Antithrombotic therapy in patients with acute coronary syndrome: similarities and differences between a European expert consensus document and the 2023 European Society of **Cardiology guidelines**

European Heart Journal: Acute Cardiovascular Care (2024) 13, 173–180

Antonio Landi^{1,2}, Victor Aboyans ⁶, Dominick J. Angiolillo⁴, Dan Atar ⁶, Davide Capodanno 6, Keith A.A. Fox7, Sigrun Halvorsen8,9, Stefan James 6, 10, Peter Jüni¹¹, Sergio Leonardi (1) 12, Roxana Mehran (1) 13, Gilles Montalescot¹⁴, Eliano Pio Navarese¹⁵, Josef Niebauer (5) 16, Angelo Oliva¹⁷, Raffaele Piccolo¹⁸, Susanna Price (1) 19, Robert F. Storey²⁰, Heinz Völler (1) 21, Pascal Vranckx (1) 22, Stephan Windecker (b) 23, and Marco Valgimigli (b) 1,2,24*

¹Ente Ospedaliero Cantonale (EOC), Cardiocentro Ticino Institute, Tesserete, 48. CH-6900, Lugano, Switzerland; ²Department of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland; ³Department of Cardiology, Dupuytren University Hospital, and INSERM 1094 & IRD, University of Limoges, 2, Martin Luther King Ave, 87042, Limoges, France; ⁴Division of Cardiology, University of Florida College of Medicine-Jacksonville, 655 West 8th Street, Jacksonville, FL 32209, USA; ⁵Oslo University Hospital Ulleval, Department of Cardiology, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; 6 Division of Cardiology, Azienda Ospedaliero Universitaria Policlinico 'G. Rodolico-San Marco', University of Catania, Via Santa Sofia, 78, Catania 95123, Italy; Centre for Cardiovascular Science, University of Edinburgh Division of Clinical and Surgical Sciences, Edinburgh, UK; Institute of Clinical Medicine, University of Oslo, Blindern, P.O. Box 1078, N-0316, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway; Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala University, Uppsala 751 85, Sweden; 11 Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK; 12 University of Pavia and Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 13 Zena and Michael A. Wiener Cardiovascular Institute, Icann School of Medicine at Mount Sinai, NY, NewYork, USA; 14ACTION Group, INSERM UMRS 1166, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France; 15 Clinical Experimental Cardiology, Department of Clinical Interventional Cardiology, University of Sassari, Sassari, Sardinia Island, Italy; 16 University Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; 17 Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele-Milan, Italy; ¹⁸Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples Federico II, Naples, Italy; ¹⁹Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London, UK; 20 Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, UK; ²¹Department of Rehabilitation Medicine, Faculty of Health Science Brandenburg, University of Potsdam, Potsdam, Germany; ²²Department of Cardiology and Critical Care Medicine, Hartcentrum Hasselt, and Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; 23 Department of Cardiology, Inselspital, University of Bern, Bern, Switzerland; and ²⁴University of Bern, Bern, Switzerland

Received 26 October 2023; accepted 22 December 2023; online publish-ahead-of-print 3 January 2024

In line with the Journal's conflict of interest policy, this paper was handled by Venu Menon.

Antithrombotic therapy represents the cornerstone of the pharmacological treatment in patients with acute coronary syndrome (ACS). The optimal combination and duration of antithrombotic therapy is still matter of debate requiring a critical assessment of patient comorbidities, clinical presentation, revascularization modality, and/or optimization of medical treatment. The 2023 European Society of Cardiology (ESC) guidelines for the management of patients with ACS encompassing both patients with and without ST segment elevation ACS have been recently published. Shortly before, a European expert consensus task force produced guidance for clinicians on the management of antithrombotic therapy in patients with ACS as well as chronic coronary syndrome. The scope of this manuscript is to provide a critical appraisal of differences and similarities between the European consensus paper and the latest ESC recommendations on oral antithrombotic regimens in ACS patients.

Keywords

Antithrombotic therapy • Acute coronary syndrome • Coronary artery disease • Antiplatelets

Antithrombotic therapy represents the mainstay of the pharmacological treatment in patients with acute coronary syndrome (ACS). ^{1,2} The optimal combination and duration of antithrombotic therapy (which agent, for whom, and for how long) is still a clinical conundrum that requires a critical assessment of clinical features including patient comorbidities, clinical presentation (acute or chronic coronary syndrome), and revascularization modality by percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG), or medical treatment alone.

Within this framework, a European expert task force produced a consensus on antithrombotic treatment strategies in patients with established coronary artery disease (CAD) including ACS as well as chronic coronary syndrome (CCS).³ Shortly afterwards, the 2023 European Society of Cardiology (ESC) guidelines for the management of patients with ACS encompassing patients with and without ST segment elevation (NSTE)-ACS have been published.⁴

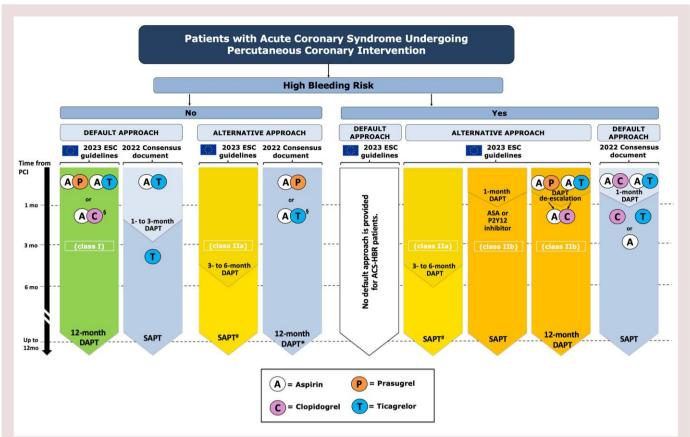
The scope of this manuscript is to provide a critical appraisal of differences and similarities between the European consensus paper and the latest ESC recommendations on oral antithrombotic regimens in ACS. This document does not address parenteral agents or antithrombotic therapy for ACS patients with clinical indication for oral anticoagulation (OAC), for which there have been limited updates in the field. When mentioning consensus statements and recommendations, this document refers to the 2022 clinical consensus document on antithrombotic treatment strategies in patients with established CAD³ and the latest 2023 ESC guidelines for ACS patients,⁴ respectively.

General concepts

Recommended tools for bleeding risk stratification

Different risk scores have been developed to predict the risk of bleeding at different time windows ranging from in-hospital to long-term events.⁵ The 2023 ESC guidelines recommend the use of the Academic Research Consortium—High Bleeding Risk (ARC-HBR) criteria for bleeding risk stratification in a footnote of the recommendation table 5.4 The PRECISE DAPT score is only referred to as an additional tool among ACS patients with clinical indication for OAC. It is important to note that the derivation and validation of the PRECISE DAPT score was performed in patients not taking OAC.⁷ The PRECISE DAPT score was derived from a pooled dataset of randomized controlled studies of patients undergoing PCI and integrates continuous covariates, such as age, creatinine clearance, white blood cell count, haemoglobin, together with prior bleeding. There is a solid rationale to propose both stratification systems (namely ARC-HBR and PRECISE DAPT score) for bleeding risk stratification purposes in ACS patients. The PRECISE DAPT score has been shown to be associated with consistent moderate bleeding risk discrimination in more than 20 external validation studies.8 However, it does not account for comorbidities, which have known implications for bleeding risk, such as those captured by the ARC-HBR criteria.⁶ The ARC initiative was groundbreaking in order to standardize bleeding risk assessment. While several studies suggested that the proposed ARC-HBR criteria (or some adaptations of the original proposal due to incomplete data availability) identify patients at higher bleeding risk compared with those with no ARC-defined HBR features, some suggested that additional HBR conditions or re-weighing the minor/major criteria may be associated with improved risk stratification. 9,10 Pertinent to this discussion, a study showed that the ARC-HBR score discrimination was lower among ACS compared with CCS patients and that the inclusion of ACS as an additional minor risk criterion slightly improved the performance of the score in the overall study cohort. This suggests that, at least within this framework (where other markers of inflammation such as white blood cell count were not considered), the ARC-HBR definition may consider including ACS as an additional minor risk criterion. Other data-driven observations suggest that minor criteria confer, in isolation, a bleeding risk which is similar to one attributed by consensus to the major criteria ¹¹ and that the originally proposed ARC-HBR framework performs suboptimally among women, ¹⁰ who are typically older than men when presenting with ACS.

Taking into account advantages and pitfalls of available bleeding risk tools, the consensus document endorses the use of both ARC-HBR and PRECISE DAPT score among ACS patients and assigns a generally higher weight to bleeding risk assessment and prevention.³


Dual antiplatelet therapy de-escalation

In the last decade, alternative strategies to standard 12-month dual antiplatelet therapy (DAPT) have been largely investigated, which may be summarized under the 'de-escalation' definition. ¹² De-escalation is intended to decrease bleeding complications of antiplatelet therapy at a time when their risk is perceived to be greater than the risk of thrombotic complications. 13 Reduced bleeding risk may be achieved by switching to a drug with less anticipated antiplatelet effect (deescalation by switching), reducing the dose (de-escalation by dose reduction), or removing an antiplatelet agent (de-escalation by discontinuation). 14 De-escalation by switching to clopidogrel can be either guided or unguided by genotype or platelet function test (PFT). The 2023 ESC guidelines do not list guided de-escalation as an alternative option to standard DAPT for ACS patients among recommendations.⁴ The lack of individual trial evidence of superiority of guided vs. unguided DAPT de-escalation and the increased complexity of the former over the latter treatment strategy may account for this omission from previous guidelines. 15 Likewise, the consensus document does not support the routine use of PFT or genotyping to guide antiplatelet therapy.³

ACS managed by **PCI**

Non-high bleeding risk

For the first time, the 2023 ESC guidelines recommend considering some de-escalation strategies from 3 months of DAPT onwards in non-HBR patients, with a class of recommendation IIa. Despite mounting evidence from multiple randomized clinical trials (RCTs) and individual patient data (IPD) meta-analyses demonstrating a net benefit of abbreviated DAPT in patients with or without HBR, the 2023 ESC guidelines recommend DAPT for 12 months as the default strategy in all ACS patients unless there is HBR (class I, level of evidence A), in keeping with previous guidelines (Figure 1).16 These recommendations were generated leveraging on the following listed supportive studies: PCI-CURE, 17 TRITON-TIMI 38, 18 and PLATO. 19 The CURE study was a landmark trial which, conducted more than 20 years ago, paved the way for DAPT in ACS patients by demonstrating that aspirin and clopidogrel combination was associated with a 20% relative risk reduction of the composite of cardiovascular death, myocardial infarction (MI), or stroke (relative risk 0.80; 95% confidence interval [CI]: 0.72-0.90) at the cost of increased bleeding compared with aspirin monotherapy. 17 Findings from the same study suggesting a beneficial effect of clopidogrel pre-treatment were listed as supportive to routine 12-month DAPT but not for pre-treatment (class IIb, level of evidence C).²⁰ The TRITON-TIMI 38¹⁸ and PLATO¹⁹ studies demonstrated the superiority of prasugrel and ticagrelor for 12 months in combination with aspirin over clopidogrel-based DAPT for the primary composite endpoint of cardiovascular death, MI, or stroke with a comparable increase in major non-CABG-related bleeding. However, these pivotal studies compared ticagrelor and prasugrel with clopidogrel in aspirin-treated patients, including patients with and without HBR, who were treated with prior generation devices and techniques. In the largest head-to-head comparison of ticagrelor-based vs.

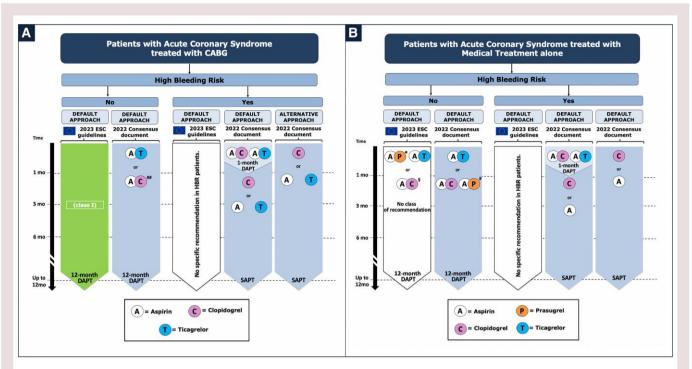


Figure 1 Summary of recommendations from the 2023 ESC guidelines and statements from the 2022 consensus document on antithrombotic treatment strategies in ACS patients undergoing PCI. Box colours of ESC guidelines reflect classes of recommendation. Treatment preferences within each box are presented from above to below, whereas treatments in the same line are reported in alphabetical order. ^Prasugrel should be considered in preference to ticagrelor for ACS patients undergoing PCI (class of recommendation IIa, level of evidence b); §If patient is not eligible for above shown treatment options. *For patients at high ischemic risk and very low bleeding risk. #In patients not at high ischemic risk who are event-free after 3–6 months of DAPT. ACS, acute coronary syndrome; ASA, aspirin; DAPT, dual antiplatelet therapy; ESC, European Society of Cardiology; PCI, percutaneous coronary intervention; SAPT, single antiplatelet therapy.

prasugrel-based DAPT for 12 months (the ISAR REACT 5 trial), prasugrel was associated with a 26% relative reduction in the risk of cardio-vascular death, MI, or stroke (hazard ratio [HR] 0.74; 95% CI: 0.59–0.92), mainly due to lower MI risk with prasugrel. ²¹ Mortality and bleeding rates did not differ between the two groups. ²¹ However, these findings should be interpreted in light of the open-label design, the low adherence to treatment assignment, and the major confounding element of having one drug tested in the pre-treatment phase and the other one only downstream (among NSTE-ACS patients). ²²

Several trials investigated the treatment effects of shortening DAPT by discontinuing aspirin or P2Y₁₂ inhibitor at a point in time in ACS patients. In the SMART DATE trial, ²³ 6-month DAPT followed by aspirin monotherapy was associated with bleeding benefit, but higher MI risk compared with standard DAPT in unselected ACS patients. Subgroup analyses of the one-month DAPT trial demonstrated a significant interaction for the net composite primary endpoint between the randomly allocated antiplatelet regimen and clinical presentation, suggesting a benefit of aspirin monotherapy in chronic coronary syndrome (CCS) but not ACS patients. ²⁴ Therefore, aspirin monotherapy following abbreviated DAPT is not recommended after ACS within the first year in patients without HBR by both ESC guidelines ⁴ and the consensus document. ³ Several RCTs investigated the efficacy and safety of P2Y₁₂ inhibitor monotherapy after 1–3 months of DAPT. The inclusion of events in the initial DAPT phase (when experimental and control arms received

the same treatment regimen) was overcome by two IPD meta-analyses which censored events during the initial DAPT phase. The SIDNEY Collaboration, 25 including 14 628 patients from two trials (GLASSY²⁶ and TWILIGHT²⁷) demonstrated that ticagrelor monotherapy was associated with a 44% relative risk reduction in Bleeding Academic Research Consortium (BARC) type 3 or 5 bleeding (HR 0.56; 95% CI: 0.41–0.75) without increase in ischaemic events. The results remained consistent in ACS patients (P for interaction: 0.51). In the SIDNEY-2 Collaboration (24 096 patients from six trials), P2Y₁₂ inhibitor monotherapy was associated with lower risk of BARC 3 or 5 bleeding (HR 0.49, 95% CI: 0.39-0.63) compared with standard DAPT.²⁸ Additionally, P2Y₁₂ inhibitor monotherapy met non-inferiority for the primary composite endpoint of all-cause death, MI, and stroke (HR 0.93, 95% CI 0.79-1.09; P = 0.005 for non-inferiority) in the per-protocol population.²⁸ These findings remained consistent in ACS patients (P for interaction: 0.51). Pre-specified subgroup analyses demonstrated consistent treatment effects of $P2Y_{12}$ inhibitor monotherapy over standard DAPT also in patients undergoing complex $PCI.^{29}$ Despite these findings, the SIDNEY-2 Collaboration was listed by the 2023 ESC guidelines as supportive evidence to the use of P2Y₁₂ inhibitor monotherapy only in ACS patients not at high ischaemic risk who are event-free after 3-6 months of DAPT (class IIa, level of evidence A) (Figure 1). Thus, the conservative recommendation of 12-month DAPT as default approach and P2Y₁₂ inhibitor monotherapy after 3–6 months of DAPT as alternative

Figure 2 Summary of recommendations from the 2023 ESC guidelines and statements from the 2022 consensus document on antithrombotic treatment strategies in ACS patients treated with CABG (panel A) or medical treatment alone (panel B). Box colours of ESC guidelines reflect classes of recommendation. Treatment preferences within each box are presented from above to below, whereas treatments in the same line are reported in alphabetical order. *In patients with documented CAD at angiography. §Preferred treatment option in older ACS patients medically managed. #DAPT with aspirin and prasugrel is justifiable if clopidogrel and ticagrelor are contraindicated, such as in patients receiving strong CYP3A inhibitors if coronary artery disease is angiographically documented. ##If patient is not eligible for above shown treatment option. ACS, acute coronary syndrome; CABG, coronary artery bypass grafting; DAPT, dual antiplatelet therapy; ESC, European Society of Cardiology; SAPT, single antiplatelet therapy.

approach does not appear supported by the consolidated evidence demonstrating a bleeding benefit without ischaemic harm of P2Y₁₂ inhibitor monotherapy in ACS and/or complex PCI patients. In addition, while the guidelines give a P2Y₁₂ inhibitor specific recommendation in favour of prasugrel in association with aspirin based on a single study,²¹ a general recommendation is provided for the monotherapy agent that needs to be continued after a short DAPT phase without specifying the strength of the evidence supporting each agent. In fact, trials and meta-analyses investigating P2Y₁₂ inhibitor monotherapy after abbreviated DAPT included mainly ticagrelor-treated patients, while only a small minority of subjects (~1%) were treated with prasugrel monotherapy. Clopidogrel monotherapy has been tested only in Asian patients. In the large STOP-DAPT 2 ACS trial,³⁰ which included 3008 Asian patients who were pooled with 1161 patients from the ACS cohort of the parent STOP-DAPT 2 trial,³¹ clopidogrel monotherapy after 1-month DAPT failed to show non-inferiority for the composite endpoint of cardiovascular death, MI, definite stent thrombosis and stroke compared with 12-month DAPT (HR 1.14, 95% CI: 0.80–1.62; P for non-inferiority = 0.06), mainly due to an excess of MI in the monotherapy arm (HR 1.91, 95% Cl: 1.06-3.44). Clopidogrel monotherapy resulted in significantly lower rates of BARC type 3 or 5 bleeding compared with 12-month DAPT (HR 0.41, 95% CI: 0.20-0.83).

A network meta-analysis (NMA) including all available antithrombotic treatment options within 1 year after coronary revascularization and/or ACS (189 261 patients from 43 trials) demonstrated that ticagrelor monotherapy was the only regimen associated with significantly lower risks of cardiovascular mortality (HR 0.66; 95% Cl: 0.49–0.88) without bleeding risk trade-off (HR 0.86, 95% Cl: 0.64–1.16) compared with aspirin and clopidogrel combination. 32 Compared with aspirin and

clopidogrel, aspirin and prasugrel combination was the only regimen associated with lower MI risk (HR 0.81, 95% CI: 0.70–0.94) with bleeding risk trade-off (HR 1.29, 95% CI: 1.05-1.58). ³²

At variance with ESC guidelines and leveraging on available evidence, ^{25,28,29,32} the consensus document suggests ticagrelor monotherapy after 1- to 3-month DAPT as default strategy for ACS non-HBR patients, while 12-month DAPT with prasugrel (first line) or ticagrelor (if subjects are not eligible for prasugrel) is proposed as an alternative approach for PCI-treated patients at high ischaemic and very low bleeding risk³ (*Figure 1*).

High bleeding risk

Patients at HBR represent a significant proportion of ACS patients (up to 40%) undergoing PCI. 11,33 The optimal antithrombotic regimen for this subset of patients has been recently investigated in the MASTER DAPT trial, which randomized 4579 HBR patients who were free from adverse events after 1-month DAPT to single antiplatelet therapy (SAPT: clopidogrel in 54% of the patients, aspirin in 29%, ticagrelor in 13%, and prasugrel in 1%) or a more prolonged DAPT regimen of at least 3 months. 34,35 Compared with standard antiplatelet regimen, 1-month DAPT followed by SAPT was non-inferior for net and major adverse clinical and cerebral events (HR 0.97, 95% CI: 0.78–1.20 and HR 1.02, 95% CI: 0.80–1.30, respectively) and was also associated with lower risks of major or clinically relevant non-major bleeding (HR 0.68, 95% CI: 0.55–0.84). The results remained consistent in patients with ACS who accounted for slightly less than one half of the study population. 36

According to the consensus document, the default approach for ACS-HBR patients should be 1-month DAPT followed by clopidogrel

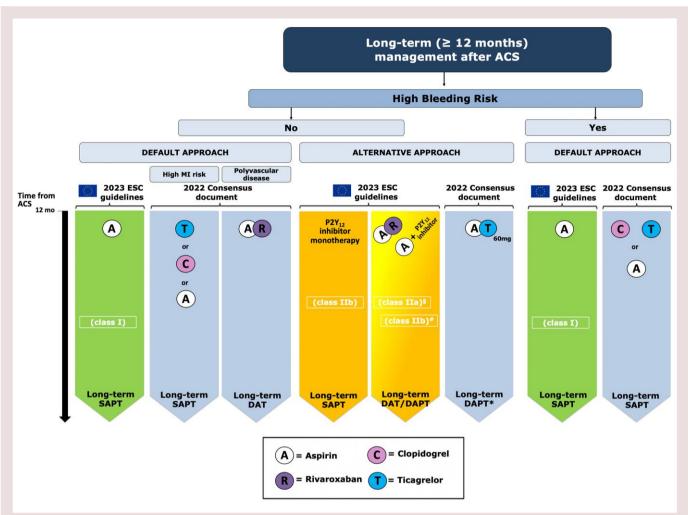


Figure 3 Summary of recommendations from the 2023 ESC guidelines and statements from the 2022 consensus document on long-term antithrombotic strategies after ACS (≥12 months). Box colours of ESC guidelines reflect classes of recommendation. Treatment preferences within each box are presented from above to below, whereas treatments in the same line are reported in alphabetical order. *For patients at high ischemic risk and very low bleeding risk. §For patients with high ischemic risk. #For patients with moderate ischemic risk. ACS, acute coronary syndrome; DAPT, dual antiplatelet therapy; DAT, dual antithrombotic therapy; ESC, European Society of Cardiology; MI, myocardial infarction; SAPT, single antiplatelet therapy.

or ticagrelor monotherapy (first-line regimens) or aspirin monotherapy (second-line strategy) (Figure 1). While DAPT for 12 months remains the default strategy in 2023 ESC guidelines, irrespective of HBR status, an alternative approach consisting of aspirin or P2Y $_{12}$ inhibitor monotherapy after 1-month DAPT may be considered in ACS-HBR patients (class Ilb, level of evidence B) (Figure 1). Consequently, the guidelines appear to give more weight to theoretical concerns of high ischaemic risk among HBR patients than the clear evidence of lower bleeding liability with an abbreviated compared with standard DAPT. Additional alternative approaches suggested by the ESC guidelines are shown in Figure 1.

ACS managed by CABG or medical treatment alone

Non-high bleeding risk

The antiplatelet therapy of ACS patients undergoing CABG is a clinical conundrum since these patients have higher risks of peri-operative

bleeding. A new recommendation from the guidelines suggests that ACS-CABG patients should resume DAPT after surgery for at least 12 months (class I, level of evidence C) (Figure 2, panel A).

Although the evidence of antiplatelet therapy for ACS-CABG patients comes from subgroup analyses of ACS trials, some aspects deserve further considerations. Subgroup analyses of the CURE trial demonstrated that DAPT with aspirin and clopidogrel was associated with lower risk of cardiovascular death, MI, or stroke in ACS patients (rate ratio 0.80, 95% CI: 0.72–0.90) irrespective of revascularization modality (*P* for interaction: 0.53).³⁷ In the PLATO trial, DAPT with ticagrelor resulted in lower all-cause (HR 0.49, 95% CI 0.32–0.77) and cardiovascular mortality (HR 0.52, 95% CI 0.32–0.85) compared with clopidogrel-based DAPT in ACS-CABG patients.³⁸ These findings supported the default approach endorsed by the consensus document consisting of 12-month DAPT with aspirin and ticagrelor over clopidogrel in ACS-CABG patients who are deemed not at HBR (*Figure 2*, **panel A**).

ESC guidelines recommend 12-month DAPT with potent $P2Y_{12}$ inhibitors as default strategy for medically managed ACS patients who are not at HBR (no class of recommendation is provided) (*Figure 2*, **panel B**). DAPT

with prasugrel is justified in preference to clopidogrel-based DAPT in case of angiography-confirmed CAD. However, the listed supportive evidence mainly comes from subgroup analyses of a trial with an overall neutral primary outcome measure. ³⁹ Leveraging on PLATO subgroup analysis in medically-managed ACS patients, which showed a consistent treatment effect of DAPT with ticagrelor over clopidogrel on major adverse clinical events (HR 0.85, 95% Cl: 0.73–1.00) without bleeding risk trade-off (HR 1.17, 95% Cl: 0.98–1.39), ⁴⁰ the consensus document supports 12-month ticagrelor-based DAPT as first-line option followed by clopidogrel or prasugrel (if ticagrelor or clopidogrel are contraindicated and CAD is angiographically confirmed) in combination with aspirin.

High bleeding risk

No specific recommendation on antiplatelet therapy for ACS-HBR treated with CABG or medical treatment alone is provided by the 2023 ESC guidelines (*Figure* 2). The consensus document supports 1-month DAPT followed by SAPT as the best balance to reduce bleeding risk while preserving efficacy in ACS-HBR patients treated with CABG or medical treatment alone. Alternative treatment options among ACS-CABG patients with very high bleeding risk are depicted in *Figure* 2 (panel A).

Long-term antithrombotic management after ACS (≥12 months)

Non-high bleeding risk

The 2023 ESC guidelines recommend aspirin as long-term (\geq 12 months) antithrombotic agent after ACS (class I, level of evidence A), while SAPT (preferably with a P2Y₁₂ inhibitor) should be considered after an uneventful 3- to 6-month course of DAPT in patients who are not deemed at high ischaemic risk (Class IIa, level of evidence A) (*Figure 3*). The recommendation for long-term aspirin stems from two collaborative meta-analyses of historical randomized trials conducted more than 20 years ago comparing aspirin vs. no-aspirin treatment. 41,42

In a recent patient-level data meta-analysis (PANTHER collaboration), including 24 325 patients from seven contemporary trials with established CAD, 43 P2Y₁₂ inhibitor monotherapy (62% clopidogrel, 28% ticagrelor) was associated with lower risks of the primary composite endpoint of cardiovascular death, MI, and stroke over 2 years (HR 0.88; 95% CI: 0.79–0.97) compared with aspirin monotherapy without bleeding risk trade-off. The observed difference in ischaemic outcomes was mainly due to significantly lower MI risk with ticagrelor than aspirin monotherapy (HR: 0.77; 95% CI: 0.66-0.90). The treatment effects remained consistent in ACS patients (P for interaction: 0.327), which represented slightly more than two thirds of the overall study population. Recently, the HOST EXAM trial randomized 5438 DAPT-treated patients who were free from adverse events 6-18 months after PCI to clopidogrel or aspirin monotherapy for 24 months. 44 More than two thirds of randomized patients had history of ACS and median time from PCI to randomization was nearly 1 year. Compared with aspirin, clopidogrel monotherapy was associated with a 27% relative reduction in the risk of net adverse clinical events (HR 0.73; 95% CI 0.59–0.90), mainly due to lower rates of readmission for ACS and major bleeding.

These findings are in line with a large-scale NMA investigating all antithrombotic treatment strategies 12 months after coronary revascularization and/or ACS, which demonstrated that, in comparison with aspirin, $P2Y_{12}$ inhibitor monotherapy (especially ticagrelor) was associated with a 24% relative risk reduction in MI without bleeding risk trade-off. Compared with aspirin monotherapy, aspirin and low-dose rivaroxaban combination resulted in a 42% relative risk reduction

in stroke, with an acceptable bleeding risk trade-off than other intensified antithrombotic strategies such as vitamin-K antagonists or DAPT with potent P2Y₁₂ inhibitors. This NMA informed the clinical consensus document,³ which supports P2Y₁₂ inhibitor monotherapy (particularly ticagrelor) as the default approach for ACS patients (≥12 months) at high MI risk (*Figure 3*). Among ACS patients at high risk of vascular events (e.g. cerebrovascular disease, peripheral artery disease), the combination of aspirin and low-dose rivaroxaban should be preferred over aspirin monotherapy (*Figure 3*). If this combination is not available or suited, SAPT with clopidogrel or ticagrelor should be preferred over aspirin in patients with concomitant peripheral artery disease, as the former was superior to aspirin in the CAPRIE trial⁴⁵ and the latter had non-inferior results over clopidogrel in the EUCLID trial.⁴⁶

High bleeding risk

The 2023 ESC guidelines recommend aspirin monotherapy for long-term (≥12 months) antithrombotic therapy after ACS (class I, level of evidence A) irrespective of HBR status (*Figure 3*). In a NMA including 139 086 patients from 19 trials investigating all antithrombotic treatment strategies beyond 12 months after ACS and/or PCI, P2Y₁₂ inhibitor monotherapy was associated with lower risk of MI (HR 0.76, 95% CI 0.61–0.95) without higher bleeding risk compared with aspirin monotherapy.³² When the type of P2Y₁₂ inhibitor was separately appraised, ticagrelor monotherapy was associated with a greater reduction of MI risk compared with aspirin.³² Therefore, the consensus document supports the use of clopidogrel or ticagrelor over aspirin monotherapy as default agents for long-term management of ACS-HBR patients after the DAPT phase.³

Conclusions

For the very first time, the 2023 ESC guidelines provide recommendations encompassing the entire spectrum of ACS patients. These guidelines summarized available evidence in order to guide clinicians in their decision-making process of which antithrombotic regimen(s) should be selected for each individual patient. However, the guidelines leave some uncertainties concerning the preferred management of patients with HBR and generally take a conservative approach to recommend deescalation of antiplatelet therapy intensity prior to 12 months post-ACS. Despite some overlap between the ESC guidelines and the consensus document, the latter attaches more weight to available evidence for novel strategies, such as the emerging role of abbreviated DAPT followed by $P2Y_{12}$ inhibitor monotherapy, other DAPT deescalation strategies and $P2Y_{12}$ inhibitors as agents of choice for secondary prevention of cardiovascular events.

Acknowledgements

None.

Funding

None.

Conflict of interest: V.A. reports speakers honoraria from Amgen, Novartis and Pfizer and is consultant/advisory board for Bayer Healthcare, NovoNordisk, Sanofi, AstraZeneca, Boehringer Ingelheim and BMS, outside the submitted work. D.J.A. declares that he has received consulting fees or honoraria from Abbott, Amgen, AstraZeneca, Bayer, Biosensors, Boehringer Ingelheim, Bristol-Myers Squibb, Chiesi, CSL Behring, Daiichi Sankyo, Eli Lilly, Haemonetics, Janssen, Merck, Novartis, PhaseBio, PLx Pharma, Pfizer, Sanofi and Vectura, outside the present work; D.J.A. also declares that his institution has received research grants from Amgen, AstraZeneca, Bayer, Biosensors, CeloNova, CSL Behring, Daiichi Sankyo, Eisai, Eli Lilly,

Gilead, Janssen, Matsutani Chemical Industry Co., Merck, Novartis, Osprey Medical, Renal Guard Solutions and Scott R. MacKenzie Foundation.. D.C. declares that he has received consulting and speaking fees from Amgen, Boehringer Ingelheim, Biotronik, Daiichi Sankyo, and Sanofi Aventis outside the present work. SH has received speaking fees from Boehringer Ingelheim, BMS, Pfizer and Sanofi, outside the submitted work. S.J. reported grants from AstraZeneca outside the submitted work. P.J. serves as an unpaid steering committee member of trials funded by Abbott Vascular, AstraZeneca, Biotronik, Biosensors, St Jude Medical, Terumo, and The Medicines Company; receives institutional research grants from Appili Therapeutics, AstraZeneca, Biotronik, Biosensors International, Eli Lilly, and The Medicines Company; and receives institutional honoraria for participation in advisory boards or consulting from Amgen, Ava, and Fresenius, but has not received personal payments by any pharmaceutical company or device manufacturer. S.L. reports grants and personal fees from AstraZeneca, Daiichi Sankyo, Bayer, Pifezer/BMS, ICON, Chiesi, and Novonordisk, all outside the submitted work. R.M. reports institutional research grants from Abbott, Abiomed, Applied Therapeutics, Arena, AstraZeneca, Bayer, Biosensors, Boston Scientific, Bristol-Myers Squibb, CardiaWave, CellAegis, CERC, Chiesi, Concept Medical, CSL Behring, DSI, Insel Gruppe AG, Medtronic, Novartis Pharmaceuticals, OrbusNeich, Philips, Transverse Medical, Zoll; personal fees from ACC, Boston Scientific, California Institute for Regenerative Medicine (CIRM), Cine-Med Research, Janssen, WebMD, SCAI; consulting fees paid to the institution from Abbott, Abiomed, AM-Pharma, Alleviant Medical, Bayer, Beth Israel Deaconess, CardiaWave, CeloNova, Chiesi, Concept Medical, DSI, Duke University, Idorsia Pharmaceuticals, Medtronic, Novartis, Philips; Equity, 1% in Applied Therapeutics, Elixir Medical, STEL, CONTROLRAD (spouse); Scientific Advisory Board for AMA, Biosensors (spouse), all outside the submitted work. G.M. reports institutional research funds or fees from Abbott, Amgen, AstraZeneca, Ascendia, Bayer, BMS, Boehringer Ingelheim, Boston Scientific, Celecor, CSL Behring, Idorsia, Lilly, Novartis, Novo, Opalia, Pfizer, Quantum Genomics, Sanofi, Terumo, outside the submitted work. E.P.N. reports research grants from Abbott and Amgen and lecture fees/honoraria from Amgen, AstraZeneca, Bayer, Pfizer, and Sanofi-Regeneron, outside the submitted work. R.F.S. reports institutional research grants/support from AstraZeneca and Cytosorbents; personal fees from Alfasigma, AstraZeneca, Chiesi, Cytosorbents, Daiichi Sankyo, Idorsia, Novartis, Novo Nordisk, Pfizer, PhaseBio and Tabuk; all outside the submitted work. P.V. reports personal fees from Bayer, personal fees from Daiichi Sankyo, and personal fees from CLS Behring, outside the submitted work. S.W. reports research and educational grants to the institution from Abbott, Abiomed, Amgen, Astra Zeneca, Bayer, Biotronik, Boehringer Ingelheim, Boston Scientific, Bristol-Myers Squibb, Cardinal Health, CardioValve, Corflow Therapeutics, CSL Behring, Daiichi Sankyo, Edwards Lifesciences, Guerbet, InfraRedx, Janssen-Cilag, Johnson & Johnson, Medicure, Medtronic, Merck Sharp & Dohm, Miracor Medical, Novartis, Novo Nordisk, Organon, OrPha Suisse, Pfizer, Polares, Regeneron, Sanofi Aventis, Servier, Sinomed, Terumo, Vifor, V-Wave. S.W. serves as unpaid advisory board member and/or unpaid member of the steering/executive group of trials funded by Abbott, Abiomed, Amgen, Astra Zeneca, Bayer, Boston Scientific, Biotronik, Bristol-Myers Squibb, Edwards Lifesciences, Janssen, MedAlliance, Medtronic, Novartis, Polares, Recardio, Sinomed, Terumo, V-Wave and Xeltis, but has not received personal payments by pharmaceutical companies or device manufacturers. He is also member of the steering/executive committee group of several investigator-initiated trials that receive funding by industry without impact on his personal remuneration. K.A.A.F. has received grants and personal fees from Bayer/Janssen and AstraZeneca and personal fees from Sanofi/Regeneron and Verseon, outside the submitted work. M.V. reports grants and/or personal fees from Astra Zeneca, Terumo, Alvimedica/CID, Abbott Vascular, Daiichi Sankyo, Bayer, CoreFLOW, Idorsia Pharmaceuticals-Ltd, Universität Basel Department Klinische Forschung, Vifor, Bristol-Myers-Squib SA, Biotronik, Boston scientific, Medtronic, Vesalio, Novartis, Chiesi, PhaseBio, outside the submitted work. The other authors report no relationships relevant to the contents of this paper to disclose.

Data availability

No new data were generated or analysed in support of this research.

References

- Landi A, Valgimigli M. Antithrombotic therapy in patients with established atherosclerotic coronary disease. Heart. 2023:109:1034–1043.
- De Servi S, Landi A, Savonitto S, De Luca L, De Luca G, Morici N, et al. Tailoring oral antiplatelet therapy in acute coronary syndromes: from guidelines to clinical practice. | Cardiovasc Med (Hagerstown) 2023;24:77–86.
- Valgimigli M, Aboyans V, Angiolillo D, Atar D, Capodanno D, Halvorsen S, et al. Antithrombotic treatment strategies in patients with established coronary atherosclerotic disease. Eur Heart | Cardiovasc Pharmacother 2023;9:462–496.
- Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, et al. 2023 ESC guidelines for the management of acute coronary syndromes: developed by the task force on the management of acute coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J 2023;44:3720–3826.
- Capodanno D, Bhatt DL, Gibson CM, James S, Kimura T, Mehran R, et al. Bleeding avoidance strategies in percutaneous coronary intervention. Nat Rev Cardiol 2022;19: 117–132.
- Urban P, Mehran R, Colleran R, Angiolillo DJ, Byrne RA, Capodanno D, et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention. *Circulation* 2019:140:240–261.
- Costa F, van Klaveren D, James S, Heg D, Räber L, Feres F, et al. Derivation and validation
 of the predicting bleeding complications in patients undergoing stent implantation and
 subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of
 individual-patient datasets from clinical trials. Lancet 2017;389:1025–1034.
- 8. Munafò AR, Montalto C, Franzino M, Pistelli L, Di Bella G, Ferlini M, et al. External validity of the PRECISE-DAPT score in patients undergoing PCI: a systematic review and meta-analysis. Eur Heart J Cardiovasc Pharmacother 2023;9:709–721.
- Gragnano F, Spirito A, Corpataux N, Vaisnora L, Galea R, Gargiulo G, et al. Impact of clinical presentation on bleeding risk after percutaneous coronary intervention and implications for the ARC-HBR definition. EuroIntervention 2021;17:e898–e909.
- Spirito A, Gragnano F, Corpataux N, Vaisnora L, Galea R, Svab S, et al. Sex-based differences in bleeding risk after percutaneous coronary intervention and implications for the academic research consortium high bleeding risk criteria. J Am Heart Assoc 2021;10: a021965
- Corpataux N, Spirito A, Gragnano F, Vaisnora L, Galea R, Svab S, et al. Validation of high bleeding risk criteria and definition as proposed by the academic research consortium for high bleeding risk. Eur Heart J 2020;41:3743–3749.
- Landi A, Caglioni S, Valgimigli M. De-escalation in intensity or duration of dual antiplatelet therapy in patients with coronary artery disease: more than alternative treatment options. Eur J Intern Med 2023;110:16–18.
- 13. Valgimigli M, Landi A. Ischemic and bleeding risk in patients with acute coronary syndrome undergoing complex percutaneous coronary intervention: is it time to REACT? Eur Heart | Acute Cardiovasc Care 2021;**10**:1125–1128.
- Capodanno D, Mehran R, Krucoff MW, Baber U, Bhatt DL, Capranzano P, et al. Defining strategies of modulation of antiplatelet therapy in patients with coronary artery disease: a consensus document from the academic research consortium. Circulation 2023;147: 1933–1944.
- Angiolillo DJ, Galli M, Landi A, Valgimigli M. DAPT guided by platelet function tests or genotyping after PCI: pros and cons. EuroIntervention 2023;19:546–548.
- Collet J-P, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021;42:1289–1367.
- Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001;345:494

 –502.
- Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007;357:2001–2015.
- Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009;361: 1045–1057.
- Mehta SR, Yusuf S, Peters RJ, Bertrand ME, Lewis BS, Natarajan MK, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 2001;358: 527–533.

 Schüpke S, Neumann F-J, Menichelli M, Mayer K, Bernlochner I, Wöhrle J, et al. Ticagrelor or prasugrel in patients with acute coronary syndromes. N Engl J Med 2019;381:1524–1534.

- Crea F, Thiele H, Sibbing D, Barthélémy O, Bauersachs J, Bhatt DL, et al. Debate: prasugrel rather than ticagrelor is the preferred treatment for NSTE-ACS patients who proceed to PCI and pretreatment should not be performed in patients planned for an early invasive strategy. Eur Heart J 2021;31:2973–2985.
- Hahn J-Y, Song YB, Oh J-H, Cho DK, Lee JB, Doh JH, et al. 6-month versus 12-month or longer dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (SMART-DATE): a randomised, open-label, noninferiority trial. *Lancet* 2018:391:1274–1284.
- Hong S-J, Kim J-S, Hong SJ, Lim D-S, Lee S-Y, Yun KH, et al. 1-Month Dual-Antiplatelet therapy followed by aspirin monotherapy after polymer-free drug-coated stent implantation: one-month DAPT trial. JACC Cardiovasc Interv 2021;14:1801–1811.
- Valgimigli M, Mehran R, Franzone A, da Costa BR, Baber U, Piccolo R, et al. Ticagrelor monotherapy versus dual-antiplatelet therapy after PCI: an individual patient-level meta-analysis. JACC Cardiovasc Interv 2021;14:444–456.
- Franzone A, McFadden E, Leonardi S, Piccolo R, Vranckx P, Serruys PW, et al. Ticagrelor alone versus dual antiplatelet therapy from 1 month after drug-eluting coronary stenting. J Am Coll Cardiol 2019;74:2223–2234.
- 27. Mehran R, Baber U, Sharma SK, Cohen DJ, Angiolillo DJ, Briguori C, et al. Ticagrelor with or without aspirin in high-risk patients after PCI. N Engl J Med 2019; 381:2032–2042.
- Valgimigli M, Gragnano F, Branca M, Franzone A, Baber U, Jang Y, et al. P2y12 inhibitor monotherapy or dual antiplatelet therapy after coronary revascularisation: individual patient level meta-analysis of randomised controlled trials. BMJ 2021;373:n1332.
- Gragnano F, Mehran R, Branca M, Franzone A, Baber U, Jang Y, et al. P2y12 inhibitor monotherapy or dual antiplatelet therapy after complex percutaneous coronary interventions. J Am Coll Cardiol 2023;81:537–552.
- 30. Watanabe H, Morimoto T, Natsuaki M, Yamamoto K, Obayashi Y, Ogita M, et al. Comparison of clopidogrel monotherapy after 1 to 2 months of dual antiplatelet therapy with 12 months of dual antiplatelet therapy in patients with acute coronary syndrome: the STOPDAPT-2 ACS randomized clinical trial. JAMA Cardiol 2022;7:407–417.
- 31. Watanabe H, Domei T, Morimoto T, Natsuaki M, Shiomi H, Toyota T, et al. Effect of 1-month dual antiplatelet therapy followed by clopidogrel vs 12-month dual antiplatelet therapy on cardiovascular and bleeding events in patients receiving PCI: the STOPDAPT-2 randomized clinical trial. IAMA 2019:321:2414–2427.
- 32. Navarese EP, Landi A, Oliva A, Piccolo R, Aboyans V, Angiolillo D, et al. Within and beyond 12-month efficacy and safety of antithrombotic strategies in patients with established coronary artery disease: two companion network meta-analyses of the 2022 joint clinical consensus statement of the European Association of Percutaneous Cardiovascular Interventions (EAPCI), European Association for Acute CardioVascular Care (ACVC), and European Association of Preventive Cardiology (EAPC). Eur Heart J Cardiovasc Pharmacother 2023;9:271–290.
- Cao D, Mehran R, Dangas G, Baber U, Sartori S, Chandiramani R, et al. Validation of the academic research consortium high bleeding risk definition in contemporary PCI patients. J Am Coll Cardiol 2020;75:2711–2722.

- Valgimigli M, Frigoli E, Heg D, Tijssen J, Jüni P, Vranckx P, et al. Dual antiplatelet therapy after PCI in patients at high bleeding risk. N Engl J Med 2021;385:1643–1655.
- Landi A, Heg D, Frigoli E, Vranckx P, Windecker S, Siegrist P, et al. Abbreviated or standard antiplatelet therapy in HBR patients: final 15-month results of the MASTER-DAPT trial. JACC Cardiovasc Interv 2023;16:798–812.
- Valgimigli M, Smits PC, Frigoli E, Bongiovanni D, Tijssen J, Hovasse T, et al. Duration of antiplatelet therapy after complex percutaneous coronary intervention in patients at high bleeding risk: a MASTER DAPT trial sub-analysis. Eur Heart J 2022;43:3100–3114.
- 37. Fox KA, Mehta SR, Peters R, Zhao F, Lakkis N, Gersh BJ, et al. Benefits and risks of the combination of clopidogrel and aspirin in patients undergoing surgical revascularization for non–ST-elevation acute coronary syndrome: the clopidogrel in unstable angina to prevent recurrent ischemic events (CURE) trial. Circulation 2004;110:1202–1208.
- Held C, Åsenblad N, Bassand JP, Becker RC, Cannon CP, Claeys MJ, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes undergoing coronary artery bypass surgery: results from the PLATO (Platelet Inhibition and Patient Outcomes) trial. I Am Coll Cardiol 2011;57:672–684.
- 39. Wiviott SD, White HD, Ohman EM, Fox KA, Armstrong PW, Prabhakaran D, et al. Prasugrel versus clopidogrel for patients with unstable angina or non-ST-segment elevation myocardial infarction with or without angiography: a secondary, prespecified analysis of the TRILOGY ACS trial. Lancet 2013;382:605–613.
- James SK, Roe MT, Cannon CP, Cornel JH, Horrow J, Husted S, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes intended for non-invasive management: substudy from prospective randomised PLATelet inhibition and patient Outcomes (PLATO) trial. BMI 2011;342:d3527.
- Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002;324:71–86.
- Antithrombotic Trialists' (ATT) Collaboration; Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. *Lancet* 2009;373:1849–1860.
- Gragnano F, Cao D, Pirondini L, Franzone A, Kim H-S, von Scheidt M, et al. P2y12 inhibitor or aspirin monotherapy for secondary prevention of coronary events. J Am Coll Cardiol 2023;82:89–105.
- 44. Koo B-K, Kang J, Park KW, Rhee TM, Yang HM, Won KB, et al. Aspirin versus clopidogrel for chronic maintenance monotherapy after percutaneous coronary intervention (HOST-EXAM): an investigator-initiated, prospective, randomised, open-label, multicentre trial. Lancet 2021;397:2487–2496.
- CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE steering committee. *Lancet* 1996: 348(9038):1329–1339.
- Hiatt WR, Fowkes FGR, Heizer G, Berger JS, Baumgartner I, Held P, et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med 2016;376:32–40.