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ABSTRACT 

 

Treatment effects are often evaluated by comparing change over time in outcome 

measures.  However, valid analyses of longitudinal data can be problematic, particularly 

when some data are missing for reasons related to the outcome.  In choosing the primary 

analysis for confirmatory clinical trials, regulatory agencies have for decades favored the 

last observation carried forward (LOCF) approach for imputing missing values.  Many 

advances in statistical methodology, and also in our ability to implement those methods, 

have been made in recent years.  The characteristics of data from acute phase clinical 

trials can be exploited to develop an appropriate analysis for assessing response profiles 

in a regulatory setting.  These data characteristics and regulatory considerations will be 

 1



reviewed.  Approaches for handling missing data are compared along with options for 

modeling time effects and correlations between repeated measurements.  Theory and 

empirical evidence are utilized to support the proposal that likelihood-based mixed-

effects model repeated measures (MMRM) approaches, based on the missing at random 

assumption, provide superior control of Type I and Type II error when compared with the 

traditional LOCF approach, which is based on the more restrictive missing completely at 

random assumption.  It is further reasoned that in acute phase clinical trials, unstructured 

modeling of time trends and within-subject error correlations may be preferred. 

Key words:  missing data, longitudinal data, mixed-effects models 

 

INTRODUCTION 

 

Treatment effects are often evaluated by comparing change over time in outcome 

measures.  However, valid analyses of longitudinal data can be problematic, particularly 

when some data are missing for reasons related to the outcome (1, 2).  Numerous methods 

for analyzing data in the presence of subject dropout have been proposed, examined, and 

implemented (1-18).  The available methods are so numerous that choosing a suitable 

method can be difficult, especially given the importance of the inferences drawn from 

clinical trial data. 

   The health, happiness, and survival of millions of patients depend upon the safety 

and efficacy of medicinal products.  Considerable unmet need exists in many therapeutic 

areas as patients wait for safer therapies, more effective therapies, or any therapy at all.  

The potential benefit from optimal analytic methods that maintain control of Type I and 
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Type II error, especially in the presence of nonrandom dropout, highlights the importance 

of modeling decisions.           

When determining a suitable approach to modeling longitudinal data, it is important 

to realize that no single “best” method currently exists.  This implies that an analysis 

must be individually tailored for a given situation.  It is therefore crucial that the desired 

attributes of the analysis are clear, and that the characteristics of the missing and 

nonmissing data are understood.  We address these issues in the context of the regulatory 

environments in which new medicinal products are developed.  Consequently, the 

objectives of this paper are: 1) to examine the characteristics of missing and nonmissing 

data that influence modeling decisions; 2) to examine the desired attributes of 

confirmatory clinical trial analyses in light of regulatory considerations; and 3) to 

propose an appropriate primary analysis for assessing response profiles in acute phase 

clinical trials.   Although we concentrate primarily upon more general considerations, our 

proposals are illustrated via specific application – namely acute phase clinical trials 

testing therapies for major depressive disorder.   

 

DATA CHARACTERISTICS 

 

Missingness Mechanisms - Characteristics of the Missing Data 

 

In many areas of clinical research, the consequences of missing data  can be 

profound (2, 3, 4, 5).  The potential impact missing data can have is dependent upon the 

missingness process (i.e., mechanisms) leading to the nonresponse.  Data are classified as 
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missing completely at random (MCAR) if the missingness does not depend on (is 

explained by) either the observed or unobserved outcomes.  Data are missing at random 

(MAR) if the missingness depends on (is explained by) the observed outcomes.  Data are 

missing not at random (MNAR) if missingness depends on (is explained by) the 

unobserved outcomes (4, chapter 6).  

In the case of likelihood-based estimation, given that the parameters defining the 

measurement process (observed outcomes) are independent of the parameters defining 

the missingness process (unobserved outcomes), the missingness is said to be ignorable 

provided it arises from an MCAR or MAR process.   Under these same conditions, 

however, missingness arising from an MNAR process is said to be nonignorable (6 p 

218).   

Missingness rates and patterns (reasons for missingness) in clinical trials may be 

affected by many factors, including the disease, the study population, the efficacy of 

treatments, side effects, and length of the trial.  Frequently, missingness exists for reasons 

that are related to the outcome of interest, and thus the data are not MCAR (6, p 229, 12, 

13, 19).  The MAR assumption is typically more plausible than the MCAR assumption 

(4, 6 p 239, 12, 13, 19) as the observed data explain much of the missingness in many 

scenarios.  This may be particularly true in well-controlled studies, such as clinical trials, 

where extensive efforts are made to observe all the outcomes and the factors that 

influence them (16).  Therefore, even though the objectives of clinical trials are not 

explicitly stated as such, it is fair to state that, by their very design, clinical trials seek to 

minimize the amount of nonignorable missingness (MNAR data).   
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Characteristics of the Nonmissing Data 

 

Specific characteristics of the data from clinical trials may be as varied as the trials 

themselves.  Nevertheless, many trials share certain general attributes that may be 

exploited when choosing an appropriate method for the primary analysis.  For example, 

trials are often designed to yield reliable estimates of central tendency, and are therefore 

likely to yield reliable estimates of dispersion.  Acute phase clinical trials in depression, 

for example, typically have observations taken on the primary outcome measure at 3 to 8 

postbaseline time points.  These measurement times are fixed, with narrow intervals.  

Thus measurements may be taken perhaps once per week, with the week 1 observation 

mandated to take place between days 5 and 9, the week 2 observation between days 12 

and 16, and so on.  

   These general attributes suggest that it may not be necessary to model time effects 

and the within-subject error correlation structure arising from repeated measurement in 

these longitudinal trials in a parsimonious manner.  This feature is particularly beneficial 

when, as is the case in depression trials, a priori knowledge suggests that the functional 

form of the response profiles can be difficult to anticipate, and linear time trends may not 

adequately describe the response profiles.  Nonlinear trends may arise from inherent 

characteristics of the particular disease state and drug under study and/or from features 

inherent within the trial.  In such cases, parsimonious approaches to modeling time trends 

may lead to inaccurate results.  

  Whenever the design of an experiment includes multiple measurements on the same 

subjects, modeling the (co)variance between the repeated measurements should be 
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considered.  Three principal sources of (co)variance should be considered (17): (i) Inter-

individual variability (i.e., heterogeneity between individual profiles) is frequently an 

important component of the within-subject correlation structure.  This variability may be 

attributable to inherent, subject specific factors, while additional association may arise 

from unaccounted for fixed effects; (ii) Random variation may arise due to time course 

error (serial correlation), which exists when residuals close to each other in time are more 

similar than residuals further apart; (iii) Measurement errors may contribute to random 

variability.  In the longitudinal setting, it is particularly important to consider the 

potential for measurement error variation to increase or decrease over time. 

The relative importance of the various sources of (co)variance can be useful in 

guiding modeling choices for specific circumstances.  For example, in analyses of 

objective physical measures such as blood pressure or laboratory values, subject specific 

factors may have the greatest contribution to within-subject correlations.  In these cases, 

a compound symmetric (or random effects or random coefficients) structure may be 

appropriate since residuals have equal (or similar) correlations regardless of degree of 

adjacency.  Unaccounted for fixed effects may also give rise to a compound symmetric 

structure.  In analyses of subjective ratings, such as the Hamilton Depression Rating 

Scale (20), time course errors that decay with increasing distance in time (such as in an 

autoregressive structure) may also be important.   

In many situations, subject specific effects and serial correlation could be modeled 

separately, but this would be necessary only if interest existed in the subject specific 

effects.  In clinical trials, focus is directed primarily toward the fixed effects.  Therefore it 

may be equally appropriate, and more straightforward, to omit explicit modeling of the 
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subject specific effects and model them as part of the within-subject errors.  In such a 

case, the subject specific effects and serial correlation combine, with or without changes 

in measurement error variation over time, to yield an unstructured correlation pattern for 

the within-subject errors.  

 

ANALYTIC APPROACHES FOR MISSING DATA  

 

MCAR Methods 

 

A common choice for the primary analysis in a variety of therapeutic areas is to 

assess mean change from baseline to endpoint via analysis of (co)variance with missing 

data imputed by carrying the last observation forward (LOCF).  The LOCF approach 

assumes that missing data are MCAR and that subjects’ responses would have been 

constant from the last observed value to the endpoint of the trial.  These conditions 

seldom hold (6). Carrying observations forward may therefore confound treatment with 

time (2), leading to bias in estimates of differences between treatment groups in mean 

change from baseline to endpoint (∆) and the associated standard errors (SE∆) (2, 6, 9, 

10, 11, 12, 13, 19).    

Despite these shortcomings, LOCF has long been the method of choice for the 

primary analysis in clinical trials intended to support registration of new medicinal 

products.  This situation has arisen due to the simplicity of the LOCF approach, its ease 

of implementation, and the belief that the potential bias from carrying observations 

forward leads to a “conservative” analysis.   
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However, mean change from baseline to endpoint is only a snapshot view of the 

response profile of a treatment.  Gibbons (2) stated that endpoint analyses, although 

common, are insufficient since response over time must also be assessed in order to 

completely understand the efficacy profile of a given treatment.  By its very design, 

LOCF change to endpoint is incapable of assessing response profiles over time.   

Other MCAR analyses common to clinical trial scenarios include observed case 

(completers) analyses and approaches using generalized estimating equations. 

 

MAR Methods 

 

We previously noted that in many settings the MAR assumption is more reasonable 

than the MCAR assumption.  An MAR method is valid if data are MCAR or MAR, but 

MCAR methods are valid only if data are MCAR.   

Likelihood-based mixed-effects models offer a general framework from which to 

develop longitudinal analyses under the MAR assumption (6, 7, 8, 19), and can also be 

extended to MNAR.  Using the MAR (or MNAR) framework, likelihood-based mixed-

effects analyses are more robust to potential bias from missing data than LOCF (2, 6, 12, 

13) and other MCAR methods.  In mixed-effects analyses, information from the observed 

data is used to provide information about the missing data, but missing data is not 

explicitly imputed.  These analyses are therefore easy to implement because no additional 

data manipulation is required to accommodate the missing data, and the analyses can be 

implemented using software (e.g. the SAS Procedure Mixed) that has been widely 
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available for a number of years.   Likelihood-based mixed-effects model analyses are 

examined in detail by way of example in a later section.   

 

MNAR Methods  

 

Methods that attempt to account for MNAR missingness simultaneously model the 

measurement process (observed outcomes) and the missingness processes (unobserved 

outcomes).  While the potential advantages of MNAR approaches are clear, they require 

assumptions that cannot be validated from the data at hand (6 p 216).  This, in turn, 

argues that for any specific scenario a definitive MNAR analysis does not exist and the 

appropriate statistical framework for implementing MNAR methods is that of sensitivity 

analysis (6, 19). 

 

REGULATORY CONSIDERATIONS 

 

In confirmatory clinical trials intended to support registration of new medicinal 

products, results from the primary analysis are the foundation upon which decisions are 

made.  Regulatory agencies typically require the primary analysis to be prespecified. This 

is almost universally interpreted as a single analysis, yielding one result, with all aspects 

specified in the protocol (multiple primary analyses may be prespecified with appropriate 

adjustments for multiplicity).  Other characteristics of a typical primary analysis include 

that it is based on the intent-to-treat principle and on a simple analytic method with a 

simple model.  Only in rare circumstances could results from an analysis specified as 
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secondary in the protocol, or an analysis not specified in the protocol, overturn the results 

from the primary analysis – no matter how compelling the secondary analysis may be.   

 

THE ANALYTIC DILEMMA 

 

 The advantages of a single, simple, prespecified primary analysis are compelling, 

especially when such analyses are familiar from long-standing use.  However, this 

decision-making framework is problematic to implement in the presence of missing data.  

The primary analyses used in clinical trials are typically based on the unrealistic 

assumption that data are MCAR.  Although the MAR assumption is more plausible than 

the MCAR assumption, the possibility of MNAR data is difficult to rule out.  

Unfortunately, MNAR methods can be complex, and are best implemented in a 

sensitivity analysis framework – which is inconsistent with the need for a simple, single 

analysis. 

We propose that likelihood-based mixed-effects models resolve the analytic dilemma 

to the greatest extent possible and are an appropriate choice for the primary analysis.  

Multiple imputation (MI) is another MAR approach (4, 9, 14), but MI is not as well 

suited to a regulatory environment as likelihood-based mixed-effects analyses.  

Additional data manipulation and modeling choices are needed to impute the missing 

values and to account for the uncertainty of imputation.  In contrast, the mixed-effects 

analyses can be dictated entirely by the design of the study, with no additional steps 

being required to accommodate the missing data.   
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AN EXAMPLE 

 

A retrospective evaluation of a phase II clinical trial of an antidepressant is used to 

illustrate how data characters can be used to guide modeling decisions.  Goldstein et al 

(21) summarized the details and results of this study.  Consider first an informal 

examination of the reasons for discontinuation summarized in Table 1.  Although, the 

percentages of patients completing the protocol in each treatment group were not 

remarkably different, patients receiving the experimental drug tended to dropout more 

frequently due to adverse events, whereas placebo-treated patients tended to discontinue 

more frequently due to lack of efficacy.  While it is not possible to ascertain whether the 

dropouts due to conflict/other reasons and protocol violations should be considered 

MCAR or MAR, they were probably not MNAR since the cause of dropout was 

observed.  It is possible that MNAR data arise from patients who were lost to follow-up.  

However, only 5% (1.4% + 8.6%)/2 of the patients in the example study were lost to 

follow up.  It is interesting to note that loss to follow up occurred in approximately the 

same relative ratio between treatments as lack of efficacy.  If loss to follow up was 

simply another manifestation of lack of efficacy, the observed data would at least 

partially explain the reasons for missingness due to loss to follow up and the impact of 

MNAR data would be less than suggested by the 5% overall loss to follow up.   

A simple, formal test for missingness was implemented using logistic regression to 

determine whether the probability of dropout was influenced by the observed outcomes.  

Rate of improvement in the primary efficacy outcome strongly influenced probability of 
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dropout (p < .0001), suggesting that the MCAR assumption was not valid.  Molenberghs 

et al (19) applied the Diggle and Kenward (18) selection model to test for the existence of 

MNAR data in this study.  Modeling the missingness did not significantly improve the fit 

to the data, and thus no evidence for MNAR data was found.  Therefore, characteristics 

of the missing data suggested an MAR method was a viable approach for the primary 

analysis of these data.  While these comparisons were applied in a post hoc manner, they 

can be succinctly prespecified in a protocol. 
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Table 1.  Reasons for Study Discontinuation from an Antidepressant Clinical Trial.               

 
Reason for 
discontinuation 

Drug 
N=70 

% 

Placebo 
N=70 

% 
Protocol Complete 60.0 64.3 

Lack of Efficacy  2.8 14.3 

Adverse Event 15.7 4.3 

Lost to Follow-Up 1.4 8.6 

Conflict/Other 12.9 4.3 

Protocol Violation 7.1 4.3 

 

Consideration of the nonmissing data in this study suggested that a categorical 

modeling of time would involve less risk than fitting time as linear or polynomic.  For 

example, antidepressants are often said to have delayed onset of action, which could 

result in nonlinear time trends.  Furthermore, this trial employed titration from a 

potentially suboptimal dose to one that was 3-fold greater.  This feature could also give 

rise to nonlinear responses over time.   

  It is reasonable to anticipate that correlations between the repeated measurements in 

antidepressant trials arise from both inter-subject variability and serial correlation.  

Between subject differences are likely to be important since not only is depression a 

notoriously heterogeneous disease, but serial correlation often arises from patients’ and 

raters’ familiarity with responses from previous visits.  Furthermore, variability in 

response to experimental drug and placebo or active comparator results in variances 

increasing over time.  Given that no hypotheses regarding subject specific effects were to 
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be tested, these effects did not need to be explicitly modeled and could be modeled via 

the within-subject errors.  

Based on these data characteristics, a specific version of an analysis from the family 

of likelihood-based mixed-effects model analyses was implemented as the primary 

analysis in subsequent trials.  We refer to this family of analyses as MMRM (Mixed 

Model Repeated Measures).  Although the version of MMRM we implemented included 

an unstructured modeling of time and within-subject correlation, we have previously 

noted that these decisions are situation dependent and a variety of other useful 

approaches exist and have been reviewed (8).   Results of the subsequent trial were 

summarized by Goldstein et al (22). 

  Post-hoc analyses of the subsequent trial again provided strong evidence for 

violation of the MCAR assumptions.  Molenberghs et al (19) reported that modeling the 

missingness significantly improved the fit to the data, and thus potential evidence for 

MNAR data was found.  However, these, and other authors (6 chapter 18, 18), have 

cautioned that evidence for or against MNAR data in the selection model framework has 

to be interpreted cautiously as a variety of confounding factors can influence the results. 

   Perhaps the most important result from the MNAR modeling of both the example 

study and the subsequent study was that the estimates of the treatment effects were not 

markedly different when applying an MAR vs. an MNAR analysis (19).  That is, the 

MAR results were robust to the MNAR data, if in fact MNAR data existed.  The 

robustness of the specific MMRM analysis to MNAR data is examined in detail in a 

subsequent section. 
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The MMRM analyses can be implemented via PROC MIXED in SAS (7).  

Postbaseline values or changes from baseline are assessed as the dependent variable.  

Specific details of the version of MMRM described herein are as follows:  Independent 

variables included the fixed, categorical effects of treatment, time, and treatment-by-time 

interaction, along with the continuous effects of baseline and baseline-by-time 

interaction.  An unstructured (co)variance matrix was used to model the within-subject 

errors, at least in preliminary analyses.  Algorithms for selecting the structure that 

provides the best fit can be defined in the protocol.   Parameters were estimated using 

Restricted Maximum Likelihood with the Newton-Raphson algorithm.  A treatment-by-

time interaction contrast was constructed to estimate the difference between treatments in 

mean change from baseline to endpoint.  Asymptotically exact standard error (SE) and 

95% confidence intervals (CI) were obtained as described by Littell et al. (7 p 499).  

Denominator degrees of freedom can be estimated using such methods as Satterthwaite’s 

approximation (7 p 48) or others.   

In this formulation of the MMRM analysis, the within-subject error correlation 

structure is used to model each subject’s response profile as a deviation from the group 

mean.  For example, assume subject X had outcomes worse than average at all visits until 

visit 4, where he dropped out.  Least square means for subject X’s group at visits 5 and 6 

are adjusted to reflect subject X’s poor performance.  The magnitude of the “adjustment” 

is determined by the magnitude of the within-subject correlations and by the magnitude 

of subject X’s deviation from the group mean.  The “uncertainty” in the adjustment is 

determined by the amount of data contributing to the group mean, the amount of data on 

subject X, and the magnitude of the within-subject correlations.  
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ROBUSTNESS OF LIKELIHOOD-BASED MIXED EFFECT MODELS TO MNAR 

DATA 

 
Mallinckrodt et al (12, 13) assessed the robustness of the MMRM implementation of 

likelihood based mixed-effects analyses to MNAR data by comparing results from 

MMRM to results from an LOCF ANOVA approach in simulated data.  The first study 

(12) compared the two methods in simulated scenarios in which a true difference between 

treatments in mean change from baseline to endpoint existed (∆≠0).  The second study 

(13) focused on Type I error rates by simulating scenarios in which the difference 

between treatments in mean change from baseline to endpoint was zero (∆=0).  In both 

studies, data comparisons were made both before introducing dropout (complete data) 

and also in the same data sets after eliminating data in order to introduce MNAR 

missingness.     

In analyses of complete data from both studies, estimates of ∆ and SE∆ from MMRM 

and LOCF were identical in each of the 120,000 data sets.  For example, in the second 

study, pooled across all 32 simulated scenarios, the Type I error rate from each method 

was 5.26%; the average estimate of ∆ was -0.01, which was not significantly different 

from the true value of 0.00 (p=.7942).  Type I error rates in the 32 scenarios ranged from 

4.47% to 5.63%.  However, important differences existed between the methods when 

analysing data with dropout.  

In the study where treatment differences at endpoint existed (∆≠0), estimates of 

treatment group differences in mean change from baseline to endpoint from MMRM 
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were closer to the true value than estimates from LOCF in every scenario simulated.  

Pooled across all scenarios, confidence interval coverage was 94.24% and 86.88% for 

MMRM and LOCF respectively.  LOCF underestimated the superiority of the superior 

treatment in some scenarios and overestimated superiority in other scenarios.  Although 

LOCF is generally considered a conservative method, other scenarios in which LOCF is 

likely to overestimate the true treatment effect have been noted (5, 15). 

In the Type I error rate study (∆=0), pooled across all scenarios, the Type I error 

rates for MMRM and LOCF were 5.85% and 10.36%, respectively.  Type I error rates in 

the 32 scenarios ranged from 5.03% to 7.17% for MMRM, and from 4.43% to 36.30% 

for LOCF.  Again, the MMRM results were robust to the presence of MNAR data.  

Greater inflation of Type I error in LOCF resulted from greater bias in estimates of mean 

change from baseline to endpoint and unduly small standard errors that were a 

consequence of failing to account for the uncertainty of imputation. 

 

DISCUSSION 

 

We have noted that no universally best approach to analysis of longitudinal data 

exists.  Characteristics of the missing and nonmissing data can guide the analyst to an 

appropriate choice for a given situation.  In the context of clinical trials intended to 

support the registration of a new medicinal product, regulatory considerations suggest the 

primary analytical method is ideally a simple method, yielding a single result, and uses 

an entirely prespecified model.  However, the analyses traditionally used in many 

longitudinal clinical trials are based on the unrealistic assumption that data are MCAR.  
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Although the MAR assumption is more plausible than the MCAR assumption, the 

possibility of MNAR data is difficult to rule out.  But MNAR methods can be complex, 

and are best implemented in a sensitivity analysis framework – which is inconsistent with 

the desire for a simple, single analysis. 

The traditional approach to dealing with this analytic dilemma has been to use the 

LOCF approach, under the assumption that while potentially biased by non-MCAR data, 

the bias led to a “conservative” analysis.  In this context, conservative is typically 

thought of as not overestimating the treatment effect.  The simulation studies cited herein 

(12, 13) illustrated, and other authors have noted (5, 6, 15, 19), that conservative behavior 

of LOCF is not guaranteed.   

   It is interesting to consider that the tendency to underestimate the superiority of a 

superior treatment  (conservative bias) necessarily results in the tendency to 

underestimate the inferiority of an inferior treatment.  Thus, such a bias would be 

conservative in the context of superiority testing, but would be anti-conservative for non-

inferiority testing.   

Additionally, if a method yielded biased estimates of treatment effects when 

treatment differences existed, what would happen when that method was used in a 

situation when no differences existed?  When the true treatment difference was zero, bias 

would necessarily lead to nonzero estimates of treatment differences, and potentially 

inflate Type I error.  Similarly, consider Alzheimer’s disease, where the therapeutic aim 

is to delay or slow deterioration of mental status, as compared to situations such as 

depression where the goal is to improve the condition.  If a treatment is in truth no more 

effective than placebo, but patients on the experimental therapy dropout due to adverse 
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events, carrying the last observations forward assumes that these patients had no further 

deterioration in condition.  Thus, carrying observations forward would lead to the false 

conclusion that drug was more effective than placebo 

  Therefore, whether or not the bias is conservative may depend upon the disease state, 

the type of test, and on the true difference between treatments.  These limitations suggest 

that the analytic dilemma for missing data is not resolved by a conservative method 

because conservatism cannot be guaranteed.   

   Likelihood-based mixed-effects models are based on reasonable assumptions 

regarding missing data, are robust to violations of those assumptions, and provide an 

appropriate general analytic framework for assessing response profiles in longitudinal 

clinical trials.   

The flexibility of mixed-effects models can also be exploited when considering the 

attributes of the nonmissing data.  In acute phase clinical trials where the number of 

measurement times in not large and the measurement times are fixed, it may be beneficial 

to model the within-subject error correlation structure and time trends in an unstructured 

manner.  Although parsimonious modeling of time trends and correlations can be more 

efficient and more appropriate in other circumstances, especially when the number of 

measurement times is not small, the more general unstructured formulations may provide 

an additional degree of robustness to unexpected and unpredictable outcomes.   

Likelihood-based mixed-effects analyses are consistent with regulatory needs for a 

simple, prespecified analysis, based on the intent-to-treat principle.  For example, all 

details of the MMRM analysis (a specific version of mixed-effects analyses) are dictated 

by the design of the study, can easily be specified in the protocol, and are straightforward 
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to implement with standard software.  Molenberghs et al (19) discuss why likelihood-

based MAR methods are consistent with the intent-to-treat principle, and in fact are an 

improvement over LOCF in this regard, via use of all available data on all subjects.   

Changes in primary analytic methodology may have implications for regulatory 

agencies and for the companies seeking the marketing registrations.  Although those 

implications are beyond the scope of this paper, they warrant careful consideration.  

Nevertheless, the refinements in statistical theory and in our ability to implement the 

theory may be too compelling to overlook.    

 

CONCLUSION 

 

No universally best approach to analysis of longitudinal data exists.  However, 

likelihood-based mixed-effects analyses provide a powerful analytic framework that is 

well suited to regulatory environments, is resilient to biases from missing data, and 

provides flexibility for handling the unique circumstances of specific scenarios.  
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