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Abstract

This paper presents a quadratic one-step bootstrap method for binary response data. Rather than

resampling from the original sample, the proposed method resamples summands appearing in the

quadratic approximation of the estimates. It enjoys the same computational simplicity as its linear

analogue while being more accurate. Moreover it allows the construction of a bias corrected estimator

and improved confidence intervals. A small simulation study illustrates the improved finite sample

behaviour for binary response data.

Key Words: Bias correction; Bootstrap confidence interval; One-step bootstrap; Logistic regression.

1 Introduction

It is well-known that the bootstrap can be very computer-intensive, especially if no analytic method

can be used and simulation based approximations are required. In cases where the computation of

the estimators requires iterations, the one-step linear bootstrap can be applied to save computer time.

It is a simple and attractive method based on a linear representation of the estimators. Instead of

calculating thousands of bootstrap estimates iteratively, the one-step approach uses only one step

of the iterative process. The original idea is due to Schucany and Wang (1991), see also Shao and

Tu (1995, Section 5.4.7) or Davison and Hinkley (1997).

Although the one-step linear method is asymptotically equivalent to the fully iterative one, our

experience in the setting of binary response data showed to interpret its results with care. Compared

to the normal based confidence intervals, the linear one-step bootstrap tends to produce shorter

confidence intervals but simulations show an equivalent decrease in coverage probability. Also, by

definition, the one-step approach is not able to detect the bias of the estimator. These shortcomings

seem to be greatly eliminated by the one-step quadratic bootstrap, which allows the construction of a

bias corrected estimator and improved confidence intervals.
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The quadratic bootstrap is based on a quadratic approximation of the estimator and has been

studied in Aerts and Claeskens (2001) for hypotheses tests. This paper focuses on the use of this

improved one-step bootstrap approach to sharpen estimators in terms of bias and mean squared error

and to improve interval estimation. The context of logistic regression is a particularly interesting

and instructive application area for this method, even though we wish to stress that the scope of the

one-step quadratic bootstrap is much broader than logistic modeling.

The paper is organized as follows. In the next section, we introduce the quadratic one-step boot-

strap method and prove its consistency. In Section 3 we show how to use the quadratic bootstrap to

define a bias corrected estimator, and how to implement a double bootstrap algorithm to estimate

the variance of a bias corrected estimator. In Section 4 we construct improved confidence intervals, of

which the finite sample performance is illustrated by a simulation study.

2 The quadratic one-step bootstrap

2.1 Estimation in logistic regression

Let Yi1, . . . , Yini be independent identically distributed Bernoulli random variables with probability

function fi(y) = πy
i (1 − πi)1−y, y ∈ {0, 1}, i = 1, . . . , p. Associated populations in the context of

logistic regression correspond to different covariate levels xi. Let ni be the number of replications at

xi, and let yij indicate whether the jth outcome in population i is a “success” or not. The number p of

possibly different (associated) populations is considered as fixed whereas the number ni of observations

from the distinct populations become large as n =
∑p

i=1 ni tends to infinity, according to ni/n → λi

where
∑p

i=1 λi = 1 with λi > 0. Logistic regression implies modeling the success probability πi as a

function of xi by model parameters θ = (θ1, . . . , θr). For example, in a linear logit model (r = 1)

ln(πi/(1 − πi)) = θ0 + θ1xi, i = 1, . . . , p.

Maximum likelihood inference for associated populations is based on r dimensional score functions

ψi(y, t) = ∂
∂t log fi(y, t), where the “true” parameter θ is defined as the solution to

p∑

i=1

λiE[ψi(Yi1;θ)] = 0. (1)

Solving the system of equations
p∑

i=1

ni∑

j=1

ψi(Yij ;θ) = 0, (2)

leads to the estimator θ̂n for θ.
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More specifically, the score vector for linear logistic regression is given as follows:

ψi(y;θ) =




p∑

i=1

ni∑

j=1

yij − 1/(1 + exp{−(θ0 + θ1xi)}),

p∑

i=1

ni∑

j=1

yijxi − xi/(1 + exp{−(θ0 + θ1xi})




t

.

For logistic regression, bootstrap procedures based on Pearson’s residuals have been studied in

Simonoff and Tsai (1988), Moulton and Zeger (1989,1991) and Lee (1990). Here, we propose to

resample the score and the differentiated score values.

2.2 One-step bootstrap estimation

Based on a linear approximation, we define a bootstrap replicate of θ̂n as

θ̂
∗
n = θ̂n −




p∑

i=1

ni∑

j=1

ψ̇
∗
ij(θ̂n)




−1
p∑

i=1

ni∑

j=1

ψ∗
ij(θ̂n) (3)

where, for each i = 1, . . . , p, (ψ∗
ij(θ̂n), ψ̇

∗
ij(θ̂n)), j = 1, . . . , ni is a sample with replacement from the

set
{(
ψi(Yij , θ̂n), (∂/∂θ)ψi(Yij , θ̂n)

)
, j = 1, . . . , ni

}
.

Note that ψi(Yij, θ̂n) is a r× 1 vector and (∂/∂θ)ψi(Yij, θ̂n) is a r× r matrix. A similar linearization

idea is used in simulation approaches for the bootstrap, as the linear bootstrap (Davison, Hinkley and

Schechtman, 1986) and the one-step bootstrap (Schucany and Wang, 1991). For linear models where

Y = Xβ + ε, the idea of resampling scores has also been proposed by Hu and Zidek (1995).

The rationale behind the semiparametric bootstrap resampling scheme is as follows. The first term

θ̂n at the right-hand side of (3) reflects the “true” parameter in the bootstrap world and the second

term represents the random fluctuation of the bootstrap replicate θ̂
∗
n around this value.

Definition (3) follows from a linear approximation of the score equations. One can improve on this

by including quadratic and higher order terms. A possible approach is suggested by the second and

third order efficient approximations as discussed in, e.g., Ghosh (1994). We focus attention to the

following second order approximation (simplified to one population),

0 =
n∑

j=1

ψ(Yj ,θ) +
r∑

k=1

n∑

j=1

∂

∂θk
ψ(Yj ,θ)(θ̂nk − θk)

+
r∑

k=1

r∑

`=1

n∑

j=1

∂2

∂θk∂θ`
ψ(Yj ,θ)(θ̂nk − θk)(θ̂n` − θ`) +OP (n−1/2). (4)
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By calculations similar to those of Ghosh (1994), the expansion (4) suggests the following one-step

quadratic estimator

θ̂
∗
n = θ̂n +U∗

n − 1
2




n∑

j=1

ψ̇
∗
j (θ̂n)




−1
r∑

k=1

r∑

`=1

n∑

j=1

ψ̈
∗
j (θ̂n)k,`U

∗
nkU

∗
n` (5)

with

U∗
n = −




p∑

i=1

ni∑

j=1

ψ̇
∗
ij(θ̂n)




−1
p∑

i=1

ni∑

j=1

ψ∗
ij(θ̂n).

This bootstrap estimator is based on the values (ψ∗
j(θ̂n), ψ̇

∗
j(θ̂n), ψ̈

∗
j(θ̂n)),

j = 1, . . . , n taken with replacement from the set
{(
ψ(Yj , θ̂n), (∂/∂θ)ψ(Yj , θ̂n), (∂2/∂θ∂θT )ψ(Yj, θ̂n)

)
, j = 1, . . . , n

}
.

It is expected that the last term at the right-hand side of (5) improves the representation of the

random variation about estimate θ̂n. This is confirmed in the simulation study.

Both bootstrap procedures (linear and quadratic) lead to consistent estimators for the distribution

of θ̂n. We first list the assumed regularity conditions. For k = 1, . . . , p,

(A1) The parameter space Θ is an open subset of IRr. Second order partial derivatives of ψk(y, t)

w.r.t. t exist, are continuous in y and are integrable.

(A2) There exists a function H1 such that E[H1(Y )2] < ∞ and for each j = 1, . . . , r, for each k =

1, . . . , p, (∂/∂tj)ψk(y; t) is bounded in absolute value by H1(y) uniformly in some neighborhood

of θ.

(A3) The r × r matrices

J(θ) = −
p∑

k=1

λkE{(∂/∂θk)ψk(y;θ)}

and

K(θ) =
p∑

k=1

λkE{ψk(y;θ)ψk(y;θ)
t}

exist, and K(·) is positive definite in θ.

(A4) There exists a δ > 0 and a function H2 such that E[H2(Y )] < ∞, and for each k, |ψk(y; t)|2+δ

is bounded by H2(y), uniformly in some neighborhood of θ.

(A5) For each k and `,

E

[
sup

||h||≤d
|ψk(Y ;θ + h)ψ`(Y ;θ + h) −ψk(Y ;θ)ψ`(Y ;θ)|

]

and

E

[
sup

||h||≤d

∣∣∣∣
∂

∂tk
ψ`(Y ;θ + h) − ∂

∂tk
ψ`(Y ;θ)

∣∣∣∣

]

both tend to zero as d→ 0.
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Theorem

If the above regularity conditions hold, then, for θ̂
∗
n defined by (3) or (5) and for almost all sample

paths (Y1, Y2, . . .), as n→ ∞

(i) The bootstrap estimator θ̂
∗
n converges in bootstrap probability to θ.

(ii) For any continuous function g : IRr → IRr′ (r′ ≤ r), such that the distribution function of g(Z),

with Z a r′-dimensional normal distributed random variable, is continuous, we have that

sup
t∈IRr′

∣∣∣P ∗{g(n1/2(θ̂
∗
n − θ̂n)) ≤ t} − P{g(n1/2(θ̂n − θ)) ≤ t}

∣∣∣ = o(1).

Proof. Statement (i) follows from (ii). To prove (ii), we need the strong consistency of the estimator

θ̂n as defined in (2). By classical maximum likelihood theory (as e.g. in Ferguson, 1996), it can be

shown that conditions (A1) and (A2) guarantee the strong consistency. Moreover, if in addition (A3)

holds, we have that

(
J−1

n (θ)Kn(θ)J−1
n (θ)

)−1/2
n1/2(θ̂n − θ) D→ Nr(0, Ir), (6)

where in the above expression, the r × r matrix

Jn(θ) = − 1
n

p∑

i=1

ni∑

j=1

∂

∂θ
ψi(Yij,θ)

and

Kn(θ) =
1
n

p∑

i=1

ni∑

j=1

ψi(Yij ,θ)ψi(Yij ,θ)t.

The next statements concerning bootstrap random variables hold conditionally on Y1, . . . , Yn, for

almost all sample paths Y1, Y2, . . .. The notation E∗, Var∗ and D∗ stand for, respectively, the bootstrap

expectation, variance and convergence in distribution, conditionally on Y1, . . . , Yn.

Choosing δ > 0 according to condition (A4), the strong consistency of θ̂n and (A4) imply that for

any r-dimensional vector v, having norm equal to 1,
n∑

i=1

E∗[|n−1/2vTψ∗
i (θ̂n)|2+δ] = OP (n−δ/2). (7)

The semiparametric resampling scheme is such that E∗[K∗
n(θ̂n)] = Kn(θ̂n). By an application of

Theorem 2.9 of Iverson and Randles (1989) to each of the r2 components of the matrix Kn(θ̂n),

conditions (A3), (A5) and the strong consistency of θ̂n imply that E∗[K∗
n(θ̂n)] converges to K(θ)

almost surely as n tends to infinity. Together with (7) this implies (Liapunov’s condition)
∑n

i=1E
∗[|n−1/2vTψ∗

i (θ̂n)|2+δ ]
(∑n

i=1E
∗[(n−1/2vTψ∗

i (θ̂n))2]
)1+δ/2

→ 0.

5



By the Cramér-Wold theorem it then follows that

n−1/2
n∑

i=1

ψ∗
i (θ̂n) D∗

→ N (0,K(θ)).

Applying Theorem 2.9 of Iverson and Randles once more, it can be shown that E∗[J∗
n(θ̂n)] → J(θ)

and Var∗[J∗
n(θ̂n)] = OP (n−1) such that J∗

n(θ̂n) P ∗
→ J(θ).

Combining the above results, an application of Slutsky’s theorem leads to

n1/2U∗
n

D∗
→ N (0,J (θ)−1K(θ)J(θ)−1). (8)

Statement (ii) follows from the asymptotic normality results (6) and (8) and Pólya’s theorem. Note

that for the one-step quadratic estimator, conditional on the original sample, the order of the quadratic

term is OP ∗(n−1) a.s.

3 Improved estimators

Although the estimator θ̂n obtained from (2) is asymptotically unbiased, we will show how the boot-

strap procedure using the quadratic one-step bootstrap can be used for finite sample bias correction.

3.1 Bias corrected estimation

Finite sample bias correction is often obtained by application of bootstrap methods. For some recent

literature about this subject, we refer to Kim and Singh (1998) and MacKinnon and Smith (1998). In

practical applications a large number, say B, resamples are taken, resulting in a set of B bootstrap

estimators θ̂
∗1
n , . . . , θ̂

∗B
n . From this set a bias corrected estimator is defined as

θ̂
bc
n = 2θ̂n − 1

B

B∑

i=1

θ̂
∗i
n . (9)

For bias estimation, the second order approximation turns out to be very useful, which is not com-

pletely unexpected since the bias is a second order aspect of the asymptotic properties of the estimator.

The intuition behind equation (9) should be clear. We subtract from the estimator θ̂n, the estimated

bias based on the B bootstrap replicates. The estimated bias is calculated as
∑B

i=1 θ̂
∗i
n /B − θ̂n.

Table 1 shows that the quadratic one-step bootstrap estimator is quite able to estimate the finite

sample bias.

The settings in this simulation are as follows. We generated 2000 data sets of size n = 10 and

n = 25, for each value of x, from a logistic regression model

logit{P (Y = 1)} = β0 + β1x,
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with (β0, β1) equal to (-1,-1), (-2.5, 1) or (-2.5, 2), and x = 0, 0.25, 0.5 and 1. For each of these

2000 data sets we constructed 1000 one-step quadratic bootstrap replicates, the latter were used to

obtain the bias corrected estimates (β̂bc
0 , β̂

bc
1 ). There were some numerical problems with obtaining the

original estimates (β̂0, β̂1); the number of generated sets of data without these problems is indicated

in Table 1 (conv).

An important observation is that the bias correction even decreases the variance, as the simulated

standard deviation σ(β̂bc
0 ) and σ(β̂bc

1 ) are, for all settings in this study, smaller than the corresponding

simulated values of σ(β̂0) and σ(β̂1) for the non-bias corrected estimators, respectively. In fact, the

reduction in Mean Squared Error (MSE) is quite spectacular. Note that this reduction is much larger

for the smallest sample size n=10 than for the setting where n=25. The explanation for this is the

finite sample bias which is less severe for larger samples, hence in those samples, there is less need for

bias correction.

β0 = −1 β0 = −2.5 β0 = −2.5

β1 = −1 β1 = 1 β1 = 2

n = 10 n = 25 n = 10 n = 25 n = 10 n = 25

conv. 1992 2000 1895 1997 1967 2000

E(β̂0) -1.019 -1.020 -2.604 -2.582 -2.695 -2.599

E(β̂bc
0 ) -0.978 -1.006 -2.360 -2.486 -2.459 -2.513

σ(β̂0) 0.645 0.375 0.889 0.611 0.914 0.559

σ(β̂bc
0 ) 0.588 0.362 0.724 0.554 0.758 0.519

MSE(β̂bc
0 )

MSE(β̂0)
0.833 0.933 0.679 0.807 0.660 0.835

E(β̂1) -1.265 -1.070 0.889 1.027 2.152 2.096

E(β̂bc
1 ) -1.043 -0.988 0.852 1.001 1.959 2.022

σ(β̂1) 1.511 0.795 1.555 0.908 1.303 0.779

σ(β̂bc
1 ) 1.314 0.747 1.297 0.836 1.119 0.735

MSE(β̂bc
1 )

MSE(β̂1)
0.734 0.875 0.701 0.846 0.728 0.878

MSE(
ˆβ

bc
)

MSE(
ˆβ)

0.749 0.885 0.696 0.834 0.705 0.863

Table 1: Simulated mean, standard deviation and mean squared error values of original (β̂0, β̂1) and

bias corrected (β̂bc
0 , β̂

bc
1 ) estimators.
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3.2 Double bootstrap and variance estimation

Since the bias corrected estimator seems to have interesting properties, we also study its distribution.

This estimator is already based on a bootstrap resampling scheme, therefore we will need a second

bootstrap stage to obtain this extra amount of information. The double bootstrap procedure reads as

follows.

1. Using a nonparametric resampling scheme, that is, resample the pairs of data directly, we con-

struct a set of bootstrap estimators. In the same way as described before, using the one-step

quadratic bootstrap, perform a bias correction, and next, construct the bias corrected estimator.

2. To study the distribution of the resulting estimator, we construct from each of the resampled

data new bootstrap estimators via the one-step quadratic bootstrap. These values can now be

used to compute the estimator’s variance, quantiles, etc.

Table 2 illustrates how a double bootstrap method is used to get estimators for the variance of

the bias corrected estimator. We restrict attention to the slope parameter and to samples of size

10. It seems that all variance estimators somewhat underestimate the true variability. The double

bootstrap variance estimator however is clearly less variable which leads to a substantial reduction in

mean squared error.

We now list some details on the results of the simulation study presented in Table 2. The design

of the covariate x is the same as in the previous setting. The number of simulated data sets equals

500, and for each simulated data set we used 500 replicates for the outer and 250 replicates for the

inner bootstrap loop. This table contains information about the variability of the variance estimators.

The simulated mean of all three estimators for the standard deviation is everywhere smaller than the

simulated standard deviation σ(β̂1). In this simulation we observe the following ordering:

σ(β̂1) ≥ E[σ̂(β̂1)] ≥ E[σ̂(β̂bc
1 )].

4 Bootstrap confidence intervals

4.1 Construction of the intervals

Confidence intervals for the parameter θ can be derived from the asymptotic normality result by

using the Wald statistic as a pivot. Next to this classical approach, the appropriate quantiles can

also be selected from the bootstrap approximation to the asymptotic distribution. In this section we

8



β0 = −1 β0 = −2.5 β0 = −2.5

n = 10 β1 = −1 β1 = 1 β1 = 2

conv. 499 480 493

σ(β̂1) 1.511 1.555 1.303

E(σ̂(β̂1)) 1.320 1.514 1.258

Var(σ̂(β̂1)) 0.171 0.203 0.082

MSE(σ̂(β̂1)) 0.207 0.205 0.084

σ(β̂bc
1 ) 1.314 1.297 1.119

E(σ̂(β̂bc
1 )) 1.247 1.103 1.067

Var(σ̂(β̂bc
1 )) 0.136 0.101 0.022

MSE(σ̂(β̂bc
1 )) 0.141 0.138 0.025

Table 2: Simulated mean, variance and mean squared error values of double bootstrap variance esti-

mators of β̂1 and of the bias corrected estimator β̂bc
1 .

construct bootstrap confidence intervals from the so-called hybrid bootstrap (see, e.g., Shao and Tu,

1995, Sections 4.1 and 4.2). A 100(1 − α)% confidence interval for the parameter θ is defined as

{θ : z∗L ≤
√
n(θ̂n − θ) ≤ z∗R}

where z∗L is the 100α/2% and z∗R is the 100(1 − α/2)% quantile of the distribution of
√
n(θ̂

∗
n − θ̂n).

In the following section, confidence intervals based on the quadratic one-step bootstrap estimator are

compared to the normal-based intervals.

4.2 Simulation results

Data are generated from the following logistic model:

logit{P (Y = 1)} = θ0 + θ1x,

where x belongs to {0, .25, .5, 1}, θ0 is -1.5 or -2.5; θ1 takes values in {1,2} and the sample size varies

between 10 and 25 observations per covariate level. For each simulated data set, 1000 bootstrap

estimators are constructed.

For 1000 simulated data sets, Table 3 shows the mean lengths of the confidence intervals for the

slope parameter for both the normal and the bootstrap procedures. Intervals are constructed at the

90%, 95% and 99% confidence level. Since it turned out that the bootstrap intervals were everywhere

shorter than their classical counterparts, the table also shows the percentage of reduction in length.
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The most important observation is that the bootstrap intervals all have significantly smaller length

for all the situations considered in this simulation setting. Moreover, as shown in Table 4, also their

coverage probability is usually somewhat higher.

Except for the smallest sample size and θ0 = −2.5 where the coverage probabilities are too small

for the quadratic bootstrap, the quadratic bootstrap performs extremely well. Note that in those cases

the reduction in length of the confidence intervals is enormous: even up to 16%. We should interpret

these results with care, since exactly for these extreme cases, the number of convergences is smaller.

The reason for this is not directly clear. Possibly the number of events was very small in those cases,

which caused some extreme situations to lead to divergent estimators.

Normal approx. Quadratic one-step Bootstrap Linear one-step Bootstrap

n 90% 95% 99% 90% 95% 99% 90% 95% 99%

θ0 = −2.5, θ1=1

10 4.38 5.22 6.87 4.03 (8.1%) 4.70 (10%) 5.79 (16%) 4.17 (5.0%) 5.10 (2.4%) 6.65 (3.1%)

15 3.76 4.48 5.88 3.53 (6.0%) 4.16 (7.0%) 5.30 (10%) 3.67 (2.4%) 4.43 (9.9%) 5.84 (0.7%)

25 2.80 3.34 4.39 2.71 (3.5%) 3.22 (3.7%) 4.20 (4.5%) 2.78 (0.9%) 3.32 (0.6%) 4.38 (0.1%)

θ0 = −2.5, θ1=2

10 3.97 4.73 6.21 3.76 (5.3%) 4.40 (6.9%) 5.61 (9.7%) 3.87 (2.4%) 4.62 (2.2%) 6.06 (2.5%)

15 3.20 3.81 5.00 3.07 (4.0%) 3.64 (4.3%) 4.69 (6.2%) 3.15 (1.5%) 3.76 (1.3%) 4.93 (1.4%)

25 2.45 2.92 3.84 2.39 (2.5%) 2.84 (2.8%) 3.70 (3.6%) 2.43 (0.9%) 2.90 (0.8%) 3.81 (0.7%)

θ0 = −1.5, θ1=1

10 3.40 4.05 5.32 3.27 (3.7%) 3.87 (4.4%) 4.98 (6.4%) 3.34 (1.8%) 3.97 (2.0%) 5.77 (2.8%)

15 2.70 3.21 4.23 2.63 (2.3%) 3.13 (2.6%) 4.07 (3.6%) 2.67 (1.2%) 3.18 (1.2%) 4.15 (1.7%)

25 2.05 2.44 3.21 2.03 (1.2%) 2.41 (1.4%) 3.16 (1.7%) 2.04 (0.6%) 2.43 (0.7%) 3.19 (0.8%)

θ0 = −1.5, θ1=2

10 3.40 4.05 5.32 3.25 (4.2%) 3.82 (5.7%) 4.82 (9.5%) 3.34 (1.8%) 3.95 (2.4%) 5.13 (3.7%)

15 2.69 3.20 4.21 2.62 (2.6%) 3.09 (3.4%) 3.96 (5.7%) 2.65 (1.3%) 3.15 (1.6%) 4.11 (2.2%)

25 2.04 2.44 3.20 2.01 (1.4%) 2.39 (2.0%) 3.10 (3.2%) 2.03 (0.6%) 2.41 (0.9%) 3.16 (1.2%)

Table 3: Simulated mean length (reduction in length) of confidence intervals for the slope parameter

in a linear logistic regression model.

Table 3 also shows the reduction in length of confidence intervals for the slope parameter in a

linear logistic regression model when the linear one-step bootstrap is applied. It clearly demonstrates

the need of the quadratic approximation, for which the results are everywhere superior to those of
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Normal approx. Quadr. Bootstrap Linear Bootstrap

n conv 90% 95% 99% 90% 95% 99% 90% 95% 99%

θ0 = −2.5, θ1=1

10 ( 944) 84.32∗ 91.00∗ 97.24 87.92 91.10∗ 94.81∗ 80.08∗ 88.77∗ 93.96∗

15 ( 993) 88.82 94.26 98.79 92.15 96.07 98.59 85.60∗ 90.74∗ 96.88∗

25 ( 997) 88.16 93.58 98.60 91.57 96.19 99.20 86.46∗ 92.68∗ 97.89∗

θ0 = −2.5, θ1=2

10 ( 985) 91.47 96.14 99.29 93.81• 96.55 98.78 86.70∗ 92.49∗ 98.29

15 ( 997) 88.67 94.88 98.80 90.97 96.19 99.70 86.36∗ 93.48 97.89∗

25 (1000) 90.60 95.20 99.30 92.20 96.00 99.70 89.20 94.10 98.50

θ0 = −1.5, θ1=2

10 (1000) 89.30 94.40 99.30 93.00• 97.10• 99.70 87.10∗ 92.50∗ 97.00∗

15 (1000) 88.20 94.00 98.90 91.10 95.90 99.60 86.70∗ 92.70∗ 97.80∗

25 (1000) 87.90 94.50 99.40 90.50 96.40 99.60 87.50∗ 93.50 98.80

θ0 = −1.5, θ1=2

10 (1000) 89.10 94.70 99.50 93.00• 96.40 99.50 85.70∗ 91.20∗ 97.00∗

15 (1000) 91.20 95.90 99.50 93.00• 96.90• 99.50 89.50 95.00 98.80

25 (1000) 89.00 94.60 99.30 89.10 95.30 99.30 88.60 94.40 98.50

Table 4: Simulated coverage probabilities (as %) of confidence intervals for the slope parameter in

linear logistic regression model. A ∗ indicates a too small, and • a too large number, according to the

0.01 level.
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the linear approximation. There still is a reduction in length of the confidence intervals when the

linear one-step bootstrap is applied, but in Table 4 we see that the coverage probabilities decrease

too! For most of the settings in this simulation study, the coverage probabilities are much too small

for the linear bootstrap, while they are within the range of allowable values (at 1%) for the normal

approximation. As a summary, in these settings, the linear bootstrap performs worse than the much

simpler normal approximation, this in contrast to the quadratic bootstrap, which outperforms both.

5 Discussion

It should be clear that the applications of the one-step bootstrap method are not restricted to those

shown here. There are various situations in which this resampling technique can be used. In its full

generality, the quadratic bootstrap is applicable in any setting where the estimating functions ψ(·,θ)

satisfy the regularity conditions, in particular, they need to possess at least two continuous derivatives

with respect to θ, this to ensure the validity of the quadratic expansion.

Although presented here for a full likelihood model, the one-step quadratic bootstrap can be

applied for estimation by means of generalized estimating equations (GEE), which can, for example,

easily include ways to deal with overdispersion in the data.

Non- and semiparametric models such as for example local polynomial estimation and regression

spline smoothing are another area of application. After specification of the suitable estimating function

ψ, the bootstrap method proceeds as shown above. For an application of a one-step linear bootstrap

method for local polynomial estimation, we refer to Claeskens and Aerts (2000).
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