
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Allocating Isolation Levels to Transactions in a Multiversion Setting

Peer-reviewed author version

VANDEVOORT, Brecht; KETSMAN, Bas & NEVEN, Frank (2023) Allocating

Isolation Levels to Transactions in a Multiversion Setting. In: PROCEEDINGS OF

THE 42ND ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES,  ASSOC

COMPUTING MACHINERY,  p. 69 -78.

DOI: 10.1145/3584372.3588672

Handle: http://hdl.handle.net/1942/42231



Allocating Isolation Levels to Transactions
in a Multiversion Setting

Brecht Vandevoort
UHasselt, Data Science Institute,

ACSL
Diepenbeek, Belgium

Bas Ketsman
Vrije Universiteit Brussel

Brussels, Belgium

Frank Neven
UHasselt, Data Science Institute,

ACSL
Diepenbeek, Belgium

ABSTRACT
A serializable concurrency control mechanism ensures consistency
for OLTP systems at the expense of a reduced transaction through-
put. A DBMS therefore usually offers the possibility to allocate
lower isolation levels for some transactions when it is safe to do
so. However, such trading of consistency for efficiency does not
come with any safety guarantees. In this paper, we study the mixed
robustness problem which asks whether, for a given set of trans-
actions and a given allocation of isolation levels, every possible
interleaved execution of those transactions that is allowed under
the provided allocation is always serializable. That is, whether the
given allocation is indeed safe. While robustness has already been
studied in the literature for the homogeneous setting where all
transactions are allocated the same isolation level, the heteroge-
neous setting that we consider in this paper, despite its practical
relevance, has largely been ignored. We focus on multiversion con-
currency control and consider the isolation levels that are available
in Postgres and Oracle: read committed (RC), snapshot isolation (SI)
and serializable snapshot isolation (SSI). We show that the mixed
robustness problem can be decided in polynomial time. In addition,
we provide a polynomial time algorithm for computing the optimal
robust allocation for a given set of transactions, prioritizing lower
over higher isolation levels. The present results therefore estab-
lish the groundwork to automate isolation level allocation within
existing databases supporting multiversion concurrency control.

CCS CONCEPTS
• Information systems→ Database transaction processing.

KEYWORDS
concurrency control, robustness, complexity

1 INTRODUCTION
The majority of relational database systems offer a range of iso-
lation levels, the highest of which is serializability ensuring what
is considered as perfect isolation. This allows users to trade off
isolation guarantees for better performance. Executing transactions
concurrently at weaker degrees of isolation does carry some risk
as it can result in specific anomalies. However, there are situations
when a group of transactions can be executed at an isolation level
lower than serializability without causing any errors. In this way,
we get the higher isolation guarantees of serializability for free
in exchange for a lower isolation level, which is typically imple-
mentable with a less expensive concurrency control mechanism.
This formal property is called robustness [13, 19, 20]: a set of trans-
actions T is called robust against a given isolation level if every

possible interleaving of the transactions in T that is allowed un-
der the specified isolation level is serializable. There is a famous
example that is part of database folklore: the TPC-C benchmark
[24] is robust against Snapshot Isolation (SI), so there is no need to
run a stronger, and more expensive, concurrency control algorithm
than SI if the workload is just TPC-C. This has played a role in the
incorrect choice of SI as the general concurrency control algorithm
for isolation level Serializable in Oracle and PostgreSQL (before
version 9.1, cf. [20]).

The robustness problem received quite a bit of attention in the
literature and can be classified in terms of the considered isolation
levels: lower isolation levels like (multiversion) Read Committed
(RC) [6, 22, 25, 26], Snapshot Isolation (SI) [4, 10, 19, 20], and higher
isolation levels [11, 13, 16, 18]. The far majority of this work focused
on a homogeneous setting where all transactions are allocated the
same isolation level. So, when a workload is robust against an isola-
tion level, all transactions can be executed under this isolation level
and benefit from the speedup offered by the cheaper concurrency
control algorithm and the guarantee that the resulting execution
will always be serializable. When a workload is not robust against
an isolation level, robustness can still be achieved by modifying the
transaction programs [3–6, 20, 25] or using an external lock man-
ager [3, 6, 7]. The downside of these solutions is that they require
altering transactions or require drastic changes to the underlying
database implementation.

In this paper, we are interested in solutions that refrain from
modifying transactions and can be readily used on top of a DBMS
without changing any of the database internals. The solution lies
within the capabilities of the DBMS itself. Indeed, in practice, an
isolation level is not set on the level of the database or even the
application but can be specified on the level of an individual trans-
action. So, a third option for making a transaction workload robust
is to allocate problematic transactions to higher isolation levels.
That is, by considering heterogeneous or mixed allocations where
individual transactions can be mapped to different isolation levels.
Such an approach requires a solution for two research challenges
as discussed next: the robustness problem and the allocation problem.
To this end, let T be a set of transactions, I a class of isolation
levels and A an allocation (mapping each 𝑇 ∈ T to an isolation
level in I). Then define the following problems:

• The robustness problem forI: Is every concurrent execu-
tion of transactions in T that is allowed under A, conflict-
serializable?

• The allocation problem forI: Compute an optimal robust
allocation for T over I (when it exists).

In order to increase transaction throughput, weaker isolation
levels, which are often less strict and permit higher concurrency,
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are favored over stricter isolation levels which generally limit con-
currency.1 We then say that a robust allocation is optimal when
no higher isolation level can be exchanged for a weaker one with-
out breaking robustness. A seminal result in this context is that
of Fekete [19] who provided polynomial time algorithms for the
robustness and the allocation problem for the setting where I con-
sists of the isolation levels SI and strict two-phase locking (S2PL).
More specifically, when T is not robust against SI, a minimal num-
ber of transactions can be found that need to be run under S2PL to
make the workload robust.

In the present work, we address the robustness and allocation
problem for a wider range of isolation levels: RC, SI, and Serializable
Snapshot Isolation (SSI) [14, 23]. These classes are particularly rele-
vant for the following reasons: RC is often configured by default [9];
SI remains the highest possible isolation level in some database sys-
tems like Oracle and is well-studied (e.g, [4, 10, 13, 16–21]; and, SSI
effectively guarantees serializability. Furthermore, {RC, SI, SSI} is
the class of isolation levels available in Postgres, while {RC, SI} are
those available in Oracle. We see our results as a significant step
towards automating isolation level allocation on top of existing
databases. Indeed, we obtain that for {RC, SI, SSI} an optimal ro-
bust allocation can always be found in polynomial time. As {RC,
SI} does not include a serializable isolation level, a robust allocation
does not always exist. However, the results in this paper show that
the existence of a robust allocation for {RC, SI} can be decided in
polynomial time, and when a robust allocation exists, an optimal
one can be found.

The main technical contribution of this paper is Theorem 3.2
which shows that non-robustness against an allocation for the
isolation levels {RC, SI, SSI} can be characterized in terms of the ex-
istence of a counterexample schedule of a very specific form that we
refer to as a multiversion split schedule. Such split schedules have
been used before in the homogeneous setting where all transactions
in a workload are assigned to the same isolation level [19, 22, 25].
Generally, a split schedule is of the following form: one transac-
tion is split in two (hence, the name) and some other transactions
are placed between these two parts in a serial fashion where both
the splitted and the intermediate serial transactions satisfy some
additional requirements. All remaining transactions (if any) are
appended after the splitted transaction, again, in a serial fashion.
We refer to Figure 1 for the general structure of a split schedule. The
split schedules used in the cited papers all differ in the additional
requirements. When these additional requirements are simple, a
direct enumeration of all possible split schedules can be avoided
and replaced by a more efficient polynomial time algorithm [22, 25].
In some cases, however, finding a counterexample split schedule
is np-complete [22] or even undecidable [26]. In the present pa-
per, we consider mixed allocations where different transactions
can be allocated to different isolation levels. The corresponding
split schedule is consequentially more involved as it needs to take
interrelationships between multiple isolation levels into account.
We show in Theorem 3.3 that a counterexample split schedule can
still be efficiently constructed.

The contributions of this paper can be summarized as follows:

1Indeed, Vandevoort et al. [25] have shown that when contention increases, RC out-
performs SI w.r.t. transaction throughput.

· · ·

· · ·

𝑇1 :
𝑇2 :
𝑇𝑚 :

𝑇𝑚+1 :
𝑇𝑛 :

time

Figure 1: Abstract representation of a multi-version split
schedule where 𝑇1 is the splitted transaction.

(1) We provide a formal framework to reason on robustness
in the presence of mixed allocations of isolation levels. In
particular, we formally define what it means for a schedule
to be allowed under a (mixed) allocation w.r.t. {RC, SI, SSI}
(cf., Definition 2.4). Even though these definitions are an
abstraction, they are consistent with mixed allocations as
they are applied within Postgress and Oracle.

(2) We characterize non-robustness for allocations over {RC,
SI, SSI} in terms of the existence of a multiversion split-
schedule.

(3) We provide a polynomial time decision procedure for ro-
bustness against an allocation over {RC, SI, SSI}.

(4) We show that there is always a unique optimal robust allo-
cation over {RC, SI, SSI} and we provide a polynomial time
algorithm for computing it.

(5) We show that is decidable in polynomial time whether there
exists a robust allocation over {RC, SI} for a given set of
transactions. Furthermore, when a robust allocation exists,
an optimal one can be found in polynomial time as well.

Outline. This paper is structured as follows. We introduce the
necessary definitions in Section 2. We consider the robustness and
allocation problem for {RC, SI, SSI} in Section 3 and Section 4, re-
spectively. We consider robustness and allocation for {RC, SI} in
Section 5. We discuss related work in Section 6. We conclude in
Section 7.

2 DEFINITIONS
2.1 Transactions and Schedules
We fix an infinite set of objects Obj. For an object t ∈ Obj, we
denote by R [t] a read operation on t and by W [t] a write operation
on t. We also assume a special commit operation denoted by C. A
transaction 𝑇 over Obj is a sequence of read and write operations
on objects in Obj followed by a commit. In the sequel, we leave the
set of objects Obj implicit when it is clear from the context and just
say transaction rather than transaction over Obj.

Formally, we model a transaction as a linear order (𝑇, ≤𝑇), where
𝑇 is the set of (read, write and commit) operations occurring in
the transaction and ≤𝑇 encodes the ordering of the operations. As
usual, we use <𝑇 to denote the strict ordering. For a transaction 𝑇,
we use first(𝑇) to refer to the first operation in 𝑇.

When considering a set T of transactions, we assume that ev-
ery transaction in the set has a unique id 𝑖 and write 𝑇𝑖 to make
this id explicit. Similarly, to distinguish the operations of different
transactions, we add this id as a subscript to the operation. That is,
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we write W𝑖 [t] and R𝑖 [t] to denote a W [t] and R [t] occurring in
transaction 𝑇𝑖 ; similarly C𝑖 denotes the commit operation in trans-
action 𝑇𝑖 . This convention is consistent with the literature (see,
e.g. [12, 19]). To avoid ambiguity of notation, we assume that a
transaction performs at most one write and one read operation per
object. The latter is a common assumption (see, e.g. [19]). All our
results carry over to the more general setting in which multiple
writes and reads per object are allowed.

A (multiversion) schedule 𝑠 over a set T of transactions is a tuple
(𝑂𝑠 , ≤𝑠 ,≪𝑠 , 𝑣𝑠 ) where

• 𝑂𝑠 is the set containing all operations of transactions in T
as well as a special operation op0 conceptually writing the
initial versions of all existing objects,

• ≤𝑠 encodes the ordering of these operations,
• ≪𝑠 is a version order providing for each object t a total

order over all write operations on t occurring in 𝑠 , and,
• 𝑣𝑠 is a version function mapping each read operation 𝑎 in 𝑠

to either op0 or to a write operation in 𝑠 .

We require that op0 ≤𝑠 𝑎 for every operation 𝑎 ∈ 𝑂𝑠 , op0 ≪𝑠 𝑎

for every write operation 𝑎 ∈ 𝑂𝑠 , and that 𝑎 <𝑇 𝑏 implies 𝑎 <𝑠
𝑏 for every 𝑇 ∈ T and every 𝑎, 𝑏 ∈ 𝑇. We furthermore require
that for every read operation 𝑎, 𝑣𝑠 (𝑎) <𝑠 𝑎 and, if 𝑣𝑠 (𝑎) ≠ op0,
then the operation 𝑣𝑠 (𝑎) is on the same object as 𝑎. Intuitively,
op0 indicates the start of the schedule, the order of operations in
𝑠 is consistent with the order of operations in every transaction
𝑇 ∈ T , and the version function maps each read operation 𝑎 to the
operation that wrote the version observed by 𝑎. If 𝑣𝑠 (𝑎) is op0, then
𝑎 observes the initial version of this object. The version order ≪𝑠

represents the order in which different versions of an object are
installed in the database. For a pair of write operations on the same
object, this version order does not necessarily coincide with ≤𝑠 . For
example, under RC and SI the version order is based on the commit
order instead. See Figure 2 for an illustration of a schedule. In this
schedule, the read operations on t in𝑇1 and𝑇4 both read the initial
version of t instead of the version written but not yet committed
by 𝑇2. Furthermore, the read operation R2 [v] in 𝑇2 reads the initial
version of v instead of the version written by 𝑇3, even though 𝑇3
commits before R2 [v].

We say that a schedule 𝑠 is a single version schedule if ≪𝑠 is
compatible with ≤𝑠 and every read operation always reads the
last written version of the object. Formally, for each pair of write
operations 𝑎 and 𝑏 on the same object, 𝑎 ≪𝑠 𝑏 iff 𝑎 <𝑠 𝑏, and for
every read operation 𝑎 there is no write operation 𝑐 on the same
object as 𝑎 with 𝑣𝑠 (𝑎) <𝑠 𝑐 <𝑠 𝑎. A single version schedule over a
set of transactions T is single version serial if its transactions are
not interleaved with operations from other transactions. That is,
for every 𝑎, 𝑏, 𝑐 ∈ 𝑂𝑠 with 𝑎 <𝑠 𝑏 <𝑠 𝑐 and 𝑎, 𝑐 ∈ 𝑇 implies 𝑏 ∈ 𝑇

for every 𝑇 ∈ T .
The absence of aborts in our definition of schedule is consistent

with the common assumption [13, 19] that an underlying recovery
mechanism will rollback aborted transactions. We only consider
isolation levels that only read committed versions. Therefore there
will never be cascading aborts.

2.2 Conflict Serializability
Let 𝑎 𝑗 and 𝑏𝑖 be two operations on the same object t from different
transactions 𝑇𝑗 and 𝑇𝑖 in a set of transactions T . We then say that
𝑏𝑖 is conflicting with 𝑎 𝑗 if:

• (ww-conflict) 𝑏𝑖 = W𝑖 [t] and 𝑎 𝑗 = W𝑗 [t]; or,
• (wr-conflict) 𝑏𝑖 = W𝑖 [t] and 𝑎 𝑗 = R𝑗 [t]; or,
• (rw-conflict) 𝑏𝑖 = R𝑖 [t] and 𝑎 𝑗 = W𝑗 [t].

In this case, we also say that𝑏𝑖 and𝑎 𝑗 are conflicting operations. Fur-
thermore, commit operations and the special operation op0 never
conflict with any other operation. When 𝑏𝑖 and 𝑎 𝑗 are conflicting
operations in T , we say that 𝑎 𝑗 depends on 𝑏𝑖 in a schedule 𝑠 over
T , denoted 𝑏𝑖 →𝑠 𝑎 𝑗 if:

• (ww-dependency) 𝑏𝑖 is ww-conflicting with 𝑎 𝑗 and𝑏𝑖 ≪𝑠 𝑎 𝑗 ;
or,

• (wr-dependency) 𝑏𝑖 is wr-conflicting with 𝑎 𝑗 and𝑏𝑖 = 𝑣𝑠 (𝑎 𝑗 )
or 𝑏𝑖 ≪𝑠 𝑣𝑠 (𝑎 𝑗 ); or,

• (rw-antidependency)𝑏𝑖 is rw-conflictingwith𝑎 𝑗 and 𝑣𝑠 (𝑏𝑖 ) ≪𝑠

𝑎 𝑗 .
Intuitively, a ww-dependency from𝑏𝑖 to 𝑎 𝑗 implies that 𝑎 𝑗 writes

a version of an object that is installed after the version written by 𝑏𝑖 .
A wr-dependency from 𝑏𝑖 to 𝑎 𝑗 implies that 𝑏𝑖 either writes the ver-
sion observed by 𝑎 𝑗 , or it writes a version that is installed before the
version observed by 𝑎 𝑗 . A rw-antidependency from 𝑏𝑖 to 𝑎 𝑗 implies
that 𝑏𝑖 observes a version installed before the version written by 𝑎 𝑗 .
For example, the dependencies W2 [t] → W4 [t], W3 [v] → R4 [v]
and R4 [t] → W2 [t] are respectively a ww-dependency, a wr-
dependency and a rw-antidependency in schedule 𝑠 presented in
Figure 2.

Two schedules 𝑠 and 𝑠′ are conflict equivalent if they are over
the same set T of transactions and for every pair of conflicting
operations 𝑎 𝑗 and 𝑏𝑖 , 𝑏𝑖 →𝑠 𝑎 𝑗 iff 𝑏𝑖 →𝑠′ 𝑎 𝑗 .

Definition 2.1. A schedule 𝑠 is conflict serializable if it is conflict
equivalent to a single version serial schedule.

A serialization graph 𝑆𝑒𝐺 (𝑠) for schedule 𝑠 over a set of trans-
actions T is the graph whose nodes are the transactions in T and
where there is an edge from 𝑇𝑖 to 𝑇𝑗 if 𝑇𝑗 has an operation 𝑎 𝑗 that
depends on an operation 𝑏𝑖 in 𝑇𝑖 , thus with 𝑏𝑖 →𝑠 𝑎 𝑗 . Since we
are usually not only interested in the existence of dependencies
between operations, but also in the operations themselves, we as-
sume the existence of a labeling function 𝜆 mapping each edge to
a set of pairs of operations. Formally, (𝑏𝑖 , 𝑎 𝑗 ) ∈ 𝜆(𝑇𝑖 ,𝑇𝑗 ) iff there
is an operation 𝑎 𝑗 ∈ 𝑇𝑗 that depends on an operation 𝑏𝑖 ∈ 𝑇𝑖 . For
ease of notation, we choose to represent 𝑆𝑒𝐺 (𝑠) as a set of quadru-
ples (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) denoting all possible pairs of these transactions
𝑇𝑖 and 𝑇𝑗 with all possible choices of operations with 𝑏𝑖 →𝑠 𝑎 𝑗 .
Henceforth, we refer to these quadruples simply as edges. Notice
that edges cannot contain commit operations.

A cycle Γ in 𝑆𝑒𝐺 (𝑠) is a non-empty sequence of edges

(𝑇1, 𝑏1, 𝑎2,𝑇2), (𝑇2, 𝑏2, 𝑎3,𝑇3), . . . , (𝑇𝑛, 𝑏𝑛, 𝑎1,𝑇1)

in 𝑆𝑒𝐺 (𝑠), in which every transaction is mentioned exactly twice.
Note that cycles are by definition simple. Here, transaction𝑇1 starts
and concludes the cycle. For a transaction 𝑇𝑖 in Γ, we denote by
Γ [𝑇𝑖 ] the cycle obtained from Γ by letting 𝑇𝑖 start and conclude
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op0
R1 [t] C1

W2 [t] R2 [v] C2
W3 [v] C3

R4 [t] W4 [t] R4 [v] C4

𝑣𝑠

𝑣𝑠≪𝑠

𝑣𝑠

≪𝑠

≪𝑠

𝑣𝑠

𝑇1 :
𝑇2 :
𝑇3 :
𝑇4 :

Figure 2: A schedule 𝑠 with 𝑣𝑠 and ≪𝑠 represented through
arrows.

𝑇1 𝑇2

𝑇3𝑇4

Figure 3: Serialization graph 𝑆𝑒𝐺 (𝑠) for the schedule 𝑠 pre-
sented in Figure 2.

the cycle while otherwise respecting the order of transactions in Γ.
That is, Γ [𝑇𝑖 ] is the sequence
(𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) · · · (𝑇𝑛, 𝑏𝑛, 𝑎1,𝑇1) (𝑇1, 𝑏1, 𝑎2,𝑇2) · · · (𝑇𝑖−1, 𝑏𝑖−1, 𝑎𝑖 ,𝑇𝑖 ) .

Theorem 2.2 (implied by [2]). A schedule 𝑠 is conflict serializable
iff 𝑆𝑒𝐺 (𝑠) is acyclic.

Figure 3 visualizes the serialization graph 𝑆𝑒𝐺 (𝑠) for the schedule
𝑠 in Figure 2. Since 𝑆𝑒𝐺 (𝑠) is not acyclic, 𝑠 is not conflict serializable.

2.3 Isolation Levels
Let I be a class of isolation levels. An I-allocation A for a set
of transactions T is a function mapping each transaction 𝑇 ∈ T
onto an isolation level A(𝑇) ∈ I. When I is not important or
clear from the context, we sometimes also say allocation rather
than I-allocation. In this paper, we consider the following isolation
levels: read committed (RC), snapshot isolation (SI), and serializable
snapshot isolation (SSI). In general, with the exception of Section 5,
I = {RC, SI, SSI}. Before we define what it means for a schedule
to consist of transactions adhering to different isolation levels, we
introduce some necessary terminology. Some of these notions are
illustrated in Example 2.5 below.

Let 𝑠 be a schedule for a set T of transactions. Two transactions
𝑇𝑖 ,𝑇𝑗 ∈ T are said to be concurrent in 𝑠 when their execution over-
laps. That is, if first(𝑇𝑖 ) <𝑠 C𝑗 and first(𝑇𝑗 ) <𝑠 C𝑖 . We say that a
write operation W𝑗 [t] in a transaction 𝑇𝑗 ∈ T respects the commit
order of 𝑠 if the version of t written by 𝑇𝑗 is installed after all ver-
sions of t installed by transactions committing before 𝑇𝑗 commits,
but before all versions of t installed by transactions committing
after 𝑇𝑗 commits. More formally, if for every write operation W𝑖 [t]
in a transaction 𝑇𝑖 ∈ T different from 𝑇𝑗 we have W𝑗 [t] ≪𝑠 W𝑖 [t]
iff C𝑗 <𝑠 C𝑖 . We next define when a read operation 𝑎 ∈ 𝑇 reads the
last committed version relative to a specific operation. For RC this
operation is 𝑎 itself while for SI this operation is first(𝑇). Intuitively,
these definitions enforce that read operations in transactions al-
lowed under RC act as if they observe a snapshot taken right before

the read operation itself, while under SI they observe a snapshot
taken right before the first operation of the transaction. A read
operation R𝑗 [t] in a transaction 𝑇𝑗 ∈ T is read-last-committed in
𝑠 relative to an operation 𝑎 𝑗 ∈ 𝑇𝑗 (not necessarily different from
R𝑗 [t]) if the following holds:

• 𝑣𝑠 (R𝑗 [t]) = op0 or C𝑖 <𝑠 𝑎 𝑗 with 𝑣𝑠 (R𝑗 [t]) ∈ 𝑇𝑖 ; and
• there is no write operation W𝑘 [t] ∈ 𝑇𝑘 with C𝑘 <𝑠 𝑎 𝑗 and

𝑣𝑠 (R𝑗 [t]) ≪𝑠 W𝑘 [t].
The first condition says that R𝑗 [t] either reads the initial version or
a committed version, while the second condition states that R𝑗 [t]
observes the most recently committed version of t (according to
≪𝑠 ). A transaction𝑇𝑗 ∈ T exhibits a concurrent write in 𝑠 if there is
another transaction 𝑇𝑖 ∈ T and there are two write operations 𝑏𝑖
and 𝑎 𝑗 in 𝑠 on the same object with 𝑏𝑖 ∈ 𝑇𝑖 , 𝑎 𝑗 ∈ 𝑇𝑗 and𝑇𝑖 ≠ 𝑇𝑗 such
that 𝑏𝑖 <𝑠 𝑎 𝑗 and first(𝑇𝑗 ) <𝑠 C𝑖 . That is, transaction 𝑇𝑗 writes to
an object that has been modified earlier by a concurrent transaction
𝑇𝑖 .

A transaction 𝑇𝑗 ∈ T exhibits a dirty write in 𝑠 if there are two
write operations 𝑏𝑖 and 𝑎 𝑗 in 𝑠 with 𝑏𝑖 ∈ 𝑇𝑖 , 𝑎 𝑗 ∈ 𝑇𝑗 and 𝑇𝑖 ≠ 𝑇𝑗
such that 𝑏𝑖 <𝑠 𝑎 𝑗 <𝑠 C𝑖 . That is, transaction 𝑇𝑗 writes to an object
that has been modified earlier by 𝑇𝑖 , but 𝑇𝑖 has not yet issued a
commit. Notice that by definition a transaction exhibiting a dirty
write always exhibits a concurrent write. Transaction𝑇4 in Figure 2
exhibits a concurrent write, since it writes to t, which has been
modified earlier by a concurrent transaction 𝑇2. However, 𝑇4 does
not exhibit a dirty write, since 𝑇2 has already committed before 𝑇4
writes to t.

Definition 2.3. Let 𝑠 be a schedule over a set of transactions T .
A transaction𝑇𝑖 ∈ T is allowed under isolation level read committed
(RC) in 𝑠 if:

• each write operation in 𝑇𝑖 respects the commit order of 𝑠;
• each read operation 𝑏𝑖 ∈ 𝑇𝑖 is read-last-committed in 𝑠

relative to 𝑏𝑖 ; and
• 𝑇𝑖 does not exhibit dirty writes in 𝑠 .

A transaction 𝑇𝑖 ∈ T is allowed under isolation level snapshot isola-
tion (SI) in 𝑠 if:

• each write operation in 𝑇𝑖 respects the commit order of 𝑠;
• each read operation in𝑇𝑖 is read-last-committed in 𝑠 relative

to first(𝑇𝑖 ); and
• 𝑇𝑖 does not exhibit concurrent writes in 𝑠 .

We then say that the schedule 𝑠 is allowed under RC (respec-
tively, SI) if every transaction is allowed under RC (respectively, SI)
in 𝑠 . The latter definitions correspond to the ones in the literature
(see, e.g., [19, 25]). We emphasize that our definition of RC is based
on concrete implementations over multiversion databases, found in
e.g. Postgres, and should therefore not be confused with different
interpretations of the term Read Committed, such as lock-based
implementations [12] or more abstract specifications covering a
wider range of concrete implementations (see, e.g., [2]). In partic-
ular, abstract specifications such as [2] do not require the read-
last-committed property, thereby facilitating implementations in
distributed settings, where read operations are allowed to observe
outdated versions. When studying robustness, such a broad speci-
fication of RC is not desirable, since it allows for a wide range of
schedules that are not conflict serializable. We furthermore point
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out that our definitions of RC and SI are not strictly weaker forms
of conflict serializability. That is, a conflict serializable schedule is
not necessarily allowed under RC and SI as well.

While RC and SI are defined on the granularity of a single trans-
action, SSI enforces a global condition on the schedule as a whole.
For this, recall the concept of dangerous structures from [14]: three
transactions 𝑇1,𝑇2,𝑇3 ∈ T (where 𝑇1 and 𝑇3 are not necessarily
different) form a dangerous structure 𝑇1 → 𝑇2 → 𝑇3 in 𝑠 if:

• there is a rw-antidependency from 𝑇1 to 𝑇2 and from 𝑇2 to
𝑇3 in 𝑠;

• 𝑇1 and 𝑇2 are concurrent in 𝑠 ;
• 𝑇2 and 𝑇3 are concurrent in 𝑠 ; and,
• C3 ≤𝑠 C1 and C3 <𝑠 C2.

Note that this definition of dangerous structures slightly extends
upon the one in [14], where it is not required for𝑇3 to commit before
𝑇1 and 𝑇2. In the full version [15] of that paper, it is shown that
such a structure can only lead to non-serializable schedules if 𝑇3
commits first, and actual implementations of SSI (e.g., Postgres [23])
therefore include this optimization when monitoring for dangerous
structures to reduce the number of aborts due to false positives.

We are now ready to define when a schedule is allowed under a
(mixed) allocation of isolation levels.

Definition 2.4. A schedule 𝑠 over a set of transactionsT is allowed
under an allocation A over T if:

• for every transaction𝑇𝑖 ∈ T withA(𝑇𝑖 ) = RC,𝑇𝑖 is allowed
under RC;

• for every transaction 𝑇𝑖 ∈ T with A(𝑇𝑖 ) ∈ {SI, SSI}, 𝑇𝑖 is
allowed under SI; and

• there is no dangerous structure 𝑇𝑖 → 𝑇𝑗 → 𝑇𝑘 in 𝑠 formed
by three (not necessarily different) transactions 𝑇𝑖 ,𝑇𝑗 ,𝑇𝑘 ∈
{𝑇 ∈ T | A(𝑇) = SSI}.

We denote the allocation mapping all transactions to RC (respec-
tively, SI) by ARC (respectively, ASI).

We illustrate some of the just introduced notions through an
example.

Example 2.5. Consider the schedule 𝑠 in Figure 2. Transaction𝑇1
is concurrent with 𝑇2 and 𝑇4, but not with 𝑇3; all other transactions
are pairwise concurrent with each other. The second read operation
of 𝑇4 is a read-last-committed relative to itself but not relative to
the start of 𝑇4. The read operation of 𝑇2 is read-last-committed
relative to the start of 𝑇2, but not relative to itself, so an allocation
mapping 𝑇2 to RC is not allowed. All other read operations are
read-last-committed relative to both themselves and the start of the
corresponding transaction. None of the transactions exhibits a dirty
write. Only transaction 𝑇4 exhibits a concurrent write (witnessed
by the write operation in 𝑇2). Due to this, an allocation mapping 𝑇4
on SI or SSI is not allowed. The transactions 𝑇 1 → 𝑇 2 → 𝑇 3 form
a dangerous structure, therefore an allocation mapping all three
transactions 𝑇1,𝑇2,𝑇3 on SSI is not allowed. All other allocations,
that is, mapping𝑇4 on RC,𝑇2 on SI or SSI and at least one of𝑇1,𝑇2,𝑇3
on RC or SI, is allowed. 2

As mentioned above, the isolation levels RC and SI are defined
through a local condition that should hold for every transaction.
This formulation on the granularity of a single transaction is pre-
cisely what facilitates the definition of what it means for a schedule

op0
R1 [t] W1 [v] C1

R2 [v] W2 [v] C2

𝑣𝑠

𝑣𝑠

≪𝑠

≪𝑠

𝑇1 :
𝑇2 :

Figure 4: Schematic representation of schedule 𝑠 in Exam-
ple 2.6.

to be allowed under a mixed allocation. Mixing isolation levels in
this way does introduce some subtleties as the next example shows.

Example 2.6. Consider the schedule 𝑠 in Figure 4 over two con-
current transactions 𝑇1 and 𝑇2, where both 𝑇1 and 𝑇2 write to ob-
ject v. (1) Let A1 = ASI. Then, clearly 𝑠 is not allowed under
A1 as 𝑇2 exhibits a concurrent write which is not allowed by SI.
(2) The same is the case for allocation A2 with A2 (𝑇1) = RC and
A2 (𝑇2) = SI. (3) However, letA3 be the allocationwithA3 (𝑇1) = SI
and A3 (𝑇2) = RC. Then, 𝑠 is allowed under A3 as the concurrent
write exhibited by 𝑇2 is allowed by RC and 𝑇1 does not exhibit a
concurrent write. We stress once again that our definitions are in
line with those of Postgres.2 2

2.4 Robustness
We define the robustness property [13] (also called acceptability
in [19, 20]), which guarantees serializability for all schedules over
a given set of transactions for a given allocation.

Definition 2.7 (Robustness). A set of transactions T is robust
against an allocationA for T if every schedule for T that is allowed
under A is conflict serializable.

We refer to A as a robust allocation. The robustness problem is
then to decide whether a given allocation for a set of transactions
T is a robust allocation.

3 DECIDING ROBUSTNESS
In this section, we address the robustness problem as defined in the
previous section.

In the next definition, we represent conflicting operations from
transactions in a set T as quadruples (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) with 𝑏𝑖 and 𝑎 𝑗
conflicting operations, and 𝑇𝑖 and 𝑇𝑗 their respective transactions
in T . We call these quadruples conflicting quadruples for T . Notice
that, conflicting quadruples are not defined w.r.t. a schedule (as is
the case for 𝑆𝑒𝐺 (𝑠) in Section 2.2). Further, for an operation 𝑏 ∈ 𝑇,
we denote by prefix𝑏 (𝑇) the restriction of 𝑇 to all operations that
are before or equal to 𝑏 according to ≤𝑇 . Similarly, we denote by
postfix𝑏 (𝑇) the restriction of 𝑇 to all operations that are strictly
after 𝑏 according to ≤𝑇 .

Definition 3.1 (Multiversion split schedule). Let T be a set of trans-
actions,A an allocation forT , and𝐶 = (𝑇1, 𝑏1, 𝑎2,𝑇2), (𝑇2, 𝑏2, 𝑎3,𝑇3),
. . . , (𝑇𝑚, 𝑏𝑚, 𝑎1,𝑇1) a sequence of conflicting quadruples for T such
that each transaction in T occurs in at most two different quadru-
ples. A multiversion split schedule for T and A based on 𝐶 is a

2https://www.postgresql.org/docs/14/transaction-iso.html

https://www.postgresql.org/docs/14/transaction-iso.html
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multiversion schedule that has the following form:

prefix𝑏1 (𝑇1) ·𝑇2 · . . . ·𝑇𝑚 · postfix𝑏1 (𝑇1) ·𝑇𝑚+1 · . . . ·𝑇𝑛,

where
(1) there is no operation in 𝑇1 conflicting with an operation in

any of the transactions 𝑇3, . . . ,𝑇𝑚−1;
(2) there is no write operation in prefix𝑏1 (𝑇1) ww-conflicting

with a write operation in 𝑇2 or 𝑇𝑚 ;
(3) if A(𝑇1) ∈ {SI, SSI}, then there is no write operation in

postfix𝑏1 (𝑇1) ww-conflicting with a write operation in 𝑇2
or 𝑇𝑚 ;

(4) 𝑏1 is rw-conflicting with 𝑎2;
(5) 𝑏𝑚 is rw-conflicting with 𝑎1 or (A(𝑇1) = RC and 𝑏1 <𝑇1

𝑎1);
(6) A(𝑇1) ≠ SSI or A(𝑇2) ≠ SSI or A(𝑇𝑚) ≠ SSI;
(7) if A(𝑇1) = SSI and A(𝑇2) = SSI, then there is no operation

in 𝑇1 wr-conflicting with an operation in 𝑇2; and
(8) ifA(𝑇1) = SSI andA(𝑇𝑚) = SSI, then there is no operation

in 𝑇1 rw-conflicting with an operation in 𝑇𝑚 .
Furthermore, 𝑇𝑚+1, . . . ,𝑇𝑛 are the remaining transactions in T
(those not mentioned in 𝐶) in an arbitrary order.

The following theorem characterizes non-robustness in terms of
the existence of a multiversion split schedule. The proof argument
is based on showing that if a multiversion split schedule 𝑠 for T and
A based on 𝐶 satisfies Definition 3.1, then we can construct a ver-
sion order ≪𝑠 and version function 𝑣𝑠 such that 𝑠 is allowed under
A and not conflict serializable, thereby witnessing non-robustness.
Intuitively, Definition 3.1 (1-3) ensures that the transactions in 𝑠

do not exhibit concurrent or dirty writes not allowed by A, Defini-
tion 3.1 (4-5) enforces (anti)dependencies 𝑏1 → 𝑎2 and 𝑏𝑚 → 𝑎1
to occur in 𝑠 , and Definition 3.1 (6-8) ensures that no dangerous
structure occurs over transactions adhering to SSI. The opposite
direction is more involved, as we show that every schedule 𝑠 for
T allowed under A that is not conflict serializable gives rise to a
multiversion split schedule 𝑠 satisfying Definition 3.1. In particular,
we construct the sequence of conflicting quadruples 𝐶 as in Defini-
tion 3.1 based on a chord-free cycle Γ in 𝑆𝑒𝐺 (𝑠), where the order of
transactions in 𝐶 is chosen such that 𝑇2 commits first in 𝑠 (among
those in Γ).

Theorem 3.2. For a set of transactions T and an allocation A for
T , the following are equivalent:

(1) T is not robust against A;
(2) there is a multiversion split schedule 𝑠 for T and A based on

some 𝐶 .

Theorem 3.2 is the basis for a ptime algorithm deciding robust-
ness against a given allocation. The algorithm is presented as Al-
gorithm 1 and makes use of an auxilliary graph structure that we
introduce next. For a transaction 𝑇1 and a set of transactions T ,
define mixed-iso-graph(𝑇1,T) as the graph containing as nodes all
transactions in T that do not have an operation conflicting with
an operation in 𝑇1, and with an edge between transactions 𝑇𝑖 and
𝑇𝑗 if 𝑇𝑖 has an operation conflicting with an operation in 𝑇𝑗 .

To verify robustness, Algorithm 1 does not check for the exis-
tence of a multiversion split schedule by iterating over all possible

sequences 𝐶 of conflicting quadruples, as this number can be expo-
nential in the size of T . Instead, Algorithm 1 iterates over all possi-
ble triples of transactions 𝑇1, 𝑇2 and 𝑇𝑚 in T (where 𝑇1, 𝑇2 and 𝑇𝑚
should be interpreted as in Definition 3.1) and verifies whether there
exists a path from𝑇2 to𝑇𝑚 in mixed-iso-graph(𝑇1,T \ {𝑇1,𝑇2,𝑇𝑚})
(cf. function reachable(𝑇1,𝑇2,𝑇𝑚) in Algorithm 1), thereby witness-
ing the existence of a corresponding sequence of conflicting quadru-
ples between 𝑇2 and 𝑇𝑚 . By definition of mixed-iso-graph(𝑇1,T \
{𝑇1,𝑇2,𝑇𝑚}), Definition 3.1 (1) is furthermore satisfied. The remain-
der of Algorithm 1 verifies whether the remaining conditions in
Definition 3.1 hold for at least one choice of 𝑏1, 𝑎1 ∈ 𝑇1, 𝑎2 ∈ 𝑇2 and
𝑏𝑚 ∈ 𝑇𝑚 . Note in particular that functionww-conflict-free(𝑏1,𝑇1,𝑇2,
𝑇𝑚) returning True implies Definition 3.1 (2) and (3). The corre-
spondence between the remaining properties of Definition 3.1 and
conditions in Algorithm 1 is straightforward.

Theorem 3.3. Algorithm 1 decides whether a set of transactions T
is robust against an allocationA in time𝑂 ( |T |3·max{|T |3, 𝑘2ℓ2, ℓ6}),
with 𝑘 the total number of operations in T and ℓ the maximum num-
ber of operations in a transaction in T .

4 THE ALLOCATION PROBLEM
Finding a robust allocation over {RC, SI, SSI} is of course trivial as
we can simply assign every transaction to SSI. Such an allocation is
undesirable as it enforces the most expensive concurrency control
mechanism on all transactions.We are therefore interested in robust
allocations that favor RC over SI and SI over SSI.

In the following, we assume a total order3 RC < SI < SSI over the
isolation levels, and introduce the following notions. Let T be a set
of transactions, and letA andA′ be allocations over T . We denote
by A ≤ A′ when A(𝑇 ) ≤ A′ (𝑇 ) for all 𝑇 ∈ T . Furthermore,
A < A′ when A ≤ A′ and there is a 𝑇 ∈ T with A(𝑇 ) < A′ (𝑇 ).

We say that a robust allocation A is optimal when there is no
robust allocation A′ with A′ < A. For an isolation level 𝐼 , we
denote byA[𝑇 ↦→ 𝐼 ] the allocation where𝑇 is assigned 𝐼 and every
other transaction𝑇 ′ ∈ T is assignedA(𝑇 ′). For two isolation levels
I and I′ with I < I′ (respectively I′ < I) we say that I is a
lower (respectively higher) isolation level than I′.

The following proposition obtains some useful properties of
robust allocations. Specifically, it says that robustness propagates
upwards. That is, if a schedule is robust under an allocation A, it
remains robust when assigning a higher isolation level to any of
its transactions 𝑇. Furthermore, if there exists a robust allocation
A′ mapping 𝑇 to a lower isolation level than A(𝑇), then A(𝑇) can
be safely updated to that lower isolation as well. That is, 𝑠 is also
robust under A[𝑇 ↦→ A′ (𝑇 )].

Proposition 4.1. Let T be a set of transactions. Let A and A′

be allocations for T .
(1) If A ≤ A′ and T is robust against A, then T is robust

against A′.
(2) If T is robust against A and A′, then T is robust against

A′ [𝑇 ↦→ A(𝑇 )] for every 𝑇 ∈ T .

We can now prove the following proposition.
3This order only represents the preference between isolation levels (i.e., RC over SI
and SI over SSI), not an inclusion relation between isolation levels. For example, not
every schedule allowed under ASI is allowed under ARC (cf. Example 5.2).
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Algorithm 1: Deciding robustness against an allocation.
Input : Set of transactions T and allocation A for T
Output : True iff T is robust against A
def reachable(𝑇2,𝑇𝑚,𝑇1):

if 𝑇2 = 𝑇𝑚 then
return True;

for 𝑏2 ∈ 𝑇2, 𝑎𝑚 ∈ 𝑇𝑚 do
if 𝑏2 conflicts with 𝑎𝑚 then

return True;
𝐺 := mixed-iso-graph(𝑇1,T \ {𝑇1,𝑇2,𝑇𝑚});
𝑇𝐶 := reflexive-transitive-closure of 𝐺 ;
for (𝑇3,𝑇𝑚−1) in 𝑇𝐶 do

for 𝑏2 ∈ 𝑇2, 𝑎3 ∈ 𝑇3, 𝑏𝑚−1 ∈ 𝑇𝑚−1, 𝑎𝑚 ∈ 𝑇𝑚 do
if (𝑏2 conflicts with 𝑎3 and 𝑏𝑚−1 conflicts with
𝑎𝑚) then

return True;
return False;

def ww-conflict-free(𝑏1,𝑇1,𝑇2,𝑇𝑚):
for 𝑐1 ∈ 𝑇1 do

if 𝑐1 ∈ prefix𝑏1 (𝑇1) or A(𝑇1) ∈ {SI, SSI} then
for 𝑐2 ∈ 𝑇2 do

if 𝑐1 is ww-conflicting with 𝑐2 then
return False;

for 𝑐𝑚 ∈ 𝑇𝑚 do
if 𝑐1 is ww-conflicting with 𝑐𝑚 then

return False;
return True;

def wr-conflict-free(𝑇𝑖 ,𝑇𝑗 ):
for 𝑏𝑖 ∈ 𝑇𝑖 , 𝑎 𝑗 ∈ 𝑇𝑗 do

if 𝑏𝑖 is wr-conflicting with 𝑎 𝑗 then
return False;

return True;

for 𝑇1 ∈ T , 𝑇2 ∈ T \ {𝑇1}, 𝑇𝑚 ∈ T \ {𝑇1} do
if reachable(𝑇2,𝑇𝑚,𝑇1) and
(A(𝑇1) ≠ SSI or A(𝑇2) ≠ SSI or A(𝑇𝑚) ≠ SSI) and
(A(𝑇1) ≠ SSI or A(𝑇2) ≠ SSI or
wr-conflict-free(𝑇1,𝑇2)) and
(A(𝑇1) ≠ SSI or A(𝑇𝑚) ≠ SSI or
wr-conflict-free(𝑇𝑚,𝑇1)) then
for 𝑏1 ∈ 𝑇1, 𝑎1 ∈ 𝑇1, 𝑎2 ∈ 𝑇2, 𝑏𝑚 ∈ 𝑇𝑚 do

if ww-conflict-free(𝑏1,𝑇1,𝑇2,𝑇𝑚) and
𝑏𝑚 conflicts with 𝑎1 and
𝑏1 is rw-conflicting with 𝑎2 and
(𝑏𝑚 is rw-conflicting with 𝑎1 or
(A(𝑇1) = RC and 𝑏1 <𝑇1 𝑎1)) then
return False;

return True

Proposition 4.2. There is a unique optimal allocation for every
set of transactions T .

Proof. Suppose towards a contradiction that there are two dif-
ferent optimal robust allocations A and A′. As A and A′ are dif-
ferent, there exists a transaction 𝑇 ∈ T such that A(𝑇 ) ≠ A′ (𝑇 ).

Algorithm 2: Computing the optimal robust allocation.
Input : Set of transactions T
Output : Optimal robust allocation A for T
A := ASSI;
for 𝑇 ∈ T do

if T is robust against A[𝑇 ↦→ RC] then
A := A[𝑇 ↦→ RC];

else if T is robust against A[𝑇 ↦→ SI] then
A := A[𝑇 ↦→ SI];

return A

W.l.o.g., we assume A(𝑇 ) < A′ (𝑇 ). By Proposition 4.1(2), T is
robust against A′ [𝑇 ↦→ A(𝑇 )]. But then A′ [𝑇 ↦→ A(𝑇 )] < A′,
which means that A′ is not optimal and leads to the desired con-
tradiction. □

The following theorem shows that the unique optimal allocation
can be computed in polynomial time. The corresponding algorithm
is given as Algorithm 2.

Theorem 4.3. An optimal robust allocation can be computed in
time polynomial in the size of T for every set of transactions T .

Proof. By assumption T is robust against the allocation ASSI
that maps all transactions to SSI. Algorithm 2 then refines this
allocation by assigning the minimal isolation level to each trans-
action leading to an optimal robust allocation. The correctness
follows by repeated application of Proposition 4.1(2). It follows
in particular from Proposition 4.1(2) that for every robust alloca-
tion A for T (including ASSI) there is a sequence of allocations
A1 < A2 < . . . < A𝑘 < A with A1 denoting the unique op-
timal allocation for T and A𝑖 = A𝑖+1 [𝑇 → A𝑖 (𝑇)] for every
𝑖 ∈ [1, 𝑘]. The polynomial time complexity follows directly from
Theorem 3.3. □

5 RESTRICTING TO RC AND SI
As already mentioned in the introduction, Oracle restricts to the
isolation levels RC and SI. We investigate in this section how the
results of the previous sections can be transferred to this setting.
In particular, we ignore SSI and restrict attention to RC and SI.

We start with the following result.

Proposition 5.1. For a set of transactions T , robustness against
ARC implies robustness against ASI.

This above result is an immediate consequence of Proposition 5.4.
We mention that it is also a direct consequence of the characteriza-
tions for robustness against ARC [25] and ASI [19]. Indeed, it can
be shown that a counterexample for robustness against ASI can al-
ways be transformed into a counterexample for robustness against
ARC as well. We do want to emphasize that Proposition 5.1 is not a
trivial consequence that immediately follows from the definitions
of the isolation levels RC and SI, for the simple reason that it is
not the case that every schedule allowed under ASI is also allowed
under ARC as the next example shows.
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𝑣𝑠

≪𝑠𝑇1 :
𝑇2 :

Figure 5: Schematic representation of schedule 𝑠 in Exam-
ple 5.2.

Example 5.2. We give an example of a schedule 𝑠 that is allowed
under SI but not allowed under RC. To this end, consider the sched-
ule 𝑠 over transactions W1 [t] C1 and R2 [v] R2 [t] C2 with operation
order ≤𝑠 ,

op0 W1 [t] R2 [v] C1 R2 [t] C2,
version order op0 ≪𝑠 W1 [t], and version function 𝑣𝑠 (R2 [v]) =

𝑣𝑠 (R2 [t]) = op0. Figure 5 shows a graphical representation of sched-
ule 𝑠 . Then, 𝑠 is allowed under ASI, but not under ARC, because
R2 [t] is not read-last-committed in 𝑠 relative to itself. 2

We formalize when a set of transactions is robustly allocatable
against a class of isolation levels:

Definition 5.3. For a class of isolation levels I, a set of trans-
actions T is robustly allocatable against I if there exists an I-
allocation A such that T is robust against A.

The only if-direction of the next theorem now immediately fol-
lows from Proposition 4.1(1) asA ≤ ASI for any {RC, SI}-allocation
A for which a set of transactions is robustly allocatable. The if-
direction is trivial, since robustness against ASI is an immediate
witness for T being robustly allocatable against {RC, SI}:

Proposition 5.4. A set of transactions T is robustly allocatable
against {RC, SI} iff T is robust against ASI.

We now state and proof the main result of this section:

Theorem 5.5. Let T be a set of transactions. It can be decided in
time polynomial in the size of T whether T is robustly allocatable
against {RC, SI}. If T is robustly allocatable against {RC, SI}, then
an optimal unique allocation can be computed in polymonial time as
well.

Proof. From Proposition 5.4, it suffices to verify whether T is
robust against ASI, which can be decided in ptime (Theorem 3.3).
Furthermore, an optimal robust {RC, SI}-allocation can be com-
puted by adapting Algorithm 2 to start from ASI. □

6 RELATEDWORK
6.1 Mixing isolation levels.
Adya et al. [2] define isolation levels in terms of phenomena that are
forbidden to occur in the serialization graph. Mixed isolation levels
are defined in terms of properties of themixed serialization graph. In
particular, a given schedule 𝑠 is allowed under a mixed allocation if
themixed serialization graph𝑀𝑆𝐺 (𝑠) is acyclic. This graph𝑀𝑆𝐺 (𝑠)
is a subset of 𝑆𝑒𝐺 (𝑠) where dependency edges 𝑇𝑖 → 𝑇𝑗 are only
added when relevant for the specified isolation level for 𝑇𝑖 and 𝑇𝑗 .
Adya et al. [2] consider a mixture of read uncommitted, read
committed and serializable transactions and do not consider SI or

SSI like we do in this paper.4 Other work [13, 19] that is discussed
further below, consider a limited form of isolation level mixing
where one isolation level (say, SI) can be mixed with a serializable
isolation level. To the best of our knowledge, this paper is the first that
jointly considers mixing RC, SI and SSI in the way that it is applied
in Postgres.

6.2 Robustness and allocation for transactions.
Fekete [19] is the first work that provides a necessary and sufficient
condition for deciding robustness against an isolation level (SI)
for a workload of transactions. In particular, that work provides
a characterization for optimal allocations when every transaction
runs under either snapshot isolation or strict two-phase locking
(S2PL). As a side result, this work presents a characterization for
robustness against snapshot isolation as well. Ketsman et al. [22]
provide characterisations for robustness against read committed
and read uncommitted under lock-based semantics. In addition, it
is shown that the corresponding decision problems are complete for
conp and logspace, respectively, which should be contrasted with
the polynomial time characterization obtained in [25] for robustness
against multiversion read committed which is the variant that is
considered in this paper. The present paper is therefore the first to
address the robustness and allocation problem for a wider range of
isolation levels.

6.3 Robustness in practice.
The setting in the present paper assumes that the complete set
of all transactions in a workload is completely known which is
an assumption that can not always be met in practice. We next
discuss two complementary approaches that have been previously
investigated to adress this.

6.3.1 Transaction templates. In [25] it is assumed that transactions
can only be generated through an API consisting of a fixed set of
transaction programs. For instance, the TPC-C benchmark [24] con-
sists of five different transaction programs, from which an infinite
number of concrete transactions can be instantiated. A finite set
of transaction templates, like TPC-C, is robust against an isolation
level iff every set of transactions that can be instantiated from these
programs, is robust against that isolation level. In [25], a ptime
decision procedure is obtained for robustness against RC for tem-
plates without functional constraints and [26] improves that result
to nlogspace. The work in [26] also considers robustness against
RC in the presence of functional constraints. In addition, in [25] an
experimental studywas performed showing how an approach based
on robustness and making transactions robust through promotion
can improve transaction throughput. Interestingly, the characterisa-
tions for robustness on the level of templates in [25, 26] is directly
based on the corresponding characterisations for robustness on the
level of transactions. In this sense, the results of this paper on the
level of transactions can be a stepping stone for corresponding results
on the level of transaction templates.

4A separate graph-based definition of SI is specified in [1], but this definition requires
an extension of the serialization graph and incorporating SI in these mixed isolation
levels is therefore not trivial.
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6.3.2 Transaction Programs. A drawback of the formalisation for
transaction templates is that it can not be extended to take updates
to key attributes or predicate reads into account. Nevertheless,
characterisations for robustness on the level of transactions can
still be used to derive sufficient conditions for robustness on the
level of arbitrary transaction programs (as written in SQL, say).
Previous work on static robustness testing [6, 20] for transaction
programs is based on the following key insight: when a schedule
is not serializable, then the dependency graph constructed from
that schedule contains a cycle satisfying a condition specific to the
isolation level at hand (dangerous structure for SI and the presence of
a counterflow edge for RC). That insight is extended to a workload
of transaction programs through the construction of a so-called
static dependency graph where each program is represented by a
node, and there is a conflict edge from one program to another if
there can be a schedule that gives rise to that conflict. The absence
of a cycle satisfying the condition specific to that isolation level
then guarantees robustness while the presence of a cycle does not
necessarily imply non-robustness. We observe that the sufficient
conditions in these approaches are inspired by characterisations on
the level of transactions. In this way, the characterisations presented
in this paper could pave the way for sufficient conditions on the level
of transaction programs as discussed above.

Other work studies robustness within a framework for uniformly
specifying different isolation levels in a declarative way [13, 16–18].
A key assumption here is atomic visibility requiring that either all
or none of the updates of each transaction are visible to other trans-
actions. These approaches aim at higher isolation levels and cannot
be used for RC, as RC does not admit atomic visibility. Bernardi and
Gotsman [13] furthermore provide a limited form of isolation level
mixing. In brief, only one lower isolation level can be chosen (e.g.,
SI), but a subset of the considered transactions can be marked as
serializable. Then, a schedule must adhere to all constraints implied
by the lower isolation level and, additionally, a total order over the
serializable transactions must exist. This should be contrasted with
our approach, where we allow multiple lower isolation levels to be
combined with serializability at the same time.

6.3.3 Other approaches. Gan et al. [21] present IsoDiff, a tool to
detect and resolve potential anomalies caused by executing transac-
tions under read committed or SI. IsoDiff derives potential trans-
actions from a database SQL trace and, based on this trace, decides
whether cycles with a dangerous structure (for SI) or counterflow
edge (for RC) can exist. By including additional timing constraints
and correlation constraints, they are able to reduce the number of
false positives. A potential pitfall of analyzing a trace is that it may
overlook transactions that are rarely executed, thereby incorrectly
considering an application to be robust. A subtle difference com-
pared to our work is that the timing constraints proposed as part
of IsoDiff assume that a dependency 𝑏𝑖 →𝑠 𝑎 𝑗 always implies that
operation 𝑏𝑖 occurs before 𝑎 𝑗 in 𝑠 , thereby implicitly assuming a
single version implementation of RC, rather than the multiversion
RC as discussed in this paper. In particular, (multiversion) RC al-
lows for situations where 𝑏𝑖 occurs after 𝑎 𝑗 in 𝑠 , if 𝑏𝑖 →𝑠 𝑎 𝑗 is a
rw-antidependency. Orthogonal to robustness detection, tools such
as Elle [8] aim at detecting anomalies that should not occur under
a given isolation level. These tools can be used to detect whether a

database system implements the declared isolation levels correctly,
whereas robustness assumes that the isolation level is implemented
correctly to decide whether every possible execution of a given
workload is serializable.None of the above mentioned works considers
robustness in the context of mixed allocations of isolation levels.

7 CONCLUSION
In this paper, we addressed and solved the robustness and allocation
problem for the classes {RC, SI, SSI} and {RC, SI} corresponding to
the isolation levels employed in Postgres and Oracle, respectively.
As discussed in Section 6.3, these results can be used as a step-
ping stone for corresponding results on the level of transaction
templates and transaction programs, respectively, thereby laying
the groundwork for automating isolation level allocation within
existing databases that support multiversion concurrency control.
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