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Abstract: Longitudinal studies involving nominal outcomes are carried out in various scientific areas.
These outcomes are frequently modelled using a generalized linear mixed modelling (GLMM) frame-
work. This widely used approach allows for the modelling of the hierarchy in the data to accommo-
date different degrees of overdispersion. In this article, a combined model (CM) that takes into account
overdispersion and clustering through two separate sets of random effects is formulated.Maximum likeli-
hood estimation with analytic-numerical integration is used to estimate themodel parameters. To examine
the relative performance of the CM and the GLMM, simulation studies were carried out, exploring sce-
narios with different sample sizes, types of random effects, and overdispersion. Bothmodels were applied
to a real dataset obtained from an experiment in agriculture. We also provide an implementation of these
models through SAS code.
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1 Introduction

Nominal data may arise from studies in many different subject areas, such as medicine, marketing,
education, and agriculture. A nominal outcome has its measurement scale formed by a set of cat-
egories that have no intrinsic order, being classified as binary, if only two categories are observed
(e.g., dead or alive), or polytomous, if three or more categories are observed (e.g., political party
affiliation: democrat, republican, or independent). Although polytomous responses are qualitative,
all nominal outcomes may be written as a set of binary variables (Agresti, 2010; Hartzel et al., 2001;
Clayton, 1992). For cross-sectional data, a whole collection of modelling approaches can be used,
such as the generalized linear modelling (GLM) framework based on the exponential family of dis-
tributions (Nelder and Wedderburn, 1972).
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One of the key features of the GLM framework is the mean-variance relationship, where the
variance is a deterministic function of the mean. For example, for Bernoulli outcomes with success
probability μ = π , the variance is ν(μ) = π(1 − π), which may be overly restrictive depending on
the data generating process. Scenarios where the variance is larger or smaller than the mean are re-
ported in the literature as over- or under-dispersion, respectively (Grunwald et al., 2011; Demétrio
et al., 2014). For purely binary data, however, hierarchies need to be present for the mean-variance
relationship to be violated (Molenberghs et al., 2010, 2012, 2017).Therefore, data from studies where
several measurements are taken from the same cluster, subject, or sample unit over time (i.e., longi-
tudinal studies) could violate this assumption.

Some of the main approaches used to analyse longitudinal data with nominal outcomes are
generalized estimating equations (GEE) (Liang and Zeger, 1986; Lipsitz et al., 1994; Touloumis
et al., 2013), transition models (TM) (Diggle et al., 2002; Molenberghs and Verbeke, 2005; Lara
et al., 2017) and generalized linear mixed models (GLMM) (Hartzel et al., 2001; Diggle et al., 2002;
Hedeker, 2003; Molenberghs and Verbeke, 2005). These widely used approaches allow for accom-
modating the correlation between observations induced by the hierarchy of the data collection pro-
cess, as well as extra-variability. Molenberghs et al. (2007),Molenberghs et al. (2010),Molenberghs
et al. (2012), Ivanova et al. (2014), andMolenberghs et al. (2017) showed that accommodating either
one of overdispersion or hierarchically induced association may fall short of properly modelling the
data. Therefore, they proposed a combined modelling framework encompassing both.Molenberghs
et al. (2007) focussed on counts, Molenberghs et al. (2010) laid out a general framework, Molen-
berghs et al. (2012)worked with binary and binomial outcomes, Ivanova et al. (2014) tackled ordinal
outcomes, whereas Molenberghs et al. (2017) contributed with a review of all proposed combined
models. Here, we propose a combined model (CM) for nominal outcomes to incorporate the hier-
archical data collection process, as well as extra-variability by using two different sets of random
effects. Note that Lee and Nelder (1996, 2001, 2003) proposed hierarchical generalized linear mod-
els, where random effects can be non-normal, and conjugate, as well. Here, we combine these with
normal random effects in the linear predictor.

The remainder of this article is organized as follows. In Section 2, a motivating case study, stem-
ming from an agricultural experiment on elephant grass pasture and dairy cows is introduced. Basic
elements for our modelling framework, standard generalized linear models, extensions for overdis-
persion, the generalized linear mixed model, and the combined modelling framework are the subject
of Section 3. The proposed combined model (CM) is described in Section 4, while parameter esti-
mation is the focus of Section 5. A simulation study comparing CM and GLMM is described and
results presented in Section 6, while the case study is analysed in Section 7. We offer concluding
remarks in Section 8. Finally, we provide the algebraic development in Appendix A and how to
implement these models in SAS as Supplementary Materials.

2 Grazing management dataset

This dataset was collected from an experiment on elephant grass pastures (Pennisetum purpureum
Schum. cv. Napier) grazed by dairy cows (Pereira et al., 2015a,b). It was set up in a randomized
complete block design with the treatments allocated according to a 2 × 2 factorial arrangement,
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Table 1 First and last four of the 3,800 rows in the grazing management dataset.

Seasons Blocks Pre-grazing Post-grazing Point within paddock Outcome∗

Summer 1 1 maximum 35 1 3
Autumn 1 maximum 35 1 1
Winter 1 maximum 35 1 2
Early Spring 1 maximum 35 1 3
...

...
...

...
...

...
Winter 4 95 45 640 1
Early Spring 4 95 45 640 3
Late Spring 4 95 45 640 3
Summer 2 4 95 45 640 3

∗where weed = 1, bare ground = 2 and tussock = 3

where treatments are the combinations of two pre-grazing conditions (95% and maximum canopy
light interception during regrowth) and two post-grazing heights (35 and 45 cm). The experiment
was carried out from January 2011until April 2012, encompassing six seasons: ‘Summer 1’ (Jan–Mar
2011), ‘Autumn’ (Apr–June 2011), ‘Winter’ (July–Sept 2011), ‘early Spring’ (Oct–mid-Nov 2011),
‘Late spring’ (mid-Nov–Dec 2011) and ‘Summer 2’ (Jan–Apr 2012).

The response variable is the type of vegetation observed in the field, with three categories:
‘weeds’, ‘bare ground’, or ‘tussocks’. Forty points were observed in each one of the four paddocks
in each block. The data consists of the total number of points where each category was observed,
characterising a multinomial outcome with three levels. There are 40 × 16 = 640 points per season,
but in the early spring, one of the paddocks was affected by frost damage and thus the total number
of observations was 640 × 6 − 40 = 3800. A sample of the dataset and a sketch of the experiment
are show in Table 1 and Figure 1, respectively.

Figure 1 Sketch of the design of the grazing management experiment. Each of the four blocks consists of four
paddocks, each one with a combination of the levels of two treatment factors. Forty points were observed
within each paddock.

Statistical Modelling 2024; 24(6): 581–598



584 Ricardo K. Sercundes et al.

3 Building blocks

Here, we briefly present the main concepts to formulate the combined model for nominal outcomes.
In Section 3.1, we introduce the exponential family, generalized linear models and overdispersion. In
Section 3.2, we present some properties of generalized linear mixed models and the general frame-
work of combined models.

3.1 Generalized linear models and overdispersion
The class of generalized linear models (GLM) was introduced by Nelder and Wedderburn (1972)
as a framework for handling a range of common statistical models for Gaussian and non-Gaussian
data. A GLM is defined in terms of three components.

The first component is a set of independent random variables, Y1, . . . ,YN, with probability or
density function that belongs to the exponential family:

f (yi |ηi , φ) = exp
{
φ−1[yiηi − ψ(ηi )] + c(yi , φ)

}
, (3.1)

where ψ(·) and c(·) are known functions and φ and ηi are called dispersion and natural or canonical
parameter, respectively. The exponential family includes several distributions, such as the Gaussian,
Bernoulli, binomial, Poisson, gamma and multinomial distributions. The first two moments of a
distribution that belongs to the exponential family are given by

E(Yi ) = μi = ψ ′(ηi ) and Var(Yi ) = σ 2 = φψ ′′(ηi ).

Thus, the mean and variance of these distributions are related through

σ 2 = φψ ′′[ψ
′−1(μ)] = φv(μ),

with v(·) termed the variance function.
The second component, called linear predictor or natural parameter, ηi , is the quantity that

incorporates the information about the independent variables into themodel. The third component,
called the link function, h(·), provides the relationship between the linear predictor and the mean of
the distribution as μi = h(ηi ) = h(xTi β), where xi and β are covariate vectors and fixed unknown
regression coefficients, respectively.

The multinomial distribution is a natural starting point for analysis of polytomous outcomes.
This distribution arises as a natural extension of the binomial distribution when each independent
trial has more than two possible mutually exclusive outcomes. Consider a series of m independent
trials of an experiment, each resulting in one of R mutually exclusive events E1, . . . ,ER. In each
replicate within the experiment, the probability of the occurrence of event Er is equal to πr with∑R

r=1 πr = 1. Let Y∗ = (Y1, . . . ,YR)T denote the random vector of the number of occurrences of
events E1, . . . ,ER out of m trials, with

∑R
r=1Yr = m. Let y∗ = (y1, . . . , yR)T represent a realization
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of Y∗,
∑R

r=1 yr = m. Then, the random vector Y∗ is said to have a multinomial distribution with
parameters m, π∗ = (π1, . . . , πR)T, and joint probability mass function given by

P(Y∗ = y∗) = m!
y1!y2! . . . yR!

π
y1
1 π

y2
2 . . . π

yR
R πi ∈ [0, 1], i = 1, . . . , R. (3.2)

We can safely reduce the dimensionality ofY∗ and π∗ by removing their respective last elements,
since they can be obtained from the remaining R− 1 categories. Then, define Y = (Y1, . . . ,YR−1)T ,
π = (π1, . . . , πR−1)T and the realization of Y as y = (y1, . . . , yR−1). Without loss of generality, Y
follows a multinomial distribution with parameters m and π with joint probability function as in
(3.2) with yR = m−∑R−1

h=1 yh and πR = 1 −∑R−1
h=1 πh . Hence, the mean and the variance of Y are,

respectively,

E(Y) = mπ and Var(Y) = m�(π ), (3.3)

where�(π) = diag (π) − ππT . Note that�(π) is an R× R variance-covariance matrix of full rank
where the diagonal elements are πr (1 − πr ) and off-diagonal elements −πrπr ′ for r �= r ′.

It is well known that (3.3) implies a restrictive variance function. According to Grunwald et al.
(2011) and Demétrio et al. (2014), cases where the variance is greater than the mean are largely
reported in the literature as overdispersion, which may occur due to the absence of relevant covari-
ates, heterogeneity of sampling units, correlation induced by hierarchical structures and/or excess of
zeros. It should be noted that underdispersion can occur as well (for instance, see Ribeiro Jr et al.
(2020) and Morris and Sellers (2022) for extended approaches recently developed that can be used
to accommodate underdispersion). Thus, it is important to adapt models to take into account devi-
ations from assumed mean-variance relationships in order to avoid incorrect inferences (Hinde and
Demétrio, 1998).

One possibility to extend the multinomial model to handle overdispersion is to multiply the
multinomial covariance matrix by a constant scalar parameter. A quasi-likelihood approach using
a scale adjustment was presented by McCullagh and Nelder (1983), and later extended by Morel
and Koehler (1995) to allow for different levels of overdispersion for each category using a diagonal
matrix of overdispersion parameters and a Cholesky decomposition of the multinomial variance-
covariance matrix. A mixture of distributions can also be used to allow for overdispersion, such as
the random-clumped multinomial distribution proposed by Morel and Nagaraj (1993) and Neer-
chal and Morel (1998). This model is a finite mixture of multinomial distributions that captures
the extra-variability caused by clumped sampling. Another convenient route to take overdispersion
into account is through a two-stage approach, which considers a probability distribution for amodel
parameter, yielding a mixture. For instance, a multinomial model where the parameter π follows a
Dirichlet distribution is called the Dirichlet-multinomial model (Mosimann, 1962). Although the
estimation of a dispersion parameter might provide some flexibility to standard GLMs, this is not
always sufficient, especially when hierarchical structures or highly variable data arise.

3.2 Generalized linear mixed models and combined models
When analysing non-Gaussian data that are hierarchically organized (repeated measures or clus-
tering, for example), the generalized linear mixed model (GLMM) is a popular choice (Molen-
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berghs and Verbeke, 2005; Diggle et al., 2002). In full generality, one assumes that, conditionally
on q-dimensional random effects bi , assumed to be drawn independently from a normal distribu-
tion, Nq(0, D), the outcome Yi j measured on the i -th subject or sample unit at the j -th time point
(i = 1, . . . , N; j = 1, . . . , ni ) are independent with densities of the form:

fi (yi j |bi ,β, φ) = exp
{
φ−1[yi jηi j − ψ(ηi j )] + c(yi j , φ)

}
, (3.4)

where ηi j = η(μi j ) = η[E(Yi j |bi )] = xTi jβ + zTi jbi is the canonical parameter, with xi j (zi j ) the design
vector for the fixed (random) effects. Finally, let f (bi |D) be the density of theGaussian distribution,
N(0, D), for the random effects bi .

For nominal data, it is assumed that the outcome Yi j can take values r = 1, . . . , R. With-
out loss of generality, we can replace it with a set of R dummy variables where Wr,i j is equal to
1 if Yi j = r and 0 otherwise. Evidently, there are redundant dummies, but any subset of R− 1
components is not, as described in Section 3.1. Thus, Wi j ∼ multinomial(π i j ) with probabilities
π i j = (π1,i j , . . . , πr,i j , . . . , πR,i j )T. Assuming that category R is the reference category, a baseline-
category logit model (Agresti, 2010; Hartzel et al., 2001) can be written as

ln
(
πr,i j

πR,i j

)
= ηr,i j = xTi jβr + zTi jbr,i , r = 1, . . . , R− 1,

br,i ∼ N(0, D),

where βr is the fixed-effects coefficient vector of length p + 1, corresponding to an intercept and p
covariates, and br,i is the random-effects vector, following a multivariate normal distribution. The
probabilities of each category for the i -th subject and j -th time can be expressed as

πr,i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(xTi jβr + zTi jbr,i )

1 +∑R−1
h=1 exp(x

T
i jβh + zTi j bh,i )

if 1 ≤ r ≤ R− 1,

1 −∑R−1
h=1 πh,i j if r = R.

Estimates ofβ, D andφ forGLMMs are obtained bymaximizing themarginal likelihood, computed
by integrating out the random effects and commonly written as:

L(β, D, φ) =
N∏
i=1

∫ ∞

−∞

ni∏
j=1

fi (yi j |bi ,β, φ) f (bi |D)dbi . (3.5)

The key problem in maximizing (3.5) is the presence of N integrals over the random effects. Here,
numerical methods are needed, such as adaptive Gaussian quadrature (Molenberghs and Verbeke,
2005; Pinheiro and Bates, 1995).

While GLMMs, defined to accommodate within-unit correlation, also capture overdispersion
to some extent, a single set of random effects may be insufficient to flexibly capture both. This
led Molenberghs et al. (2007) to formulate a flexible and unified modelling framework, which they
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termed the combined model. These authors brought together two sets of random effects: the nor-
mally distributed subject-specific random effects to capture correlation and a certain amount of
overdispersion, and a conjugate measurement-specific random effect on the natural parameter scale
to accommodate the remaining overdispersion. Integrating out these two sets of random effects and
using the generalized linear model framework, the following general family is introduced:

fi (yi j |bi ,β, θi j , φ) = exp
{
φ−1[yi jλi j − ψ(λi j )] + c(yi j , φ)

}
, (3.6)

with notation similar to the one used in (3.4), but now with conditional mean

E(Yi j |bi ,β, θi j ) = μci j = θi jκi j , (3.7)

where θi j ∼ Gi j (ϑi j , ξi j ) is a conjugate random variable and κi j = g(xTi jβ + zTi j bi ), where g is the in-
verse of the canonical link function (Molenberghs et al., 2010). Note that we use g(·) rather than
h(·), because this transformation applies to only a part of the mean function. Finally, as before,
bi ∼ N(0, D). Unlike in GLMM, we now have two different notations, ηi j and λi j , to refer to the
linear predictor and the natural parameter, respectively (i.e., λi j encompasses θi j , while ηi j refers to
the ‘GLMM part’ only; Molenberghs et al., 2010). Regarding θi j , three assumptions can be made:
(a) they are independent; (b) they are correlated, implying that the collection of univariate distribu-
tions Gi j (ϑi j , ξi j ) needs to be replaced with a multivariate one; and (c) they are shared, in the sense
that there is only one realization per cluster, useful in applications with exchangeable outcomes. As-
sumption (c) is the one adopted in the analysis of the examples. Obviously, parameterization (3.7)
allows for random effects θi j capturing overdispersion, while formulated directly at the mean scale.
Opting for a common conjugate random effect for all logits ensures that it can be interpreted as a
single overdispersion parameter.

The relationship between the mean and the natural parameter is now given by the function h:

λi j = h−1(μci j) = h−1(θi jκi j ),

We can still apply standard GLM ideas to derive the mean and variance, combined with iterated
expectation-based calculations. For the mean, if θi j and bi are independent, it follows that

E(Yi j ) = E(θi j )E(κi j) = E[h(λi j )].

Molenberghs et al. (2010) and Molenberghs et al. (2017) derived explicit expressions for the
means, variances, andmarginal densities for a number of outcome types, such as Gaussian, Poisson,
and time-to-event data. This is not possible for binary data modelled with a logit link and including
Gaussian random effects, whether or not other random effects are present.

4 Combined model for nominal outcomes

Analogously to Ivanova et al. (2014), we use a baseline-category logit structure (3.5) and include
Gaussian random effects br,i ∼ N(0, D) in the linear predictor, as well as beta random effects θi j ∼
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Beta(ϑ, ξ ) to capture overdispersion (considering θi j and br,i independent). We may then write the
probabilities of the proposed combined model as:

πr,i j =
⎧⎨
⎩
θi jκr,i j if 1 ≤ r ≤ R− 1,

1 −∑R−1
h=1 θi jκh,i j if r = R,

and

κr,i j = exp(xTi jβr + zTi jbr,i )

1 +∑R−1
h=1 exp(x

T
i jβh + zTi jbh,i )

if 1 ≤ r ≤ R− 1, (4.1)

where βr is the vector of fixed effects (regression coefficients) for each one of the (R− 1) categories,
and xi j and zi j are the design vectors for the fixed and random effects, respectively. We considered
here the case where θi j is constant across all categories, resulting in a combined model with constant
overdispersion (although one may allow θi j to depend on covariates through an appropriate link
function).

5 Parameter estimation

Molenberghs et al. (2007) and Molenberghs et al. (2010) showed that fitting the combined model is
relatively easy, and that standard software tools can be used for maximum likelihood estimation in
this case. A priori, fitting a combined model of the type described in Section 4 is done by maximiz-
ing the log-likelihood while integrating over the random effects. The joint distribution of the i j -th
observation, assuming θi j and br,i independent, is given by

f (wi j , br,i , θi j ) = f (wi j |br,i , θi j ) f (br,i ) f (θi j ),

and the likelihood function can be written as:

L(β, D, ϑ, ξ ) =
N∏
i=1

∫ ∫ ni∏
j=1

f (wi j |β, br,i , θi j ) f (br,i |D) f (θi j |ϑ, ξ ) dbr,i dθi j .

For our proposed model, the three functions in the integrand are, in order, the multinomial, normal
and beta distributions probability density or mass functions, which yields:

L(β, D, ϑ, ξ ) =
N∏
i=1

∫ ∫ ni∏
j=1

R−1∏
h=1

(
θi jκh,i j

)wh,i j

(
1 −

R−1∑
h=1

θi jκh,i j

)1−∑R−1
h=1 wh,i j

(5.1)

1√
(2π)ni

1√|D| exp
(

−1
2
bTr,i D

−1br,i

)
θϑ−1
i j

(
1 − θi j

)ξ−1

B(ϑ, ξ )
dbr,i dθi j .
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The key problem in maximizing (5.1) is the presence of N integrals over the random effects br,i
and θi j , making this process time consuming and cumbersome to implement if the N integrals are
to be calculated using numerical methods. However, we can simplify by integrating analytically over
the beta random effects, but not over the normal random effects, leading to a partially marginalized
density. In our case, this takes the form (details of calculations are presented in Appendix A):

L(β, D, ϑ, ξ ) =
N∏
i=1

∫ ni∏
j=1

R−1∏
h=1

(
ϑ

ϑ + ξ
κh,i j

)wh,i j
(
1 − ϑ

ϑ + ξ

R−1∑
h=1

κh,i j

)1−∑R−1
h=1 wh,i j

1√
(2π)ni

1√|D| exp
(

−1
2
bTr,i D

−1br,i

)
dbr,i .

Here, a generic maximum likelihood routine that allows for integration over normal random effects
can be used.We follow this route and use the SAS procedure NLMIXED. We opted for the adaptive
Gaussian quadrature method (Molenberghs and Verbeke, 2005) and chose the number of quadra-
ture points Q by performing a numerical sensitivity analysis to check whether it was sufficiently
large. To ensure identifiability, a constraint needs to be applied. Here, we reparameterise ϑ as eδ > 0
and fix ξ = 1. Therefore, larger δ values correspond to weaker overdispersion.

6 Simulation

A simulation studywas conducted to compare the performance of a GLMMand the proposed com-
bined model. We simulated longitudinal nominal data with R= 3 categories considering a baseline-
category logit model, (3.5), and the following linear predictor:

ηr,i j = br,i + βr,0 + βr,1timei j + βr,2groupi + βr,3timei j ∗ groupi ,

where timei j = ( j − 1)/6 for j = 1, . . . , 6 and groupi = 0 or 1. The true parameter values were set
as:

β1 = (β1,0;β1,1;β1,2;β1,3)T = (0.1; 0.2; 0.5; 0.7)T,

β2 = (β2,0;β2,1;β2,2;β2,3)T = (0.2; 0.1; 0.4; 0.5)T,

Finally, the random effects were specified as:

br,i ∼ N(0, D),

D =
(
d1 c
c d2

)
,

with c = 0.5, d1 ∈ {1, 9} and d2 ∈ {0.5, 4.5}, used to generate ‘weak’ and ‘strong’ (nine times higher)
correlation values for the simulated datasets.
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Table 2 True parameter values used to specify six different scenarios (S1 – S6) used in the
simulation study.

Scenario Size Variance components Overdispersion

S1

N = 300 or 600

d1 = 1.0, d2 = 0.5 -
S2 d1 = 9.0, d2 = 4.5 -
S3 d1 = 1.0, d2 = 0.5 ϑ = 5, ξ = 1
S4 d1 = 1.0, d2 = 0.5 ϑ = 20, ξ = 1
S5 d1 = 9.0, d2 = 4.5 ϑ = 5, ξ = 1
S6 d1 = 9.0, d2 = 4.5 ϑ = 20, ξ = 1

Table 3 Descriptive statistics of the 200 simulated overdispersion values.

Beta parameters Min. 1st Quartile Median Mean 3rd Quartile Max.

ϑ = 5 and ξ = 1 0.06 0.76 0.87 0.83 0 94 1
ϑ = 20 and ξ = 1 0.48 0.93 0.97 0.95 0.98 1

We simulated 200 datasets with N = 300 and N = 600, and ni = 6,∀i , with two groups of equal
size each, that is, N = 150 and N = 300 experimental/observational units per group, respectively.
Six scenarios with different magnitudes of random effects and overdispersion were generated to
compare the behavior of the GLMM and the CM (Table 2).

To generate data with overdispersion, the simulated probabilities were multiplied by values gen-
erated from a beta distribution with the shape parameters specified to ‘strongly’ (ϑ = 5) or ‘weakly’
(ϑ = 20) disturb the probabilities generated by the model, while fixing ξ = 1 (Table 3).

The GLMM and CM were fitted to the simulated datasets using the estimation method de-
scribed in Section 5, which was implemented using SAS procedure NLMIXED. We approximated
the integrals using adaptive Gaussian quadrature with 10 quadrature points, and optimized the log-
likelihood using the quasi-Newton BFGS method. We used, as starting values for the fixed effects,
the estimates obtained by fitting a GLM without random effects. For each scenario, we computed
the average estimate (AE), bias, and mean squared error (MSE) for each parameter. We set ϑ = eδ

and ξ = 1 for the combined model to ensure identifiability.
In general, the simulation results indicate the estimation procedure produced reliable results,

showing that the MSEs of the maximum likelihood estimators of the parameters decay towards
zero as the sample size increases, as expected under standard asymptotic theory. For scenarios S1,
S2, and S4 (weak overdispersion and/or correlation), the results for both the GLMM and CM are
similar (see Table 4, which displays results for scenario S2).

However, if there is a pronounced overdispersion effect (S3) or if it coincides with high correla-
tions (S5 and S6), better performances were observed for the CM, mainly for the variance compo-
nents (Table 5 displays results for scenario S6). Even with a larger sample size, the predicted random
effects for the CM showed smaller bias and MSE when compared to the GLMM.

We present the convergence rates for the twomodels when 200 datasetswere simulated in Table 6.
The proportion of datasets for which convergence was achieved is a little bit smaller in the CM than
in theGLMM.This can be attributed to sensitivity to the starting values, which points to the need for
careful selection.When convergence problems arise, we suggest to start the analysis with theGLMor
GLMM estimates and, if necessary, to attempt to fit the CM using different sets of starting values.
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Table 4 Average estimate (AE), bias and mean square error (MSE) for the parameters estimated by the
GLMM and CM based on 200 simulations for scenario S2.

GLMM

N = 300 N = 600

Parameter True AE Bias MSE AE Bias MSE

β1,0 0.1 0.123 0.023 0.118 0.112 0.012 0.057
β1,1 0.2 0.196 −0.004 0.185 0.219 0.019 0.076
β1,2 0.5 0.524 0.024 0.242 0.463 −0.037 0.127
β1,3 0.7 0.689 −0.011 0.351 0.692 −0.008 0.153
β2,0 0.2 0.233 0.033 0.086 0.193 −0.007 0.039
β2,1 0.1 0.072 −0.028 0.144 0.149 0.049 0.061
β2,2 0.4 0.402 0.002 0.130 0.428 0.028 0.077
β2,3 0.5 0.478 −0.022 0.297 0.458 −0.042 0.151
d1 9.0 9.220 0.220 2.921 9.055 0.055 1.303
d2 4.5 4.558 0.058 0.682 4.462 −0.038 0.307
c 0.5 0.616 0.116 0.635 0.570 0.070 0.341

CM

N = 300 N = 600

Parameter True AE Bias MSE AE Bias MSE

β1,0 0.1 0.136 0.036 0.128 0.119 0.019 0.059
β1,1 0.2 0.195 −0.005 0.187 0.221 0.021 0.077
β1,2 0.5 0.572 0.027 0.244 0.466 −0.034 0.127
β1,3 0.7 0.694 −0.006 0.355 0.694 −0.006 0.155
β2,0 0.2 0.245 0.045 0.090 0.200 0.001 0.039
β2,1 0.1 0.072 −0.028 0.145 0.150 0.050 0.062
β2,2 0.4 0.405 0.005 0.132 0.431 0.031 0.078
β2,3 0.5 0.483 −0.017 0.300 0.459 −0.041 0.153
d1 9.0 9.288 0.288 2.747 9.110 0.110 1.364
d2 4.5 4.589 0.089 0.687 4.481 −0.019 0.323
c 0.5 0.654 0.154 0.650 0.600 0.100 0.346
δ – 9.482 – – 9.188 – –

For a particular application that a researcher envisages, it might be useful to conduct a targeted
simulation study to assess the convergence rate for a sample size that is envisaged.

7 Analysis of the grazing management data

Here, we present an analysis of the grazing management data, introduced in Section 3.2. This
dataset has been previously analysed by Menarin and Lara (2017), through extended general-
ized estimating equations that use local odds ratios to explain the dependence among the cate-
gories (Touloumis et al., 2013). Here, emphasis was placed on a subject-specific interpretation. Let
Yi j = 1, 2, 3 be the types of vegetation (weed, bare ground, and tussock, respectively) that target
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Table 5 Average estimates (AE), bias and mean square errors (MSE) for the parameters estimated by the
GLMM and CM based on 200 simulations for scenario S6.

GLMM

N = 300 N = 600

Parameter True AE Bias MSE AE Bias MSE

β1,0 0.1 −0.251 −0.351 0.215 −0.276 −0.376 0.182
β1,1 0.2 0.149 −0.051 0.130 0.180 −0.020 0.072
β1,2 0.5 0.380 −0.120 0.188 0.376 −0.124 0.105
β1,3 0.7 0.524 −0.176 0.310 0.501 −0.199 0.201
β2,0 0.2 −0.207 −0.407 0.228 −0.228 −0.428 0.220
β2,1 0.1 0.068 −0.032 0.128 0.092 −0.008 0.064
β2,2 0.4 0.293 −0.107 0.145 0.335 −0.065 0.064
β2,3 0.5 0.353 −0.147 0.282 0.339 −0.161 0.156
d1 9.0 6.297 −2.703 8.722 6.294 −2.706 7.916
d2 4.5 3.509 −0.991 1.419 3.517 −0.983 1.153
c 0.5 −0.622 −1.122 1.559 −0.639 −1.139 1.455

CM

N = 300 N = 600

Parameter True AE Bias MSE AE Bias MSE

β1,0 0.1 0.115 0.015 0.169 0.058 −0.042 0.074
β1,1 0.2 0.186 0.014 0.147 0.215 0.015 0.070
β1,2 0.5 0.507 0.007 0.178 0.474 −0.026 0.107
β1,3 0.7 0.688 −0.012 0.329 0.669 −0.031 0.199
β2,0 0.2 0.201 0.001 0.117 0.141 −0.059 0.068
β2,1 0.1 0.091 −0.009 0.122 0.117 0.017 0.054
β2,2 0.4 0.398 −0.002 0.154 0.419 0.019 0.070
β2,3 0.5 0.495 −0.005 0.284 0.483 −0.017 0.157
d1 9.0 8.966 −0.034 4.965 8.636 −0.364 2.158
d2 4.5 4.435 −0.065 1.056 4.344 −0.156 0.466
c 0.5 0.547 0.047 1.137 0.370 −0.130 0.505
δ – 3.153 – – 3.172 – –

Table 6 Convergence rates for the GLMM and the CM in six simulated scenarios with 200 datasets.

Scenario

Model Size S1 S2 S3 S4 S5 S6

Rate (%) GLMM 300 98.5 100.0 97.3 98.5 100.0 100.0
600 100.0 100.0 99.5 100.0 100.0 100.0

CM 300 97.5 100.0 91.0 95.5 100.0 100.0
600 100.0 100.0 99.0 100.0 100.0 99.5
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point i , (i = 1, . . . , 640), reached at season j , ( j = 1, . . . , 6). Thus, under a baseline-category logit
model, (3.5), the GLMM and the CM can be written as:

logit 1: ln
(
π1,i j

π3,i j

)
, logit 2: ln

(
π2,i j

π3,i j

)
,

where πr,i j is the probability of the i -th point being classified in the r -th category in season j . The
first logit is a log-odds between weeds and tussocks and the second one is the log-odds between
bare ground and tussocks. As before, both models were fitted with the SAS procedure NLMIXED
using adaptive Gaussian quadrature. We performed a sensitivity analysis by increasing the number
of quadrature points up to 5, when the estimates showed stability, and carried out maximization
through the quasi-Newton BFGS method. We began with the complete model, including the fixed
effects of blocks, pre- and post-grazing conditions, seasons, as well as all two- and three-way inter-
actions between pre- and post-grazing conditions and seasons.We also included a random intercept
per point within paddock.

We then performed backwards selection for the fixed effects, by fitting reduced models which
did not include higher-order interactions, and carrying out likelihood-ratio tests until the model
only included significant interactions and/or main effects. This process yielded the following linear
predictor:

ηr,i j = bi + βr,0 +
blocks︷ ︸︸ ︷

βr,1X11i + βr,2X12i + βr,3X13i +
pre-grazing︷ ︸︸ ︷
βr,4X2i

+
seasons︷ ︸︸ ︷

βr,5X31i + βr,6X32i + βr,7X33i + βr,8X34i + βr,9X35i

+
pre-grazing × seasons︷ ︸︸ ︷

βr,10X2i X31i + . . .+ βr,14X2i X35i ,

where bi ∼ N(0, d), and the X variables are dummy covariates for blocks (X11i , . . . , X13i ), pre-
grazing management (X2i ) and seasons (X31i , . . . , X35i ). To ensure identifiability, we take the last
level of each covariate as reference (Block4 = 0, Pre:maximum = 0 and Summer2 = 0) and for the
CM we set ϑ = eδ and ξ = 1.

The results of both fitted models are presented in Table 7. The estimates are very similar, but
there is a reduction in the variance component for the CM, a pronounced value of the overdispersion
parameter (δ = 1.374) and also a clear improvement in terms of the log-likelihood. Note that several
parameters have shifted a bit in the CMmodel relative to the GLMM model. This is to be expected
to some extent, because the more flexible way in which the CM handles variability and within-unit
correlation, combined with the mean-variance link, implies that a change in parameter estimates
may occur. Against this background, the shift in the logit 2 intercept is of the same magnitude as
that in logit 1, but coincidentally it slides across the zero value.

To compare the models, the likelihood-ratio test was used. The difference between deviances
is 11.8; however, since this test is carried out on the boundary of the parametric space, the refer-
ence distribution is a mixture of χ2 distributions (Stram and Lee, 1994; Self and Liang, 1987). To
test the hypothesis H0 : θi j = 1, the reference distribution is a 50:50 mixture of a χ2

0 (the degenerate
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Table 7 Grazing management data. Parameter estimates (standard errors) from the regression coefficients in
the GLMM and CM. Estimation was done by maximum likelihood using numerical integration over the
normal and beta random effects, if present.

GLMM CM

Effects Par. logit 1 logit 2 logit 1 logit 2

Intercept βr,0 −2.826 (0.332) −0.053 (0.129) −2.467 (0.392) 0.325 (0.247)
Block 1 βr,1 0.623 (0.190) 0.117 (0.099) 0.736 (0.198) 0.220 (0.129)
Block 2 βr,2 0.567 (0.190) −0.024 (0.098) 0.683 (0.193) 0.032 (0.124)
Block 3 βr,3 −0.681 (0.252) 0.072 (0.097) −0.633 (0.248) 0.169 (0.120)
Pre(95%) βr,4 0.725 (0.364) −0.605 (0.168) 0.936 (0.379) −0.602 (0.209)
Summer1 βr,5 0.514 (0.370) −0.810 (0.170) 0.580 (0.390) −0.677 (0.211)
Autumn βr,6 −0.309 (0.444) −0.345 (0.162) −0.199 (0.453) −0.342 (0.205)
Winter βr,7 −0.136 (0.426) −0.364 (0.163) −0.044 (0.438) −0.352 (0.206)
Early spring βr,8 0.308 (0.403) −0.286 (0.169) 0.286 (0.432) −0.217 (0.216)
Late spring βr,9 0.969 (0.365) −0.082 (0.163) 1.029 (0.395) −0.023 (0.218)
Pre(95%) × summer1 βr,10 −0.389 (0.464) 0.898 (0.243) −0.347 (0.487) 0.930 (0.305)
Pre(95%) × autumn βr,11 0.346 (0.525) 0.279 (0.237) 0.397 (0.532) 0.274 (0.295)
Pre(95%) × winter βr,12 −0.701 (0.551) 0.429 (0.236) −0.633 (0.547) 0.397 (0.290)
Pre(95%) × early spring βr,13 −0.670 (0.504) 0.120 (0.243) −0.697 (0.530) 0.133 (0.300)
Pre(95%) × late spring βr,14 −1.678 (0.496) 0.147 (0.237) −1.632 (0.513) 0.132 (0.301)
Random effect d 0.020 (0.042) 0.013 (0.062)
Overdispersion δ – 1.374 (0.437)

-2loglik 6602.7 6590.9

AIC 6664.7 6654.9

BIC 6803.0 6797.7

chi-squared distribution at 0) and χ2
1 , often denoted as χ2

0:1. Thus, we obtain p = P(χ2
0:1 ≥ 11.8) =

0.5P(χ2
0 ≥ 11.8)+ 0.5P(χ2

1 ≥ 11.8) = 0.0003, showing that the inclusion of the overdispersion pa-
rameter was important.

Note that, when using the GEE approach in Menarin and Lara (2017), evidence of significant
post-grazing management effect was reported, while here neither the GLMM nor CM confirmed
this effect. For this experiment, overdispersion is likely to happen since it is a field experiment that
can suffer from several environmental changes, and also because some types of vegetation can occur
in an aggregate pattern inside paddocks.

8 Concluding remarks

In this article, we have proposed a model for overdispersed, repeated nominal data. The model com-
bines the baseline-category logit assumption to handle the nominal nature of the outcome, with
normal random effects in the linear predictor to deal with correlation across repeatedmeasures, and
beta random effects to flexibly account for overdispersion. Similar models were proposed byMolen-
berghs et al. (2007),Molenberghs et al. (2010),Molenberghs et al. (2012), Ivanova et al. (2014), and
Molenberghs et al. (2017) for count data, binary and binomial data, time-to-event and ordinal out-
comes. The model is easy to formulate and can be fitted using, for example, the SAS procedure
NLMIXED.
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A simulation study was conducted to examine the behaviour of the combined model relative
to the more conventional GLMM. Both models performed well, but when there is a pronounced
effect of overdispersion, or if the overdispersion effect is associated with high correlations between
the repeated measurements, better performance was observed for the CM, mainly for the variance
components.

We applied the GLMM and the CM to agricultural experimental data to model the probability
of occurrence of three types of vegetation. Comparing both models, evidence is found in favour of
the CM. It means that besides the parameter to take into account the correlation between measures,
an extra overdispersion parameter was useful to accommodate the extra-variability induced by the
environmental and biological changes.
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Appendix A: Algebraic developments for the CM

The partially marginalized density function of the combined model was obtained by integrating an-
alytically over the beta random effects, leaving the normal random effects untouched. To do this, we
need to consider the category to which the outcome belongs in order to proceed with the integration
over the beta random effect. To simplify notation, let us consider the case where three categories are
analysed. We can rewrite this expression as

f (wr,i j |br,i ) =
∫ (

θi jκ1,i j
)w1,i j

(
θi jκ2,i j

)w2,i j

(
1 − θi jκ1,i j − θi jκ2,i j

)1−w1,i j−w2,i j
θϑ−1
i j

(
1 − θi j

)ξ−1

B(ϑ, ξ )
dθi j .

Thus, if the outcomebelongs to the first category, that is,Wr,i j is equals to 1 ifYi j = 1 and 0 otherwise,
the following expression is obtained:

f (w1,i j = 1|br,i ) =
∫ 1

0

(
θi jκ1,i j

)1 θϑ−1
i j

(
1 − θi j

)ξ−1

B(ϑ, ξ )
dθi j ,

= κ1,i j

B(ϑ, ξ )

∫ 1

0
θ
(ϑ−1)+1
i j (1 − θi j )ξ−1dθi j
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= κ1,i j
B(ϑ + 1, ξ )
B(ϑ, ξ )

= κ1,i j
�(ϑ + 1)�(ξ )
�(ϑ + ξ + 1)

�(ϑ + ξ )
�(ϑ)�(ξ )

= κ1,i j ϑ
�(ϑ)�(ξ )

�(ϑ + ξ + 1)
�(ϑ + ξ )
�(ϑ)�(ξ )

= κ1,i j ϑ
�(ϑ + ξ )

(ϑ + ξ )�(ϑ + ξ )

= κ1,i j
ϑ

ϑ + ξ
.

Similar results apply to r = 2, butmultiplied, of course, by their respective κ. For the last category
(r = 3), the expression is given by:

f (w3,i j = 1|br,i ) =
∫ 1

0

(
1 − θi jκ1,i j − θi jκ2,i j

)1 θϑ−1
i j

(
1 − θi j

)ξ−1

B(ϑ, ξ )
dθi j

=
∫ 1

0

θϑ−1
i j

(
1 − θi j

)ξ−1

B(ϑ, ξ )

− (
θi jκ1,i j

) θϑ−1
i j

(
1 − θi j

)ξ−1

B(ϑ, ξ )
− (

θi jκ2,i j
) θϑ−1

i j

(
1 − θi j

)ξ−1

B(ϑ, ξ )
dθi j

= 1 − κ1,i j
ϑ

ϑ + ξ
− κ2,i j

ϑ

ϑ + ξ

= 1 − ϑ

ϑ + ξ
(κ1,i j + κ2,i j ).

Hence, the partially marginalized likelihood function of the combined model considering three cat-
egories is given by:

L(β, D, ϑ, ξ ) =
N∏
i=1

∫ ni∏
j=1

(
ϑ

ϑ + ξ
κ1,i j

)w1,i j
(

ϑ

ϑ + ξ
κ2,i j

)w2,i j
(
1 − ϑ

ϑ + ξ

R−1∑
h=1

κh,i j

)1−w1,i j−w2,i j

1√
(2π)ni

1√|D| exp
(

−1
2
bTr,iD

−1br,i

)
dbr,i .
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