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MOTIVIC ATIYAH-SEGAL COMPLETION THEOREM

GONÇALO TABUADA AND MICHEL VAN DEN BERGH

Abstract. Let T be a torus, X a smooth quasi-compact separated scheme equipped with a T -action,
and [X/T ] the associated quotient stack. Given any localizing A1-homotopy invariant of dg categories
E (homotopy K-theory, algebraic K-theory with coefficients, étale K-theory with coefficients, l-adic al-

gebraic K-theory, l-adic étale K-theory, (real) semi-topological K-theory, topological K-theory, periodic
cyclic homology, etc), we prove that the derived completion of E([X/T ]) at the augmentation ideal I of
the representation ring R(T ) of T agrees with the classical Borel construction associated to the T -action on
X. Moreover, for certain localizing A1-homotopy invariants, we extend this result to the case of a linearly
reductive group scheme G. As a first application, we obtain an alternative proof of Krishna’s completion
theorem in algebraic K-theory, of Thomason’s completion theorem in étale K-theory with coefficients, and
also of Atiyah-Segal’s completion theorem in topological K-theory (for those topological M -spaces Xan aris-
ing from analytification; M is a(ny) maximal compact Lie subgroup of Gan). These alternative proofs lead
to a spectral enrichment of the corresponding completion theorems and also to the following improvements:
in the case of Thomason’s completion theorem the base field k no longer needs to be separably closed, and in
the case of Atiyah-Segal’s completion theorem the topological M -space Xan no longer needs to be compact
and the M -equivariant topological K-theory groups of Xan no longer need to be finitely generated over
the representation ring R(M). As a second application, we obtain new completion theorems in l-adic étale
K-theory, in (real) semi-topological K-theory and also in periodic cyclic homology. As a third application,
we obtain a purely algebraic description of the different equivariant cohomology groups in the literature
(motivic, l-adic, (real) morphic, Betti, de Rham, etc). Finally, in two appendixes of independent interest,
we extend a result of Weibel on homotopy K-theory from the realm of schemes to the broad setting of
quotient stacks and establish some useful properties of (real) semi-topological K-theory.

1. Statement of results

A differential graded (=dg) category A, over a base field k, is a category enriched over complexes of k-vector
spaces; consult Keller’s survey [27]. Every dg k-algebra A gives naturally rise to a dg category. Another
source of examples is provided by schemes (or, more generally, by algebraic stacks) since the category of
perfect complexes perf(X) of every k-scheme X (or algebraic stack) admits a canonical dg enhancement
perfdg(X); consult [27, §4.6] and §3. Let us denote by dgcat(k) the category of (small) dg categories and
by dgcat(k)∞ the associated ∞-category of dg categories up to Morita equivalence; consult [27, §4.6] for the
notion of Morita equivalence and Lurie’s monographs [33, 34] for the language of ∞-categories.

An ∞-functor E : dgcat(k)∞ → D, with values in a stable presentable ∞-category D, is called a localizing
A1-homotopy invariant if it satisfies the following three conditions:
(C1) it sends the short exact sequences of dg categories 0 → A → B → C → 0 in the sense of Drinfeld/Keller

(consult [13][29][27, §4.6]) to cofiber sequences E(A) → E(B) → E(C).
(C2) it sends the canonical dg functors A → A[t], where A[t] := A⊗ k[t], to equivalences E(A) → E(A[t]).
(C3) it preserve filtered colimits or it factors through an ∞-functor which preserve filtered colimits and which

satisfies condition (C1).
Examples of localizing A1-homotopy invariants include homotopy K-theory, algebraic K-theory with co-
efficients, étale K-theory with coefficients, l-adic algebraic K-theory, l-adic étale K-theory, (real) semi-
topological K-theory, topological K-theory, periodic cyclic homology, etc; consult §2 for details. All these
examples preserve filtered colimits except periodic cyclic homology; see §2.8.

Notation 1.1. In order to simplify the exposition, given an ∞-functor E : dgcat(k)∞ → D and a k-scheme
X (or algebraic stack), we will write E(X) instead of E(perfdg(X)).
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Let T be a k-split torus of rank r, X a smooth quasi-compact separated k-scheme equipped with a
T -action, and [X/T ] the associated quotient stack. As explained in §5, given a localizing A1-homotopy
invariant E : dgcat(k)∞ → D, the E∞-ring K([•/T ]), i.e., the T -equivariant algebraic K-theory spectrum of

• := Spec(k), acts on E([X/T ]). Note that π0K([•/T ]) agrees with the representation ring R(T ) ≃ Z[T̂ ] ≃

Z[t±1 , . . . , t
±
r ] of T , where T̂ stands for the group of characters. There are two very different constructions

we can perform (one algebraic and one geometric). On the algebraic side, following Lurie [35, §4], we can
consider the derived completion E([X/T ])∧I of the K([•/T ])-module E([X/T ]) at the augmentation ideal
I ⊂ R(T ). On the geometric side, we can consider the Borel construction

(1.2) ET (X) := limj≥1E([(X × (Aj\{0})r)/T ]) ,

where T acts diagonally and the limit is taken over the inclusions Aj\{0} = Aj\{0} × {0} →֒ Aj+1\{0}.
Intuitively speaking, the tower of punctured affine spaces {Aj\{0}}j≥1 plays the role of the “contractible”
∞-dimensional projective space P∞ where the circle Gm acts freely (recall that T = Gr

m). Note that since
the T -action on (Aj\{0})r is free, the right-hand side of (1.2) agrees with limj≥1E(X ×T (Aj\{0})r), where
X×T (Aj\{0})r stands for the quotient of X× (Aj\{0})r by T . This shows that the Borel construction may
alternatively be performed entirely within the realm of schemes. Note also that since the projection maps
pj : X×(Aj\{0})r → X, j ≥ 1, are T -equivariant they give rise to an induced morphism ofK([•/T ])-modules:

(1.3) E([X/T ]) −→ ET (X) .

Finally, recall from Brion [9, §3] (consult also [30, §5.2]) that X is called T -filtrable if the closed subscheme
XT of T -fixed points is smooth projective and if the following two conditions hold:
(i) there exists an ordering

∐m
i=0 Zi of the connected components of XT and also a filtration of X by

T -stable closed k-subschemes

(1.4) ∅ = X−1 →֒ X0 →֒ · · · →֒ Xi →֒ · · · →֒ Xm−1 →֒ Xm = X

such that Zi →֒ Wi := Xi\Xi−1 for every 0 ≤ i ≤ m.
(ii) there exist T -equivariant vector bundles qi : Wi → Zi, with 0 ≤ i ≤ m, for which the inclusions Zi →֒ Wi

corresponds to the 0-section embeddings.
Thanks to the work of Bialynicki-Birula [5] and Hesselink [26], every smooth projective k-scheme equipped
with a T -action is T -filtrable.

Our main result is the following:

Theorem 1.5 (Motivic Atiyah-Segal completion theorem). Let T be a k-split torus of rank r and X a
smooth quasi-compact separated k-scheme equipped with a T -action which we assume to be T -filtrable. We
assume moreover that X is geometrically normal and geometrically reduced1. Given a localizing A1-homotopy
invariant E : dgcat(k)∞ → D, the following hold:
(i) The K([•/T ])-module ET (X) is I-complete in the sense of [35, Def. 4.2.1]. Consequently, (1.3) yields

an induced morphism of K([•/T ])-modules θ : E([X/T ])∧I → ET (X).
(ii) The preceding morphism θ is an equivalence.
(iii) Given an object o ∈ D and an integer n ∈ Z, let us write πo,n(−) for the functor HomHo(D)(o[n],−).

Under these notations, we have induced isomorphisms

πo,n(E([X/T ])∧I ) ≃ (πo,nE([X/T ]))∧I πo,nET (X) ≃ limj≥1πo,nE(X ×T (Aj\{0})r) ,(1.6)

where the right-hand sides stand, respectively, for the classical completion and classical limit of abelian groups.

Theorem 1.5 provides a striking connection between algebra and geometry. Intuitively speaking, it shows
that the algebraic side given by the derived completion E([X/T ])∧I of the K([•/T ])-module E([X/T ]) at the
augmentation ideal I “matches perfectly” with the geometric side given by the Borel construction ET (X).
In particular, the Borel construction may be understood as a “geometric completion” construction. Such a
striking connection between algebra and geometry goes back to the pioneering work of Atiyah-Segal [2] (they
worked with compact topological spaces equipped with an action of a compact Lie group; consult Remark
2.23). Since Theorem 1.5 holds for every localizing A1-homotopy invariant and is inspired by Atiyah-Segal’s
pioneering work, we decided to name it the “motivic Atiyah-Segal completion theorem”.

1Recall that every smooth k-scheme X over a perfect base field k is geometrically normal and geometrically reduced.
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Remark 1.7 (Strategy of proof). The proof of Theorem 1.5 is divided into two main steps. In the first step we
address the particular case where T acts trivially on X . In the second step, making use of two key ingredients
(namely, equivariant Gysin cofiber sequences and equivariant vector bundles; consult §6-§7), we bootstrap
the result from the particular case where T acts trivially to the general case where X is T -filtrable. Moreover,
throughout the entire proof, an important (technical) role is played by the recent theory of noncommutative
mixed motives; consult §4.

Now, let G be a linearly reductive group k-scheme, X a smooth separated k-scheme of finite type equipped
with a G-action, and [X/G] the associated quotient stack. Similarly to the case of a torus, we can perform
two different constructions. On the algebraic side, we can consider the derived completion E([X/G])∧IG of
the K([•/G])-module E([X/G]) at the augmentation ideal IG ⊂ R(G). On the geometric side, given an
admissible gadget {(Vj , Uj)}j≥1 for G in the sense of Morel-Voevodsky [37, §4.2] (consult also [30, §3.1]),
we can consider the Borel construction EG(X) := limj≥1E([(X × Uj)/G]), where G acts diagonally and the
limit is taken over the inclusions Uj = Uj ×{0} →֒ Uj+1. Since the projection maps pj : X ×Uj → X , j ≥ 1,
are G-equivariant, they give rise to an induced morphism of K([•/G])-modules:

(1.8) E([X/G]) −→ EG(X) .

Let E : dgcat(k)∞ → D be an ∞-functor with values in a stable presentable ∞-category. In addition to the
above conditions (C1)-(C3), consider also the following extra condition:
(C4) Let i : Z →֒ X a G-stable smooth closed subscheme and j: U →֒ X the open complement of Z. Under

these notations, we have an induced cofiber sequence of K([•/G])-modules:

(1.9) E([Z/G])
i∗−→ E([X/G])

j∗

−→ E([U/G]) .

Remark 1.10. (i) Whenever the ∞-functor E satisfies moreover the conditions (C1) and (C3), the cofiber
sequence (1.9) becomes a cofiber sequence of K([•/G])-modules.

(ii) In the case where G is a torus T , it is proved in Theorem 6.1 that condition (C4) follows from conditions
(C1)-(C2)-(C3).

As explained in §2, the majority of the aforementioned localizing A1-homotopy invariants satisfy the extra
condition (C4). The next result may be understood as the motivic version of Thomason’s classical “reduction
to a torus” result (consult [52, Thm. 1.13] and [55, §4]):

Theorem 1.11 (Reduction to a torus). Let G be a linearly reductive group k-scheme containing a k-split
maximal torus T , and X a smooth separated k-scheme of finite type equipped with a G-action. Given
a localizing A1-homotopy invariant E : dgcat(k)∞ → D satisfying the extra condition (C4), we have the
following commutative diagram of K([•/G])-modules with ind ◦ res = id:

E([X/G])

(1.8)

��

res // E([X/T ])
ind //

(1.3)

��

E([X/G])

(1.8)

��
EG(X) res

// ET (X)
ind

// EG(X) .

.(1.12)

Corollary 1.13 (Motivic Atiyah-Segal completion theorem). Let G be a linearly reductive group scheme,
T a k-split maximal torus of G, and X a smooth separated k-scheme of finite type equipped with a G-action
which we assume to be T -filtrable. We assume moreover that X is geometrically normal and geometrically
reduced. Given a localizing A1-homotopy invariant E : dgcat(k)∞ → D satisfying the extra condition (C4),
Theorem 1.5 holds similarly with T replaced by G.

Proof. It is well-known that the IG-adic and the I-adic topologies on the representation ring R(T ) coincide;
consult [14, Cor. 6.1][43, Cor. 3.9]. Hence, the proof follows from the combination of Theorem 1.5 with the
commutative diagram (1.12). �

2. Applications

In this section we describe several applications of the motivic Atiyah-Segal completion theorem.
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2.1. Homotopy K-theory. Consider the simplicial k-algebra ∆m := k[t0, . . . , tm]/〈
∑m

i=0 ti − 1〉,m ≥ 0,
equipped with the following faces and degenerancies:

dq(ti) :=





ti if i < q

0 if i = q

ti−1 if i > q

sq(ti) :=





ti if i < q

ti + ti+1 if i = q

ti+1 if i > q

.

Following Weibel [60], homotopy K-theory is defined as follows

KH(−) : dgcat(k)∞ −→ Spt∞ A 7→ colimmIK(A⊗∆m) ,(2.1)

where IK stands for nonconnective algebraic K-theory. The ∞-functor (2.1), with values in the ∞-category
of spectra, is a localizing A1-homotopy invariant: condition (C1) follows from Thomason-Trobaugh’s work
[58, §5] and from the fact that the ∞-functor − ⊗ ∆m preserve short exact sequences of dg categories2,
condition (C2) follows from [49, Prop. 5.2], and condition (C3) follows from the fact that the ∞-functors
− ⊗ ∆m and IK(−) preserve filtered colimits; consult [48, Example 8.20]. The ∞-functor (2.1) satisfies
moreover the extra condition (C4): this follows from the combination of Theorem A.1 with Thomason’s
work [57, Thms. 2.7 and 5.7]. Therefore, Theorem 1.5 and Corollary 1.13 applied to E = KH(−) and to the
sphere spectrum o = S yield the following equivalence of K([•/G])-modules

θ : KH([X/G])∧IG −→ KHG(X)(2.2)

and the following isomorphisms of R(G)-modules:

θ∗ : (KH∗([X/G]))∧IG
≃
−→ limj≥1KH∗(X ×G Uj) .(2.3)

Since the k-scheme X is smooth, resp. the k-schemes X ×G Uj are smooth, it follows from Theorem A.1,
resp. from [60, Prop. 6.10], that in (2.2)-(2.3) we can replace KH(−) by IK(−). We obtain in this way the
following equivalence and isomorphisms:

θ : IK([X/G])∧IG −→ IKG(X) θ∗ : (IK∗([X/G]))∧IG
≃
−→ limj≥1IK∗(X ×G Uj) .

To the best of the authors’ knowledge, the latter equivalence θ is new in the literature. In what concerns
the latter isomorphisms θ∗, they were originally established by Krishna in [30, Thm. 1.2] using different
arguments. For example, in the case of a torus T , Krishna made essential use of the classical localization
long exact sequence in equivariant G-theory (established by Thomason in [57]). It is not known if such a
long exact sequence holds for every localizing A1-homotopy invariant because its proof is based on Quillen’s
dévissage theorem, which is a result very specific to the G-theory of abelian categories. Our proof of Theorem
1.5 circumvents this difficulty by using instead the T -equivariant Gysin cofiber sequences.

Remark 2.4 (Q-coefficients). By composing (2.1) with the Q-linearization ∞-functor (−)⊗Q, we obtain the
localizing A1-homotopy invariant KH(−)⊗Q. As above, this leads in particular to the isomorphisms:

θn : (IKn([X/G])Q)
∧
IG

≃
−→ limj≥1IKn(X ×G Uj)Q n ∈ Z .(2.5)

Since X×GUj is smooth, the associated motivic spectral sequence degenerates rationally; consult Grayson’s

survey [23]. This yields an isomorphism between IKn(X ×G Uj)Q and
⊕

i∈Z H
2i−n
mot (X ×G Uj;Q(i)), where

H∗
mot(−;Q(∗)) stands for motivic cohomology. Consequently, by definition of the G-equivariant motivic

cohomology groups H2i−n
G,mot(X ;Q(i)), we obtain from (2.5) the following isomorphisms:

(IKn([X/G])Q)
∧
IG ≃

∏

i∈Z

H2i−n
G,mot(X ;Q(i)) n ∈ Z .(2.6)

To the best of the authors’ knowledge, the isomorphisms (2.6) are new in the literature; consult the related
works [14, 31]. Intuitively speaking, they show that the product of the G-equivariant motivic cohomology
groups of X admits a purely algebraic description given by the (classical) completion at the augmentation
ideal IG of the Q-linearized algebraic K-theory groups of the quotient stack [X/G].

2As proved by Drinfeld in [13, Prop. 1.6.3], given any dg category B, the associated ∞-functor −⊗ B preserve short exact
sequences of dg categories.
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2.2. Algebraic K-theory with coefficients. Let lν be a prime power. Following Browder [10], algebraic
K-theory with Z/lν-coefficients is defined as follows

IK(−;Z/lν) : dgcat(k)∞ −→ Spt∞ A 7→ IK(A) ∧ S/lν ,(2.7)

where S/lν stands for the mod-lν Moore spectrum. Note that we have the following short exact sequences:

0 −→ IK∗(A) ⊗Z Z/lν −→ IK∗(A;Z/lν) −→ {lν-torsion in IK∗−1(A)} −→ 0 .

Assume that 1/l ∈ k. Under this assumption, the ∞-functor (2.7) is a localizing A1-homotopy invariant:
condition (C1) follows from the fact that IK(−) satisfies condition (C1) and that − ∧ S/lν preserve cofiber
sequences, condition (C2) follows from [47, Thm. 1.2], and condition (C3) follows from the fact that IK(−)
and − ∧ S/lν preserve filtered colimits; consult [48, Example 8.21]. The ∞-functor (2.7) satisfies moreover
the extra condition (C4): this follows from Thomason’s work [57, Thms. 2.7 and 5.7] and from the fact that
−∧ S/lν preserve cofiber sequences. Therefore, Theorem 1.5 and Corollary 1.13 applied to E = IK(−;Z/lν)
and to o = S yields the following equivalence and isomorphisms:

θ : IK([X/G];Z/lν)∧IG −→ IKG(X ;Z/lν) θ∗ : (IK∗([X/G];Z/lν))∧IG
≃
−→ limj≥1IK∗(X ×G Uj ;Z/l

ν) .

To the best of the authors’ knowledge, both θ as well as θ∗ are new in the literature.

2.3. Étale K-theory with coefficients. Let lν be a prime power. Following Thomason [56], étale K-theory
with Z/lν-coefficients is defined as follows

Ket(−;Z/lν) : dgcat(k)∞ −→ Spt∞ A 7→ LK(1)IK(A;Z/lν) ,(2.8)

where LK(1)(−) stands for the left Bousfield localization with respect to the first Morava K-theory K(1).

Assume that 1/l ∈ k. Under this assumption, the ∞-functor (2.8) is a localizing A1-homotopy invariant:
conditions (C1)-(C3) follow from §2.2 and from the fact that LK(1)(−) preserve cofiber sequences and filtered
colimits. The ∞-functor (2.8) satisfies moreover the extra condition (C4): this follows from §2.2 and from
the fact that LK(1)(−) preserve cofiber sequences. Therefore, Theorem 1.5 and Corollary 1.13 applied to

E = Ket(−;Z/lν) and to o = S yields the following equivalence and isomorphisms:

θ : Ket([X/G];Z/lν)∧IG −→ Ket
G (X ;Z/lν) θ∗ : (K

et
∗ ([X/G];Z/lν))∧IG

≃
−→ limj≥1K

et
∗ (X ×G Uj ;Z/l

ν) .

To the best of the authors’ knowledge, the equivalence θ is new in the literature. In what concerns the
isomorphisms θ∗, they were originally established by Thomason3 in [54, Cor. 3.4] using different arguments
and under the additional assumption that k is separably closed. For example, similarly to Krishna’s proof,
in the case of a torus T , Thomason made essential use of the classical localization long exact sequence in
equivariant G-theory (note that Thomason’s work precedes Krishna’s work). Moreover, under the afore-
mentioned additional assumptions, he used some deep computations in étale cohomology in order to prove
that the R(T )-modules Ket

∗ ([X/T ];Z/lν) are finitely generated. Thanks to the Artin-Rees lemma, this finite
generation result enabled him to use in an essential way the exactness of the classical completion functor.
Our proof of Theorem 1.5 circumvents both these difficulties. On the one hand, instead of the classical local-
ization long exact sequence in equivariant G-theory, we use the T -equivariant Gysin cofiber sequences. On
the other hand, instead of the classical completion functor, we use the derived completion functor4 which is
always exact. In fact, Thomason already suggested in [54, page 795] that if one could construct a completion
functor at the deep level of spectra (in contrast to the classical completion functor at the superficial level of
homotopy groups of spectra), then one would likely be able to extend his result to other base fields.

Remark 2.9 (Analytification). Let k = C. In this case, we can consider the analytic topological space Xan

associated to X , i.e., the set of complex points X(C) equipped with the usual analytic topology, and also the
Lie group Gan. Let M be a(ny) maximal compact Lie subgroup of Gan. Under these notations, Thomason
proved in [52, §5][55, §2] that the analytification functor (sending (G-equivariant) vector bundles over X to
(M -equivariant) vector bundles over Xan) gives rise to the following isomorphisms

Ket
∗ ([X/G];Z/lν)

≃
−→ K−∗

M,Segal(X
an;Z/lν) limj≥1K

et
∗ (X ×G Uj ;Z/l

ν)
≃
−→ K−∗

M,Borel(X
an;Z/lν) ,

where K∗
M,Segal(−;Z/lν) stands for Segal’s M -equivariant topological K-theory with Z/lν-coefficients and

K∗
M,Borel(−;Z/lν) for Borel’s M -equivariant topological K-cohomology with Z/lν-coefficients.

3Thomason used instead the classical simplicial model {Ket(X ×Gm;Z/lν)}m≥0 for the Borel construction.
4Consult also the work of Carlsson-Joshua [12], where they used a certain derived completion functor developed in [11].
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2.4. l-adic algebraic K-theory. Let l be a prime number. Following Thomason [56], l-adic algebraic
K-theory is defined as follows:

IK(−)l̂ : dgcat(k)∞ −→ Spt∞ A 7→ limνIK(A;Z/lν) .(2.10)

Note that we have the following Milnor’s short exact sequences:

0 −→ lim1
νIK∗+1(A;Z/lν) −→ π∗(IK(A)l̂) −→ limνIK∗(A;Z/lν) −→ 0 .

Assume that 1/l ∈ k. Under this assumption, the ∞-functor (2.10) is a localizing A1-homotopy invariant:
condition (C1) follows from §2.2 and from the fact that (−)l̂ preserve (co)fiber sequences, condition (C2)
follows from §2.2, and condition (C3) follows from the fact that IK(−)l̂ factors through IK(−) (which preserve
filtered colimits and satisfies condition (C1)). The ∞-functor (2.10) satisfies moreover the extra condition
(C4): this follows from §2.2 and from the fact that (−)l̂ preserve (co)fiber sequences. Therefore, Theorem 1.5
and Corollary 1.13 applied to E = IK(−)l̂ and to o = S yields the following equivalence and isomorphisms:

θ : (IK([X/G])l̂)
∧
IG −→ IKG(X)l̂ θ∗ : (π∗(IK([X/G])l̂))

∧
IG

≃
−→ limj≥1π∗(IK(X ×G Uj)l̂) .

To the best of the authors’ knowledge, both θ as well as θ∗ are new in the literature.

2.5. l-adic étale K-theory. Let l be a prime number. Following Thomason [56], l-adic étale K-theory is
defined as follows:

Ket(−)l̂ : dgcat(k)∞ −→ Spt∞ A 7→ limνK
et(A;Z/lν) .(2.11)

Assume that 1/l ∈ k. Under this assumption, the ∞-functor (2.11) is a localizing A1-homotopy invariant:
condition (C1) follows from §2.3 and from the fact that (−)l̂ preserve (co)fiber sequences, condition (C2) fol-
lows from §2.3, and condition (C3) follows from the fact that Ket(−)l̂ factors through IK(−) (which preserve
filtered colimits and satisfies condition (C1)). The ∞-functor (2.11) satisfies moreover the extra condition
(C4): this follows from §2.3 and from the fact that (−)l̂ preserve (co)fiber sequences. Therefore, Theorem
1.5 and Corollary 1.13 applied to E = Ket(−)l̂ and to o = S yields the equivalence and isomorphisms:

θ : (Ket([X/G])l̂)
∧
IG −→ Ket

G (X)l̂ θ∗ : (π∗(K
et([X/G])l̂))

∧
IG

≃
−→ limj≥1π∗(K

et(X ×G Uj)l̂) .

To the best of the authors’ knowledge, both θ as well as θ∗ are new in the literature.

Remark 2.12 (Ql-coefficients). By composing (2.11) with the Z[1/l]-linearization ∞-functor (−)[1/l], we
obtain the localizing A1-homotopy invariant Ket(−)l̂[1/l]. As above, this leads to the isomorphisms:

θn : (πn(K
et([X/G])l̂)1/l)

∧
IG

≃
−→ limj≥1πn(K

et(X ×G Uj)l̂)1/l n ∈ Z .(2.13)

Let us assume that X ×G Uj is moreover of finite Krull dimension and that all its residue fields have finite
and uniformly bounded mod-l virtual étale cohomological dimension. Under these additional assumptions,
Thomason’s étale descent spectral sequence degenerates rationally; consult Thomason [56, Thm. 4.1], Soulé
[59, §3.3.2] and Rosenschon-Østvaer [40, 41]. Consequently, in the case where k contains all the lth power
roots of unity, we obtain an isomorphism between πn(K

et(X ×G Uj)l̂)1/l and
⊕

i evenH
i
l-adic(X×G Uj), resp.⊕

i oddH
i
l-adic(X×GUj), when n is even, resp. odd, where H∗

l-adic(−) := (limνH
∗
et(−;Z/lν))⊗Zl

Ql stands for
l-adic cohomology. Consequently, by definition of the G-equivariant l-adic cohomology groups Hi

G,l-adic(X),

we obtain from (2.13) the following isomorphisms:

(2.14) (πn(K
et([X/G])l̂)1/l)

∧
IG ≃

{∏
i evenH

i
G,l-adic(X) if n even∏

i oddH
i
G,l-adic(X) if n odd .

To the best of the authors’ knowledge, the isomorphisms (2.14) are also new in the literature.

2.6. Semi-topologicalK-theory. Let k = C. Consider the standard topological simplex ∆m
top, withm ≥ 0,

and the category ∆m,↓
top whose the objects are the pairs (V, fV ), where V is an affine C-scheme of finite type

and fV : ∆m
top → V an is a continuous map of topological spaces, and whose morphisms (V, fV ) → (W, fW )

are the maps of C-schemes g : W → V such that gan ◦ fW = fV . Following Friedlander-Walker [21] (based
on a suggestion of Voevodsky), semi-topological K-theory is defined as follows (consult [6]):

Kst(−) : dgcat(C)∞ −→ Spt∞ A 7→ colimmKst(A)m ,(2.15)
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where Kst(A)m stands for the spectrum colim(V,fV )∈∆m,↓
top

IK(perfdg(V )⊗A). As proved in Theorem B.1, the

∞-functor (2.15) is a localizing A1-homotopy invariant which satisfies the extra condition (C4). Therefore,
Theorem 1.5 and Corollary 1.13 applied to E = Kst(−) and to o = S yields the equivalence and isomorphisms:

θ : Kst([X/G])∧IG −→ Kst
G (X) θ∗ : (K

st
∗ ([X/G]))∧IG

≃
−→ limj≥1K

st
∗ (X ×G Uj) .

To the best of the authors’ knowledge, both θ as well as θ∗ are new in the literature.

Remark 2.16 (Q-coefficients). By composing (2.15) with the Q-linearization ∞-functor (−)⊗ Q, we obtain
the localizing A1-homotopy invariant Kst(−)⊗Q. As above, this leads to the isomorphisms:

θn : (K
st
n ([X/G])Q)

∧
IG

≃
−→ limj≥1K

st
n (X ×G Uj)Q n ∈ Z .(2.17)

Let us assume that X×GUj is quasi-projective. In this case, the semi-topological spectral sequence degener-
ates rationally; consult Friedlander-Haesemeyer-Walker [17, Thm. 4.2]. This yields an isomorphism between
Kst

n (X×GUj)Q and
⊕

i∈Z L
iH2i−n(X×GUj)Q, where L

∗H∗(−)Q stands for morphic cohomology in the sense
of Friedlander-Lawson [18]. Consequently, by definition of the G-equivariant morphic cohomology groups
LiH2i−n

G (X)Q, we obtain from (2.17) the following isomorphisms:

(Kst
n ([X/G])Q)

∧
IG ≃

∏

i∈Z

LiH2i−n
G (X)Q n ∈ Z .(2.18)

To the best of the authors’ knowledge, the isomorphisms (2.18) are also new in the literature.

Remark 2.19 (Real semi-topological K-theory). Let k = R. Thanks to the work of Friedlander-Walker [20],
all the above holds mutatis mutandis with C replaced by R. In particular, we have isomorphisms

(KR st
n ([X/G])Q)

∧
IG ≃

∏

i∈Z

LiHR 2i−n
G (X)Q n ∈ Z ,(2.20)

where KR st(−) stands for real semi-topological K-theory and L∗HR∗(−) for real morphic cohomology.

2.7. Topological K-theory. Let k = C. Following Friedlander-Walker [19], topological K-theory can be
recovered from semi-topological K-theory as follows (consult [6])

Ktop(−) : dgcat(C)∞ −→ Spt∞ A 7→ Kst(A) ∧bu BU ,(2.21)

where bu = Kst(C) stands for the connective cover of the classical topological K-theory spectrum BU. The
∞-functor (2.21) is a localizing A1-homotopy invariant: conditions (C1)-(C3) follows from §2.6 and from the
fact that −∧bu BU preserve cofiber sequences and filtered colimits. The ∞-functor (2.21) satisfies moreover
the extra condition (C4): this follows from §2.6 and from the fact that −∧bu BU preserve cofiber sequences.
Therefore, Theorem 1.5 and Corollary 1.13 applied to E = Ktop(−) and to o = S yields the following
equivalence and isomorphisms:

θ : Ktop([X/G])∧IG −→ Ktop
G (X) θ∗ : (K

top
∗ ([X/G]))∧IG

≃
−→ limj≥1K

top
∗ (X ×G Uj) .(2.22)

To the best of the authors’ knowledge, both θ as well as θ∗ are new in the literature.

Remark 2.23 (Atiyah-Segal’s completion theorem in topological K-theory). Note that similarly to Remark
2.9, the right-hand side of (2.22) may be re-written as follows

(2.24) θ∗ : (K
−∗
M,Segal(X

an))∧IM
≃
−→ K−∗

M,Borel(X
an) ,

where K∗
M,Segal(−) stands for Segal’s M -equivariant topological K-theory and K∗

M,Borel(−) for Borel’s M -

equivariant topological K-cohomology; M is a(ny) maximal compact Lie subgroup of Gan. Now, recall that
Atiyah and Segal proved in [2, Thm. 2.1 and Prop. 4.2] that, given any compact topological M -space Y for
which the R(M)-modules K∗

M,Segal(Y ) are finitely generated, we have induced isomorphisms:

θ∗ : (K
∗
M,Segal(Y ))∧I

≃
−→ K∗

M,Borel(Y ) .

Consequently, the above isomorphisms (2.24) may be understood as an improvement of Atiyah-Segal’s com-
pletion theorem in topological K-theory: the topological M -space Xan no longer needs to be compact and
the R(M)-modules K−∗

M,Segal(X
an) no longer need to be finitely generated.
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Remark 2.25 (Q-coefficients). Similarly to Remark 2.16, we have the following isomorphisms:

θn : (K
top
n ([X/G])Q)

∧
IG

≃
−→ limj≥1K

top
n (X ×G Uj)Q n ∈ Z .(2.26)

Moreover, since Atiyah-Hirzebruch’s spectral sequence [1, §2] degenerates rationally, we have an isomorphism
between K−n

top((X×GUj)
an)Q and

⊕
i evenH

i
sing((X×GUj)

an;Q), resp.
⊕

i oddH
i
sing((X×GUj)

an;Q), when n

is even, resp. odd, where H∗
sing(−;Q) stands for singular cohomology. Hence, using the fact that Ktop

n (−) ≃

K−n
top((−)an) and that Betti cohomology is defined as H∗

B(−) := H∗
sing((−)an;Q), it follows from the definition

of the G-equivariant Betti cohomology groups Hi
G,B(X) that (2.26) yields the following isomorphisms:

(Ktop
n ([X/G])Q)

∧
IG ≃

{∏
i evenH

i
G,B(X) if n even∏

i oddH
i
G,B(X) if n odd .

(2.27)

To the best of the authors’ knowledge, the isomorphisms (2.27) are also new in the literature.

2.8. Periodic cyclic homology. Assume that char(k) = 0. Under this assumption, periodic cyclic ho-
mology gives rise to a localizing A1-homotopy invariant HP (−) : dgcat(k)∞ → CZ/2(k)∞ with values in the
∞-category of Z/2-graded complexes of k-vector spaces: condition (C1) follows from Keller’s work [28], con-
dition (C2) follows from Goodwillie’s work [22], and condition (C3) follows from the fact that HP (−) factors
through the mixed complex ∞-functor (which preserve filtered colimits and satisfies condition (C1)); consult
[48, §8.2.4 and §8.2.7]. Therefore, Theorem 1.5 applied to E = HP (−) and to the Z/2-graded complex
o = k[v±1], with |v| = 2, yields the following equivalence and isomorphisms:

θ : HP ([X/T ])∧I −→ HPT (X) θ∗ : (HP∗([X/T ]))∧I
≃
−→ limj≥1HP∗(X ×T (Aj\{0})r) .(2.28)

To the best of the authors’ knowledge, both θ as well as θ∗ are new in the literature.
Since X×T (Aj\{0})r is smooth, the Hochschild-Kostant-Rosenberg theorem (consult Feigin-Tsygan [16])

yields an isomorphism betweenHPn(X×T (Aj\{0})r) and the direct sum
⊕

i evenH
i
dR(X×T (Aj\{0})r), resp.⊕

i oddH
i
dR(X ×T (Aj\{0})r), when n is even, resp. odd, where H∗

dR(−) stands for de Rham cohomology.
Consequently, by definition of the T -equivariant de Rham cohomology groups Hi

T,dR(X), we obtain from the

right-hand side of (2.28) the following isomorphisms:

(2.29) (HPn([X/T ]))∧I ≃

{∏
i evenH

i
T,dR(X) if n even∏

i oddH
i
T,dR(X) if n odd .

To the best of the authors’ knowledge, the isomorphisms (2.29) are also new in the literature.

Remark 2.30 (Betti cohomology). Assume that k is equipped with an embedding k →֒ C. In this case, we
can consider the localizing A1-homotopy invariant HP (−) ⊗k C. As above, making use of Grothendieck’s
comparison isomorphism H∗

dR(−)⊗k C ≃ H∗
B(−)⊗Q C (consult [24]), we hence obtain the isomorphisms:

(2.31) (HPn([X/T ])⊗k C)
∧
I ≃

{∏
i evenH

i
T,B(X)⊗Q C if n even∏

i oddH
i
T,B(X)⊗Q C if n odd .

To the best of the authors’ knowledge, the isomorphisms (2.31) are also new in the literature.

Notations. Throughout the article, k will denote a base field, T a k-split algebraic torus, and G a lin-
early reductive group k-scheme. Moreover, we will assume some basic familiarity with the languages of dg
categories and ∞-categories; consult Keller’s survey [27] and Lurie’s monographs [33, 34], respectively.

3. Derived categories of quotient stacks

Let X a quasi-compact separated k-scheme equipped with a T -action. Throughout the article we will
write Mod([X/T ]) for the Grothendieck category of T -equivariant OX -modules, Qcoh([X/T ]) for the full
subcategory of quasi-coherent T -equivariant OX -modules, D([X/T ]) := D(Mod([X/T ])) for the derived
category of Mod([X/T ]), DQcoh([X/T ]) ⊂ D([X/T ]) for the full triangulated subcategory of those com-
plexes of T -equivariant OX -modules whose cohomology belongs to Qcoh([X/T ]), and finally perf([X/T ]) ⊂
DQcoh([X/T ]) for the full triangulated subcategory of perfect complexes of T -equivariant OX -modules. In
the same vein, given a T -stable closed subscheme Z →֒ X , we will write D([X/T ])Z , DQcoh([X/T ])Z, and
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perf([X/T ])Z, for the full triangulated subcategories of those complexes of T -equivariant OX -modules that
are (topologically) supported on Z.

Let E be an exact category. As explained in [27, §4.4], the derived dg category Ddg(E) of E is defined
as the dg quotient Cdg(E)/Acdg(E) of the dg category of complexes over E by its full dg subcategory of
acyclic complexes. Throughout the article we will write Ddg([X/T ]) for the dg category Ddg(E), with E :=
Mod([X/T ]), and DQcoh,dg([X/T ]) and perfdg([X/T ]) for its full dg subcategories. In the same vein, given a
T -stable closed subscheme Z →֒ X , we will write Ddg([X/T ])Z, DQcoh,dg([X/T ])Z, and perfdg([X/T ])Z, for
the full dg subcategories of those complexes of T -equivariant OX -modules that are supported on Z.

Remark 3.1 (Generalization). Given a T -equivariant sheaf of OX -algebras S, we can more generally con-
sider the derived category D([X/T ];S) of T -equivariant S-modules and also the associated dg category
Ddg([X/T ];S); similarly for all the other (triangulated and dg) categories. Note that in the particular case
where S = OX , these (triangulated and dg) categories reduce to the above ones.

Theorem 3.2 (Compact generation). Let X be a quasi-compact separated k-scheme equipped with a T -
action, and Z →֒ X a T -stable closed subscheme. If X is moreover geometrically normal and geometrically
reduced, then the triangulated category DQcoh([X/T ])Z is compactly generated. Moreover, its full triangulated
subcategory of compact objects identifies with perf([X/T ])Z.

Proof. Thanks to Sumihiro’s work [45, Cor. 3.11][46, Cor. 2], X admits a T -stable Zariski affine open cover.
Therefore, one can replicate the proof of [8, Thm. 3.1.1]; consult also [38][44, Tag 0AEC, Lem. 62.14.5]. �

Proposition 3.3. Let X be a quasi-compact separated k-scheme equipped with a T -action, j : V →֒ X a
T -stable quasi-compact open subscheme, and W →֒ X the closed complement of V . We assume moreover
that X is geometrically normal and geometrically reduced. Given a T -stable closed subscheme Z →֒ X with
quasi-compact open complement, we have the short exact sequence of dg categories:

0 −→ perfdg([X/T ])Z∩W −→ perfdg([X/T ])Z
j∗

−→ perfdg([V/T ])Z∩V −→ 0 .

Proof. Making use of Theorem 3.2, one can replicate the proof of [51, Prop. 4.21]. �

Theorem 3.4 (Excision). Let f : X ′ → X be a T -equivariant flat map between quasi-compact separated
k-schemes, and Z →֒ X a T -stable closed subscheme such that Z ′ := X ′ ×X Z → Z is an isomorphism. If
X and X ′ are moreover geometrically normal and geometrically reduced, then we have a Morita equivalence:

f∗ : perfdg([X/T ])Z −→ perfdg([X
′/T ])Z′ .

Proof. Making use of Theorem 3.2, one can replicate the proof of [51, Thm. 4.25]. �

Remark 3.5 (Group scheme G). Let X be a separated k-scheme of finite type equipped with a G-action
and Z →֒ X a G-stable closed subscheme. If the quotient stack [X/G] has the resolution property5 (i.e.,
every coherent sheaf on [X/G] is a quotient of a vector bundle), then, since G is a linearly reductive group
k-scheme, it follows from the work of Krishna-Ravi [32, Lem. 2.7 and Prop. 3.3] that the triangulated
category DQcoh([X/G])Z is compactly generated. Moreover, its full triangulated subcategory of compact
objects identifies with perf([X/G])Z . These two facts will play a key role in the proof of Theorem A.1.

4. Noncommutative mixed motives

Recall from [7, §8][48, §8.3] the construction of the∞-category of noncommutative mixed motives NMot(k).
As explained in loc. cit., NMot(k) is stable presentable. Moreover, it comes equipped with an ∞-functor
U : dgcat(k)∞ → NMot(k) which satisfies condition (C1), preserve filtered colimits, and is universal with
respect to these properties, i.e., given any stable presentable ∞-category D, we have an induced equivalence

(4.1) U∗ : FunL(NMot(k),D) −→ Fun(C1),flt(dgcat(k)∞,D) ,

where the left-hand side denotes the ∞-category of those ∞-functors which preserve colimits and the right-
hand side the ∞-category of those ∞-functors which satisfy condition (C1) and preserve filtered colimits.

As explained in [48, §8.5], the ∞-category NMot(k) admits an A1-homotopy variant NMotA1(k). This
∞-category is also stable presentable and comes equipped with an ∞-functor UA1 : dgcat(k)∞ → NMotA1(k)

5Recall from Thomason [53, Lem. 2.6] that if X admits an ample family of G-equivariant line bundles, then [X/G] has the
resolution property. This holds, for example, when X is normal and admits an ample family of (non-equivariant) line bundles.
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which satisfies conditions (C1) and (C2), preserve filtered colimits, and is universal with respect to these
properties, i.e., given any stable presentable ∞-category D, we have an induced equivalence:

(4.2) U∗
A1 : Fun

L(NMotA1(k),D) −→ Fun(C1),(C2),flt(dgcat(k)∞,D) .

Finally, recall from [48, §8.3 and §8.5] that U and UA1 are moreover symmetric monoidal.

Remark 4.3. (i) Thanks to the above equivalences (4.1)-(4.2), the ∞-functor UA1 factors through U (via
an ∞-functor which preserve filtered colimits).

(ii) Thanks to equivalence (4.1), every ∞-functor E : dgcat(k)∞ → D satisfying conditions (C1) and (C3)
factors through U (via an ∞-functor which does not necessarily preserve filtered colimits).

Proposition 4.4. Let X and Y be two smooth quasi-compact separated k-schemes. If X is moreover proper,
then we have the following isomorphisms:

HomHo(NMot(k))(U(X)[n], U(Y )) ≃ HomHo(NMot
A1

(k))(UA1(X)[n], UA1(Y ))(4.5)

≃

{
Kn(X × Y ) n ≥ 0

0 n < 0
.(4.6)

Proof. Recall from [7, §9.2][48, §8.6] that given any two dg categories A and B, with A smooth and proper
(consult [48, §1.7]), we have natural equivalences of spectra

MapNMot(k)(U(A), U(B)) ≃ IK(Aop ⊗ B) MapNMot
A1

(k)(UA1(A), UA1(B)) ≃ KH(Aop ⊗ B) ,(4.7)

where Map(−,−) stands for the mapping spectrum of the stable presentable ∞-category. Since X is smooth
and proper, the dg category perf(X) is smooth and proper. Hence, making use of the Morita equivalence
perfdg(X)op → perfdg(X),F 7→ HomX(F ,OX), and of the Morita equivalence (consult [51, Lem. 4.26])

perfdg(X)⊗ perfdg(Y ) → perfdg(X × Y ) (F ,G) 7→ F ⊠ G ,

we conclude from (4.7) that the left hand-side, resp. right hand-side, of (4.5) is naturally isomorphic to
IKn(X×Y ), resp. KHn(X×Y ). Finally, since X×Y is smooth, the proof follows then from the well-known
fact that the latter groups are both naturally isomorphic to the algebraicK-theory group Kn(X×Y ) (which,
by definition, is equal to 0 when n < 0). �

Proposition 4.8. Let X and Y be two smooth quasi-compact separated k-schemes equipped with a T -action.
If X is moreover proper and T acts trivially on X, then we have the following isomorphisms:

HomHo(NMot(k))(U([X/T ])[n], U([Y/T ])) ≃ HomHo(NMot
A1

(k))(UA1([X/T ])[n], UA1([Y/T ]))(4.9)

≃

{∏
χ∈T̂ Kn([(X × Y )/T ]) n ≥ 0

0 n < 0
.(4.10)

Proof. Recall first from [50, Prop. 2.4] that, since T acts trivially on X , we have the Morita equivalence:

perfdg(X)⊗ perfdg([•/T ]) −→ perfdg([X/T ]) (F , V ) 7→ F ⊠ V .(4.11)

We have the following isomorphisms U([X/T ])
(a)
≃ U(X)⊗U([•/T ])

(b)
≃ U(X)⊗

⊕
χ∈T̂ U(k)

(c)
≃

⊕
χ∈T̂ U(X),

where (a) follows from (4.11) and from the fact that U is symmetric monoidal, (b) follows from the canonical
Morita equivalence

∐
χ∈T̂ k → perfdg([•/T ]) and from the fact that U preserve filtered colimits, and (c)

follows from the fact that the tensor product −⊗− on NMot(k) preserve colimits in each variable; similarly
for UA1 . Therefore, making use of the Morita equivalence perfdg(X)op → perfdg(X),F 7→ HomX(F ,OX),
and of the following Morita equivalence (obtained by replicating the proof of [51, Lem. 4.26])

perfdg(X)⊗ perfdg([Y/T ]) −→ perfdg([(X × Y )/T ]) (F ,G) 7→ F ⊠ G ,

we conclude from (4.7) that the left hand-side, resp. right hand-side, of (4.9) is naturally isomorphic∏
χ∈T̂ IKn([(X×Y )/T ]), resp.

∏
χ∈T̂ KHn([(X×Y )/T ]). Finally, since X×Y is smooth, the proof of (4.9),

resp. (4.10), follows from Theorem A.1, resp. from the fact that IKn([(X × Y )/T ]) is naturally isomorphic
to Kn([(X × Y )/T ]) (which, by definition, is equal to 0 when n < 0); consult [42, §9]. �



11

5. K-theory action

We start with some generalities. Given a commutative monoid o in the symmetric monoidal ∞-category
NMot(k), note that the spectrum MapNMot(k)(U(k), o) becomes naturally an E∞-ring. Moreover, this E∞-

ring acts on o in the sense that we have the E∞-ring map Map(U(k), o) → Map(o, o), f 7→ m ◦ (f ⊗ id),
where m : o⊗ o → o stands for the multiplication map.

Proposition 5.1. Let X be a quasi-compact separated k-scheme equipped with a T -action. Given an ∞-
functor E : dgcat(k)∞ → D which satisfies conditions (C1) and (C3), we have an induced action of the
E∞-ring K([•/T ]) on E([X/T ]).

Proof. Recall first from Remark 4.3(ii) that since E satisfies conditions (C1) and (C3), there exists an
∞-functor E (which does not necessarily preserve filtered colimits) making the following diagram commute:

(5.2) dgcat(k)∞

U

��

E // D

NMot(k)
E

AA

.

Note that the tensor product−⊗OX
−makes the dg category perfdg([X/T ]) into a commutative monoid in the

symmetric monoidal∞-category dgcat(k)∞. Since U is symmetric monoidal, we hence obtain a commutative
monoid U([X/T ]) in the symmetric monoidal∞-category NMot(k). Under the natural equivalence of spectra

(5.3) MapNMot(k)(U(k), U([X/T ])) ≃ IK([X/T ]) ,

the E∞-ring structure on the left-hand side of (5.3) induced by the commutative monoid structure of
U([X/T ]) corresponds to the classical E∞-ring structure on IK([X/T ]). Therefore, making use of the above
generalities, we obtain an induced action of the E∞-ring IK([X/T ]) on U([X/T ]). Now, precompose this ac-

tion with the E∞-ring mapK([•/T ]) ≃ IK([•/T ])
p∗

→ IK([X/T ]), induced by the projection p: [X/T ] → [•/T ].
This leads to an action of the E∞-ring K([•/T ]) on U([X/T ]). Then, make use of the above commutative
diagram (5.2) in order to obtain an induced action of the E∞-ringK([•/T ]) on E(U([X/T ])) ≃ E([X/T ]). �

Remark 5.4 (Group scheme G). Given a separated k-scheme of finite type X equipped with a G-action,
Proposition 5.1 holds mutatis mutandis with T replaced by G.

6. Equivariant Gysin cofiber sequences

The next result, which is of independent interest, will play a key role in the proof of Theorem 1.5.

Theorem 6.1. Let X be a smooth quasi-compact separated k-scheme equipped with a T -action, i : Z →֒ X a
T -stable smooth closed subscheme, and j : U →֒ X the open complement of Z. We assume moreover that X is
geometrically normal and geometrically reduced. Given a localizing A1-homotopy invariant E : dgcat(k)∞ →
D, we have an induced cofiber sequence of K([•/T ])-modules:

(6.2) E([Z/T ])
i∗−→ E([X/T ])

j∗

−→ E([U/T ]) .

Corollary 6.3. We have an induced cofiber sequence of K([•/T ])-modules:

(6.4) ET (Z)
i∗−→ ET (X)

j∗

−→ ET (U) .

Proof. Thanks to Theorem 6.1, we have the following cofiber sequences of K([•/T ])-modules:

E([(Z × (Aj\{0})r)/T ])
(i×id)∗
−→ E([(X × (Aj\{0})r)/T ])

(j×id)∗

−→ E([(U × (Aj\{0})r)/T ]) j ≥ 1 .

Consequently, since D is a stable presentable ∞-category, by applying the ∞-functor limj≥1(−) to these
cofiber sequences we obtain the above cofiber sequence (6.4). �
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Proof of Theorem 6.1. Thanks to Proposition 3.3, we have the short exact sequence of dg categories:

0 −→ perfdg([X/T ])Z −→ perfdg([X/T ])
j∗

−→ perfdg([U/T ]) −→ 0 .

Since E satisfies condition (C1), we hence obtain the following cofiber sequence of K([•/T ])-modules

E([X/T ])Z −→ E([X/T ])
j∗

−→ E([U/T ]) ,

where E([X/T ])Z := E(perfdg([X/T ])Z). Since the dg functor i∗ : perfdg([Z/T ]) → perfdg([X/T ]) factors
through the inclusion perfdg([X/T ])Z ⊂ perfdg([X/T ]), we have moreover a morphism of K([•/T ])-modules:

(6.5) i∗ : E([Z/T ]) −→ E([X/T ])Z .

We claim that (6.5) is an equivalence; note that this claim would automatically conclude the proof of Theorem
6.1. In what follows, we prove our claim. The proof is divided into two steps: affine case and general case.

Step I: affine case. In what follows, we assume that X is affine. We start by recalling some key notions:

Definition 6.6 (Grading). A dg category A is called N0-graded if the (cochain) complexes of k-vector spaces
A(x, y) are equipped with a direct sum decomposition

⊕
n≥0 A(x, y)n of (cochain) complexes of k-vector

spaces, which is preserved by the composition law. Note that, by definition, the N0-grading of A(x, y) is
respected by the differential. The elements of A(x, y)n are called of pure degree n. Let A0 be the dg category
with the same objects as A and A0(x, y) := A(x, y)0. Note that we have an “inclusion” dg functor A0 →֒ A.

Remark 6.7. Let A be a dg category whose (cochain) complexes of k-vector spaces A(x, y) have zero differ-
ential and are supported in non-negative degrees. In this case, the dg category A becomes N0-graded: an
element of A(x, y) is of pure degree n if it is of cohomological degree n.

Lemma 6.8 (Consult Lemma 6.6 of [51]). Given an ∞-functor E : dgcat(k)∞ → D which satisfies condition
(C2), we have an induced equivalence E(A0) → E(A).

Definition 6.9. A dg category A is called formal if it is isomorphic to the (cohomology) dg category H∗(A)
in the homotopy category Ho(dgcat(k)∞).

The following result, which is of independent interest, extends [51, Thm. 6.8] to the equivariant setting.

Theorem 6.10 (Equivariant formality). Let X be a smooth affine k-scheme equipped with a T -action,
Z →֒ X a T -stable smooth affine closed subscheme, and I ⊂ OX the defining ideal of Z in X. We assume
that X is geometrically normal and geometrically reduced. Under these assumptions, the following holds:
(i) The family of T -equivariant sheaves {(OX/I)⊗kχ}χ∈T̂ ∈ perf([X/T ])Z is a family of compact generators

of the triangulated category DQcoh([X/T ])Z. In the same vein, {(OX/I) ⊗k χ}χ∈T̂ ∈ perf([Z/T ]) is a

family of compact generators of the triangulated category DQcoh([Z/T ]).
(ii) The full dg subcategory A of perfdg([X/T ])Z spanned by the generators {(OX/I) ⊗k χ}χ∈T̂ is formal.

Moreover, given any two objects F and G of A, we have Hn(perfdg([X/T ])Z(F ,G)) = 0 for every n < 0

and H0(perfdg([X/T ])Z(F ,G)) = H0(perfdg([Z/T ])(F ,G)).
(iii) The full dg subcategory B of perfdg([Z/T ]) spanned by the generators {(OX/I) ⊗k χ}χ∈T̂ is formal.

Moreover, given any two objects F and G of B, we have Hn(perfdg([Z/T ])(F ,G)) = 0 for every n 6= 0.

Proof. (i) We prove only the first claim; the second claim is similar. Given an object F ∈ DQcoh([X/T ])Z,
we need to show that if the following equality

(6.11) HomDQcoh([X/T ])Z ((OX/I)⊗k χ,F [n]) = 0

holds for every χ ∈ T̂ and n ∈ Z, then F ≃ 0. Since X is affine, the preceding equality (6.11) may be

re-written as
(
HomX(OX/I,F)⊗k χ

−1
)T

= 0. This implies that if the latter equality holds for every χ ∈ T̂ ,
then HomX(OX/I,F) = 0. Now, by replicating the proof of [51, Thm. 6.8(i)], we conclude that F ≃ 0.

(ii) It is now convenient to switch to the setting of k-algebras equipped with a T -action, i.e., to the

setting of T̂ -graded k-algebras. Note that most concepts and results concerning k-algebras extend trivially
to T̂ -graded k-algebras. Let X = Spec(R), Z = Spec(S), and φ : R ։ S the surjective T̂ -graded k-algebra
homomorphism, with kernel I, corresponding to the T -equivariant closed immersion Z →֒ X . In the same
vein, let D(T ;R) be the derived category of T -equivariant R-modules and D(T ;R)I the full triangulated
subcategory of those complexes of T -equivariant R-modules whose cohomology is locally annihilated by a
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power of I. Thanks to [25, Thm. 1.2], the category D(T ;R) is equivalent to DQcoh([X/T ]). Moreover, this
equivalence restricts to an equivalence between D(T ;R)I and DQcoh([X/T ])Z.

Now, consider the T -equivariant completion R̂ of R at the ideal I in the sense of Magid [36]. Consider

also the T -equivariant completion Ŝym of the N0-graded symmetric algebra Sym := SymS(I/I
2) (with

Symn := Symn
S(I/I

2)) at the ideal Sym≥1. By replicating the proof of [51, Prop. 6.12], using T -equivariant

completion instead of classical completion, we conclude that I/I2 is a finitely generated projective S =

R/I-module and also that there exists a T -equivariant isomorphism τ : Ŝym
≃
→ R̂ such that φ̂ ◦ τ agrees

with the projection onto Sym0 = S. This implies, in particular, that τ yields an induced equivalence

of categories D(T ; R̂)Î ≃ D(T ; Ŝym)
Ŝym≥1

. By combining the above considerations, we hence obtain the

following equivalences of triangulated categories

(6.12) DQcoh([X/T ])Z ≃ D(T ;R)I
(a)
≃ D(T ; R̂)Î ≃ D(T ; Ŝym)

Ŝym≥1

(b)
≃ D(T ; Sym)Sym≥1

,

where (a) and (b) follow from Theorem 3.4. This yields an isomorphism in Ho(dgcat(k)∞) between the dg
categoriesDQcoh,dg([X/T ])Z and Ddg(T ; Sym)Sym≥1

. Under this isomorphism, the dg categoryA corresponds

to the full dg subcategory A′ of Ddg(T ; Sym)Sym≥1
spanned by the objects {S ⊗k χ}χ∈T̂ . Let K → S be

the Koszul resolution of S as a Sym-module and A := REndSym(K) the associated T̂ -graded dg k-algebra.

Clearly, A′ is isomorphic in Ho(dgcat(k)∞) to the full dg subcategory of Ddg(T ; Ŝym) spanned by the objects
{K⊗k χ}χ∈T̂ . Moreover, this latter dg category is isomorphic in Ho(dgcat(k)∞) to the full dg subcategory

A′′ of Ddg(T ;A) spanned by the objects {A⊗kχ}χ∈T̂ . Now, by replicating the proof of [51, Prop. 6.13], using

T̂ -graded k-algebras instead of k-algebras, we conclude that A is T -equivariantly formal and that Hn(A) = 0
for every n < 0. This implies that A′′ is furthermore isomorphic in Ho(dgcat(k)∞) to the full dg subcategory
A′′′ of Ddg(T ;H

∗(A)) spanned by the objects {H∗(A) ⊗k χ}χ∈T̂ . The proof follows now from the fact that

the (cochain) complexes of k-vector spaces of the dg category A′′′ have zero differential and are supported
in non-negative degrees. Finally, the claim that H0(perfdg([X/T ])Z(F ,G)) = H0(perfdg([Z/T ])(F ,G)) for
any two objects F and G of A is now clear from the above arguments.

(iii) The proof is similar to the proof of item (ii). �

We now have all the ingredients necessary to conclude the proof of Step I. Thanks to Theorem 6.10(i), the
inclusions of dg categories A ⊂ perfdg([X/T ])Z and B ⊂ perfdg([Z/T ]) are Morita equivalences. Moreover,

thanks to Theorem 6.10(ii)-(iii), the dg categories A and B are formal, Hn(A) = 0, n < 0, and H0(A) = B.
Therefore, in the homotopy category Ho(dgcat(k)∞), the dg functor i∗ : perfdg([Z/T ]) → perfdg([X/T ])Z
corresponds to the inclusion H0(A) →֒ H∗(A). Making use of Remark 6.7 and Lemma 6.8, we hence conclude
that the above morphism of K([•/T ])-modules (6.5) is an equivalence.

Step II: general case.

Proposition 6.13. Let X be a smooth quasi-compact separated k-scheme equipped with a T -action, X =
V1 ∪ V2 a T -stable Zariski open cover of X, and i : Z →֒ X a T -stable closed subscheme. We assume that X
is geometrically normal and geometrically reduced. Given an ∞-functor E : dgcat(k)∞ → D which satisfies
condition (C1), we have the (co)cartesian square (the morphisms are induced by the open inclusions)

(6.14) E([X/T ])Z //

��

E([V1/T ])Z1

��
E([V2/T ])Z2

// E([V12/T ])Z12
,

where V12 := V1 ∩ V2, Z1 := Z ∩ V1, Z2 := Z ∩ V2, and Z12 := Z ∩ V12.

Proof. Let us write W for the (reduced) closed complement (X\V1)red of V1 and W2 := W ∩V2. Under these
notations, we have the following commutative diagram:

(6.15) perfdg([X/T ])Z∩W

��

// perfdg([X/T ])Z

��

// perfdg([V1/T ])Z1

��
perfdg([V2/T ])Z2∩W2

// perfdg([V2/T ])Z2
// perfdg([V12/T ])Z12

.
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Thanks to Proposition 3.3, both rows in (6.15) are short exact sequences of dg categories. Moreover, since
the inclusion V2 →֒ X restricts to an isomorphism Z2∩W2 → Z ∩W , Theorem 3.4 implies that the left-hand
side vertical dg functor in (6.15) is a Morita equivalence. Consequently, since E satisfies condition (C1), we
obtain the following commutative diagram

E([X/T ])Z∩W

��

// E([X/T ])Z

��

// E([V1/T ])Z1

��
E([V2/T ])Z2∩W2

// E([V2/T ])Z2
// E([V12/T ])Z12

,

where each row is a cofiber sequence and the left-hand side vertical morphism is an equivalence. Since D is
a stable presentable ∞-category, we hence conclude that (6.14) is (co)cartesian. �

Corollary 6.16. Let X be a smooth quasi-compact separated k-scheme equipped with a T -action, X = V1∪V2

a T -stable Zariski open cover of X, and i : Z →֒ X a T -stable closed subscheme. We assume that X is
geometrically normal and geometrically reduced. Given an ∞-functor E : dgcat(k)∞ → D which satisfies
condition (C1), if the following morphisms are equivalences

i1∗ : E([Z1/T ]) −→ E([V1/T ])Z1
i2∗ : E([Z2/T ]) −→ E([V2/T ])Z2

i12∗ : E([Z12/T ]) −→ E([V12/T ])Z12
,

then the morphism i∗ : E([Z/T ]) → E([X/T ])Z is also an equivalence.

Proof. Consider the the following commutative diagram:

(6.17) E([X/T ])Z //

��

E([V1/T ])Z1

��

E([Z/T ])

i∗
hh◗◗◗◗◗◗◗◗◗◗

//

��

E([Z1/T ])

i1∗
66❧❧❧❧❧❧❧❧❧❧❧

��
E([Z2/T ])

i2∗

vv♠♠♠
♠♠
♠♠
♠♠
♠

// E([Z12/T ])
i12∗

((❘❘
❘❘

❘❘
❘❘

❘❘
❘

E([V2/T ])Z2
// E([V12/T ])Z12

.

Note that, thanks to Proposition 6.13, both the inner and outer squares in (6.17) are (co)cartesian. Therefore,
since by hypothesis i1∗, i

2
∗ and i12∗ are equivalences, we conclude that i∗ is also an equivalence. �

We now have all the ingredients necessary to conclude the proof of Step II (and hence of Theorem 6.1).
Thanks to Sumihiro’s work [45, Cor. 3.11][46, Cor. 2], X admits a T -stable Zariski affine open cover {Vi}i∈I .
Moreover, the quasi-compactness of X implies that this cover admits a finite subcover {Vi}ni=1. Therefore,
an inductive argument using Step I and Corollary 6.16 allows us to conclude that the above morphism of
K([•/T ])-modules (6.5) is an equivalence.

7. Equivariant vector bundles

The following result, which is of independent interest, will play a key role in the proof of Theorem 1.5.

Theorem 7.1. Let Z be a quasi-compact separated normal k-scheme equipped with a T -action and q: W → Z
a T -equivariant vector bundle. Given a localizing A1-homotopy invariant E : dgcat(k)∞ → D, we have an
induced equivalence of K([•/T ])-modules:

(7.2) q∗ : E([Z/T ]) −→ E([W/T ]) .

Corollary 7.3. We have an induced equivalence of K([•/T ])-modules:

(7.4) q∗ : ET (Z) −→ ET (W ) .

Proof. Thanks to Theorem 7.1, we have the following equivalences of K([•/T ])-modules:

(q × id)∗ : E([(Z × (Aj\{0})r)/T ]) −→ E([(W × (Aj\{0})r)/T ]) j ≥ 1 .

Therefore, by applying the ∞-functor limj≥1(−) to these equivalences, we obtain the equivalence (7.4). �



15

Proof of Theorem 7.1. By definition, the T -equivariant vector bundle W is given by SpecZ(Sym(F)) for
some T -equivariant locally free sheaf F on Z. Therefore, the dg category perfdg([W/T ]) identifies with the
dg category of perfect complexes of T -equivariant Sym(F)-modules perfdg([Z/T ]; Sym(F)); consult Remark
3.1. Since the T -equivariant sheaf of OZ-algebras Sym(F) is N0-graded and Sym(F)0 = OZ , we have an
inclusion map ι : OZ →֒ Sym(F). Under these notations, the above morphism ofK([•/T ])-modules (7.2) may
be re-written as ι∗ : E(perfdg([Z/T ];OZ)) → E(perfdg([Z/T ]; Sym(F))). Consider the associated adjunction:

(7.5) DQcoh([Z/T ]; Sym(F))

ι∗

��
DQcoh([Z/T ];OZ) .

ι∗

OO

The functor ι∗ preserve perfect complexes while the functor ι∗ preserve arbitrary direct sums and is moreover
conservative. Therefore, given a set of perfect (=compact) generators {Gi}i∈I of the triangulated category
DQcoh([Z/T ]) (recall from Theorem 3.2 that such a set of generators exists), we conclude that {ι∗(Gi)}i∈I

is a set of perfect (and hence compact) generators of DQcoh([Z/T ]; Sym(F)). This implies that the full
dg subcategory A of perfdg([Z/T ]; Sym(F)) spanned by the generators {ι∗(Gi)}i∈I is Morita equivalent to
perfdg([Z/T ]; Sym(F)). In the same vein, the full dg subcategory B of perfdg([Z/T ]) spanned by {Gi}i∈I is
Morita equivalent to perfdg([Z/T ];OZ). Moreover, given i, i′ ∈ I, have the following natural identifications

RHom(ι∗(Gi), ι
∗(Gi′)) ≃ RHom(Gi, ι∗ι

∗(Gi′ ))

≃ RHom(Gi,Gi′ ⊗ Sym(F))

≃ ⊕n≥0RHom(Gi,Gi′ ⊗ Sym(F)n) ,(7.6)

where (7.6) follows from the compactness of Gi. This implies that the dg category A inherits from Sym(F)
a N0-grading, in the sense of Definition 6.6, and that A0 = B. Therefore, in the homotopy category
Ho(dgcat(k)∞), the dg functor ι∗ : perfdg([Z/T ];OZ) → perfdg([Z/T ]; Sym(F)) corresponds to the inclusion
A0 →֒ A. Making use of the above Lemma 6.8, we hence conclude that ι∗ = q∗ is an equivalence.

Remark 7.7 (Generalization). Note that if one ignores the K([•/T ])-module structure, then Theorem 7.1
holds more generally for every ∞-functor E : dgcat(k)∞ → D which satisfies (solely) condition (C2).

Remark 7.8 (Group scheme G). Given a separated k-scheme of finite type Z equipped with a G-action,
Theorem 7.1 holds mutatis mutandis with T replaced by G: simply replace Theorem 3.2 by Remark 3.5.

8. Proof of Theorem 1.5

The proof of Theorem 1.5 is divided into two steps: trivial action and general case.

Step I: trivial action. In what follows, we assume that T acts trivially on X .

Proof of item (i). The augmentation ideal I of the representation ring R(T ) ≃ Z[T̂ ] ≃ Z[t±1 , . . . , t
±
r ] is

generated by the elements 1 − t1, . . . , 1 − tr. Therefore, thanks to [35, Cor. 4.2.12], in order to prove that
the K([•/T ])-module ET (X) is I-complete, it suffices to show that ET (X) is 〈(1 − ti)〉-complete for every
1 ≤ i ≤ r. Note that by definition of ET (X), it is enough to show that each one of the K([•/T ])-modules
E([(X × (Aj\{0})r)/T ]), j ≥ 1, is 〈(1 − ti)〉-complete for every 1 ≤ i ≤ r. Concretely, it is enough to show
that the following limit6 vanishes:

(8.1) lim
(
· · ·

−·(1−ti)
−→ E([(X × (Aj\{0})r)/T ])

−·(1−ti)
−→ E([(X × (Aj\{0})r)/T ])

)
.

Consider the commutative diagram:

(8.2) X × (Aj\{0})r //

pj

��

(Aj\{0})r

��
X // • .

6Following Lurie [35, Rk. 4.1.11], the morphism − · (1 − ti) in (8.1) is defined as − · (1− ti), where (1− ti) is a(ny) point
of the E∞-ring K([•/T ]) which belongs to the path-connected component (1− ti) ∈ π0K([•/T ]) = R(T ). The above limit (8.1)
is independent of this choice.
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Since T acts trivially on X , we have X ×T (Aj\{0})r = X × (Pj−1)r. Moreover, all the maps in (8.2) are
T -equivariant. Therefore, by applying the functor K0(−) to (8.2), we obtain the commutative diagram:

K0(X × (Pj−1)r) K0((P
j−1)r)oo

K0([X/T ])

p∗
j

OO

R(T ) .oo

OO
(8.3)

By combining the commutative square (8.3) with the following short exact sequence

0 −→ 〈(1 − t1)
j , . . . , (1− tr)

j〉 −→ R(T ) −→ K0((P
j−1)r) −→ 0 ,

we hence conclude from the K([•/T ])-module structure of E([(X × (Aj\{0})r)/T ]) that the following limit

lim
(
· · ·

−·(1−ti)
j

−→ E([(X × (Aj\{0})r)/T ])
−·(1−ti)

j

−→ E([(X × (Aj\{0})r)/T ])
)

vanishes. In other words, we conclude that the K([•/T ])-module E([(X × (Aj\{0})r)/T ]) is 〈(1 − ti)
j〉-

complete. The proof follows now from the general fact that a K([•/T ])-module is 〈(1− ti)
j〉-complete if and

only if is 〈(1− ti)〉-complete.

Proof of item (ii) - case of a circle. In what follows, we assume that T is a circle, i.e., T = Gm. Recall
that in this particular case the representation ring R(T ) is isomorphic to Z[t±1]. In order to simplify the
exposition, we will make essential use of the following notation:

Notation 8.4. Given an additive category C (e.g., the homotopy category Ho(D) of a stable presentable
∞-category), let us write −⊗Z − for the canonical action of the category of free Z-modules on C.

Note that in order to prove that the induced morphism of K([•/T ])-modules θ : E([X/T ])∧I → ET (X) is
an equivalence, it suffices to show that the following homomorphisms of abelian groups are invertible:

πo,n(θ) : πo,n(E([X/T ])∧I ) −→ πo,n(ET (X)) o ∈ D n ∈ Z .

As explained in [35, Prop. 4.2.7], the K([•/T ])-module E([X/T ])∧I admits the following description:

E([X/T ])∧I = limj≥1
E([X/T ])

(1 − t)j
where

E([X/T ])

(1− t)j
:= cofiber

(
E([X/T ])

−·(1−t)j

−→ E([X/T ])

)
.

Consequently, we have the Milnor short exact sequence:

(8.5) 0 −→ lim1
j≥1πo,n+1

E([X/T ])

(1− t)j
−→ πo,n(E([X/T ])∧I ) −→ limj≥1πo,n

E([X/T ])

(1 − t)j
−→ 0 .

Thanks to Proposition 8.11, we have moreover the following isomorphisms of abelian groups:

(8.6) πo,n
E([X/T ])

(1 − t)j
≃ πo,nE(X)⊗Z R(T )/〈(1− t)j〉 ≃ πo,nE(X)⊗Z Z[t]/〈(1− t)j〉 .

Under (8.6), the tower of abelian groups {πo,n
E([X/T ])
(1−t)j }j≥1 corresponds to πo,nE(X)⊗Z {Z[t]/〈(1− t)j〉}j≥1.

Since the latter tower satisfies the Mittag-Leffler condition, we hence conclude that lim1
j≥1πo,n+1

E([X/T ])
(1−t)j = 0.

Consequently, the above Milnor short exact sequence (8.5) yields an induced isomorphism:

(8.7) πo,n(E([X/T ])∧I )
≃
−→ limj≥1

(
πo,nE(X)⊗Z R(T )/〈(1− t)j〉

)
.

Since T acts trivially on X , we have X ×T Aj\{0} = X × Pj−1. Therefore, the K([•/T ])-module ET (X)
admits the following description ET (X) = limj≥1E(X ×Pj−1). This implies, in particular, that we have the
following Milnor short exact sequence:

(8.8) 0 −→ lim1
j≥1πo,n+1E(X × Pj−1) −→ πo,nET (X) −→ limj≥1πo,nE(X × Pj−1) −→ 0 .

Thanks to Proposition 8.11, we have moreover the following isomorphisms of abelian groups:

(8.9) πo,nE(X × Pj−1) ≃ πo,nE(X)⊗Z K0(P
j−1) ≃ πo,nE(X)⊗Z Z⊕j .
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Under (8.9), the tower of abelian groups {πo,nE(X×Pj−1)}j≥1 corresponds to πo,nE(X)⊗Z{Z⊕j}j≥1. Since

the latter tower satisfies the Mittag-Leffler condition, we hence conclude that lim1
j≥1πo,n+1E(X×Pj−1) = 0.

Consequently, the above Milnor short exact sequence (8.8) yields an induced isomorphism:

(8.10) πo,nET (X)
≃
−→ limj≥1

(
πo,nE(X)⊗Z K0(P

j−1)
)
.

Finally, under (8.7) and (8.10), the above homomorphism πo,n(θ) corresponds to the isomorphism

limj≥1

(
πo,nE(X)⊗Z R(T )/〈(1− t)j〉

) ≃
−→ limj≥1

(
πo,nE(X)⊗Z K0(P

j−1)
)

induced by the following short exact sequences:

0 −→ 〈(1− t)j〉 −→ R(T ) −→ K0(P
j−1) −→ 0 j ≥ 1 .

This implies, in particular, that the homomorphism πo,n(θ) is invertible.

Proposition 8.11. We have natural isomorphisms

E([X/T ])

(1− t)j
≃ E(X)⊗Z R(T )/〈(1− t)j〉 E(X × Pj−1) ≃ E(X)⊗Z K0(P

j−1)

in the homotopy category Ho(D).

Proof. Thanks to Remark 4.3(ii), there exists an ∞-functor E (which does not necessarily preserve filtered
colimits) making the following diagram commute:

(8.12) dgcat(k)∞

U

��

E // D

NMot(k)
E

AA

.

Since the induced functor Ho(E) is triangulated, it preserve (finite) direct sums. This implies that it is com-
patible with the canonical action −⊗Z − of the category of finitely generated free Z-modules. Consequently,
using the fact that the abelian groups R(T )/〈(1 − t)j〉 and K0(P

j−1) are finitely generated, it suffices then
to show that we have natural isomorphisms

U([X/T ])

(1− t)j
≃ U(X)⊗Z R(T )/〈(1− t)j〉 U(X × Pj−1) ≃ U(X)⊗Z K0(P

j−1)(8.13)

in the homotopy category Ho(NMot(k)). We start by constructing the left-hand side of (8.13). Since T acts
trivially on X , we have the following Morita equivalence (consult [50, Prop. 2.4]):

perfdg(X)⊗ perfdg([•/T ]) −→ perfdg([X/T ]) (F , V ) 7→ F ⊠ V .(8.14)

Making use of it, we hence obtain the following natural isomorphisms

(8.15) U([X/T ])
(a)
≃ U(X)⊗ U([•/T ])

(b)
≃ U(X)⊗Z R(T ) ,

where (a) follows from the Morita equivalence (8.14) and from the fact that U is symmetric monoidal, and
(b) from Lemma 8.19. Since the abelian group R(T )/〈(1− t)j〉 ≃ Z⊕j is free, the short exact sequence

(8.16) 0 −→ R(T )
−·(1−t)j

−→ R(T ) −→ R(T )/〈(1− t)j〉 −→ 0

is split. By functoriality, this yields the following split cofiber sequence

U(X)⊗Z R(T )
id⊗Z(−·(1−t)j)

−→ U(X)⊗Z R(T ) −→ U(X)⊗Z R(T )/〈(1− t)j〉

in the homotopy category Ho(NMot(k)). Consequently, there exists a (unique) dashed isomorphism in
Ho(NMot(k)) making the following diagram commute:

U([X/T ])
−·(1−t)j // U([X/T ]) // U([X/T ])

(1−t)j

U(X)⊗Z R(T )

(8.15) ≃

OO

id⊗Z(−·(1−t)j)

// U(X)⊗Z R(T ) //

(8.15) ≃

OO

U(X)⊗Z R(T )/〈(1− t)j〉 .

≃

OO✤
✤

✤
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Finally, in what concerns the isomorphism on the right-hand side of (8.13), it is given by the composition

U(X × Pj−1)
(a)
≃ U(X)⊗ U(Pj−1)

(b)
≃ U(X)⊗Z K0(P

j−1), where (a) follows from the Morita equivalence

perfdg(X)⊗ perfdg(P
j−1) −→ perfdg(X × Pj−1) (F ,G) 7→ F ⊠ G

and from the fact that U is symmetric monoidal, and (b) from Lemma 8.19. �

Remark 8.17. Note that it follows from the proof of Proposition 8.11 that the following cofiber sequences

E([X/T ])
−·(1−tj)
−→ E([X/T ]) −→

E([X/T ])

(1− t)j
j ≥ 1(8.18)

are split in the homotopy category Ho(D).

Lemma 8.19. We have natural isomorphisms

U([•/T ]) ≃ U(k)⊗Z R(T ) U(Pj−1) ≃ U(k)⊗Z K0(P
j−1)

in the homotopy category Ho(NMot(k)).

Proof. The computation HomHo(NMot(k))(U(k), U([•/T ])) ≃ R(T ) (consult §4) yields an induced morphism

U(k) ⊗Z R(T ) → U([•/T ]). Similarly, the computation HomHo(NMot(k))(U(k), U(Pj−1)) ≃ K0(P
j−1) yields

an induced morphism U(k)⊗Z K0(P
j−1) → U(Pj−1). By applying the functor HomHo(NMot(k))(U(k),−) to

these morphisms, we obtain the corresponding computations. Consequently, thanks to the Yoneda lemma, it
is enough to show that U([•/T ]) and U(Pj−1) are isomorphic to a (possibly infinite) direct sum of copies of
U(k). In what concerns U([•/T ]), this follows from the canonical Morita equivalence

∐
χ∈T̂ k → perfdg([•/T ])

and from the fact that U preserve filtered colimits. In what concerns U(Pj−1), this follows from Beilinson’s
celebrated full exceptional collection perf(Pj−1) = 〈O,O(1), . . . ,O(j)〉 and from the fact that U sends full
exceptional collections to direct sums of copies of U(k); consult [4][48, §2.4.2 and §8.4.5]. �

Proof of item (ii) - case of a torus. In what follows, we assume that T = Gr
m. Recall that in this

case the representation ring R(T ) is isomorphic to Z[t±1
1 , . . . , t±1

r ]. As explained in [35, Prop. 4.2.7], the
K([•/T ])-module E([X/T ])∧I admits the following description

E([X/T ])∧I = limj1,...,jr≥1
E([X/T ])

(1− t1)j1 + · · ·+ (1− tr)jr
,

where E([X/T ])
(1−t1)j1+···+(1−ti)ji

, with 1 ≤ i ≤ r, is defined recursively as follows:

cofiber

(
E([X/T ])

(1 − t1)j1 + · · ·+ (1− ti−1)ji−1

−·(1−ti)
ji

−→
E([X/T ])

(1− t1)j1 + · · ·+ (1− ti−1)ji−1

)
.

In the same vein, since X×T (Aj\{0})r = X× (Pj−1)r, the K([•/T ])-module ET (X) admits the description:

ET (X) := limj≥1E(X × (Pj−1)r) = limj1,...,jr≥1E(X × Pj1−1 × · · · × Pjr−1) .

Now, note that the morphism of K([•/T ])-modules θ : E([X/T ])∧I → ET (X) admits the factorization

E([X/T ])∧I
θ1

−→ ET (X)1
θ2

−→ ET (X)2
θ3

−→ · · ·
θr

−→ ET (X)r = ET (X) ,

where

ET (X)i := limj1,...,jr≥1
E(X × Pj1−1 × · · · × Pji−1)

(1− ti+1)ji+1 + · · ·+ (1− tr)jr
1 ≤ i ≤ r

and θi is induced by the projection X × Pj1−1 × · · · × Pji−1 → X × Pj1−1 × · · · × Pji−1−1. In order to prove
that θ is an equivalence, it suffices then to show that θi, with 1 ≤ i ≤ r, is an equivalence. For each choice
of integers j1, . . . , ji−1, ji+1, . . . , jr, it follows from item (ii) (case of a circle) that the induced morphism

limji≥1
E(X × Pj1−1 × · · · × Pji−1−1)

(1 − ti)ji + · · ·+ (1− tr)jr
−→ limji≥1

E(X × Pj1−1 × · · · × Pji−1)

(1 − ti+1)ji+1 + · · ·+ (1 − tr)jr

is an equivalence; note that since D is a stable presentable ∞-category, the ∞-functor limji≥1(−) preserve
(co)fiber sequences. Consequently, we conclude that θi is also an equivalence.
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Proof of item (iii) - case of a circle. As explained in the proof of item (ii), we have natural isomorphisms:

πo,nE([X/T ]) ≃ πo,nE(X)⊗Z R(T ) πo,nE(X × Pj−1) ≃ πo,nE(X)⊗Z K0(P
j−1) .

These yield the following description of the classical completion and classical limit of abelian groups:

(πo,nE([X/T ]))∧I ≃ limj≥1

(
πo,nE(X)⊗Z R(T )/〈(1− t)j〉

)
(8.20)

limj≥1πo,nE(X × Pj−1) ≃ limj≥1

(
πo,nE(X)⊗Z K0(P

j−1)
)
.(8.21)

The proof follows now from the fact that, under (8.20), resp. (8.21), the left-hand side, resp. right-hand
side, of (1.6) corresponds to the above isomorphism (8.7), resp. (8.10).

Proof of item (iii) - case of a torus. Similarly to Proposition 8.11, we have natural isomorphisms

E([X/T ])

(1− t1)j1 + · · ·+ (1− tr)jr
≃ E(X)⊗Z

(
R(T )/〈(1− t1)

j1 + · · ·+ (1− tr)
jr 〉

)

≃ E(X)⊗Z

(
Z[t1]/〈(1− t1)

j1 〉 ⊗ · · · ⊗ Z[tr]/〈(1− tr)
jr 〉

)
,

as well as natural isomorphisms

E(X × Pj1−1 × · · · × Pjr−1) ≃ E(X)⊗Z K0(P
j1−1 × · · · × Pjr−1) ≃ E(X)⊗Z Z⊕j1 ⊗ · · · ⊗ Z⊕jr ,

in the homotopy category Ho(D). This implies that the following multi-towers of abelian groups

{πo,n
E([X/T ])

(1− t1)j1 + · · ·+ (1− tr)jr
}j1,...,jr≥1 {πo,nE(X × Pj1−1 × · · · × Pjr−1)}j1,...,jr≥1

corresponds to the following multi-towers:

πo,nE(X)⊗Z{Z[t1]/〈(1−t1)
j1〉⊗· · ·⊗Z[t1]/〈(1−tr)

jr 〉}j1,...,jr≥1 πo,nE(X)⊗Z{Z
⊕j1 ⊗· · ·⊗Z⊕jr}j1,...,jr≥1 .

Since the latter multi-towers of abelian groups satisfy the Mittag-Leffler condition (in each one of the r
possible directions), we hence obtain induced isomorphisms:

πo,n(E([X/T ])∧I )
≃
−→ limj1,...,jr≥1

(
πo,nE(X)⊗Z R(T )/〈(1− t1)

j1 + · · ·+ (1− tr)
jr 〉

)
(8.22)

πo,nET (X)
≃
−→ limj1,...,jr≥1

(
πo,nE(X)⊗Z K0(P

j1−1 × · · · × Pjr−1)
)
.(8.23)

Similarly to item (ii) (case of a circle), we have moreover natural isomorphisms:

πo,nE([X/T ]) ≃ πo,nE(X)⊗Z R(T ) πo,nE(X × (Pj−1)r) ≃ πo,nE(X)⊗Z K0((P
j−1)r) .

They yield the following description of the classical completion of abelian groups

(πo,nE([X/T ]))∧I ≃ limj1,...,jr≥1

(
πo,nE(X)⊗Z R(T )/〈(1− t1)

j1 + · · ·+ (1− tr)
jr 〉

)
(8.24)

as well as the following description of the classical limit of abelian groups

limj≥1πo,nE(X × (Pj−1)r) ≃ limj≥1

(
πo,nE(X)⊗Z K0((P

j−1)r)
)

(8.25)

≃ limj1,...,jr≥1

(
πo,nE(X)⊗Z K0(P

j1−1 × · · · × Pjr−1)
)
.(8.26)

The proof follows now from the fact that, under (8.24), resp. (8.25)-(8.26), the left-hand side, resp. right-
hand side, of (1.6) corresponds to the above isomorphism (8.22), resp. (8.23).

Step II: general case. In what follows, we assume that X is T -filtrable.

Proof of item (i). By combining the filtration (1.4) with Corollary 6.3, we obtain the following cofiber
sequences of K([•/T ])-modules

ET (Wi) −→ ET (X\Xi−1) −→ ET (X\Xi) 0 ≤ i ≤ m− 1 ,(8.27)

whereWi := Xi\Xi−1 is a T -stable smooth closed subscheme ofX\Xi−1 andX\Xi is the open complement of
Wi; note thatX\Xm−1 = Wm. Thanks to Corollary 7.3, we have moreover equivalences ofK([•/T ])-modules
q∗i : ET (Zi) → ET (Wi), 0 ≤ i ≤ m. Therefore, since the ∞-subcategory of I-complete K([•/T ])-modules is
stable under cofiber sequences (consult [35, §4.2]), an inductive argument using the cofiber sequences (8.27),
the equivalences q∗i , 0 ≤ i ≤ m, and the fact that the K([•/T ])-modules ET (Zi), 0 ≤ i ≤ m, are I-complete
(as proved in item (i) of Step I), allows us to conclude that the K([•/T ])-module ET (X) is I-complete.
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Proof of item (ii). By combining the filtration (1.4) with Theorem 6.1, we obtain the following cofiber
sequences of K([•/T ])-modules:

E([Wi/T ]) −→ E([(X\Xi−1)/T ]) −→ E([(X\Xi)/T ]) 0 ≤ i ≤ m− 1 ,

where Wi := Xi\Xi−1 is a T -stable smooth closed subscheme of X\Xi−1 and X\Xi is the open complement
of Wi; note that X\Xm−1 = Wm. Therefore, since the derived completion functor (−)∧I preserve cofiber
sequences (consult [35, §4.2]), we obtain the following cofiber sequences of K([•/T ])-modules:

E([Wi/T ])
∧
I −→ E([(X\Xi−1)/T ])

∧
I −→ E([(X\Xi)/T ])

∧
I 0 ≤ i ≤ m− 1 .

Moreover, we have the following morphism of cofiber sequences of K([•/T ])-modules:

(8.28) E([Wi/T ])
∧
I

θWi

��

// E([(X\Xi−1)/T ])
∧
I

//

θX\Xi−1

��

E([(X\Xi)/T ])
∧
I

θX\Xi

��
ET (Wi) // ET (X\Xi−1) // ET (X\Xi) ,

where the commutativity of the left-hand side square, resp. right-hand side square, follows from the com-
patibility of θ with push-forwards, resp. with pull-backs. Furthermore, Theorem 7.1 and Corollary 7.3 yield
the following commutative squares

(8.29) E([Zi/T ])
∧
I

θZi

��

q∗
i // E([Wi/T ])

∧
I

θWi

��
ET (Zi)

q∗
i

// ET (Wi) ,

where both horizontal morphisms are equivalences. Therefore, an inductive argument using the commutative
diagrams (8.28)-(8.29) and the fact that the morphisms θZi

, 0 ≤ i ≤ m, are equivalences (as proved in item
(ii) of Step I), allows us to conclude that the morphism θX : E([X/T ])∧I → ET (X) is also an equivalence.

Proof of item (iii) - case of a circle. Recall from Step I that we have the Milnor short exact sequence:

(8.30) 0 −→ lim1
j≥1πo,n+1

E([X/T ])

(1− t)j
−→ πo,n(E([X/T ])∧I ) −→ limj≥1πo,n

E([X/T ])

(1 − t)j
−→ 0 .

Since X is T -filtrable, by combining the filtration (1.4) with Theorems 6.1 and 7.1, we obtain the following
cofiber sequences of K([•/T ])-modules:

E([Zi/T ]) −→ E([(X\Xi−1)/T ]) −→ E([(X\Xi)/T ]) 0 ≤ i ≤ m− 1 ;(8.31)

note that since X\Xm−1 = Wm, the K([•/T ])-module E([(X\Xm−1)/T ]) is equivalent to E([Zm/T ]). As
proved in Proposition 8.38, the cofiber sequences (8.31) are split in the homotopy category Ho(D). Conse-
quently, the induced cofiber sequences

E([Zi/T ])

(1− t)j
−→

E([(X\Xi−1)/T ])

(1 − t)j
−→

E([(X\Xi)/T ])

(1− t)j
j ≥ 1(8.32)

are also split in Ho(D). This leads to the following towers of short exact sequences of abelian groups

0 −→ {πo,n
E([Zi/T ])

(1− t)j
}j≥1 −→ {πo,n

E([(X\Xi−1)/T ])

(1− t)j
}j≥1 −→ {πo,n

E([(X\Xi)/T ])

(1− t)j
}j≥1 −→ 0

and, as a byproduct, to the following exact sequences of abelian groups:

lim1
j≥1πo,n+1

E([Zi/T ])

(1− t)j
−→ lim1

j≥1πo,n+1
E([(X\Xi−1)/T ])

(1− t)j
−→ lim1

j≥1πo,n+1
E([(X\Xi)/T ])

(1− t)j
−→ 0 .

Therefore, an inductive argument using the latter exact sequences of abelian groups and the fact that

lim1
j≥1πo,n+1

E([Zi/T ])
(1−t)j = 0 for every 0 ≤ i ≤ m (as proved in item (ii) of Step I), allows us to conclude that

lim1
j≥1πo,n+1

E([X/T ])
(1−t)j = 0. Thanks to Milnor’s short exact sequence (8.30), we hence obtain an isomorphism:

(8.33) πo,n(E([X/T ])∧I )
≃
−→ limj≥1πo,n

E([X/T ])

(1− t)j
.



21

Now, consider the following cofiber sequences

E([X/T ])
−·(1−t)j

−→ E([X/T ]) −→
E([X/T ])

(1− t)j
j ≥ 1

and the associated universal coefficient short exact sequences

(8.34) 0 −→ πo,nE([X/T ])/(1− t)j −→ πo,n
E([X/T ])

(1 − t)j
−→ Tor(1−t)jπo,n−1E([X/T ]) −→ 0 ,

where Tor(1−t)jπo,n−1E([X/T ]) stands for the (1−t)j-torsion R(T )-submodule of πo,n−1E([X/T ]). Note that
since the above cofiber sequences (8.31) are split in the homotopy category Ho(D), they yield the following
short exact sequences of R(T )-modules:

0 −→ πo,n−1E([Zi/T ]) −→ πo,n−1E([(X\Xi−1)/T ]) −→ πo,n−1E([(X\Xi)/T ]) −→ 0 .

As a byproduct, we obtain the following exact sequences:

0 −→ Tor(1−t)jπo,n−1E([Zi/T ]) −→ Tor(1−t)jπo,n−1E([(X\Xi−1)/T ]) −→ Tor(1−t)jπo,n−1E([(X\Xi)/T ]) .

Therefore, an inductive argument using these latter exact sequences of R(T )-modules and the fact that
Tor(1−t)jπo,n−1E([Zi/T ]) = 0 for every 1 ≤ i ≤ m (this follows automatically from the above split cofiber
sequences (8.18) (with X replaced by Zi)), allows us to conclude that Tor(1−t)jπo,n−1E([X/T ]) = 0. Thanks
to the above universal coefficients short exact sequence (8.34), we hence obtain an induced isomorphism:

(8.35) (πo,nE([X/T ]))∧I = limj≥1

(
πo,nE([X/T ])/(1− t)j

) ≃
−→ limj≥1πo,n

E([X/T ])

(1− t)j
.

The left-hand side of (1.6) is now defined as the composition of (8.33) with the inverse of (8.35).
We now construct the right-hand side of (1.6). Recall that we have the Milnor short exact sequence:

(8.36) 0 −→ lim1
j≥1πo,n+1E(X ×T Aj\{0}) −→ πo,nET (X) −→ limj≥1πo,nE(X ×T Aj\{0}) −→ 0 .

Since X is T -filtrable, by combining the filtration (1.4) with Theorems 6.1 and 7.1, we obtain the following
cofiber sequences of K([•/T ])-modules

E(Zi ×T Aj\{0}) −→ E((X\Xi−1)×T Aj\{0}) −→ E((X\Xi)×T Aj\{0}) 0 ≤ i ≤ m− 1 ;(8.37)

note that X\Xm−1 = Wm. As proved in Proposition 8.38, these cofiber sequences are split in the homotopy
category Ho(D). Hence, they yield the towers of short exact sequences of abelian groups

0 → {πo,nE(Zi×
TAj\{0})}j≥1 → {πo,nE((X\Xi−1)×

TAj\{0})}j≥1 → {πo,nE((X\Xi)×
TAj\{0})}j≥1 → 0

and, as a byproduct, the following exact sequences of abelian groups:

lim1
jπo,n+1E(Zi×

T Aj\{0}) → lim1
jπo,n+1E((X\Xi−1)×

T Aj\{0}) → lim1
jπo,n+1E((X\Xi)×

T Aj\{0}) → 0 .

Therefore, an inductive argument using the latter exact sequences of abelian groups and the fact that
lim1

j≥1πo,n+1E(Zi ×T Aj\{0}) = 0 for every 0 ≤ i ≤ m (proved in item (ii) of Step I), allows us to conclude

that lim1
j≥1πo,n+1E(X ×T Aj\{0}) = 0. Thanks to Milnor’s short exact sequence (8.36), we hence obtain

the right-hand side of (1.6).

Proposition 8.38. The above cofiber sequences (8.31) and (8.37) are split in the homotopy category Ho(D).

Proof. We consider first the cofiber sequences (8.31), i.e., the following cofiber sequences

E([Zi/T ])
(ii)∗◦q

∗
i−→ E([(X\Xi−1)/T ])

j∗i−→ E([(X\Xi)/T ]) 0 ≤ i ≤ m− 1 ,(8.39)

where ii : Wi := Xi\Xi−1 →֒ X\Xi−1 is a T -stable smooth closed subscheme, ji : X\Xi →֒ X\Xi−1 is the
open complement of Wi, and qi : Wi → Zi is a T -equivariant vector bundle. Recall that in a triangulated

category (e.g., in the homotopy category Ho(D)) a distinguished triangle a
f
→ b

g
→ c

∂
→ a[1] is called split

if ∂ = 0 or, equivalently, if there exists a morphism c
s
→ b such that g ◦ s = id. In this case, we have an
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induced isomorphism (f, s) : a ⊕ c
≃
→ b. In what follows, we will construct morphisms si, 0 ≤ i ≤ m− 1, in

the homotopy category Ho(D) making the following diagrams commute:

E([(X\Xi−1)/T ])
j∗i // E([(X\Xi)/T ])

E([Zi/T ])⊕
⊕

i′>iE([Zi′/T ])

si

hh

((ii+1)∗◦(qi+1)
∗,si+1)≃

OO
0 ≤ i ≤ m− 1(8.40)

Note that, thanks to the equivalence q∗m : E([Zm/T ]) → E([Wn/T ]) (recall that X\Xm−1 = Wm), an
inductive argument using the commutative diagrams (8.40) implies that the above cofiber sequences (8.39)
are split in the homotopy category Ho(D). Recall from Remark 4.3(ii) that there exists an ∞-functor E
(which does not necessarily preserve filtered colimits) making the following diagram commute:

dgcat(k)∞

U

��

E // D

NMot(k)
E

AA

.

Therefore, since the induced functor Ho(E) is triangulated (in particular, it preserve (finite) direct sums), it
suffices to construct morphisms si, 0 ≤ i ≤ m− 1, in Ho(NMot(k)) making the following diagrams commute:

U([(X\Xi−1)/T ])
j∗i // U([(X\Xi)/T ])

U([Zi/T ])⊕
⊕

i′>i U([Zi′/T ])

si

hh

((ii+1)∗◦(qi+1)
∗,si+1)

OO
0 ≤ i ≤ m− 1 ;(8.41)

note that, in contrast with (8.40), the vertical morphisms in (8.41) are not invertible. By combining the
filtration (1.4) with Theorems 6.1 and 7.1, we obtain the following cofiber sequences:

UA1([Zi/T ])
(ii)∗◦q

∗
i−→ UA1([(X\Xi−1)/T ])

j∗i−→ UA1([(X\Xi)/T ]) 0 ≤ i ≤ m− 1 .(8.42)

In particular, when i = m− 1, we have the following cofiber sequence:

(8.43) UA1([Zm−1/T ])
(im−1)∗◦q

∗
m−1

−→ UA1([(X\Xm−2)/T ])
j∗m−1

−→ UA1([(X\Xm−1)/T ]) .

Since X\Xm−1 = Wm and T acts trivially on the projective k-scheme Zm, the computation (4.10) and
the equivalence q∗m : UA1([Zm/T ]) → UA1([Wm/T ]) imply that (8.43) is split in the homotopy category
Ho(NMotA1(k)). As a consequence, there exists a morphism sm−1 making the following diagram commute:

U([(X\Xm−2)/T ])
j∗m−1 // U([(X\Xm−1)/T ])

U([Zm/T ]) .
sm−1

hh

q∗
m≃

OO

Now, a (similar) inductive argument, using the computation (4.10), allows us not only to conclude that the
above cofiber sequences (8.42) are split in Ho(NMotA1(k)) but also to construct morphisms si, 0 ≤ i ≤ m−1,
in the homotopy category in Ho(NMotA1(k)) making the following diagrams commute:

UA1([(X\Xi−1)/T ])
j∗i // UA1([(X\Xi)/T ])

UA1([Zi/T ])⊕
⊕

i′>i UA1([Zi′/T ])

si

ii

((ii+1)∗◦(qi+1)
∗,si+1)≃

OO
0 ≤ i ≤ m− 1 .(8.44)

Thanks to the computation (4.9), the proof follows now from the fact that the latter morphisms si belong
also to the homotopy category Ho(NMot(k)). Moreover, the commutative diagrams (8.44) hold similarly in
Ho(NMot(k)), i.e., the above commutative diagrams (8.41) hold.
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Finally, the case of the cofiber sequences (8.37) is similar: simply replace the computations (4.9)-(4.10) by
the computations (4.5)-(4.6) and use the fact that k-schemes Zi ×T Aj\{0} = Zi × Pj−1 are projective. �

Proof of item (iii) - case of a torus. Similarly to item (iii) (case of a torus), we have isomorphisms:

(8.45) πo,nE([X/T ])/〈(1− t1)
j1 + · · ·+ (1 − tr)

jr 〉
≃
−→ πo,n

E([X/T ])

(1− t1)j1 + · · ·+ (1− tr)jr
j1, . . . , jr ≥ 1 .

Since the classical completion of abelian groups (πo,nE([X/T ]))∧I may be described as the following limit
limj1,...,jr≥1

(
πo,nE([X/T ])/〈(1− t1)

j1 + · · ·+ (1− tr)
jr 〉

)
, we hence obtain an induced isomorphism:

(8.46) (πo,nE([X/T ]))∧I
≃
−→ limj1,...,jr≥1πo,n

E([X/T ])

(1− t1)j1 + · · ·+ (1− tr)jr
.

Consider the multi-tower of abelian groups {πo,n
E([X/T ])

(1−t1)j1+···+(1−tr)jr
}j1,...,jr≥1. Thanks to the above isomor-

phisms (8.45), it follows from item (iii) (case of a circle) that for each choice of integers j1, . . . , ji−1, ji+1, . . . , jr
we have lim1

ji≥1πo,n+1
E([X/T ])

(1−t1)j1+···+(1−tr)jr
= 0. This implies that the induced homomorphism

(8.47) πo,n(E([X/T ])∧I )
≃
−→ limj1,...,jr≥1πo,n

E([X/T ])

(1− t1)j1 + · · ·+ (1− tr)jr

is invertible. The left-hand side of (1.6) is now defined as the composition of (8.47) with the inverse of (8.46).
Now, consider the multi-tower of abelian groups {πo,nE(X ×T (Aj1\{0} × · · · × Ajr\{0}))}j1,...,jr≥1. It

follows from item (iii) (case of a circle) that lim1
ji≥1πo,n+1E(X ×T (Aj1\{0} × · · · × Ajr\{0})) = 0 for each

choice of integers j1, . . . , ji−1, ji+1, . . . , jr. This implies that the induced homomorphism

(8.48) πo,nET (X)
≃
−→ limj1,...,jr≥1πo,nE(X ×T (Aj1\{0} × · · · × Ajr\{0}))

is invertible. The right-hand side of (1.6) is now defined as the composition of (8.48) with the natural
identification of the right-hand side of (8.48) with limj≥1πo,nE(X ×T (Aj\{0})r).

9. Proof of Theorem 1.11

We start with two preliminary results of independent interest.

Proposition 9.1 (Equivariant projective bundle theorem). Let X be a separable k-scheme of finite type
equipped with a G-action, V → X a G-vector bundle on X of rank r, and π : P(V ) → X the associated
projective bundle (P(V ) is equipped with an induced G-action and the map π is G-equivariant). Given an
∞-functor E : dgcat(k)∞ → D satisfying conditions (C1) and (C3), the following dg functors

Φi : perfdg([X/G]) −→ perfdg([P(V )/G]) F 7→ π∗(F)⊗OP(V )(i) 0 ≤ i ≤ r − 1

give rise to an equivalence of K([•/G])-modules E([X/G])⊕r → E([P(V )/G]).

Proof. Recall first from Remark 4.3(ii) that since E satisfies conditions (C1) and (C3), there exists an
∞-functor E (which does not necessarily preserve filtered colimits) making the following diagram commute:

(9.2) dgcat(k)∞

U

��

E // D

NMot(k)
E

AA

.

As proved by Elagin in [15, Thm. 10.1], the triangulated functors H0(Φi), 0 ≤ i ≤ r − 1, are fully-faithful
and give rise to the following semi-orthogonal decomposition:

perf([P(V )/G]) = 〈H0(Φ0)(perf([X/G])), . . . ,H0(Φr−1)(perf([X/G]))〉 .

Consequently, following [48, §2.1 and §8.3-§8.4], we obtain an induced equivalence of K([•/G])-modules
U([X/G])⊕r → U([P(V )/G]). The proof follows now from the above commutative diagram (9.2). �
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Proposition 9.3 (Strong homotopy invariance property). Let X be a smooth separable k-scheme of finite
type equipped with a G-action, V → X a G-vector bundle, and f : Y → X a torsor under V . Assume that G
acts on Y and that the maps f and V ×X Y → Y are G-equivariant. Given an ∞-functor E : dgcat(k)∞ → D
satisfying conditions (C1), (C3) and (C4), we have an induced equivalence of K([•/G])-modules:

(9.4) f∗ : E([X/G]) −→ E([Y/G]) .

Proof. Following Thomason [57, Thm. 4.1], there exists a short exact sequence of G-vector bundles on X

0 −→ V −→ W
ϕ

−→ A1
X −→ 0 ,

where A1
X stands for the trivial line bundle (with trivial G-action), such that ϕ−1(1) ≃ Y . Consequently,

the smooth k-scheme Y may be identified with the open complement of the G-stable closed immersion
i : P(V ) →֒ P(W ). Therefore, similarly to Thomason’s proof, by combining Proposition 9.1 with the fact that
the ∞-functor E satisfies condition (C4), we conclude that (9.4) is an equivalence of K([•/G])-modules. �

Let T be a k-split maximal torus of G and B a Borel subgroup of G containing T . The proof of Theorem
1.11 follows now from the following result:

Proposition 9.5. Let X be a smooth separated k-scheme of finite type equipped with a G-action, and
E : dgcat(k)∞ → D a localizing A1-homotopy invariant satisfying the extra condition (C4).
(i) We have the following commutative diagram of K([•/G])-modules with ind ◦ res = id:

E([X/G])
res //

(1.8)

��

E([X/B])

(1.8)

��

ind // E([X/G])

(1.8)

��
EG(X) res

// EB(X)
ind

// EG(X)

.(9.6)

(ii) We have the following commutative square of K([•/G])-modules (with res an equivalence):

E([X/B])

(1.8)

��

res // E([X/T ])

(1.3)

��
EB(X) res

// ET (X)

(9.7)

Proof. We start by proving item (i). Consider the projective homogeneous varietyG/B and theG-equivariant
projection map π : G/B ×X → X . Since π is flat and proper, it yields the following adjunction:

perf([(G/B ×X)/G])

π∗

��
perf([X/G]) .

π∗

OO

We have natural isomorphisms (π∗ ◦ π∗)(F)
(a)
≃ F ⊗ (π∗ ◦ π∗)(O) ≃ F ⊗ π∗(O)

(b)
≃ F ⊗ O ≃ F for every

F ∈ perf([X/G]), where (a) follows from the projection formula and (b) from the classical Kempf vanishing
theorem for G/B. Consequently, we obtain the following morphisms of K([•/G])-modules with π∗ ◦π∗ = id:

E([X/G])
π∗

−→ E([(G/B ×X)/G])
π∗−→ E([X/G]) .(9.8)

By combining (9.8) with Lemma 9.13 (with H = B), we hence obtain the upper-part of the diagram (9.6).
Now, let {(Vj , Uj)}j≥1 be an admissible gadget for G (and hence for B). By replicating the above argument
with X replaced by X × Uj , we obtain morphisms of K([•/G])-modules with ind ◦ res = id:

E([(X × Uj)/G])
res
−→ E([(X × Uj)/B])

ind
−→ E([(X × Uj)/G]) j ≥ 1 .(9.9)

Consequently, by applying the ∞-functor limj≥1(−) to (9.9), we obtain the bottom-part of the diagram
(9.6). Finally, the commutativity of (9.6) follows now from the definition of the morphism (1.8).

We now prove item (ii). Consider the characteristic filtration {1} ⊆ Bu
n ⊆ Bu

n−1 ⊆ · · · ⊆ Bu
1 ⊆ Bu

0 = Bu

of the unipotent radical Bu of B. Let us write TBu
i for the subgroup of B generated by T and Bu

i . Following
Thomason [52, Thm. 1.13], for every 1 ≤ i ≤ n, we have a B-vector bundle Bu

i−1/B
u
i → B/TBu

i−1 and a
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torsor fi : B/TBu
i → B/TBu

i−1 under Bu
i−1/B

u
i . Consequently, by applying Proposition 9.3 (with G replaced

by B and X replaced by Bu
i−1/B

u
i ×X), we obtain equivalences of K([•/B])-modules:

(fi × id)∗ : E([(B/TBu
i−1 ×X)/B]) −→ E([(B/TBu

i ×X)/B]) 1 ≤ i ≤ n .(9.10)

Their composition yields then an equivalence of K([•/B])-modules:

(9.11) E([X/B]) −→ E([(B/T ×X)/B]) .

By combining (9.11) with Lemma 9.13 (with G = B and H = T ), we hence obtain the upper-part of the
square (9.7). Now, let {(Vj , Uj)}j≥1 be an admissible gadget for B (and hence for T ). By replicating the
above argument with X replaced by X × Uj, we obtain equivalences of K([•/B])-modules

E([(X × Uj)/B])
res
−→ E([(X × Uj)/T ]) j ≥ 1 .(9.12)

Consequently, by applying the ∞-functor limj≥1(−) to (9.12), we obtain the bottom part of the square (9.7).
Finally, the commutativity of (9.7) follows now from the definition of the morphisms (1.3) and (1.8). �

Lemma 9.13 (Morita equivalence). Let H ⊂ G be a closed subgroup k-scheme and X a smooth separated k-
scheme of finite type equipped with a G-action. Given an ∞-functor E : dgcat(k)∞ → D satisfying conditions
(C1) and (C3), we have an equivalence of K([•/G])-modules:

(9.14) E([(G/H ×X)/G]) −→ E([X/H ]) .

Proof. Let us write G×H X for the quotient of G×X by the H-action h(g, x) := (gh−1, hx). As proved by
Thomason in [52, Thm. 1.10], restriction along the H-equivariant map X = H ×H X → G×H X gives rise
to a Morita equivalence perfdg([(G×H X)/G]) → perfdg([X/H ]). Consequently, the proof follows now from

the isomorphism G×H X
≃
→ G/H ×X, (g, x) 7→ (gH, gx). �

Remark 9.15 (Generalization). Note that if one ignores the K([•/G])-module structure, then Lemma 9.13
holds more generally for every ∞-functor E : dgcat(k)∞ → D.

Appendix A. Homotopy K-theory of quotient stacks

The following result, which is of independent interest, extends a previous result of Weibel [60] on homotopy
K-theory from the realm of schemes to the broad setting of quotient stacks.

Theorem A.1. (i) Let X be a smooth quasi-compact separated k-scheme equipped with a T -action. Under
these assumptions, the canonical morphism IK([X/T ]) → KH([X/T ]) is an equivalence of spectra.

(ii) Let X be a smooth separated k-scheme of finite type equipped with a G-action. Under these assumptions,
the canonical morphism IK([X/G]) → KH([X/G]) is an equivalence of spectra.

Proof. We start by proving item (i). Recall from §2.1 that KH([X/T ]) := colimmIK(perfdg([X/T ])⊗∆m).
Following Bass [3, §XII], consider the following abelian groups (defined recursively)

NpIKq([X/T ]) := kernel
(
Np−1IKq(perfdg([X/T ])[t])

t=0
−→ Np−1IKq(perfdg([X/T ]))

)
p ≥ 0 q ∈ Z(A.2)

with N0IKq([X/T ]) := IKq([X/T ]). We claim that NpIKq([X/T ]) = 0 for every p ≥ 0 and q ∈ Z. Note that
thanks to the standard convergent right half-plane spectral sequence

E1
pq = NpIKq([X/T ]) ⇒ KHp+q([X/T ])

associated to the simplicial spectrum m 7→ IK(perfdg([X/T ])⊗∆m), this claim would imply that the edge
morphisms IKq([X/T ]) → KHq([X/T ]) of the spectral sequence are invertible and, as a consequence, that the
canonical morphism IK([X/T ]) → KH([X/T ]) is an equivalence of spectra. Thanks to the above definition
(A.2), in order to prove our claim it suffices to show that the following canonical homomorphisms

IKq(perfdg([X/T ])[t1, . . . , tm]) −→ IKq(perfdg([X/T ])[t1, . . . , tm][t]) q ∈ Z(A.3)

are invertible. Under the following Morita equivalences (consult Lemma A.7(i))

perfdg([X/T ])[t1, . . . , tm] → perfdg([(X×Am)/T ]) perfdg([X/T )[t1, . . . , tm][t] → perfdg([(X×Am×A1)/T ]) ,

where T acts trivially on Am and on A1, the homomorphisms (A.3) correspond to the homomorphisms

π∗
A1 : IKq([(X × Am)/T ]) −→ IKq([(X × Am × A1)/T ]) q ∈ Z
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induced by the projection πA1 : X×Am×A1 → X×Am. Therefore, it suffices to show that π∗
A1 is invertible.

Consider the k-scheme P1
X×Am := X × Am × P1 equipped with the induced T -action (T acts trivially on

Am and on P1), the T -stable closed subscheme i : X × Am = X × Am × {0} →֒ X × Am × P1, and the open
complement j : X×Am×A1 →֒ X×Am×P1 of X×Am. Since P1

X×Am and X×A1 are smooth, Thomason’s
localization theorem [57, Thm. 2.7] yields the following long exact sequence of abelian groups:

(A.4) · · · −→ IKq([(X × Am)/T ])
i∗−→ IKq([(P

1
X×Am)/T ])

j∗

−→ IKq([(X × Am × A1)/T ]) −→ · · ·

Moreover, thanks to Thomason’s projective bundle theorem [57, Thm. 3.11], we have the isomorphisms

(ι0, ι−1) : Kq([(X × Am)/T ])⊕2 ≃
−→ IKq([(P

1
X×Am)/T ]) q ∈ Z(A.5)

induced by the following fully-faithful dg functors

ι0 : perfdg([(X × Am)/T ]) −→ perfdg([(P
1
X×Am)/T ]) F 7→ π∗

P1(F)

ι−1 : perfdg([(X × Am)/T ]) −→ perfdg([(P
1
X×Am)/T ]) F 7→ π∗

P1(F)⊗O(−1) ,

where πP1 : X × Am × P1 → X × Am stands for the projection. Under the isomorphisms (A.5), the above
homomorphism i∗ in (A.4) agrees with the difference ι0− ι−1 and both compositions j∗ ◦ ι0 and j∗ ◦ ι−1 agree
with π∗

A1 . Therefore, making use of Lemma A.10, the above long exact sequence (A.4) breaks up into the
following short exact sequences of abelian groups:

(A.6) 0 −→ IKq([(X × Am)/T ])
i∗ // IKq([(P

1
X×Am)/T ])

j∗ // IKq([(X × Am × A1)/T ]) −→ 0

0 −→ IKq([(X × Am)/T ]) // IKq([(X × Am)/T ])⊕2 //

(ι0−ι−1,ι0)≃

OO

IKq([(X × Am)/T ]) −→ 0 .

π∗
A1

OO

Finally, since the middle vertical morphism in (A.6) is invertible, we conclude that π∗
A1 is also invertible.

The proof of item (ii) is similar. Note that since X is smooth, separated and of finite type, then X is also
regular, separated and Noetherian. This implies that X admits an ample family of (non-equivariant) line
bundles. Consequently, using Remark 3.5, it suffices to replace Lemma A.7(i) by Lemma A.7(ii). �

Lemma A.7. (i) Let X be a quasi-compact separated normal k-scheme equipped with a T -action, and
A1 := Spec(k[t]) the affine line (with trivial T -action). Under these assumptions, the dg functor

perfdg([X/T ])[t] −→ perfdg([(X × A1)/T ]) F 7→ π∗(F) ,(A.8)

induced by the projection π : X × A1 → X, is a Morita equivalence.
(ii) Let X be a separated normal k-scheme of finite type equipped with a G-action, and A1 := Spec(k[t]) the

affine line. If the quotient stack [X/G] has the resolution property, then the dg functor

perfdg([X/G])[t] −→ perfdg([(X × A1)/G]) F 7→ π∗(F) ,(A.9)

induced by the projection π : X × A1 → X, is a Morita equivalence.

Proof. We start by proving item (i). Consider the following adjunction:

DQcoh([(X × A1)/T ])

π∗

��
DQcoh([X/T ]) .

π∗

OO

Thanks to Theorem 3.2, the triangulated category DQcoh([X/T ]) admits a set of perfect (=compact) gener-
ators {Gi}i∈I . Therefore, since the functor π∗ preserve perfect objects and the functor π∗ preserve arbitrary
direct sums and is moreover conservative, we conclude that {π∗(Gi)}i∈I is a set of perfect (and hence com-
pact) generators of DQcoh([(X × A1)/T ]). Moreover, we have the following natural identifications:

RHom(π∗(Gi), π
∗(Gi′ )) ≃ RHom(Gi, π∗π

∗(Gi′ )) ≃ RHom(Gi,Gi′ [t])
(a)
≃ RHom(Gi,Gi′)[t] i, i′ ∈ I ,

where (a) follows from the compactness of Gi. This hence implies that (A.8) is a Morita equivalence.
The proof of item (ii) is similar: simply replace Theorem 3.2 by Remark 3.5. �
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Lemma A.10. Given an isomorphism (f, g) : A ⊕ A
≃
→ B in an additive category, the modified morphism

(f − g, f) : A⊕A → B is also invertible.

Proof. A simple exercise that we leave for the reader. �

Appendix B. Semi-topological K-theory

The following properties of semi-topological K-theory are of independent interest.

Theorem B.1. The ∞-functor (2.15) satisfies conditions (C1)-(C2)-(C3)-(C4).

Remark B.2 (Real semi-topologicalK-theory). Theorem B.1 holdsmutatis mutandis for real semi-topological
K-theory; consult Remark 2.19.

Proof. Condition (C1) follows from the fact that the ∞-functor −⊗A preserve short exact sequences of dg
categories and the ∞-functor IK(−) satisfies condition (C1).

Let us now prove condition (C2). Similarly to §2.1, consider the co-simplicial affine C-scheme ∆m :=
Spec(C[t0, . . . , tm]/〈

∑m
i=0 ti − 1〉), with m ≥ 0. Let us write π : ∆1 → ∆0 for the projection, ι0 : ∆

0 → ∆1

for the closed embedding {0}, and µ : ∆1 ×∆1 → ∆1 for the multiplication. Note that since the dg category
k[t] is Morita equivalent to perfdg(∆

1), it suffices to show that id⊗π∗ : Kst(A) → Kst(A⊗perfdg(∆
1)) is an

equivalence. Consider the morphism id⊗ι∗0 : K
st(A⊗perfdg(∆

1)) → Kst(A). Note that since π ◦ ι0 = id, the
composition (id⊗ι∗0) ◦ (id⊗π∗) is equal to the identity. We claim that the composition (id⊗π∗) ◦ (id⊗ι∗0) is
also equal to the identity (in the homotopy category Ho(Spt∞)); note that this claim would automatically
imply that id⊗π∗ is an equivalence. In order to prove our claim, consider the linear maps (with 0 ≤ j ≤ m)

∆m+1 ϕj

−→ ∆m ×∆1 with ϕj(vi) :=

{
vi × 0 if i ≤ j

vi−1 × 1 if i > j
,

where vi = (0, . . . , 1, . . . , 0) stands for the ith vertex. Making use of them, we can construct morphisms of
spectra hj : K

st(A ⊗ perfdg(∆
1))m → Kst(A ⊗ perfdg(∆

1))m, with 0 ≤ j ≤ m, by the following recipe: the
map of topological spaces fV : ∆m

top → V an is sent to the composition

∆m+1
top

ϕan
j

−→ ∆m
top ×∆1

top
fV ×inc
−→ (V ×∆1)an

and the corresponding morphism of spectra is given by the composition of

id⊗ id⊗µ∗ : IK(perfdg(V )⊗A⊗ perfdg(∆
1)) −→ IK(perfdg(V )⊗A⊗ perfdg(∆

1 ×∆1))

with the following natural identifications

IK(perfdg(V )⊗A⊗ perfdg(∆
1 ×∆1)) ≃ IK(perfdg(V )⊗A⊗ perfdg(∆

1)⊗ perfdg(∆
1))(B.3)

≃ IK(perfdg(V ×∆1)⊗A⊗ perfdg(∆
1)) ,(B.4)

where (B.3)-(B.4) follow from the Morita equivalences (consult [51, Lem. 4.26]):

perfdg(Y )⊗ perfdg(∆
1) → perfdg(Y ×∆1) (F ,G) 7→ F ⊠ G with Y = ∆1 or Y = V .

Now, a simple verification shows that the assignment m 7→ {hj}0≤j≤m is a simplicial homotopy between the
composition (id⊗π∗) ◦ (id⊗ι∗0) and the identity (considered as endomorphisms of the simplicial spectrum
m 7→ Kst(A⊗ perfdg(∆

1))m). By definition of semi-topological K-theory, this implies our claim.
Condition (C3) follows from the fact that the ∞-functors −⊗A and IK(−) preserve filtered colimits.
Finally, let us prove condition (C4). Let X be a smooth separated C-scheme of finite type equipped with

a G-action, i : Z →֒ X a G-stable smooth closed subscheme, and j : U →֒ X the open complement of Z.
Given a smooth separated C-scheme of finite type V , it follows from the work of Thomason [57, Thms. 2.7
and 5.7] that we have an induced cofiber sequence of K([•/G])-modules:

(B.5) IK([(V × Z)/G])
(id×i)∗
−→ IK([(V ×X)/G])

(id×j)∗

−→ IK([(V × U)/G]) .

Moreover, thanks to the following Morita equivalences (obtained by replicating the proof of [51, Lem. 4.26])

perfdg(V )⊗ perfdg([W/G]) −→ perfdg([(V ×W )/G]) (F ,G) 7→ F ⊠ G with W = Z,X,U
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the cofiber sequence (B.5) identifies with the following cofiber sequence of K([•/G])-modules:

(B.6) IK
(
perfdg(V )⊗

(
perfdg([Z/G])

i∗−→ perfdg([X/G])
j∗

−→ perfdg([U/G])
))

.

Now, recall from §2.6 that semi-topological K-theory is defined as follows:

Kst(−) : dgcat(C)∞ −→ Spt∞ A 7→ colimmKst(A)m ,(B.7)

where Kst(A)m := colim(V,fV )∈∆m,↓
top

IK(perfdg(V ) ⊗ A). Following [6, Prop. 3.22], we can assume without

loss of generality that the affine C-schemes V are smooth. Consequently, since cofiber sequences are stable
under colimits, the proof follows now from the combination of (B.6) and (B.7). �

Acknowledgments. The authors are grateful to the Institut des Hautes Études Scientifiques (IHÉS) for
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