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Abstract: The empirical Bayes (EB) method is widely acclaimed for crash hotspot identification
(HSID), which integrates crash prediction model estimates and observed crash frequency to compute
the expected crash frequency of a site. The traditional negative binomial (NB) models, often used to
estimate crash predictive models, typically struggle with accounting for the unobserved heterogeneity
in crash data. Complex extensions of the NB models are applied to overcome these shortcomings.
These techniques also present new challenges, for instance, applying the EB procedures, especially
for out-of-sample data. This study applies a random parameter negative binomial (RPNB) model
within the EB framework for HSID using out-of-sample data, comparing its performance with a
varying dispersion parameter NB model (VDPNB). The research also evaluates the potential for
safety improvement (PSI) scores for both models and compares them with EB estimates using three
generalised criteria: high crashes consistency test (HCCT), common sites consistency test (CSCT), and
absolute rank differences test (ARDT). The results yield dual insights. Firstly, the study highlights
associations between crash covariates and frequency, emphasising the significance of roadway
geometric design characteristics (e.g., lane width, number of lanes, and parking type) and traffic
volume. Some variables also influenced overdispersion parameters in the VDPNB model. In the
RPNB model, annual average daily traffic (AADT) and lane width emerged as random parameters.
Secondly, the HSID performance assessment revealed the superiority of the EB method over PSI.
Notably, the RPNB model, compared to the VDPNB, demonstrates superior performance in EB
estimates for HSID with out-of-sample data. This research recommends adopting the EB method
with RPNB models for robust HSID.

Keywords: hotspot identification; empirical Bayes; potential for safety improvement; random
parameter negative binomial model; varying dispersion parameter negative binomial model

1. Introduction
1.1. Hotspot Identification

Transportation agencies across the world are confronted with the increased public
demand to reduce road crashes because of their adverse economic and societal impact on the
victims, their acquaintances, and the broader national fabric [1]. Over the past two decades,
this issue has been raised on numerous global platforms, resulting in initiatives such as
the Safe System Approach and Vision Zero [2]. Moreover, the United Nations adopted the
Decade of Action for Road Safety 2021–2030 [3] and included road safety in the Sustainable
Development Goals (SDG) [4]. Specifically, SDG target 3.6 seeks a 50% reduction in road
traffic injuries and deaths by 2030 (aligning with the objectives of the Decade of Action for
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Road Safety 2021–2030) [4]. The SDG target 11.2 emphasises providing secure, cost-effective,
accessible, and sustainable transportation systems for all by 2030, with a concerted effort to
enhance road safety [4]. Similarly, the policy directives of the European Union about road
safety are also very clear [5,6]. These efforts are further reinforced by publications such as
the Highway Safety Manual (HSM) [7], the Road Safety Manual [8], and a global status
report on road safety [9]. Consequently, the number of road traffic crashes has decreased in
high-income countries. However, the situation in low- and middle-income countries is still
far from improving, representing over 90% of global road traffic fatalities [9].

One of the strategies to reduce road crashes involves the identification of high-risk
locations within the transportation system and subsequently enhancing their safety. The
most common road safety program for such identification is the hotspot identification
(HSID) program, which is the first step in the highway safety management process [7,8]. It
includes identifying, diagnosing, and remedying the hotspot locations (also known as black
spots, hazard sites, crash-prone sites, high-risk sites, and sites with promise or priority
investigation locations). More in detail, HSID systematically uncovers transportation
system elements with a high risk of crashes and enlists them for detailed engineering studies
to identify crash patterns, examine and reveal contributing factors, and propose potential
countermeasures [10]. Consequently, cost-effective projects are selected to safeguard the
best use of available limited funds [10]. Theoretically, a crash hotspot is a location within
a transportation system where more crashes are reported than similar locations during a
specific time due to local risk factors [11]. Accurate crash HSID is crucial as errors may result
in numerous false positives (i.e., safe locations that are incorrectly labelled as hazardous)
and false negatives (i.e., dangerous sites that are mistakenly labelled as safe) [12]. These
mistakes decrease the overall effectiveness of the safety management process and lead to
inefficient use of the valuable resources dedicated to safety improvements. It is, therefore,
essential to have a reliable HSID method that could accurately identify hazardous roadway
locations and effectively implement a relevant highway safety improvement plan.

1.2. Hotspot Identification Methods

Several methods have been proposed, presented, and applied for crash HSID. Initially,
researchers used crash frequency and crash rate to rank hotspots, for example, in Laughland
et al. [13]. Hauer and Persaud [14] and Hauer [15] demonstrated that relying solely on a
simple ranking of crash counts or crash rates could lead to significant numbers of false
positives and false negatives due to the random fluctuations of crashes from year to year.
Thus, other methods should be developed to overcome this issue. Despite this, crash
frequency and crash rate enjoyed rare popularity among the transportation community,
as evidenced by various studies [8,16–18]. Others applied methods such as equivalent
property damage only (EPDO) and the relative severity index, accounting for the crashes’
cost [7,8].

The crash frequency, crash rates, EPDO, and relative severity index all have limitations:
they primarily rely on the observed crash data and do not account for the regression-to-
mean bias (RTM) phenomenon [15]. Hauer [15] noted that relying solely on crash counts
may not always provide an unbiased estimate of the expected long-term crash frequency
due to the potential random fluctuations in crash counts over the observation period. This
observation resulted in an interest in methodologies that aim to mitigate the impact of such
random fluctuations in recorded crash counts; the empirical Bayes (EB) technique is one
example [15]. The EB technique has been frequently applied in the current literature for
HSID [10,19–23]. The EB method estimates the expected number of crashes at a particular
site by combining the actual crash data observed there with crash counts predicted based
on similar locations.

Another HSID approach to account for the RTM is the level of service of safety
method [24]. According to the LOSS method, locations are divided into four distinct groups
based on the degree to which the observed crashes and the EB estimates of crash frequency
differ. Sites falling within the highest group level are identified as hazardous locations.
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The research conducted by Kononov et al. [24] demonstrates that the level of service of
safety method effectively addresses the issue of skewness in crash distribution. Moreover, a
technique called the potential for safety improvement (PSI), which quantifies the difference
between the observed (or empirically estimated using the Bayes method) and expected
crash frequencies, has been used as an HSID method [8,19,25]. This method assumes that
only excess crashes over those expected from similar sites can be prevented by applying
appropriate treatments. Identical to the EB method, the PSI method can handle the random
fluctuation of crashes. Manepalli and Bham [22] used the crash factor measure, Wang
et al. [18] used the relative severity index, excess predicted average crash frequency using
the method of moments, and cross-sectional analysis, and Washington et al. [26] used
quantile regression to identify crash hotspots. Moreover, interested readers are referred to a
study by Karamanlis et al. [27] that reviewed various other HSID methods and thoroughly
assessed the approaches adopted by key European countries.

1.3. Performance of Different HSID Methods

Researchers have paid closer attention to comparing the performance of various HSID
methods to verify their reliability. For instance, Maher and Mountain [28] employed a
simulation-based approach to compare two HSID methods: annual crash frequency and
model-based predictions. Their findings favoured the crash frequency method over the
prediction method due to potential inaccuracies in crash predictions derived from statistical
models. Cheng and Washington [12] utilised experimentally derived simulated data to
evaluate three HSID methods—ranking using crash frequency, ranking by confidence
interval, and ranking using the EB method. They calculated false negatives and false
positives for method comparison. They found that the EB method produced the fewest
false positives and false negatives, making it the recommended choice if sufficient quality
site data were available [12]. Montella [10] compared the crash frequency, crash rate, EB
methods, and PSI approach in HSID and reported the EB method as the top performer.
Cafiso and Di Silvestro [25] assessed the performance of EB estimation, PSI, observed crash
frequency, and crash rate. The findings indicated that the EB and PSI methods outperformed
the crash frequency and crash rate methods in identifying hazardous sites. Likewise,
Elvik [11] affirmed the superiority of the EB approach over other HSID methods in his
study on operational definitions of hazardous road locations in some European countries.
Manepalli and Bham [22] evaluated the performance of various hotspot identification
methods using both crash frequency and crash severity measures. The study tested the EB
method for total crash frequency and the EB method for severe crashes (injury and fatal
crashes), along with crash factor measure, EPDO, crash frequency measures, and crash
rate. The crash factor measure method employs crash severity and volume that have been
adjusted for the segment’s length and the duration of time over which the accident data
were gathered. Both simulated and empirical data were used for this analysis. The results
favoured the EB method for total crash frequency and the crash factor measure method for
crash severity measures. Li and Wang [19] used crash frequency, EB estimates, PSI, and
full Bayesian (FB) methods for the HSID of urban arterials. They reported that EB and
PSI outperformed the other methods, regardless of site type (i.e., intersection, segment, or
meso-level transportation entity).

On the other hand, Washington et al. [26] chose the quantile regression method, espe-
cially for right-skewed data with a high number of zeros, over the EB method. Khodadadi
et al. [29] compared the EB and the FB or hierarchical methods and found comparable re-
sults. They recommended the EB and FB methods over the traditional NB and NB–Lindley
models. Ultimately, they preferred the EB method due to its lower computational costs
than the FB method. Others have also applied the FB method for hotspot identification,
e.g., [19,29,30]. Still, they noted that this method can be computationally intensive, particu-
larly for complex models involving a large number of observations and variables. The FB
approach also requires consideration of a prior distribution on all unknown parameters,
posing challenges in finding a well-reasoned and well-defined prior distribution for the
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specific problem. In contrast, the EB method is a promising alternative to the conventional
FB paradigm. The expected crash frequency estimated through the EB method is considered
a good approximation for the expected values obtained from the FB method; it effectively
addresses the RTM, can refine the predicted mean of an entity [23], and yields similar
estimates as FB estimates with comparable precision but less computational cost [30].

To conclude, researchers have used various methods to perform HSID. While each
method has its strengths and weaknesses, the EB stands out as it accounts for RTM bias
and has been found to have superior performance compared to other methods. As such,
it has become a gold standard for hotspot identification (HSID) among professionals
and researchers.

1.4. Criteria for Evaluation of HSID Methods

A crucial aspect of evaluating the performance of various HSID methods is to have
robust and informative quantitative and qualitative measures. Cheng and Washington [16]
made pioneering contributions in this realm by developing several criteria to assess differ-
ent HSID approaches. For example, the evaluation framework presented by Cheng and
Washington [16] involved five distinct quantitative tests: the site consistency test, method
consistency test, total rank differences test, false identification test, and Poisson mean
differences test. Four of these tests were novel. These tests comprehensively evaluated
different aspects of each HSID method’s performance. For instance, the site consistency test
measures how effectively each method identifies sites with consistently poor safety perfor-
mance over time. The method consistency test and the total rank differences test measure
the reliability and consistency of HSID methods in identifying hotspots with consistent
underlying safety issues over a relatively short timeframe. The false identification test and
the Poisson mean differences test assess each method’s performance regarding false HSID
and the resulting consequences of such errors. The latter two tests require prior knowledge
of the truth and are most useful in simulated environments where the ground truth is
known by design. Montella [10] introduced an additional test, the total score test, which
combines the site consistency test, method consistency test, and total rank differences test,
providing a relatively comprehensive index to evaluate the overall effectiveness of each
HSID method using only observed crash data.

While the criteria proposed by Cheng and Washington [16] have been widely used for
evaluating HSID methods, as seen in works [10,19,21], Guo et al. [31] identified limitations
in these criteria. According to Guo et al. [31], these criteria were effective only in assessing
the performance of HSID methods across two consecutive periods (i.e., prior and subse-
quent), and the total rank differences test had a counterbalancing problem. To address these
shortcomings, Guo et al. [31] generalised Cheng and Washington’s [16] criteria, overcoming
the counterbalanced rank difference problem and facilitating multiperiod hotspot analysis.
Consequently, Guo et al. [31] introduced three new tests: (1) high crashes consistency test
(HCCT), (2) common sites consistency test (CSCT), and (3) absolute rank differences test
(ARDT). Given the limited application of these new criteria in the existing literature, this
study investigates their relevance when applied to urban road segments.

1.5. Crash Prediction Models/Safety Performance Functions

The Highway Safety Manual (HSM) emphasises the importance of prediction models,
particularly through safety performance functions (SFPs), in identifying hotspots. The
SPFs are statistical models that relate crashes to various potential explanatory variables,
such as traffic data, road environment and geometric design characteristics, land use
attributes, etc. High-risk sections could be identified using the estimates from the SPFs as
adopted by several studies [10,21,32,33]. The SPFs are typically developed at the micro-level,
focusing on intersections, segments, or corridors [29,34–37]. Some researchers have also
explored macro-level models such as zones or census units, thereby incorporating safety
in transportation planning [38–40]. Recently, meso-level SPFs have been proposed [19].
However, micro-level models are more common than the other types.
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The negative binomial (NB) model is primarily used for crash frequency prediction due
to its ability to account for overdispersion, often observed in crash data [17]. Overdispersion
occurs when the variance is larger than the mean of the data. Traditionally, NB models have
been estimated with a fixed dispersion parameter for all sites in the dataset. Hauer [41]
was the first to apply VDPNB models and argued that the dispersion parameter should
vary across observations as a function of the site characteristics. The proponents of the
VDPNB models asserted that the real-world crash data heterogeneity is too complex to
be captured by a single nonvariant dispersion parameter. In the following years, other
studies also challenged the FDP assumption for the NB models for all sites and periods,
for instance [42–44]. These studies concluded that the model performance improves when
an appropriate variance structure and reasonably chosen dispersion function are used
compared to fixed dispersion values.

Another critique of the traditional NB models is that they assume a fixed impact of
each parameter across all observations. However, past studies have established that this
may not adequately capture the unobserved differences among different observations in
the data [17,45], which can affect the hotspot identification accuracy of the EB methods
when crash data are heterogeneous. To enhance crash prediction accuracy and address
various types of heterogeneities in crash data, researchers have modelled crash frequency
data using relatively advanced statistical models such as finite mixture of negative bino-
mial models [33], generalised estimating equation models [46], finite mixture regression
models [33], random effects models [47], random parameters models [45], Bayesian hier-
archical models [30], and quantile regression models [26], among others (see Lord and
Mannering [17] for further details). In this study, we develop a random parameter negative
binomial (RPNB) model, which overcomes the weakness of the traditional NB model and
can be employed to enhance traffic safety analysis methodologies beyond crash prediction
(i.e., hotspot identification and treatment evaluations) with relatively less computational
costs compared to more complex approaches.

1.6. Problem Statement

The literature review established that the EB stands out over the alternative HSID
methods, attributing its superiority to its ability to account for the RTM bias and consid-
ering the observed and predicted crash counts in estimating expected crash frequency.
The EB method has been found to have superior performance than or is comparable to
most of the competing HSID methods based on various criteria. However, the increasing
applications of highly complex extensions of the NB models to understand the problematic
characteristics of crash data also present a new set of challenges, such as applying the EB
procedure or predicting crash frequency for the out-of-sample data. The deeper we go into
this hierarchy and the more intricate these extensions become, the closed forms of their
distributions either become unavailable or pose analytical and computational challenges.
This situation underscores the importance of exploring how the EB method can be effec-
tively applied when dealing with these advanced models and applying these models for
the out-of-sample data. Some studies have made efforts to adapt the EB framework to
work with complex models, such as the Sichel model [23], the negative binomial–Lindley
model [29], or the finite mixture NB model [33], to address this need. In this study, we
took the challenge of applying the random parameter negative binomial models to hotspot
identification using the EB method and its derivative potential for safety improvement (PSI)
for out-of-sample data. The PSI method was chosen for comparison because it can also
account for random fluctuations in the crash data and has been reported to have superior
performance for road segments (our target road entity in this study). We also developed
an NB model with varying dispersion parameters to compare its performance and calcu-
lated corresponding EB and PSI estimates. The EB and PSI estimates were then subjected
to a comprehensive evaluation based on generalised criteria for hotspot identification,
providing a more rigorous assessment compared to previous methods.
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2. Material and Method
2.1. Crash Prediction Models
2.1.1. Negative Binomial Model

Crash prediction models were estimated using the NB modelling framework, which is
preferred over the Poisson regression model because Poisson distribution restricts the mean
and variance to be equal, which is not often the case with crash data. Assuming crashes as
the outcome variable, the probabilistic structure of the NB model is given by the following:

Yi|λi ∼ Po(λi), i = 1, 2, 3, . . . , I, (1)

where Y stands for the number of crashes, ‘I’ stand for the total sites (road segment,
intersection, roundabout, etc.) in the dataset, and λi for the expected number of crashes.
The subscript “i” represents the ith site.

Conditional on its mean λi, Yi in Equation (1) is assumed (a) to follow a Poisson
distribution and (b) be independent over all sites. The mean, λi, as a function of explanatory
variables, is typically given by the following log-linear function:

λi = exp(βXi + ei), (2)

where X represents a vector of explanatory variables, β represents a vector of estimable
coefficients, and ei is the model error term. The error term ‘exp (ei)’ is gamma-distributed
with mean equals one and variance α = 1/ϕ (with ϕ > 0) for all I [17]. This additional term
allows the variance to differ from the mean λi, which is given by λi + αλi

2. Note that the
term ‘α’ is known as the dispersion parameter of the NB distribution. In many studies,
ϕ = 1/α, the inverse dispersion parameter, is reported.

The probability density function of the NB error structure, as in Anastasopoulos and
Mannering [45], is given by the following:

P(yi|λi, α) =
Γ
(
yi + α−1)

Γ(α−1)yi!

(
α−1

λi + α−1

)α−1(
λi

λi + α−1

)yi

, (3)

where yi is the response variable for the site I, λi is the mean value of the response for site i,
and Γ is the gamma function. The negative binomial model reduces to the Poisson model
as α approaches 0.

The NB models’ overdispersion parameter varies among observations to account for
the unobserved heterogeneity in crash data [41]. Hence, the dispersion parameters of the
NB model were estimated as a function of the dataset’s characteristics. Using the same
probability density function as the traditional NB, the varying dispersion parameter is
given by Lord and Park [44]:

αi = exp(Ziδ), (4)

where αi is the dispersion parameter for the site i, Zi is a vector of the covariates of
the dispersion parameter (could be but is not necessarily the same as those used in the
estimation of µi), and δ represents the estimable coefficients corresponding to Zi. Studies
have shown superior predictive performance and goodness-of-fit performance of VDPNB
models, which is why it was chosen in this paper [21,42,44,48].

Choosing the correct functional form that links crashes to variables is essential in
developing statistical relationships. In this study, the following functional form was used:

Ŷi = E(λi) = β0 AADTi
β1 Li

β2exp
n

∑
i=3

(βiXi), (5)

where i is an observation unit, λi is the expected number of crashes per year on segment
i, AADT represents a traffic volume as vehicles per day for segment i, L is the length of
segment i (in km), X represents the explanatory variables, β0 is the intercept, and β1, β2,
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and βi are the estimated coefficients. Note that some studies use the segment length as an
offset variable. However, in this study, this was considered a variable with an exponential
regression coefficient, like AADT.

2.1.2. Random Parameter NB Model

Another commonly used modelling framework to account for the heterogeneity in
crash data is the random parameters negative binomial model (RPNB), which allows
coefficients of predictor variables to vary across individual observations (i.e., no fixed
parameter across observations). The RPNB uses the same basic functional form of the NB
model as in Equation (2). However, the only difference is that parameters in the RPNB
approach can be described using a fixed and random component. The random component
of the RPNB model as given in Anastasopoulos and Mannering [45]:

βi,j = βj + φi,j, (6)

where βi,j represents a regression coefficient specific to the jth independent variable for
the observation i, βj is the average value for this jth coefficient across all observations, and
φi,j is a randomly distributed error term applied to the jth coefficient for observation i
following some established distributions. Unlike the traditional NB model, by specifying
βij as a predefined distribution with mean β j and variance σ2

j , each observation now has its
individual coefficients. Theoretically, βij can be assumed to follow any distribution, but the
normal distribution is mostly used, given its better statistical fit [49].

Based on the above assumption, the expected crash frequency λi in the RPNB model is
conditioned on a randomly distributed term and is given by λi

∣∣φi = exp(βX i + εi). The
log-likelihood of the RPNB model is given in Anastasopoulos and Mannering [45]:

LL = ∑∀i ln
∫

φi

g(φi)P(yi|φi)dφi, (7)

where g (.) is the probability density function of φi and P(yi|φi) is the Poisson probability
of the segment having yi crashes conditioned on φi.

The random terms in the coefficients shown in Equation (7) do not have a closed-form
expression, which makes the standard maximum likelihood estimation computationally
too intensive to perform. Consequently, RPNB models were estimated using a simulation-
based maximum likelihood approach [50]. The widely adopted simulation method uses
Halton draws, known for offering a more efficient distribution of draws for numerical
integration than purely random draws [51]. Please see Greene [50] for further details on
random parameters count models.

A challenge, however, arises when an analyst has to utilise the estimated random
parameter model to predict crash frequency for out-of-sample observations. Recent stud-
ies reported that the RPNB model underperformed compared to the fixed parameter
counterparts for out-of-sample crash predictions [37,49], which could be attributed to
using predictions only based on the mean of the random parameters while ignoring the
variances of each parameter [52]. Xu et al. [52] argued that out-of-sample prediction of
λ1 is not only dependent on β j but also on the variances σ2

j and σ2
u and proposed the

following formulation:

Ŷi= E (λi) =
(

1 + 0.5σ2
1 [ln(AADTi)]

2
+ 0.5σ2

2 X2
i + 0.5σ2

u

)
β0 AADTβ1

i Li
β2exp

(
βiXi

)
, (8)

where β0, β1, β2, . . . .σ1, σ2, σu are the parameters estimated by the RP model.
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2.2. Hotspot Identification Methods
2.2.1. Empirical Bayes Method

The EB method estimates the safety of a site by combining the weighted average of the
observed crash count of that site with the expected crashes of similar sites, where the weight
is determined by the variance in estimating the expected crashes of the reference sites. It
follows that the safety of a site is influenced by common measurable factors that are shared
with a corresponding reference population (typically represented in the safety performance
function) as well as unique characteristics specific to the site, which are reflected through
its crash history [26]. Mathematically, the EB estimation is obtained using the following
formula [15]:

Nexpected = w × Npredicted + (1 − w)× Nobserved, (9)

where Nexpected = expected average crashes, w = weighting adjustment for SPF prediction,
Npredicted = predicted average crash frequency (SPF), and Nobserved = observed crash frequency.

According to Equation (9), different weights are assigned to the predicted and observed
number of crashes when estimating the expected ones. The predicted crash frequency
is obtained from the crash prediction model. Once the predicted number of crashes is
obtained from the estimated model, Equation (9) is used to compute the EB estimates for
the expected number of crashes. The observed number of crashes indicates the number
of recorded crashes at the given site for the same analysis period. The weight (w) for the
predicted number of crashes is calculated using Equation (10).

w =
1

1 + k × ∑all study years Npredicted
, (10)

where w = weight for predicted number of crashes in the EB equation, k = overdispersion
associated with the specific SPF, and Npredicted = predicted average crash frequency (SPF).

2.2.2. Potential for Safety Improvement (PSI)

In this study, another EB-based performance measure called the potential for safety
improvement (PSI) (or excess empirical Bayesian (EEB) method) was also utilised to identify
hotspots. The PSI is an effective performance measure to identify the potential sites
experiencing more crashes than others with similar characteristics [53]. This method
ranks dangerous sites according to their potential for safety improvements. It measures the
difference between each site’s expected and predicted crash counts. Equation (11) illustrates
the calculations of the PSIs:

PSI = Nexpected − Npredicted, (11)

where Nexpected is the expected number of crashes and Npredicted is the predicted number
of crashes. The calculated PSIs were ranked for all the segments [19]. The greater a site’s
PSI, the more likely improvement will reduce the number of vehicle crashes for that site.
In other words, the higher PSI values at a location indicate an increased priority for safety
improvements. Furthermore, if the PSI value of the segment was greater than zero, the unit
was considered hazardous. Conversely, the unit was considered safe if the value was less
than zero.

2.3. Evaluation of HSID Methods

The HSID performance of the EB and PSI methods for VDPNB and RPNB models
was evaluated using three generalised criteria (i.e., high crashes consistency test (HCCT),
common sites consistency test (CSCT), and absolute rank differences test (ARDT)) proposed
by Guo et al. [31]. All these tests utilise the crash estimates obtained from given models
to identify potential hotspots. Analysts arrange the roadway entities in the descending
order of crash estimates and fix certain threshold(s) to identify “τ” top hazardous sites, e.g.,
τ = 2.5%, 5.0%, and 10.0% means top 2.5%, 5.0%, and 10.0% high-risk sites of total sites



Sustainability 2024, 16, 1537 9 of 22

(n) selected for HSID performance comparison and evaluation [21]. Those tests require
the crash data collection period to be divided into at least two observation periods (also
called subperiods/evaluation periods): the initial subperiod and the subsequent/following
subperiod. The consistency of sites identified as hotspots and the methods in the initial
and subsequent subperiods are then checked to evaluate the best models. While details
about those tests can be found in Guo et al. [31], they are briefly introduced here.

The HCCT focuses on how consistently an HSID method captures the high-risk sites
associated with high crash counts [31]. The mathematical expression to calculate the test
score for the HCCT is given by the following:

HCCTm =
∑

d= f
d=i+1

[
∑

j=τn
j=1 Csj ,P=d

]
f−i

for Sjϵ
{

S1

∣∣∣ŷm(n) , S2

∣∣∣ŷm(n−1) . . . ., Sτn

∣∣∣ŷm(n−τn+1)

}
P=i,

,

i ∈ {1, 2, . . . , f − 1}, m ∈ {1, 2, . . .},

(12)

where HCCTm represents the HCCT score obtained for method/model ‘m’, Sj belongs to
the set of identified high-risk sites when the estimated crash rates or means ŷ are arranged
in descending order during the initial period (i.e., P = i), and Csj ,P=d is the crash count
corresponding to the identified high-risk site Sj at a future observation period (i.e., P = d).
The term P is an index representing the observation period that starts with i and ends with
f, where i is the index for the initial observation period, which can take any value between
period one and period f-1, and d represents an index for the future observation period,
which can be any period between i+1 and f periods. The term “n” is the total number of
sites while j is the count of high-risk sites, from 1 to τn, where τ is the threshold of identified
high-risk sites within the total n sites, and m represents the target HSID methods/models.
The higher the score of an HSID method on the HCCT, the better its HSID performance [31].

To measure the consistency of high-risk sites identified by an HSID method over
multiple periods, Guo et al. [31] proposed the CSCT. The CSCT evaluates an HSID method
by consistently identifying some common sites as high-risk sites over the prior and later
periods. Initially, a set of high-risk sites per evaluation period based on the estimates of
each HSID method is identified, and then common sites among these sets are selected.
In the last step, the number of common sites contained within each set is counted (i.e.,
cardinality). To evaluate different HSID methods, the CSCT compares the cardinalities
among all methods and selects the one with the highest value. The CSCT score is calculated
using the mathematical expression below:

CSCTm =
∑

d= f
d=i+1|{S1,S2,.....Sτn}P=i ∩{K1,K2,....,Kτn}P=d

∣∣∣
f−1

for
{

S1

∣∣∣ŷm(n) , S2

∣∣∣ŷm(n−1) , . . . , Sτn

∣∣∣ŷm(n−τn+1)

}
P=i

,{
K1

∣∣∣ŷm(n) , K2

∣∣∣ŷm(n−1) , . . . , Kτn

∣∣∣ŷm(n−τn+1)

}
P=d

,

i ∈ {1, 2, . . . , f − 1}, m ∈ {1, 2, . . .},

(13)

where CSCTm represents the score of the CSCT for method m, {S1, S2, . . . ..Sτn}P=i or{
S1

∣∣∣ ŷm(n) , S2

∣∣∣ ŷm(n−1) , . . . , Sνn

∣∣∣ŷm(n−τn+1)

}
P=i

denotes the set of the identified high-risk
sites obtained by ordering the estimated crash rates or means ŷ during the initial period (i.e.,
P = i), and {K1, K2, . . . ., Kτn}P=d or

{
K1

∣∣∣ŷm(n) , K2

∣∣∣ŷm(n−1) , . . . , Kτn

∣∣∣ŷm(n−τn+1)

}
P=d

denotes
the second set of identified high-risk sites obtained as a result of ordering the estimated
crash rates or means ŷ in some future observation period (i.e., P = d). All other indices (P,
i, f, d) and terms (n, m, and τ) carry the same meanings as those defined for the HCCT.
Moreover, the vertical bars denote the cardinality of all sites. According to Guo et al. [31], a
higher score on the CSCT test indicates a better HSID method performance.
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The ARDT is employed to check HSID methods’ ability to rank sites steadily by
summing the absolute rank differences (regardless of whether differences are positive or
negative) over multiple periods. In the ARDT, analysts first identify the ranks of different
sites with their associated IDs for an initial period by an HSID method. Next, the ranks
of those sites in future periods are determined using identical IDs. An absolute difference
between the ranks in the two periods is calculated and summed for all identified sites. In
the final step, the performance of the HSID methods is assessed by comparing the mean
of these summations across all absolute rank differences. Mathematically, the score of the
ARDT is calculated by the following:

ARDTm =
∑

d= f
d=i+1

[
∑

j=τn
j=1 abs(j−R(Kl |Kl=Sj))

]
f−1

for Sjϵ
{

S1

∣∣∣ŷm(n) , S2

∣∣∣ŷm(n−1) . . . , Sτn

∣∣∣ŷm(n−τn+1)

}
P=i,

Klϵ
{

K1

∣∣∣ŷm(n) , K2

∣∣∣ŷm(n−1) . . . ., Kτn

∣∣∣ŷm(n−τn+1) , . . . Kn

∣∣∣ŷ(1)}P=d,

i ∈ {1, 2, . . . , f − 1}, m ∈ {1, 2, . . .},

(14)

where ARDTm denotes the ARDT score of a method m, {S1, S2, . . . ..Sτn}P=i or

Sjϵ
{

S1

∣∣∣ŷm(n) , S2

∣∣∣ŷm(n−1) . . . ., Sαn

∣∣∣ŷm(n−τn+1)

}
P=i

denotes the set of the identified high-risk
sites obtained by ordering the estimated crash rates or means ŷ during the initial period (i.e.,
p = i), and Sj belongs in this set;

{
K1

∣∣∣ŷm(n) , K2

∣∣∣ŷm(n−1) , . . . , Kτn

∣∣∣ŷm(n−τn+1) , . . . Kn

∣∣∣ŷ(1)}P=d
denotes a set of all number sites obtained as a result of ordering the estimated crash rates
or means ŷ in some future observation period (i.e., P = d) and Kl belongs in this set. All
other indices (P, i, f, d) and terms (n, m, and τ) carry the same meanings as those defined
for the HCCT and CSCT. Abs () represents the absolute value of the numbers in parenthesis,
while R denotes the rank of a site. The term Kl

∣∣Kl = Sj represents the site Kl given that the
site IDs Kl and Sj were equal. Since the ARDT evaluates the HSID methods by its ability
to identify high-risk sites consistently, a smaller value of the ARDT for a method would
indicate a better HSID performance compared to other methods.

A method or model (i.e., m) is preferred over the competitor (i.e., m′) if and only if
HCCTm > HCCTm′∈M{m}, CSCTm > CSCTm′∈M{m}, andARDTm < ARDTm′∈M{m}.

3. Data

This study utilised the data for the urban road segments of Antwerp, Belgium. Police-
reported crash data over six years were used for analysis. Crashes were divided into
all crashes, injury crashes, injury and fatal crashes, and property damage only (PDO)
crashes to estimate frequency models for each severity level. The road geometry data were
derived from the official database of the Flemish government called the Flanders Road
Register. It consisted of road width, number of lanes, road type, and pavement conditions.
Following HSM guidelines, the roadway segments were separated from intersections [7],
and homogeneous segments were defined. The original data did not contain the lane
width variable. Using the definition as in Hauer [54], it was computed as the width from
curb to curb or an edge-line to edge-line of a roadway segment (correcting for drains if
present) divided by the number of lanes in that segment. The on-street parking data (i.e.,
the presence, arrangement, and type of parking) were obtained from the road marking
database and verified via Google Maps. Lantis, a mobility company responsible for traffic
operations in Antwerp, provided the traffic flow data for the study period. The crash, traffic,
and roadway data were combined for model estimation using an open-source geographical
information system application package QGIS.

The total length of the road network used in the current study was 268.80 km, divided
into 2467 homogeneous road segments. Only roadway segments with known traffic data
were selected for modelling. The segments with missing or erroneous data were removed
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from the final database. Similarly, crashes on the road segments were used for the analysis,
while crashes on or within the intersection influence area were removed.

Table 1 shows a descriptive summary of the variables used to estimate the crash pre-
diction models. It also provides the descriptive summary of the crash data aggregated into
three subperiods (P1: 2010–2011, P2: 2012–2013, P3: 2014–2015) for the HSID performance
evaluation tests of the estimated models, as discussed in Sections 2.3 and 4.2.

Table 1. Descriptive statistics of the dataset for the urban roads of Antwerp.

Traffic and Road Segment Variables

Variables Minimum Maximum Mean Std. Dev.

AADT (veh/day) 22 42,783 4842 6543
Segment length (km) 0.06 1.557 0.109 0.104

Lane width (m) 2.50 5.00 3.51 0.50
No. of Lanes 1 1 = 749, 2 = 1054, 3 = 664
Parking Type 2 0 = 738 sites, 1 = 1565 sites, 2 = 164 sites

Parking Arrangement 3 0 = 740 sites, 1 = 719 sites, 2 = 949 sites, 3 = 59 sites

Crash Frequency

Minimum Maximum Mean Std. Dev.

All crashes 4 (six years: 2010–2015) 0 90 7.52 10.28
(P1: 2010–2011) 0 28 2.38 3.078
(P2: 2012–2013) 0 33 2.58 3.290
(P3: 2014–2015) 0 19 2.16 2.761

Fatal and injury crashes (six years: 2010–2015) 0 44 2.01 4.421
(P1: 2010–2011) 0 12 0.58 1.222
(P2: 2012–2013) 0 14 0.66 1.302
(P3: 2014–2015) 0 10 0.57 1.132

Injury crashes (six years: 2010–2015) 0 43 1.99 4.402
(P1: 2010–2011) 0 12 0.65 1.339
(P2: 2012–2013) 0 11 0.70 1.344
(P3: 2014–2015) 0 10 0.65 1.177

PDO crashes (six years: 2010–2015) 0 67 5.51 6.937
(P1: 2010–2011) 0 20 1.85 2.499
(P2: 2012–2013) 0 22 1.99 2.577
(P3: 2014–2015) 0 15 1.65 2.099

1 1 = one lane, 2 = two lanes, 3 = three or more lanes; 2 0 = no parking, 1 = parallel parking, 2 = others (perpendicular,
angled, and mixed parking); 3 0 = no parking, 1 = one-sided parking, 2 = two-sided parking, 3 = others (three-sided
and four-sided parking in case of divided roads); 4 = six-year crash data divided into three subperiods indicating
different data aggregations for assessing the HSID performance.

4. Results

This paper used only 75% of the data to estimate crash predictive models for HSID.
The remaining 25% of the data was utilised for the performance evaluation of alternative
HSID methods. The explanatory variables consisted of exposure (i.e., traffic volume and
segment length), roadway cross-section (i.e., lane width and the number of lanes), and
on-street parking (i.e., parking type and parking arrangement). The number of lanes,
parking type, and parking arrangement were categorical variables, while others were scale
variables. Before modelling, multicollinearity diagnosis was performed using the variance
inflation factor (VIF) [55]. The parking arrangement variable resulted in multicollinearity
and thus was eliminated from the modelling process.

4.1. Crash Prediction Models

Table 2 provides the coefficient estimates of the two derivatives of NB models, that is,
the varying dispersion parameter negative binomial model (VDPNB) and random param-
eter negative binomial model (RPNB) for different crash severity levels. The confidence
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level for retaining variables in the model was 95%. Following Tang et al. [37], the random
parameters were determined through 200 Halton draws.

Table 2. Estimated coefficients for the varying dispersion parameter negative binomial (VDPNB) and
random parameter negative binomial (RPNB) models.

All
Crashes

PDO
Crashes

Injury
Crashes

Injury and
Fatal Crashes

Coef. 1

(Std. Err.)
Coef.

(Std. Err.)
Coef.

(Std. Err.)
Coef.

(Std. Err.)

(a). VDPNB

Intercept 1.513 ***
(0.251)

1.940 ***
(0.250)

−1.883 ***
(0.405)

−1.814 ***
(0.394)

Seg. Length 0.641 ***
(0.034)

0.673 ***
(0.018)

0.585 ***
(0.050)

0.608 ***
(0.049)

Traffic Vol. 0.293 ***
(0.018)

0.246 ***
(0.034)

0.522 ***
(0.029)

0.538 ***
(0.029)

No. of Lanes
Two lanes vs. one lane −0.260 ***

(0.061)
−0.361 ***

(0.061) - -

Three or more lanes vs. one lane −0.166 **
(0.083)

−0.343 ***
(0.085) - -

Lane width −0.125 ***
0.047

−0.204 ***
0.049

−0.145 *
(0.075)

−0.156 **
(0.074)

Parking Type
Parallel parking vs. no parking 0.371 ***

(0.055)
0.476 ***
(0.056)

0.127 *
(0.072)

0.084 **
(0.073)

Other parking types 2 vs. no parking 0.549 **
(0.095)

0.796 ***
(0.101)

0.013
(0.130)

0.070
(0.120)

Dispersion parameter

Intercept 0.397
(0.584)

0.116
(0.622)

2.096 **
0.991

2.202 **
(0.973)

Seg. Length 0.140 **
(0.070)

0.324 ***
(0.075)

0.254 **
(0.111)

0.239 **
(0.108)

AADT −0.180 ***
(0.040)

−0.094 **
(0.043)

−0.265 ***
(0.071)

−0.347 ***
(0.067)

No. of Lanes
Two lanes vs. one lane 0.511 ***

(0.154)
0.511 ***
(0.166) - -

Three or more lanes vs. one lane 0.892 ***
(0.188)

0.847 ***
(0.201) - -

Parking Type
Parallel parking vs. no parking −0.546 ***

(0.111)
−0.601 ***

(0.119)
−0.679 ***

(0.154)
−0.718 ***

(0.155)
Other parking types vs. no parking −0.359 *

(0.188)
−0.218 *
(0.194)

−0.938 **
(0.381)

−1.302 **
(0.418)

Log-likelihood −5373.247 −4918.777 −3031.631 −3047.820
AIC 10,770.500 9861.600 6087.300 6119.600

(b). RPNB Model

Intercept 1.463 ***
(0.228)

1.637 ***
(0.231)

−2.159 ***
(0.346)

−2.156 ***
(0.349)

SD of intercept 0.194 *
(0.018)

0.017 *
(0.018)

0.022 *
(0.026)

0.064 **
(0.026)

Seg. Length 0.656 ***
(0.026)

0.657 ***
(0.027)

0.529 ***
(0.040)

0.522 ***
(0.040)
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Table 2. Cont.

All
Crashes

PDO
Crashes

Injury
Crashes

Injury and
Fatal Crashes

Coef. 1

(Std. Err.)
Coef.

(Std. Err.)
Coef.

(Std. Err.)
Coef.

(Std. Err.)

AADT 0.300 ***
(0.015)

0.241 ***
(0.016)

0.553 ***
(0.025)

0.549 ***
(0.025)

SD of AADT 0.027 ***
(0.002)

0.046 ***
(0.002)

0.009 ***
(0.003)

0.010 ***
(0.003)

No. of Lanes
Two lanes vs. one lane −0.317 ***

(0.062)
−0.399 ***

(0.062) - -

Three or more lanes vs. one lane −0.283 **
(0.075)

−0.369 ***
(0.077) - -

Lane width −0.205 ***
(0.047)

−0.221 ***
(0.047)

−0.211 ***
(0.071)

−0.200 ***
(0.072)

SD of lane width 0.014 ***
(0.005)

0.019 ***
(0.005)

0.123 ***
(0.007)

0.114 ***
(0.007)

Parking Type
Parallel parking vs. no parking 0.472 ***

(0.045)
0.611 **
(0.046)

0.181 ***
(0.061)

0.162 ***
(0.062)

Other parking types vs. no parking 0.623 **
(0.077)

0.842 ***
(0.078) - -

Dispersion parameter 2.233 ***
(0.102)

2.361 ***
(0.121)

2.054 **
(0.171)

1.953 **
(0.158)

Log-likelihood −5216.016 −4738.422 −2958.796 −2987.567
AIC 10,464.030 9508.844 5949.591 6007.135

The estimates’ means and standard errors (in parentheses) are used to sum up the results.; 1 ***: p < 0.01,
**: p < 0.05, *: p < 0.1, and the number in the parenthesis shows the standard error.; 2 other parking types include
perpendicular, angle, and mixed parking settings.

Both models produced coefficient estimates that indicate plausible signs and direc-
tion. For instance, the coefficient estimates of the significant variables are similar in the
two different regression models for each crash severity level. However, the magnitude
of the estimated coefficients for predictor variables varies across different severity lev-
els. This observation supports estimating separate models for different severity levels,
acknowledging potential differences in crash-contributing factors across these levels.

Traffic volume, segment length, lane width, number of lanes, and parking types were
significant variables in both models for all crashes and PDO crashes. For injury crashes
and injury and fatal crashes, all variables were significant in the VDPNB model except the
number of lanes. Moreover, in the RPNB model, the standard deviations of two parameters
(traffic volume and lane width) significantly differed from zero. Thus, they were estimated
as random parameters.

The crash frequency is positively associated with the traffic variable and segment
length for all crash severity levels in the developed models, meaning that an increased
traffic volume will result in a higher expected crash frequency. However, it is noteworthy
that the resulting increase in expected crash frequency is not uniform across severity levels.
The variable ‘number of lanes’ shows an interesting association with the crash frequency.
It has a significant negative relationship with all crashes and PDO crashes, but it is an
insignificant predictor of injury crashes and injury and fatal crashes. The lane width shows
a significant negative association with crash frequency for all severity levels and both model
types. The negative impact is the highest for PDO crashes. Parking type is a significant
predictor for all crashes and PDO crashes. However, for injury crashes and injury and fatal
crashes, only one parking type (i.e., parallel parking) is significant.

Table 2 also provides the results for the overdispersion parameter estimated as a
function of various predictor variables in the VDPNB models. It shows that the segment
length positively correlates with dispersion in all models. At the same time, traffic volume
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negatively affects the dispersion parameter, similar to Khodadadi et al. [43]. The number of
lanes is another significant predictor of the dispersion in the data, only for all and PDO
crashes. The nature of the relationship is positive. The number of lanes is insignificant for
injury and injury and fatal crashes. The lane width is not associated with dispersion in any
model. Parking type and dispersion in the data have a significant negative association for all
models except the PDO crash model’s perpendicular, angled, and mixed parking variables.

Before comparing the hotspot identification performance, the developed models were
examined for the goodness of fit via log-likelihood, AIC, and cumulative residual (CURE)
plots. The smaller the log-likelihood and AIC values, the better the model performance.
The CURE plots are tools used to assess the performance of different models visually and
objectively. According to Hauer [15], when residual plots closely oscillate around the zero
line, it indicates a better model fit to the data. Moreover, the CURE plots for unbiased SPF
typically fall within the boundaries of two standard deviations.

The CURE plots indicated that RPNB models outperformed VDPNB models across all
severity levels as the obtained estimates oscillated closely to the zero line for RPNB models.
These results are consistent with findings from the likelihood and AIC values. In addition,
most estimates were clustered on the left side, which was anticipated due to the low traffic
volume of many road segments. In general, the CURE plots remained within two standard
deviations for most AADT values except for the extreme right ends of the plots. Figure 1
presents the CURE plots for VDPNB and RPNB models by crash severity.

4.2. Hotspot Identification Comparison

Tables 3–5 show the results for HCCT, CSCT, and ARDT, respectively, which compare
the HSID performance of the EB and PSI estimates for VDPNB and RPNB models for total,
PDO, injury, and injury and fatal crashes. To find hotspots, the road segments were ranked
by the level of risk (i.e., EB estimate and PSI measure) they were characterised by, and
those with the highest risk were considered hotspots. The current study assessed the HSID
performance for the top 2.5%, 5.0%, 7.5%, and 10.0% sites. The higher the values for HCCT
and CSCT scores and the lower the values for ARDT, the better the HSID performance of
the given method.

Guo et al. [31] advised to divide the data into at least two subperiods for more
accurate evaluation. This allows us to check whether the performance of the given HSID
method changes between the initial and the subsequent periods. However, Guo et al. [31]
further noticed that the aggregation of crash data into only two subperiods may only
be suboptimal in terms of the accuracy of the performance evaluation of HSID methods.
Therefore, analysts should consider more than two subperiods. This study computes the
HSID performance comparison criteria scores for more than two subperiods. Therefore, we
divided six-year crash data into three different subperiods, each with two years (i.e., P1:
2010–11, P2: 2012–13, P3: 2014–15). In addition, test scores were computed for two different
setups to confirm the robustness of the results, with one setup using P1 as the first period
and P2 and P3 as the subsequent periods. Another setup used P2 as the initial period and
P3 as the subsequent period. Please refer to Guo et al. (2020) for more information about
subperiods [31].

It is shown in Table 3 that from the point of view of the HCCT, the best-performing
method of the two (i.e., EB and PSI) was the EB estimates for both RPNB and VDPNB
models in ranking the top 2.5%, 5.0%, 7.5%, and 10.0% hazardous sites. Moreover, RPNB
models outperformed the VDPNB models when HCCT evaluated the EB estimates for
these two modelling frameworks. These results apply to both setups (i.e., (a. (P1 *, P2,
P3) and b. (P2 *, P3)), where a period with the asterisk denotes the initial period in each
target setting). For example, for all crashes, the EB method for RPNB models provides the
highest scores for the HCCT in identifying hotspots compared to the EB estimates of the
VDPNB model. The results for PDO, injury, and injury and fatal crashes also confirmed
that EB estimates for the RPNB model provide better hotspot identification performance
than other estimates. Among the two modelling frameworks (i.e., VDPNB and RPNB)
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and HSID methods (i.e., EB and PSI), the PSI estimates for VDPNB models resulted in low
scores on HCCT, indicating the worst performance.
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Figure 1. Cumulative residual (CURE) plots for VDPNB and RPNB models.
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Table 3. HCCT performance of EB and PSI methods for VDPNB and RPNB models.

HCCT
VDPNB RPNB VDPNB RPNB

EB PSI EB PSI EB PSI EB PSI

P1 *, P2–P3 P2 *, P3

All crashes
τ = 2.5% 172 153 184 164 170 163 196 180
τ = 5.0% 304 267 326 290 294 278 310 289
τ = 7.5% 433 349 430 398 392 355 401 373
τ = 10.0% 516 448 520 477 451 416 477 442

PDO crashes
τ = 2.5% 125 97 136 134 113 89 120 131
τ = 5.0% 192 147 201 195 186 144 186 186
τ = 7.5% 254 199 263 244 234 183 246 234
τ = 10.0% 302 228 319 311 282 210 298 281

Injury crashes
τ = 2.5% 64 82 83 58 67 74 83 65
τ = 5.0% 121 120 131 98 106 100 122 102
τ = 7.5% 149 139 170 118 131 125 145 112
τ = 10.0% 178 153 197 136 156 142 169 133

Injury and fatal crashes
τ = 2.5% 55 43 63 59 59 54 68 61
τ = 5.0% 94 71 111 85 90 77 105 82
τ = 7.5% 125 91 133 114 116 92 125 99
τ = 10.0% 137 103 161 129 132 101 147 109

*: initial period: P#: period # (i.e., P1: period 1).

Table 4. CSCT performance of EB and PSI methods for VDPNB and RPNB models.

CSCT
VDPNB RPNB VDPNB RPNB

EB PSI EB PSI EB PSI EB PSI

P1 *, P2–P3 P2 *, P3

All crashes
τ = 2.5% 9 5 10 6 10 9 12 11
τ = 5.0% 18 14 21 18 18 18 23 19
τ = 7.5% 32 23 34 28 31 27 33 29
τ = 10.0% 44 32 49 36 43 31 45 34

PDO crashes
τ = 2.5% 7 5 9 7 10 7 9 8
τ = 5.0% 15 10 17 14 15 9 17 14
τ = 7.5% 20 15 25 18 18 20 28 19
τ = 10.0% 26 19 34 26 27 24 35 24

Injury crashes
τ = 2.5% 5 4 9 6 9 5 9 5
τ = 5.0% 16 11 24 12 18 10 24 14
τ = 7.5% 29 16 37 16 24 16 36 18
τ = 10.0% 39 19 48 20 37 25 49 26

Injury and fatal crashes
τ = 2.5% 5 3 10 5 8 5 11 6
τ = 5.0% 15 9 26 10 14 8 23 11
τ = 7.5% 27 12 37 17 25 16 37 19
τ = 10.0% 31 18 51 23 30 22 48 26

*: initial period: P#: period # (i.e., P1: period 1).
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Table 5. ARDT performance of EB and PSI methods for VDPNB and RPNB models.

ARDT
VDPNB RPNB VDPNB RPNB

EB PSI EB PSI EB PSI EB PSI

P1 *, P2–P3 P2 *, P3

All crashes
τ = 2.5% 224 996 268 821 246 1135 394 1150
τ = 5.0% 436 2578 754 2321 549 2447 690 2623
τ = 7.5% 835 4936 1237 4932 834 4711 1848 4952
τ = 10.0% 1402 6405 2404 6569 1369 7603 2833 6964

PDO crashes
τ = 2.5% 452 7528 911 1402 691 1431 793 1796
τ = 5.0% 1242 12,748 2241 3363 1246 1038 1737 3319
τ = 7.5% 2153 18,420 5464 3876 1963 3316 3876 5726
τ = 10.0% 3012 24,155 5469 8318 3015 4211 5487 8218

Injury crashes
τ = 2.5% 164 3695 640 3350 147 2320 286 2472
τ = 5.0% 432 6674 1238 6660 297 5265 979 6176
τ = 7.5% 714 10,233 2357 9378 612 8829 2602 10,155
τ = 10.0% 1096 13,915 2894 13,995 1058 12,275 3386 13,266

Injury and fatal crashes
τ = 2.5% 167 3284 510 786 144 2681 510 876
τ = 5.0% 332 7539 1528 2836 311 6410 1528 2967
τ = 7.5% 604 11,111 2857 4415 754 8986 2857 5260
τ = 10.0% 1019 15,152 4315 7297 1097 11,301 4315 8394

*: initial period: P#: period # (i.e., P1: period 1).

Similarly, the scores on the CSCT showed that EB estimates perform better than the
corresponding PSI estimates in identifying the top 2.5%, 5.0%, 7.5%, and 10.0% of hotspots
for both RPNB and VDPNB models (Table 4). Comparing the EB estimates for VDPNB
and RPNB models, the scores of the CSCT favoured the RPNB model for all crash severity
levels. Among the two modelling frameworks (i.e., VDPNB and RPNB) and HSID methods
(i.e., EB and PSI), the PSI estimates for VDPNB models resulted in low scores on CSCT,
indicating the worst performance.

Table 5 illustrates the performance analysis based on ARDT. Like the HCCT and
CSCT, the EB method outperformed the PSI method on ARDT in both comparison periods.
However, the comparison of the performance of the EB method for VDPNB and RPNB
models revealed that the former performed better than the latter (i.e., lowest values of
the EB method have resulted for VDPNB model in both setups (i.e., (a. (P1 *, P2, P3)
and b. (P2 *, P3)) for the top 2.5%, 5.0%, 7.5%, and 10.0% of hotspots). Among the two
modelling frameworks (i.e., VDPNB and RPNB) and HSID methods (i.e., EB and PSI),
the PSI estimates for VDPNB resulted in extremely high scores on ARDT in most cases,
indicating the worst performance.

To summarise, with only a few exceptions to the general trend, it could be safely
concluded that the EB method outperforms the PSI in the HSID for all crash severity levels
studied in this paper.

5. Discussion

Identification of crash hotspots based on statistical modelling-based approaches, such
as the EB or PSI methods, requires analysts to choose the model specification that best
handles the heterogeneity associated with the crash data. While the traditional NB model
can effectively approximate the underlying crash occurrences, it has certain limitations [17].
Therefore, more flexible models are recommended since overdispersion in crash data can
arise from various sources and is unknown to analysts. The above results evaluate the
hotspot identification performance of the EB and PSI estimates obtained for the VDPNB
and RPNB models. However, we briefly discuss the modelling results before discussing
HSID results, following Lord and Park [44], who indicated that it is vital for transportation
safety analysts to understand the structure of the mean function. Thus, the first part of this



Sustainability 2024, 16, 1537 18 of 22

section discusses the relationship between covariates and crash frequency. The second part
is more focused on discussing the HSID performance of the EB and PSI methods for the
VDPNB model with the RPNB model.

The data modelling revealed a positive association between crash frequency and
exposure variables (i.e., traffic volume and segment length). This was not surprising as
an increase in the number of vehicles on roadways increases the risk of conflicts, which
are converted into actual collisions in a few instances. With the unchanging design and
monotonous traffic conditions, drivers tend to speed more on longer homogenous segments.
Given the acknowledged association between speed and the risk of crash involvement [56],
this might lead to more collisions when the segments are long. The coefficients of traffic
volume in injury and injury and fatal crash models were higher than those in PDO and all
crash models. This is somewhat counterintuitive and needs further explanation. Antwerp
is in Flanders, a Belgian region with the highest proportion of people who commute to work
by bike (around 17%). Antwerp is also one of the region’s most bike-friendly cities, with a
large proportion of people (around 29%) who use bikes to commute [57]. The higher the
proportion of cyclists in traffic, the higher the exposure to crash risk and, thus, the higher
the number of crashes involving cyclists. It has been a fact that vulnerable road users,
including cyclists, are more involved in severe injury crashes than motorists. For instance,
only in the European Union do vulnerable road users form about 46% of all traffic fatalities
and 53% of all seriously injured crash victims [58]. Thus, the higher presence of cyclists
in traffic could result in more severe injury crashes. This effect was captured by higher
coefficients for traffic volume in the estimated injury and injury and fatal crash models.

The lane width was found to have a significant adverse effect on the crash frequency,
indicating improved road safety due to wider lanes. Mohammed [59] attempted to explain
this association and argued that it makes sense to assume that wider lanes improve safety
because they provide an additional space and time threshold that allows drivers to take
corrective actions and avoid collision compared to narrower lanes.

The number of lanes was a significant predictor of crash frequency only in all crash
and PDO crash models. The nature of the association was negative, meaning a decrease
in crash frequency as the number of lanes increased. This finding surprised us since it
contradicts other studies, for instance, Noland and Oh [60]. A potential reason could be
that an additional lane decreases the traffic density on the roadways, contributing to more
safety, particularly for PDO crashes. Also, an additional lane(s), similar to a wider lane,
provides the driver extra space and time to take corrective action.

Parking type (including parallel, perpendicular, angle, and mixed parking) was a
significant predictor of crash frequency in all and PDO crash models. However, only
parallel parking was significant in the case of injury crashes and injury and fatal crash
models, while other parking types were insignificant. It was observed that the association
was not uniform across different parking types and models. All and PDO crashes increased
more for other types of parking than parallel parking. In contrast, injury and injury and
fatal crashes were more prevalent in the case of parallel parking. This could be explained
by the fact that when drivers encounter complex parking designs, e.g., perpendicular,
angle, or mixed, they drive cautiously and relatively slower, which helps them avoid
severe crashes. However, this cautious behaviour appeared less effective in avoiding
the PDO crashes and, subsequently, all crashes. In addition, perpendicular and angle
parking provide greater separation (buffer zone) between the vehicles and vulnerable road
users compared to parallel parking or no parking, which could be another reason for less
severe crashes in the case of perpendicular, angle, or mixed parking settings and more
injury crashes in case of parallel parking. These results can interest policymakers because
higher injury severity crashes often lead to higher social costs [56], and minimizing those
crashes will have economic advantages to society and help improve the sustainability of
the transportation system.

The developed VDPNB models provided crucial information about the sources of the
overdispersion in the data. Characterizing the dispersion parameter as a function of the
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covariates helped account for the extra variation in the data. The results suggested that
all predictor variables except the lane width influence the overdispersion parameter. This
was a preconceived outcome as the descriptive analysis (Table 1) provided clues about
overdispersion in the data. For instance, there was an abundance of shorter homogenous
segments in the data, probably because of the urban context and the studied road class,
i.e., the accessibility objective of the local roads. According to Cafiso et al. [42], dispersion
parameter variation matters more in shorter segments than in longer ones. In another
instance, a little over 1550 of 2467 segments in the dataset had parallel parking, while only
164 had other parking categories. The excessive presence of parallel parking in the study
area may have significantly contributed to this overdispersion. Similar trends were also
observed for the number of lanes.

The estimated models were used to compute the EB estimates and PSI, which were
tested for the HSID performance using three generalised criteria (i.e., HCCT, CSCT, and
ARDT). The CSCT measured how well the methods could consistently identify sites with
poor safety performance over time. The HCCT evaluated the methods for the number of
the same hotspots identified in subsequent periods. These tests established that the EB
estimates for the RPNB model (except for ARDT) outperformed the PSI estimates for the
RPNB and VDPNB models and the corresponding EB estimates for the VDPNB model. A
solid theoretical basis supports this because the EB method takes advantage of the observed
and predicted values in its statistics, which in turn increases the reliability of its results and
thus improves the precision of safety estimation. Moreover, the EB method also corrects for
regression to the mean bias. All these characteristics of the EB method for estimating the
safety of the highway network sites allow for the identification of the relative contributions
of random variation, general factors, and local factors to the observed number of crashes. In
practice, the EB method proved its efficiency in the current and other studies [10,12,19,22].
The PSI methods, on the other hand, seem to be reasonably inconsistent in most cases
as opposed to the findings by Li and Wang [19]. The PSI method is primarily affected
by the predicted value and, consequently, the validity of the developed crash prediction
model. As crashes’ predicted value increases, a site’s likelihood of being selected as a
hotspot increases.

This study has some limitations. For example, while interpreting those results, it
should be noted that the current study did not explore its different possible parametrisation
or functional forms while estimating the dispersion parameter as a function of different
variables in the VDPNB models. Thus, we could not comment on the most appropriate
parametrisation of the dispersion parameter for the current data and, hence, the conse-
quent HSID results. Nevertheless, the results for the HSID favoured the EB estimates
compared to the PSI in general, thereby confirming the findings of many past studies. In
this study, different levels of severity were investigated (i.e., all, PDO, injury, and injury
and fatal). However, different crash types (e.g., angle, head-on, rear-end, and sideswipe)
could be considered in future studies. Furthermore, future studies could reproduce this
type of analysis for other road facilities (e.g., intersections) and other road types (e.g.,
rural roads or expressways). The findings of this study are based on the analysis of actual
data. Without an a priori knowledge of which sites are truly hazardous and which are
relatively safe, detecting false positives (i.e., erroneous selection of relatively safe sites as
hotspots) becomes problematic. Future research could focus on achieving more conclusive
outcomes by simulating collision data that establish which sites are hazardous in advance,
allowing for an assessment of whether the proposed method can accurately identify these
hazardous locations.

6. Conclusions

The principal aim of this paper was to evaluate the performance of two HSID methods
(i.e., EB and PSI) using the estimates obtained from two different variants of the NB model
(i.e., VDPNB and RPNB). The VDPNB models allow the dispersion parameter to vary across
observations, while in the RPNB model, the coefficient estimates of each parameter can
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vary across observations. Predictive models were developed for all crashes, PDO crashes,
injury crashes, and injury and fatal crashes. The explanatory variables included the length
of homogenous road segments, the traffic volume, the lane width, the number of lanes, and
the on-street parking type. The findings revealed significant associations between crash
frequency and site characteristics in both models. Moreover, the results also identified
an association between the dispersion parameter and site characteristics in the VDPNB
models. The VDPNB and RPNB model results were used in computing EB estimates and
PSI measures for HSID.

Three generalised criteria were used to evaluate the performance of the HSID methods
(i.e., EB estimates and PSI measures) obtained from the VDPNB and RPNB models. These
HSID performance criteria indicated stable, consistent, and robust results in identifying
the top 2.5%, 5.0%, 7.5%, and 10.0% of the hazardous sites utilizing the EB estimates of
the VDPNB and RPNB models compared to the PSI method. When the EB estimates were
compared for two variants of the NB model, the RPNB model outperformed the VDPNB
model in most cases. The reliable HSID method accurately detects the potential crash-prone
sites and consequently makes sure to use public funds related to road safety efficiently.
This ultimately leads to safer roads and improved overall safety. Additionally, inaccurately
identifying crash hotspots can lead to inefficient allocation of limited resources, putting the
effectiveness of sustainable safety interventions at risk.
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