Made available by Hasselt University Library in https://documentserver.uhasselt.be

Exposure to Residential Green Space and Bone Mineral Density in Young Children

Supplementary material

SLEURS, Hanne; BENTO FONSECA E SILVA, Ana Inês; BIJNENS, Esmee; DOCKX, Yinthe; PEUSENS, Martien; RASKING, Leen; PLUSQUIN, Michelle & NAWROT, Tim (2024) Exposure to Residential Green Space and Bone Mineral Density in Young Children. In: JAMA Network Open, 7 (1) (Art N° e2350214).

DOI: 10.1001/jamanetworkopen.2023.50214 Handle: http://hdl.handle.net/1942/42306

Supplementary Online Content

Sleurs H, Silva AI, Bijnens EM, et al. Exposure to residential green space and bone mineral density in young children. *JAMA Netw Open*. 2024;7(1):e2350214. doi:10.1001/jamanetworkopen.2023.50214

eMethods 1. Multiple Linear Regression Equation

eMethods 2. Logistic Regression Equation

eTable 1. Determinants of Bone Mineral Density Presented as the Difference (95% CI) in m/s

eTable 2. Association Between Child's Bone Mineral Density and the Percentage of Residential Surrounding Green Space Within All Radii (100-3000 m) for the Total Population (N=327), Girls (n=180), and Boys (n=147)

eTable 3. Association Between the Risk of Low Mineral Density and Percentage of Residential Surrounding Green Space Within All Radii (100-3000 m) for the Total Population (N=327), Girls (n=180), and Boys (n=147)

eFigure 1. Flowchart Describing the Included ENVIRONAGE Participants

eFigure 2. Pearson (Left) and Spearman (Right) Correlation Matrix Between Residential Green Space Radius (100-3000 m) for Total Green (Sum of High and Low Green), High Green (> 3 m), and Low Green (≤ 3 m)

This supplementary material has been provided by the authors to give readers additional information about their work.

eMethods 1. Multiple linear regression equation

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip} + \epsilon_i$$

Where Y_i is the child's bone mineral density for the i-th observation, β_0 corresponds to the intercept term, $\beta_{1..p}$ denotes the regression coefficient associated with each independent variable, $X_{i1...ip}$ represents the p independent variables for the i-th observation (green space exposure, child's sex, age, weight, height, ethnicity, maternal education, child's daily screen time, vitamin supplementation, daily dairy products consumption, season, and neighborhood median annual income), and ϵ_i corresponds to the error term for the i-th observation.

eMethods 2. Logistic regression equation

When the bone mineral density is coded as a binary outcome, where $Y_i=0$ when the i-th child's bone mineral density is higher or equal to the sex-specific 10^{th} percentile of the study population, and $Y_i=1$ when the i-th child's bone mineral density is lower than the sex-specific 10^{th} percentile of the study population, the probability of having bone mineral density lower than the sex-specific 10^{th} percentile of the study population is denoted as $\pi_i=P(Y_i=1)$. This probability, π_i , is connected with the linear predictor via a logit link function:

$$log\left(\frac{\pi_i}{1-\pi_i}\right) = \ \beta_0 + \beta_1 X_{i1} + \ \beta_2 X_{i2} + \ldots + \ \beta_p X_{ip} + \ \epsilon_i$$

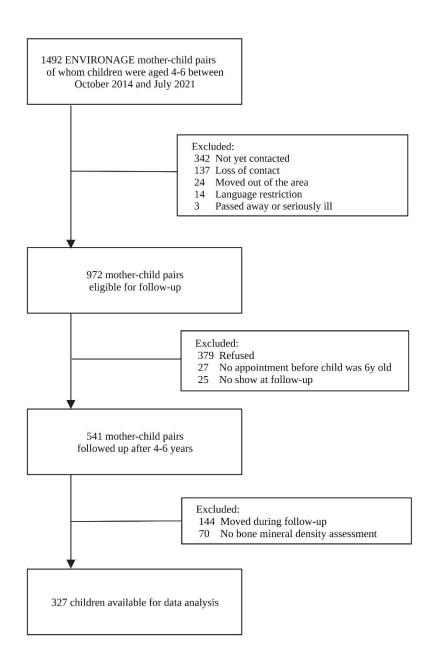
where β_0 is the intercept term, $\beta_{1...p}$ corresponds to the regression coefficient associated with each independent variable, $X_{i1...ip}$ represents the p independent variables for the i-th observation (green space exposure, child's sex, age, weight, height, ethnicity, maternal education), and ϵ_i denotes the error term for the i-th observation.

eTable 1. Determinants of bone mineral density presented as the difference (95% CI) in $\mbox{m/s}$

	Simple regression		Multiple regression		
	Difference (95% CI), m/s	Pvalue	Difference (95% CI), m/s	P value	
Child					
Sex, girls	7.34 (-17.99 to 32.67)	0.57	2.38 (-27.53 to 32.29)	0.88	
Age, +1 y	53.79 (24.63 to 82.95)	<0.001	45.69 (-2.04 to 93.42)	0.06	
Weight, +1 kg	4.75 (-0.43 to 9.93)	0.07	-1.64 (-12.01 to 8.74)	0.76	
Height, +1 cm	3.01 (0.47 to 5.55)	0.02	-0.01 (-5.58 to 5.55)	1.00	
Ethnicity, Non-European	30.70 (-27.64 to 89.03)	0.30	18.24 (-52.93 to 89.41)	0.62	
Daily screen time, h/d					
< 1	Reference		Reference		
1-2	12.87 (-17.37 to 43.11)	0.41	15.64 (-16.03 to 47.31)	0.33	
> 2	15.99 (-37.48 to 69.46)	0.56	9.20 (-47.48 to 65.88)	0.75	
Vitamin supplementation, Yes	-14.45 (-41.14 to 12.24)	0.29	-24.33 (-55.45 to 6.79)	0.13	
Daily dairy products consumption, serving/day	5.27 (-8.52 to 19.06)	0.46	4.79 (-9.95 to 19.54)	0.52	
Season					
Winter	Reference		Reference		
Spring	-1.44 (-35.35 to 32.47)	0.93	-16.37 (-57.12 to 24.38)	0.43	
Summer	-11.76 (-46.69 to 23.18)	0.51	-22.81 (-63.23 to 17.61)	0.27	
Autumn	-13.54 (-53.03 to 25.95)	0.50	-1.57 (-49.15 to 46.02)	0.95	
Mother					
Education level					
Low	Reference		Reference		
Middle	26.48 (-37.63 to 90.59)	0.42	33.42 (-38.18 to 105.02)	0.36	
High	32.45 (-28.25 to 93.15)	0.30	52.70 (-15.47 to 120.87)	0.13	
Neighborhood median annual income, +1000 €	-2.13 (-6.38 to 2.12)	0.33	-3.80 (-9.29 to 1.69)	0.18	

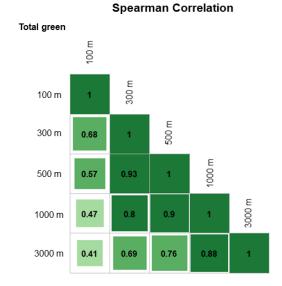
eTable 2. Association between child's bone mineral density and the percentage of residential surrounding green space within all radii (100-3000 m) for the total population (n=327), girls (n=180) and boys (n=147)

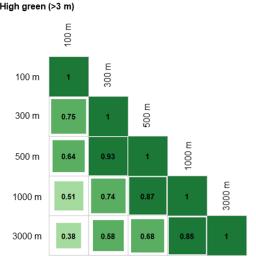
	Total population (n=327)		Girls (n=180)		Boys (n=147)			
	Difference (95% CI), m/s	P value	Difference (95% CI), m/s	P value	Difference (95% CI), m/s	P value	P value for interaction ^a	
Total green								
100 m	13.88	0.16	2.21	0.84	33.58	0.06	0.16	
	(-5.56 to 33.32)		(-19.28 to 23.69)		(-0.91 to 68.07)			
300 m	26.23	0.004	14.96	0.12	44.89	0.009	0.25	
	(8.66 to 43.80)		(-3.71 to 33.64)		(11.24 to 78.54)			
500 m	27.38	0.003	20.42	0.06	38.42	0.01	0.46	
	(9.63 to 45.13)		(-0.52 to 41.36)		(7.79 to 69.05)			
1000 m	26.17	0.01	19.55	0.08	37.65	0.04	0.53	
	(6.40 to 45.94)		(-2.67 to 41.77)		(2.52 to 72.77)			
3000 m	25.32	0.01	14.77	0.25	38.32	0.02	0.25	
	(5.25 to 45.40)		(-10.29 to 39.82)		(6.15 to 70.48)			
High green	(>3 m)		,		,			
100 m	6.59	0.34	2.33	0.79	11.75	0.20	0.41	
	(-6.85 to 20.02)		(-14.98 to 19.65)		(-6.38 to 29.88)	*		
300 m	18.13	0.03	11.53	0.23	27.67	0.05	0.41	
	(1.99 to 34.27)		(-7.36 to 30.43)		(0.4 to 54.95)		-	
500 m	25.30	0.004	16.02	0.11	38.24	0.01	0.33	
	(7.93 to 42.68)		(-3.79 to 35.83)		(8.53 to 67.96)			
1000 m	21.18	0.03	16.11	0.15	33.74	0.07	0.51	
	(1.59 to 40.78)		(-6.02 to 38.24)		(-2.28 to 69.75)			
3000 m	` 18.91	0.05	8.11	0.47	34.29	0.04	0.20	
	(0.07 to 37.74)		(-14.07 to 30.3)		(2.19 to 66.39)			
Low green (,		,		,			
100 m	6.30	0.49	-0.61	0.96	17.35	0.28	0.31	
100 111	(-11.71 to 24.32)	0.10	(-22.08 to 20.85)	0.00	(-14.26 to 48.95)	0.20	0.01	
300 m	10.07	0.21	6.62	0.50	13.88	0.30	0.60	
000 111	(-5.61 to 25.75)	0.21	(-12.62 to 25.85)	0.00	(-12.56 to 40.33)	0.00	0.00	
500 m	4.27	0.61	7.02	0.51	0.62	0.97	0.73	
	(-12.35 to 20.89)	0.0.	(-14.05 to 28.08)	0.0	(-27.62 to 28.85)	0.0.	00	
1000 m	9.25	0.19	6.04	0.49	12.81	0.30	0.60	
	(-4.65 to 23.15)		(-11.07 to 23.15)	5	(-11.45 to 37.06)	3.00	0.00	
3000 m	19.16	0.05	16.21	0.18	22.71	0.16	0.73	
	(-0.29 to 38.61)		(-7.69 to 40.12)		(-9.18 to 54.6)			

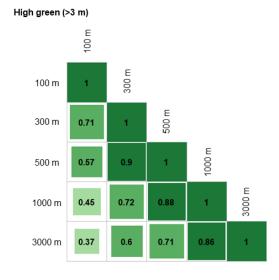

Estimates are presented as the difference (95% CI) in bone mineral density (m/s) for an interquartile range (IQR) increment in total green space (sum of high and low green), high green (> 3 m) and low green (≤ 3 m) within a 100-3000 m radius for the total population (n= 327), girls (n= 180) and boys (n= 147). The main model was adjusted for the child's sex, ethnicity, age, weight, and height at follow-up and by maternal education. ^aRepresents the overall p-value for the interaction green space x child's sex.

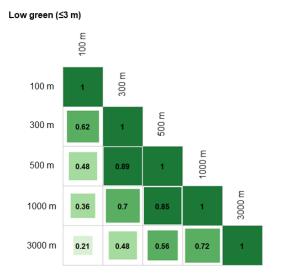
eTable 3. Association between the risk of low mineral density and percentage of residential surrounding green space within all radii (100-3000 m) for the total

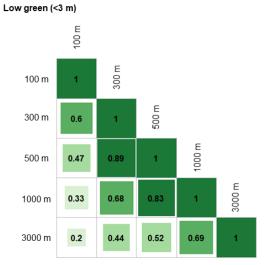
population (n=327), girls (n=180), and boys (n=147)


	Total popul (n=327		tion Girls (n=180)		Boys (n=147)		
	OR (95% CI), m/s	P value	OR (95% CI), m/s	pPva lue	OR (95% CI), m/s	Pvalu e	P value for interaction ^a
Total gre	en						
100 m	0.58	0.07	0.92	0.85	0.34	0.02	0.14
	(0.32 to 1.03)		(0.40 to 2.06)		(0.13 to 0.8)		
300 m	0.46	0.006	0.51	0.06	0.37	0.04	0.83
	(0.26 to 0.79)		(0.25 to 1.00)		(0.13 to 0.9)		
500 m	0.44	0.004	0.38	0.01	0.48	0.08	0.62
	(0.25 to 0.76)		(0.17 to 0.81)		(0.20 to 1.07)		
1000 m	0.33	< 0.001	0.29	0.004	0.36	0.03	0.63
	(0.17 to 0.61)		(0.11 to 0.64)		(0.14 to 0.88)		
3000 m	0.39	0.002	0.36	0.02	0.41	0.03	0.94
	(0.21 to 0.70)		(0.15 to 0.83)		(0.17 to 0.90)		
High gree	en (>3 m)						
100 m	0.79	0.28	0.85	0.61	0.67	0.21	0.46
	(0.49 to 1.18)		(0.41 to 1.53)		(0.32 to 1.15)		
300 m	0.57	0.06	0.52	0.12	0.57	0.21	0.84
	(0.30 to 0.97)		(0.20 to 1.08)		(0.21 to 1.25)		
500 m	0.45	0.02	0.35	0.03	0.55	0.20	0.44
	(0.22 to 0.83)		(0.12 to 0.82)		(0.20 to 1.28)		
1000 m	0.39	0.008	0.27	0.01	0.5	0.17	0.39
	(0.18 to 0.75)		(0.09 to 0.68)		(0.17 to 1.27)		
3000 m	0.46	0.01	0.41	0.03	0.49	0.10	0.83
	(0.25 to 0.82)		(0.17 to 0.90)		(0.20 to 1.12)		
Low gree	n (≤3 m)						
100 m	0.76	0.30	1.17	0.70	0.47	0.07	0.14
	(0.44 to 1.28)		(0.53 to 2.63)		(0.20 to 1.03)		
300 m	0.71	0.15	0.82	0.57	0.6	0.15	0.54
	(0.44 to 1.13)		(0.42 to 1.63)		(0.29 to 1.17)		
500 m	0.76	0.27	0.8	0.56	0.67	0.28	0.76
	(0.46 to 1.24)		(0.37 to 1.70)		(0.32 to 1.36)		
1000 m	0.58	0.02	0.68	0.24	0.44	0.02	0.37
	(0.37 to 0.90)		(0.34 to 1.26)		(0.21 to 0.85)		
3000 m	0.48	0.02	0.57	0.19	0.37	0.03	0.36
	(0.26 to 0.87)		(0.23 to 1.30)		(0.15 to 0.86)		


Estimates are presented as the odds ratio (OR) (95% CI) of low bone mineral density for an interquartile range (IQR) increment in total green space (sum of high and low green) within a 100-3000 m radius for the total population (n= 327), girls (n= 180) and boys (n= 147). The model was adjusted for the child's sex, ethnicity, age, weight, and height at follow-up and by maternal education (n= 327). ^aRepresents the overall p-value for the interaction green space x child's sex.




eFigure 1. Flowchart describing the included ENVIRONAGE participants


Pearson Correlation Total green 100 m 300 m 100 m 500 m 300 m 1000 m 500 m 0.58 3000 m 1000 m 0.48 0.9 3000 m 0.42 0.77 High green (>3 m) 100 m 300 m 100 m

eFigure 2. Pearson (left) and Spearman (right) correlation matrix between residential green space radius (100-3000 m) for total green (sum of high and low green), high green (>3 m), and low green (≤3 m)