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This special issue discusses current progress in the
utilization of defect centres in diamond as spin–
photon interfaces for quantum applications. This issue
is based on the discussions of the Theo Murphy
meeting ‘Diamond for quantum applications’ which
covered the recent progress of diamond growth and
engineering for the creation and optimization of
colour centres, toward the integration of diamond-
based qubits in quantum systems.

This article is part of the Theo Murphy meeting
issue ’Diamond for quantum applications’.

1. Introduction
Quantum theory has revolutionized our understanding
of the interactions of light and matter at the nanoscale.
The discovery of these effects led to a first quantum
revolution, which brought advances such as transistors
and LEDs, changing our world immeasurably. Our
ability to control quantum mechanical phenomena in
customized systems is now starting to be realized in
a second quantum revolution, where the technological
capabilities of quantum mechanics are fully implemented
in devices with fundamentally superior performance in
computing, sensing, imaging, simulation and
communication. Diamond, as a solid-state host material
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for optically active defects, has the potential to accelerate this second revolution, with far-reaching
social implications. These include safer encryption of data and an acceleration of biological
research due to both advances in quantum sensing and quantum computing simulations of
biological systems like protein folding. More efficient calculation of problems like minimizing
travel routes and quantum-aided search algorithms could also have an enormous impact in terms
of energy conservation. This special issue is based on a Royal Society Theo Murphy Meeting,
which took place 10–11 October 2022, with the goal of accelerating the development of diamond
as a quantum material by promoting the interaction of the key research fields in this area at a
critical time in its development.

Ongoing rapid research progress using optically active colour centres such as the nitrogen
vacancy (NV) centre has shown diamond’s significant potential for quantum applications. The
recent demonstration of electronic readout of an electronic spin state of a single NV centre
[1] shows the potential for device fabrication for various quantum applications. These include
magnetic field sensing, such as the recent achievement of high sensitivity high-frequency sensing
using dynamical decoupling [2], and sensitive magnetometry with a fibre-coupled sensor [3]. The
demonstration of repeated quantum error correction also proves NV centres are suitable as the
basis for scalable quantum computation [4].

Diamond, as a solid-state qubit host, offers major advantages over more technologically
mature platforms, like superconducting qubits and ion traps. These include less restrictive
temperature requirements and scalable two-dimensional arrays of qubits which can be extended
to the approximately 105 qubits estimated needed for useful quantum computing. The lively
discussion at this meeting and summary of the outstanding issues in achieving ambitious
quantum devices (such as 100 000 qubit diamond-based quantum computers) was therefore
extremely timely. One issue is the low collection efficiency of indistinguishable photons from
the NV centre. Device solutions such as optically coupled open microcavities were presented, as
well as nanofabrication techniques for accurately positioning NV centres in such structures, such
as multiphoton laser writing [5]. Furthermore, the electronic structure of new optical defects,
which show promise for improving indistinguishable photon emission performance [6], were
also discussed in great depth. Experimental investigations of these new centres, such as the tin
vacancy (SnV) centre [7,8] and nickel vacancy centre [9], also illuminated a common need for
charge state control of these centres and demonstrated that the field of optically active colour
centres in diamond is still rapidly expanding, as evidenced in the context of this Special Issue.

2. Contents of the theme issue
The NV− centre in diamond has been the most widely studied of the crystalline defects in
diamond for quantum applications. This special issue also reflects this focus, with half of the
papers looking at the optimization, use and deeper understanding of the NV defect. Two
papers looked specifically at the properties of NV centres in diamond related to the nitrogen
concentration of diamond grown by chemical vapour deposition (CVD) toward the optimization
of the NV performance. Luo et al. [10] study diamond absorption and birefringence, with the
aim of minimizing both while maximizing the NV concentration. Reducing these optical losses is
essential for applications like diamond lasing, optical threshold magnetometry, diamond cavity
applications, high-power applications and polarization-dependant applications of NV diamonds.
Teraji et al. [11] summarize the state of the art for the growth of nitrogen containing diamond
material, as well as techniques for the formation of the NV− centre, with the aim of maximizing
the T2 coherence times. They describe a method for highly controlled nitrogen incorporation for
the optimization of the magnetic field sensitivity of devices based on the grown NV diamond
material.

The use of highly sensitive NV diamond for magnetometry in real world environments is
also an area of current research interest. Hatano et al. [12] describe one such application, where
the diamond quantum sensors based on NV centres are used as an electric vehicle battery
monitor. They characterized the performance and noise in a real car and compared the prototype
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diamond sensors favourably or on par with conventional sensors such as Hall sensors and shunt
resistors.

A greater understanding of the physics underlying the creation of NV defects in diamond
is also needed, to enable the full optimization of bulk NV diamond material as well as the
properties of single centres formed with high spatial precision. The creation of NVs necessitates
the creation of vacancies in the diamond, in the form of Frenkel defects (vacancy-interstitial pairs),
both components of which can interact with the formed NV centres, affecting their properties.
Kirkpatrick et al. [13] use density functional theory (DFT) methods to investigate the strain and
electronic interactions between the NV− centre and the self-interstitial in diamond. They propose
that the formation of a hybridization between the NV’s electronic structure manifold and the π-
bonds of the interstitial may form non-radiative channels allowing the excited electron to return
to the ground state, which explains the fluctuating fluorescence signal observed during annealing
by femto-second laser processing.

Two of the other papers also used DFT methods, however moving away from the issue’s
initial focus on NV material, they have investigated the properties of crystal defects beyond the
NV centre in diamond. Thiering & Gali [14] look specifically at the spin-orbit and Jahn–Teller
interactions of the substitutional nickel defect in diamond. Through this framework, the study
associates a previously reported photoluminescence centre at 2.51 eV and an optically detected
magnetic resonance centre at 2.56 eV to the negatively charged substitutional nickel defect and
the emission from the bound exciton excited state of the neutral defect, respectively. These
assignments allow for deeper experimental detection and investigation of these centres. Morris et
al. [15] study crystal defects in diamond containing radioactive rare isotopes such as 229Pa, as well
as defects containing stable analogues. These defects may be used in conjunction with quantum
control methods to perform experimental tests of fundamental symmetry violations.

The experimental investigation of novel defects in diamond beyond the NV centre was a
central focus of the Theo Murphy meeting and is represented in this special issue in two papers.
Sedov et al. [16] produced tin-vacancy colour centres in diamond (SnV) by CVD using SnO2
particles as the source of the tin impurity. They studied the optical properties of the grown
material by photoluminescence, and attributed changes in the shape of and position of the zero-
phonon line of the SnV to the effect of strain in the grown microcrystals. Boldyrev et al. [17] use
spectroscopic methods to study the isotopic shift in SiV0 centres. Their findings included that for
potential quantum applications of the SiV0, using isotopically pure carbon is more important than
pure silicon for achieving a narrow spectral line.
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