core data set and federated model sharing registries, as direct entry is
already embedded with a data dictionary via the web form. Step II involves the data acquisition pipeline, featuring distinct levels of data acquisition
that depend on the data holder’s willingness and internal policies, all conducted in line with ethical and legal standards. Direct entry, core data set
sharing, and federated model sharing constitute the 3 data stream levels. The first 2 levels interact directly with a central platform where the core dataset
is shared as static files, in this instance, Comma Separated Values (CSV), whereas federated registries necessitate additional steps before submitting
outcomes to the central platform. To incorporate federated registries into the pipeline, predefined queries are dispatched alongside Docker containers
to the local side of the registries. The results of these containers are then shipped back to the central platform. In step III, data from different data holders
are stored in separate layers to facilitate the next data integration process. Data integration, the subsequent step in the pipeline, entails consolidating
data from distinct layers into a comprehensive data set. Step IV emphasizes the utilization of the integrated data set for further data exploration and
analysis. Step V highlights the local dashboard, which serves as a quality check, enabling data providers to give feedback on their uploaded data as an
additional sanity check. Step VI underscores the online dashboard that has been fed by the integrated data set, utilized by the taskforce during the
development of the research questions to ascertain the feasibility of the study and to monitor the data being collected. In step VII, a Jupyter Notebook
is provided to the data analysis team, securely connected to the integrated data set, facilitating statistical analysis.

Ethics Approval
This study received ethics approval from the ethics committee
of Hasselt University (approval CME2020/025). For an in-depth
discussion concerning ethical authorization, kindly refer to
Simpson-Yap et al [17].

Data Dictionary
A data dictionary serves as a guide that details the attributes of
components within an information database, ensuring consistent
terminology [20-22]. In the context of GDSI, this tool has
proven invaluable for mitigating challenges posed by diverse
languages and structures. A task force of domain experts,
including epidemiologists, neurologists, and data scientists,
reached a consensus on establishing the “COVID-19 in MS
Core Data set” data dictionary. This guide served as a keystone
for harmonizing data from various sources. To tackle
interoperability, data custodians used it as a reference, enabling
them to standardize their data sets and streamline the
extract-transform-load process. A detailed overview of the
variables employed in GDSI is provided by Simpson-Yap and
colleagues [7], and a full list is accessible via the GitHub
repository [23] and presented in Table S1 of Multimedia
Appendix 1.

Data Acquisition
Recognizing the value of diverse data sources for research
outcomes [8,24], GDSI developed a hybrid data acquisition
architecture. This framework consists of 3 distinct data sharing
streams: direct entry, core data set sharing, and federated model
sharing. Each stream is designed to accommodate specific data
environments, ensuring a comprehensive and multifaceted
collection approach. The primary distinguishing factor among
these data sharing streams was the extent of willingness to share
clinical records with the central server. In practice, confining
data collection to a singular stream would drastically reduce
the data volume, making the transition of all contributors to 1
mode unattainable. GDSI’s strength was rooted in its
adaptability, effortlessly accommodating these 3 sharing streams
and fusing them into a unified data set.

Data Sharing Streams

Direct Entry
This stream prioritized direct engagement with both clinicians
and patients. Patients provided their clinical records through
structured questionnaires, while clinicians offered their
observations after acquiring the necessary permissions. A unique
characteristic of this stream was its rapid data entry mechanism.
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The predefined structure, designed to align with a condensed
version of the data dictionary, ensured smooth data integration.
Data were submitted via a web-based form on the centralized
platform. Importantly, this form upheld patient privacy,
excluding specific identifiers and enforcing stringent measures
against website cookies and trackers.

Core Data Set Sharing
Adhering to the conventional approach for clinical data sharing,
data providers contributed a subset of their data set to the central
platform. Although this mechanism excelled in handling
extensive data, it grappled with challenges related to data
collaboration agreements and complex regulatory stipulations.
The heterogeneity in the data format further compounded these
challenges. However, the architecture of core data set sharing
was designed to necessitate the schema of the data dictionary.
As a result, data custodians needed to standardize their data
format according to the data dictionary to upload their data
using this stream. Upon achieving this congruence, custodians
used the central platform’s interface—a secure bridge that
connected the local infrastructure of the data partners to the
main platform—for data upload. For enhanced data security,
once uploaded, data extraction is restricted. Additional security
measures such as user activity monitoring and stringent access
policies were further implemented, ensuring that registry
members can only view their specific records, thus preserving
data confidentiality. As the pandemic progressed, the registries
were periodically invited to contribute their core data sets to
the central platform.

Federated Model Sharing
Addressing challenges such as strict internal policies that
deterred or hindered some registries from sharing clinical
records with the central platform, the federated model sharing
was introduced. This decentralized solution brings a pivotal
shift to regular data sharing streams. Central to this model is
the principle of querying data directly at its source, thus

eliminating the need to transfer patient-level data. Instead of
navigating the nuances of individual patient data, this strategy
consolidates multivariable categories into aggregated “buckets.”
These buckets are grouped categories where similar data are
combined together rather than stored separately. By adopting
this approach, potential risks linked to transferring patient-level
data are mitigated, and the complexities tied to strict
data-sharing agreements are streamlined. A detailed examination
of the buckets computation methodology can be viewed in Table
S2 of Multimedia Appendix 1 and within the associated GitHub
repository [25].

Despite its advantages, the federated model sharing stream
introduces its own challenges, especially when remote query
executions result in inconsistencies across diverse systems. To
compute the buckets, scripts were run locally using Docker [26]
containers. Docker containers are self-contained software
environments that promote standardization, which helps alleviate
the typical technical challenges in such processes. These
containers, referred to here as the federated pipelines, were
deployed on each registry’s infrastructure and were mounted
with data that had already been standardized and aligned with
the data dictionary, facilitating seamless execution. After
computing these buckets, they were transferred to the central
platform. Multiple versions of these Docker containers were
used to distribute scripts across the federated model sharing
registries.

The architecture of the most recent federated pipeline is
presented in Figure 3 [27]. Associated resources, including a
demonstrative video walk-through, operational scripts, and the
Docker image, can be found in [28-31]. Furthermore, the entire
source code has been made publicly accessible on GitHub [32].
This provides a thorough toolkit for those interested in
understanding, replicating, or refining the framework of the
federated pipeline. A comprehensive analysis of the various
iterations of the federated pipeline is presented in Multimedia
Appendix 2 [33].
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Figure 3. The latest federated pipeline. This is a container composed of 3 primary components. The first component is the base image, which forms
the bedrock of the infrastructure. This base image uses Alpine Linux as its underlying operating system, which allows the container to be fine-tuned
with other software development kits for further refinements and functionalities [27]. The remaining 2 components, the backend and frontend, are
constructed on top of this base image. The backend consists of a suite of Python scripts, which are tasked with data quality assessment, enhancement,
cleaning, and analysis. These scripts collaboratively process the incoming mapped data, preparing it for subsequent analysis. By contrast, the frontend
was crafted using Microsoft’s ASP.NET Core framework and the C# programming language. Within this pipeline, there is a customizable automation
center module. This module can be adapted to meet the specific needs and requests of data partners. It also integrates Crontab, a tool that automates
predefined tasks and outlines complex pipelines for execution at various intervals. The automation center module also links the container to the GitHub
and Docker Hub version control systems. This connection ensures the use of the most recent scripts and codes published by data analysts. SDK: software
development kit.

Data Quality Assessment and Enhancement
The integrity of the acquired data set was upheld through a
rigorous data enhancement and quality evaluation process, which
was integrated seamlessly into the central platform. In this
process, each data variable was scrutinized against a binary
criterion: PASS or FAIL. If a specific data point met the
pre-established benchmarks of quality and precision, it was
accorded a “PASS;” otherwise, it was categorized under “FAIL.”
The input format for direct entry eliminated the need for
additional quality checks, as validation was directly integrated
into the web-based form. For the core data set sharing approach,
uploaded data were immediately assessed for quality, and a
real-time feedback mechanism alerted contributors to any issues,
allowing for immediate corrective action. Conversely, within
the federated model sharing approach, quality checks were
conducted at the data source prior to aggregation.

The criteria are summarized in Table 1. In the PASS/FAIL
column of this table, variables are flagged differently according
to the data quality check. PASS is the flag for an accepted
variable, FAIL is the flag for a dismissed variable, and EMPTY
is the flag for each variable that is missing/null. Note that FAIL
does not necessarily mean that the data get excluded; it is just
that it is flagged as erroneous—it can also be adapted in some
cases for analysis. FAIL means the following action: “Set the
FAIL variable to missing, flag the variable, and keep the patient
entry (row).” Additionally, specific rules were applied to dates
in the data; more specifically, dates cannot be in the future (ie,
if any date > date reporting, then the variable is flagged as FAIL)
or before a person’s birth date (ie, if any date YEAR <
year_reporting - age, then the variable is flagged as FAIL). The
COVID-19–related dates also must be later than the MS baseline
dates (onset and diagnosis). A comprehensive version of this
table is available on GitHub [34].
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Table 1. Data quality assessment and enhancement: pass and fail criteria (some highlighted examples).a

Pass and fail criteriaInterdependencyFormatVariable

if covid19_date_reporting < 2019, then fail,
else pass

Noneyyyy-mm-ddcovid19_date_reporting

if covid19_ has_symptoms = null, then
check the covid19_sympt_xx for yes

if any covid19_symptxx = yes, then covid19
has symptoms = yes (for the analysis data)
strict: if covid19_has_symptoms = no AND
any covid19_symp_xx = yes, then fail

derivation: covid19_has_symptoms is sec-
ondary to covid19_ sympt _xx if any of the
single symptoms are yes, then empty(!)
covid19_has_symptoms will be set to yes
and vice versa (all symptoms = no,
covid19_has_symptoms is set to no)

covid19_sympt_fever

covid19_sympt_dry_cough

covid19_sympt_fatigue
covid19_sympt_pain

covid19_sympt_sore_throat
covid19_sympt_shortness_breath
covid19_sympt_nasal_congestion
covid19_sympt_loss_smell_taste
covid19_sympt_pneumonia

single choice

(yes/no)

covid19_has_symptoms

see covid19_has_symptomscovid19_has_symptomssingle choice

(yes/no)

covid19_sympt_fever

see covid19_has_symptomscovid19_has_symptomssingle choice

(yes/no)

covid19_sympt_fatigue

if covid19_admission_hospital = yes AND
covid19_confirmed_case = no, then fail

Nonesingle choice

(yes/no)

covid19_admission_hospital

if age_years < 0 OR age_years > 110, then
fail, else pass

NoneIntegerage_years

if (ms_onset_date > ms_diagnosis_date)
OR (ms_onset_date > covid19_suspect-
ed_onset), then fail, else pass

ms_diagnosis_date covid19_suspect-
ed_onset

yyyy-mm-ddms_onset_dateb

if edss_value < 0 OR edss_value > 10, then
fail

NoneNumber (0.0, 10.0)edss_valuec

if type_dmt = null AND

type_dmt_other = null

AND current_dmt = yes, then fail, else pass

NoneSingle choicetype_dmtd

if has_comorbidities = null AND
any_com_xx = yes, then

set has_comorbidities = yes (for analysis)

Nonesingle choice

(yes/no)

has_comorbidities

a67 more checks have been performed, but these checks are not presented in this table.
bMS: multiple sclerosis.
cEDSS: Expanded Disability Status Scale.
dDMT: disease-modifying therapy.

Data Integration
The quality-checked data acquired within each stream are stored
distinctly, emphasizing the discrete nature of their origins.
Consequently, the challenge emerges not just from the
acquisition but notably from the critical task of integrating these
separate data sets. To derive comprehensive insights, there was
a paramount need to coalesce these distinct data sets into a
singular unified structure. In the ensuing sections, we outline
the process employed to achieve this integration and present a
harmonized analytical framework.

Consider xi = (xi,1, …., xi,k) to be the list of control and response
variables of patient i used in the downstream statistical analysis.
N indicates the total number of patient records and K represents
the number of variables of interest. For each variable type, we

define a list of nonoverlapping ranges ∑k = σk
1, σk

2,…, σk
jk that

partitions the domain of each variable into distinct categories,
that is, each variable xi,k can be categorized into a variable yi,k

by defining yi,k = j ≡ xi,k ∈σk
j with j ∈ {1,…,jk}. The data

extracted from the federated model sharing registries were then
converted into a multivariate contingency table (S) of the patient
counts for all combinations of all variables—that is, S = {(σ0,

σ1,…, σK,c): σK∈∑k,c = ∑i=1
NI [xi,0 ∈σ0, xi,1 ∈σ1,…,xi,k ∈σk ]},

where I[.] is the indicator function.

This set is conveniently represented as a table by considering
each element of the set as a row and the columns consisting of
different variable names and patient counts. This table was
subsequently stored on the central platform. The same
computation was performed on the direct entry and core data
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set, as the raw data were available on the central platform,
resulting in their specific binned count tables. Finally, all data
sources were aggregated by combining their respective binned
counts representation S. The aggregation was performed by
adding the patient counts of each data source for each subgroup
of variables. Then, the aggregate set was expanded into a more
extended table by repeating each row several times equal to the
patient count of that specific row, which resulted in a table X

∈RN×K, with K as the number of variables used in the analysis
and N as the number of patients.

Data Analysis
Following the careful integration of a diverse data set, the pivotal
challenge lay in deriving actionable insights. The GDSI analysis
pipeline was uniquely engineered to remain agnostic to specific
clinical research inquiries. Its versatile design permitted any
statistical analysis to be executed based on the variables outlined
in the data integration table. The efficacy of this approach is
exemplified by its application to various research questions, as
highlighted in [7,16,17,19]. The analytical approach
implemented by Simpson-Yap and colleagues [7] was adopted
for the purpose of this paper. A multilevel mixed-effects logistic
regression was employed to analyze the aggregated data table.
This was performed to assess the association between
disease-modifying therapies (DMTs) and several outcomes,
including hospitalization, intensive care unit admission,
ventilation, and death, while adjusting for variables such as age,
sex, MS phenotype, and disability score. The goal of this
evaluation was to determine the impact of MS-specific therapies
on the severity of COVID-19. This statistical model provided

a fine understanding of the complex relationship between these
therapies and disease outcomes.

Results

Data Acquisition
Using the pragmatic 3-layer approach of GDSI, we obtained
the largest cohort of people with MS infected with COVID-19.
The data were collected from 80 countries, with the top 10
contributing countries being the United States (3157/11,284,
27.97%), Australia (1639/11,284, 14.52%), Spain (949/11,284,
8.41%), Sweden (949/11,284, 8.41%), Germany (765/11,284,
6.77%), Argentina (525/11,284, 4.65%), Brazil (451/11,284,
3.99%), Turkey (424/11,284, 3.75%), Denmark (201/11,284,
1.78%), and the United Kingdom (190/11,284, 1.68%), which
accounted for over 80% of the total number of records. Via
direct entry, data were collected from 67 countries, with Spain
contributing the largest number of records (758/1383, 54.80%),
followed by the Netherlands (95/1383, 6.86%), United Kingdom
(80/1383, 5.78%), United States (53/1383, 3.83%), Australia
(40/1383, 2.89%), and 62 other countries (357/1383, 25.81%),
resulting in a total of 1383 records. Data were collected from
18 different registries worldwide. Fourteen of these participated
in core data set sharing, contributing to 6374 records.
Meanwhile, 4 used the federated model sharing approach,
contributing to an additional 3527 records. Table 2 enumerates
these data sources. Figure 4 summarizes the number of records
acquired at each stream of the data acquisition pipeline. Data
acquired through direct entry have been released and are
accessible through the associated PhysioNet repository [35].

Table 2. Data acquisition summary in the global data sharing initiative (N=11,284).

Values, n (%)Method of data sharing

1383 (12.26)Direct entry

6374 (56.49)Core data set sharing

3527 (31.26)Federated model sharing
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Figure 4. Summary of the data acquired by implementing the 3-layer data acquisition. (A) Federated registries contribute to 31.26% (3527/11,284) of
the data, while core data set sharing accounts for 56.49% (6374/11,284). (B) Only 22% (4/18) of the registries participated as federated registries. (C)
A summary of the top 10 countries contributing data.

Data Analysis
Within the data analysis conducted to assess the impact of
different DMTs on COVID-19 severity [7], random effects were
grouped by data sources. The following variables were used:
age, sex, MS phenotype, disability score, DMTs, and COVID-19
severity. Age was categorized in the following ranges: Σage =
(18-50 years, 50-70 years, >70 years). Sex was binarized into
male and female. MS phenotype was binarized into
relapsing-remitting MS and progressive MS. The disability
score was dichotomized into ΣExpanded Disability Status Scale =
(0,6),(6,10). DMTs were categorized into ΣDMT = (untreated,
alemtuzumab, cladribine, dimethyl fumarate, fingolimod,
glatiramer acetate, interferon, natalizumab, ocrelizumab,
rituximab, teriflunomide, and other). COVID-19 severity was
categorized into Σseverity = (hospitalization, intensive care unit
admission, ventilation, death). Compared to patients using all
other DMTs, those using rituximab had a higher risk of
hospitalization (adjusted odds ratio [aOR] 2.76, 95% CI
1.87-4.07), intensive care unit admission (aOR 4.32, 95% CI
2.27-8.23), and artificial ventilation (aOR 6.15, 95% CI
3.09-12.27). Ocrelizumab showed similar trends for
hospitalization (aOR 1.75, 95% CI 1.29-2.38) and intensive
care unit admission (aOR 2.55, 95% CI 1.49-4.36) but not
ventilation (aOR 1.60, 95% CI 0.82-3.14). Neither rituximab
(aOR 1.72, 95% CI 0.58-5.10) nor ocrelizumab (aOR 0.73, 95%
CI 0.32-1.70) were significantly associated with the risk of
death. A comprehensive report of these findings can be found
in Simpson-Yap et al [7].

Discussion

Insights From the GDSI Study on MS and COVID-19
The COVID-19 pandemic underscored a pressing need to
understand its effect on people with MS. Recognizing the
criticality of solid evidence for disease management, a global
strategy involving neurologists, patients, and registries was
adopted. This collaborative approach paved the way for GDSI’s
formation and the development of an end-to-end RWD analysis
pipeline. Through this effort, GDSI emerged as the most
comprehensive federated international cohort of people with
MS impacted by COVID-19, becoming an invaluable resource
for informed decision-making. Nevertheless, deriving
conclusions from such data initiatives requires careful
consideration of the inherent limitations of observational study
designs. These studies provide unparalleled real-world insights,
but it remains essential to situate the data within the confines
of each study’s specific limitations, especially when drawing
from post hoc analyses based on existing information [36].
Although GDSI showcased significant advancements, challenges
inherent to its structure and execution were encountered. In this
section, these challenges are delineated, encompassing aspects
from data collection and analysis to concerns of interoperability,
data quality, governance, data sharing, and privacy. By exploring
these areas, insights are provided to optimize future initiatives
and fully harness the potential of RWD in the context of global
collaborative learning.
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Challenges and Solutions in Data Interoperability,
Quality, and Governance
Interoperability and handling heterogenous data formats
presented significant hurdles for GDSI. To counteract these
challenges, a study-specific data dictionary was created.
However, more advanced standardization methods such as a
common data model [37], including Fast Healthcare
Interoperability Resources [38] and Observational Medical
Outcomes Partnership [39], could further enhance
standardization, making it more generalized and disease-agnostic
[40,41]. Building on the necessity for standardization, the
significance of data quality has been universally recognized in
health care, as also highlighted by various studies [42-45]. In
tandem with standardization efforts, GDSI integrated an
automated data quality assessment framework into its data
acquisition process. However, the adoption of a generalized
framework such as [46] can serve as a blueprint for enhancing
data quality across various health care contexts, providing a
more structured format to ensure reliability and precision. As
GDSI confronted challenges related to interoperability and data
quality, the initiative also had to navigate the complex landscape
of regulatory compliance. Implementing a federated governance
model, GDSI effectively addressed the existing needs but
simultaneously revealed a gap for a data governance model in
health care, namely, the absence of implementations specifically
tailored for a federated framework [47]. A more universal data
governance model such as the one proposed by Peregrina et al
[48] could potentially fill this gap, enhancing both organizational
efficiency and the quality of analytical models.

Embracing Federated Model Sharing and Privacy
Concerns
Although federated model sharing offers a unique approach to
draw insights from patient-level data, it is worth acknowledging
that even the impersonal shared statistics inherently encode
some information [49]. However, these potential risks are
managed under the strict supervision of GDSI, which operates
within a rigorously regulated and controlled environment with
trusted partners. To further mitigate risks, the data custodians
in the federated model sharing underwent a formal assessment
of privacy risks after running the script and before sharing the
aggregated data with the central platform. This additional layer
of scrutiny ensured that any potential privacy concerns were
addressed prior to data dissemination. Potential risks and their
mitigation strategies were transparently communicated to all
data providers via a clear analysis plan, thereby striking a robust
balance between efficient data use and strict privacy and security
standards. Although GDSI’s federated model sharing has proven
successful, it falls short in one crucial area: iterative
asynchronous communication. This oversight leads to the
introduction of federated learning [50], a methodology wherein
a machine learning algorithm extracts knowledge from a variety
of locally stored data without the need to transfer raw data
enabling deploying sophisticated analysis [51]. Nonetheless, it
is vital to recognize the associated risks and challenges.
Federated learning or, in general, federated model sharing is
not invulnerable to attacks [52,53] or privacy breaches [49].

Considering these risks, it might be necessary to re-evaluate
GDSI’s current assumptions of trustworthiness, inquisitiveness,
and nonantagonistic behavior among all participants for a wider
scope of application. Incorporating privacy-preserving
algorithms such as differential privacy [54] and homomorphic
encryption [55] can bolster security measures, though potentially
affecting analytical performance or necessitating extensive
computational resources [56]. Despite these challenges,
federated learning has shown promise in a range of studies
[57-61]. However, most of these analyses were tailored to
specific use cases. There remains a need for a more generalized
federated learning pipeline that can be applied broadly, rather
than being limited to project-specific applications [62].

Recognizing the inherent risks in the federated approach, GDSI
took proactive steps to ensure privacy and build trust within the
entire pipeline. In response to concerns regarding privacy and
tool reliability, GDSI adopted privacy-by-design principles and
utilized certified toolboxes that underwent third-party
verification. This approach emphasizes the continual need for
assessment and evaluation of privacy safeguards.

Enhancing Collaboration: User Engagement in the
GDSI Pipeline
As GDSI delved deeper into privacy and security measures, it
became evident that an improved user experience was pivotal
for the pipeline’s success. The intricate nature of the RWD
analysis pipeline, coupled with its limited visualization
capabilities and an initial oversight in stakeholder inclusion,
gave rise to a black box perception. Recognizing the urgent
need for better communication and more user-friendly tools,
GDSI instituted a dedicated task force. This team took charge
from the study’s inception to the formulation of evidence-based
guidelines, guaranteeing that every stage aligned with the
multifaceted needs of all stakeholders. By doing so, GDSI not
only fostered trust and collaboration but also strongly resonated
with the project’s overarching principles of engagement and
transparency.

The deployment of GDSI’s user-centric interactive web
application, complemented by detailed documentation and
illustrative visuals, helped demystify the pipeline’s complexity.
By offering accessible and user-friendly tools, this approach
fostered a more nuanced stakeholder engagement, bridging the
divide between intricate operations and approachability. The
effectiveness of visualization in health care is supported by
various studies [63-66]. Tools such as Jaspersoft [67], Tableau
[68], Looker [69], Domo [70], Tibco Spotfire [71], and Power
BI [71] offer a business-level data analytics platform,
underscoring the significance of converting intricate data sets
into comprehensible visuals.

Pragmatism in GDSI: Balancing Innovation and
Adaptation
In the conceptualization and development of GDSI, striking a
balance between advanced innovation and practical inclusivity
was paramount. This principle was clearly manifested in the
design of the data acquisition architecture. Typically, health
care frameworks gravitate toward a federated or centralized
model. Yet, GDSI embraced a hybrid strategy, seeking to cater
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to a broad spectrum of users and registries. This novel approach
marked a significant departure from the norm, merging
technological advancement with operational flexibility.

However, with innovation comes challenges. Although GDSI’s
analysis pipeline presents a viable technical solution for
collaborative health care learning, it also grappled with broader
societal challenges. One salient example was the
containerization strategy. Initially promising, it met resistance
from certain federated model–sharing registries because of their
internal policies. Such challenges underscore the ever-present
demand for adaptability amid rapid technological shifts.
However, GDSI responded proactively, making the source code
available and bolstering it with a comprehensive manual and
robust support. Such measures exemplify GDSI’s commitment
to reconciling groundbreaking advancements with real-world
constraints.

This commitment extended beyond technical challenges. The
global reach of GDSI emphasized the importance of resource
efficiency, especially in regions with limited internet
connectivity. In striving for a global impact, GDSI reiterated
its pledge to balance technological progress with practical
considerations across diverse geographies. In light of these
experiences, one thing becomes clear for the success of
initiatives like GDSI: continuous education, proactive
stakeholder engagement, and evidence-based demonstrations
in controlled environments are not just beneficial, but they are
essential.

GDSI as a Blueprint for Data-Sharing Initiatives in
Biomedical Research
GDSI emerged as a pragmatic blueprint for interdisciplinary
biomedical research. The meticulous planning and systematic
execution of the initiative showcased how strategic processes
can serve as foundational guides for upcoming biomedical
consortia. The open-source resources GDSI provides
[23,25,29,30,32,34,35,72-74] can be directly leveraged and
adjusted after thorough assessment and evaluation. These
resources bifurcate into 2 main categories: disease-agnostic and
disease-specific components.

Within the context of disease-agnostic components, the
architecture of GDSI’s end-to-end data analysis pipeline stands
out, highlighting its modularity and adaptability. This pipeline’s
design facilitates significant customization, catering to various
data acquisition streams. The hybrid nature of the data
acquisition module allows initiatives to choose one or a
combination of data collection methods based on their distinct
needs and policies. Additionally, GDSI’s data integration
framework plays a crucial role in amalgamating these diverse
data sources into a unified and comprehensive data set. Together,
these components offer a versatile foundation that other
biomedical initiatives can adapt and leverage according to their
specific requirements.

Turning to disease-specific components, aspects like the data
dictionary and data quality assessments were designed primarily
for the research question centered around MS and COVID-19.
Even though these components are specialized, they act as
guiding principles for other research ventures. The data
dictionary, augmented by its metadata, provides a robust
foundation for the next phases of the pipeline. It offers a detailed
account of acquisition variables and sets clear data quality
criteria. A significant point to note is that the data dictionary
aids in determining the rules for data quality assessments,
presenting a methodical approach to data validation. This
thorough approach emphasizes the importance of precise
planning and specificity when delving into disease-focused
research questions, setting an example for other initiatives to
follow.

To conclude, the flexibility and adaptability inherent in GDSI’s
comprehensive data analysis pipeline coupled with its
disease-specific components meld to present a versatile tool for
crafting sturdy data architectures across a spectrum of
biomedical research landscapes. Those seeking a deeper
understanding and guidance on harnessing and replicating
GDSI’s capabilities can refer to Multimedia Appendix 3, which
offers a detailed roadmap based on GDSI’s experiences and
insights, a flowchart tracing the initiative from its inception to
its research question resolutions, and guidance on replicating
GDSI’s federated model sharing infrastructure. A graphical
abstract delineating the high-level architecture of this study is
presented in Multimedia Appendix 4, which provides additional
insights regarding the architectural framework.

Conclusion
GDSI had substantial impact that extended beyond its initial
focus on COVID-19 and MS. It contributed to numerous
scientific publications and played a pivotal role in shaping global
guidelines for the community with MS [7,9,16-19]. This
underscores the vast potential of data-driven collaborative efforts
to yield improved health care outcomes. A cornerstone of
GDSI’s success was its RWD analysis pipeline. Crafted to
navigate technical, epidemiological, and sociological challenges,
this pipeline facilitated the seamless integration of varied data
streams into a single data set. This cohesive strategy enabled
large-scale collaborative research and offered the flexibility to
accommodate the diverse policies, regulations, and needs of
various data providers. Serving as a practical blueprint, GDSI
addressed not only current health care challenges but also laid
the groundwork for future initiatives. Its hybrid approach to
data acquisition and analysis provided a scalable framework
applicable to other health care sectors. In doing so, GDSI stands
as a compelling example of how data sharing and collaborative
learning can meaningfully advance health care research, going
beyond the specific challenges of MS and COVID-19.
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