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Abstract: Osteoarthritis (OA) poses a growing challenge for the aging population, especially in
the hip and knee joints, contributing significantly to disability and societal costs. Exploring the
integration of wearable technology, this study addresses the limitations of traditional rehabilitation
assessments in capturing real-world experiences and dynamic variations. Specifically, it focuses on
continuously monitoring physical activity in hip and knee OA patients using automated unsupervised
evaluations within the rehabilitation process. We analyzed data from 1144 patients who used a mobile
health application after surgery; the activity data were collected using the Garmin Vivofit 4. Several
parameters, such as the total number of steps per day, the peak 6-minute consecutive cadence (P6MC)
and peak 1-minute cadence (P1M), were computed and analyzed on a daily basis. The results
indicated that cadence-based measurements can effectively, and earlier, differ among patients with
hip and knee conditions, as well as in the recovery process. Comparisons based on recovery status
and type of surgery reveal distinctive trajectories, emphasizing the effectiveness of P6MC and P1M
in detecting variations earlier than total steps per day. Furthermore, cadence-based measurements
showed a lower inter-day variability (40%) compared to the total number of steps per day (80%).
Automated assessments, including P1M and P6MC, offer nuanced insights into the patients’ dynamic
activity profiles.

Keywords: wearable sensors; activity tracker; mHealth; osteoarthritis; rehabilomics; rehabilitation;
personalized care

1. Introduction

Osteoarthritis (OA) is a prominent contributor to disability and a significant driver
of societal expenditure among the older population. The prevalence of this condition is
on the rise due to a combination of factors, including an aging population and a growing
prevalence of obesity, trauma, abnormal joint morphology, developmental dysplasia of the
joint, muscle weakness of the joint, occupation (high-impact physical activity or sport),
sedentarity, etc. [1,2].

The hip and knee joints, which bear the weight of the body, are the most prominently
affected [3]. Consequently, they stand as the primary drivers of disability among the older
population. The prevalence of OA shows a consistent upward trajectory with advancing
age, affecting approximately 20% of individuals aged 60 or older [4].
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The rehabilitation process holds significant importance for patients who have been
diagnosed with hip and knee OA following total hip or knee replacement [5,6]. Historically,
the examination and management of these individuals have predominantly relied on
supervised clinical assessments conducted within controlled clinical environments [7].
Nevertheless, it is important to acknowledge that these assessments possess inherent limits
in their ability to fully capture the intricate nature of real-world experiences encountered
during the process of rehabilitation [8]. Furthermore, traditional methods evaluate data at
a specific moment, assuming the stability of parameters over time. However, the intricate
dynamics of real-life scenarios encompass physical and temporal variations throughout
the day, week, and so forth, particularly in the individual-level factors such as pain, stress,
emotion, and motivation.

The use of technology-assisted rehabilitation is gaining popularity due to its ability
to provide objective and automated assessments of patients’ motor function and therapy
adherence, incorporating factors like kinematics, activity level, muscle activity, and more [9].
Mobile health technologies, including wearable and portable sensors, are now being used
to assess mobility in unsupervised, real-world situations, offering a more patient-relevant
and ecologically valid approach compared to routine clinical tests [10]. This approach helps
overcome the limitations of traditional clinical assessments where the outcomes used in the
research study, mainly subjective evaluated by the clinicians, may not be sensitive enough
to detect subtle modifications in the patients because of low resolution and the ceiling
effect [11]. Quantitative outcomes used to validate the intervention are, most of the time,
based on clinical or laboratory assessment, which are both quite artificial situations not
reflecting the activities of daily living and the real-world evidence [10].

To address this research gap, the present study focuses on leveraging wearable technol-
ogy, particularly Garmin activity trackers, to provide continuous and objective monitoring
of physical activity in hip and knee OA patients undergoing total hip arthroplasty (THA)
and total knee arthroplasty (TKA).

The implementation of automated unsupervised evaluations signifies a substantial
shift in the approach to evaluating and providing support for patients during their rehabili-
tation process. The potential advantages are diverse, encompassing enhanced precision in
assessments; the possibility of tailored, patient-centered therapies; and heightened patient
involvement in their own rehabilitation journey [12,13]. The objective of this study was to
examine the potential of automated technology in augmenting the capacities of patients
and rehabilitation specialists.

Remote health monitoring, facilitated by non-invasive wearable sensors and modern
communication technologies, ensures patient safety at home while enabling continuous
data collection between sessions [14]. These data can detect even minor changes in a
patient’s status, providing more precise and sensitive outcomes, known as digital biomark-
ers [15]. Digital biomarkers, collected through various sensors such as accelerometers,
smartwatches, connected insoles, and smartphones, offer continuous and objective mea-
surements of biological and physiological data [16]. They can reveal disease characteristics
not easily observable in clinical settings. Digital biomarkers can be categorized as active
(supervised) or passive (unsupervised) [17].

The widespread adoption of smartphones equipped with built-in accelerometers and
gait-detection algorithms has introduced a higher level of detail in monitoring mobility
data [18]. Recent research efforts have applied accelerometry techniques to individuals
undergoing joint arthroplasty [15,19]. Given the positive impact of physical activity on
enhancing functionality, promoting bone healing, and ensuring the stability of implants,
the focus of these studies has been on tracking step count recovery [20]. This assessment
aims to determine if post-operative activity levels surpass those recorded before the surgery
and the duration required to achieve this [21].

This method capitalizes on smartphones’ ability to capture activity data in real-world
conditions, spanning a diverse range of activities [22]. However, it is crucial to recognize
that these assessments are susceptible to variations influenced by how subjects carry their
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phones [23]. Owing to technological advancements and cost reductions, the popularity
of smartwatches and activity trackers has been on the rise not only among the general
population but also for medical purposes [24]. The past research has delved into the
utilization of activity trackers to assess the physical activity levels of individuals undergoing
hip and knee arthroplasty, as well as those with osteoarthritis. The findings indicate that
arthroplasty is linked to elevated levels of physical activity compared to participants in the
end-stage arthritis phase [25].

Encouragingly, the self-administered six-minute walk test (6MWT) has exhibited
satisfactory accuracy, reproducibility, and acceptability in both healthy individuals and
those with varying degrees of congestive heart failure severity [26]. Nevertheless, the
exploration of unintentional walk testing, a method analyzing free-living physical activity
data, remains an unexplored area in the current research, despite its potential to more
accurately portray daily functional status. It has, for example, shown that individuals
in the advanced stages of knee OA exhibit diminished physical function, characterized
by a reduced intensity in walking [27]. The existing literature primarily focuses on daily
step counts and sedentary time, offering limited insights into stepping bouts or cadence
patterns. The exploration of associations between prolonged durations of higher stepping
cadence on a daily basis and clinical outcomes represents a crucial step in advancing the
understanding of optimal daily stepping recommendations in this context.

Therefore, in the present study, we investigated the use of activity tracker on quanti-
fying patient activities of daily living and follow-up. The primary objective of this study
was to examine the incorporation of unsupervised evaluations within the rehabilitation
process in order to obtain a more multidimensional evaluation of the patient’s progres-
sion throughout their recovery trajectory, taking into account the dynamic obstacles they
encounter throughout their reintegration into their regular routines.

This study proposes the incorporation of automated unsupervised assessments as
an essential element in the rehabilitation process for persons after hip and knee replace-
ment. The development of this method is rooted in the need for a more patient-centered,
ecologically sound approach to rehabilitation assessments. By automatically collecting step-
per-minute data and extracting key parameters such as cadence, the study aims to offer a nu-
anced understanding of patients’ dynamic activity profiles during the rehabilitation process.

2. Materials and Methods
2.1. Data Source

We conducted a retrospective observational study using anonymized depersonalized
data. A cohort of 1144 patients who underwent elective total knee and hip arthroplasty was
selected from a population of 1339 patients. The patients were included in the study if they
used the digital application for at least 6 weeks after surgery and completed their patient
reported outcome measures preoperatively. Specifically, 82,189 days of activities were
recorded and analyzed. Each patient provided written informed consent for the scientific
use of their anonymized data.

2.2. Recording Device and Outcomes

Data collection occurred through the use of the moveUP® application, a registered
medical device based in Brussels, Belgium. Functioning as a smart virtual platform, this
application is tailored for digital monitoring and incorporates a combination of both
objective and subjective patient data. Comprising a patient-facing mobile application and a
web-based dashboard, it serves as a comprehensive tool for both patients and healthcare
providers. The database comprises data from patients who underwent hip and knee
arthroplasty across Belgium, France, and the Netherlands. This application operates on
a smart virtual platform designed for digital monitoring, utilizing both objective and
subjective patient data. The platform consists of two main components: a patient-facing
mobile application and a web-based dashboard utilized by the care provider. The objective
data were collected using a commercial activity tracker (Garmin Vivofit 4 (Garmin Ltd.,
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Olathe, KS, USA)) worn 24/7 by the patients. This device has demonstrated accuracy
in recording step counts for older adults, particularly at elevated walking speeds and
during outdoor walking activities [28]. It is noteworthy, however, that the device tends
to underestimate step counts, especially at slower walking speeds and when individuals
are engaged in indoor walking with frequent postural transitions [29]. The selection of the
Garmin Vivofit®4 for our data collection process was informed by its recognized reliability
in capturing physical activity metrics, aligning with the specific considerations highlighted
in the literature [30].

The objective data consisted of the number of steps per day and the number of steps
per minute throughout the day. Those data were collected during the rehabilitation period
for which frequent interactions are occurring between the patient and care providers (Time
in system—Table 1). The clinical data and patient-reported outcomes were also measured
outside of the rehabilitation period. The patient-reported outcomes included the Oxford
Knee Score, Forgotten Joint Score (FJS), Hip Osteoarthritis Outcome score (KOOS), Knee
Osteoarthritis Outcome score (KOOS), UCLA Activity Scale (UCLA), and the EuroQol
5-Dimension (EQ5D).

2.3. Procedure

The preoperative parameters were first explored, as well as the impact of the de-
mographics of surgery type. Then we explored the variability of the activity parameters
throughout the recovery process by assessing the intraweek variability.

To explore the impact of quick or slow recovery trajectories on activity data, we used
the JFS Minimal Clinically Important Difference (MCID) as a threshold at 3 months to
divide the hip and knee patients into two groups: MCID achieved (MCID+) and MCID
non-achieved (MCID−). The thresholds for MCIDs are 17.5 for THA [31], 16.6 for TKA [32],
and 12.5 for unicondylar [31]. The flowchart on patient selection is presented in Figure 1.
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Finally, we investigated the impact of the type of knee surgery on activity metrics.

2.4. Data Processing

The Garmin activity tracker allows the user to collect the total number of steps each
day, but the focal point of the data collection was the step-per-minute data [33]. This
continuous stream of data was automatically stored in the moveUP mobile application via
an SDK connection, providing real-time access to the participants’ dynamic activity profiles.
To derive meaningful insights from the step-per-minute data, two key parameters were
extracted: Peak 1-minute cadence (P1M) and Peak 6-minute consecutive cadence (P6MC).
Those metrics were computed for each day of recording.

Table 1. Variable definitions.

Variable Definition

Steps Total steps accumulated in a day
P1M, cadence Steps/minute recorded for the highest minute in a day

P6MC, cadence Steps/6 min recorded for 6 consecutive minutes in a day
Light intensity, minute per week Total number of minutes at <100 steps/minute

Moderate intensity, minute per week Total number of minutes at >100 and <130 steps/minute
Vigorous intensity, minute per week Total number of minutes at >130 steps/minute

2.4.1. Peak 1-Minute Cadence (P1M)

The Garmin activity tracker allowed for the identification of the highest step count
within any given minute throughout the day [34,35]. This metric, termed the P1M, served
as an indicator of the participants’ maximal exertion or bursts of activity during their daily
routines. Peak 1-min may represent one’s ‘best natural effort’, or rather, the free-living
walking cadence of which an individual is capable. Peak-1 min cadence is highly dependent
on age, physical activity level (i.e., steps/day), physical function, and body mass index
(BMI) [33,36,37].

2.4.2. Peak 6-Minute Consecutive Cadence (P6MC)

The highest continuous activity during 6 min is detected in step data, using a sliding
6 min window with 1 min overlap [38]. The one with the largest number of steps is
chosen as the most representative in order to obtain the highest intensity reached during
6 consecutives minutes.

P6MCdaily = max

(
∑6

i=j Xi

6

)
(1)

With the first minute of day ≤ j ≤ last minute of day—6.

2.4.3. Intensity

Walking cadence is a valid proxy of physical activity intensity. Moderate intensity is
defined as activity above 3 metabolic equivalents (METs), which corresponds to a threshold
of 100 steps/min [39]. Light intensity physical activity is defined as activity between 1.6
and 2.9 METs [40]. Activities under 20 steps/min are considered as incidental movements
and are considered sedentary behavior [37]. The results were presented as the minutes
spent per week to be consistent with the World Health Organization recommendation
about the minimal level of physical activity [41].

2.4.4. Outlier Removal

To ensure the integrity and accuracy of the step-per-minute data, a rigorous outlier re-
moval process was implemented. Instances where step-per-minute data exceeded 150 were
considered outliers, as such values were deemed unrealistic for the targeted population
undergoing knee and hip arthroplasty rehabilitation. These outliers were systematically
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identified and removed from the dataset to prevent skewing of results and to maintain the
reliability of the recorded activity metrics.

2.5. Statistical Analysis

The normality of each parameter was checked using graphical methods (boxplots,
histograms and Q–Q plots). The data were presented as mean (standard deviation) or
median [p25; p75] according to the type of distribution.

To determine the most stable indicators of the gross motor function of the patients,
we assessed the intraweek variability of the parameters using the coefficient of variation
across the seven days of the week.

We analyzed the different outcomes of both knee and hip OA patients using mixed
models [42]. For each outcome, a mixed model with random intercept was used. The
values from each day were treated as repeated measures. The model equation is

Outcomei,t = β1dayt + β2recoveryt + β3(day × recovery)t + β4age + β5genderεi,t + (α + αi) (2)

With
εi,t ∼

(
0, σ2

)
(3)

αi ∼
(

0, µ2
)

(4)

where α and β1, β2, and β3 were employed as fixed effects, while εi,t was used to represent
random errors. The parameter αi was utilized to quantify the random effect. The values of
the parameters α, αi, β1:β5, and εi,t were determined using maximum likelihood estimation
(MLE) in the mixed-effects models.

Our analysis incorporated fixed effects related to recovery, days after surgery (span-
ning from 1 to 60 for hip and 1 to 90 for knee surgeries), as well as the interaction between
the two. To ensure comparability, we imposed constraints on the estimated baseline mea-
sures. This was achieved by normalizing all groups and subtracting the mean values of each
group’s first session from all subsequent sessions. Essentially, this constraint allowed for
the adjustment of baseline measurements and accommodated variations in the relationship
between baseline and follow-up scores across different sessions.

To assess the adequacy of the mixed-effects models, the following underlying assump-
tions were checked. QQ-Plot and boxplots were used to check the normality of the residuals.
To assess the homoscedasticity of the residuals, we plotted residuals against predicted
values. Finally, we examined linearity by evaluating the correlation between the predictors
and the outcome.

It is important to note that centering the explanatory variables using mean values
facilitated the direct interpretation of this effect as an intergroup effect [43].

We then computed the time, and the associated 95% confidence intervals, needed to
differentiate between the recovery status.

The statistical analyses were performed at an overall significance level of 0.05. The
statistical analyses were conducted in RStudio (version 2023.09.0) with R version 4.4.2.,
using the LME4 package to run the mixed-effect models [44].

3. Results

The details of the patient population are displayed in Table 2.
Significant differences were observed between the hip and knee population for the age,

body mass index (BMI), patients reported outcomes, and the time of using the recording
system. The age difference was 1.4 years [95%CI −2.43; −0.26], the patients undergoing
hip surgery being younger than those for total knee replacement.
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Table 2. Clinical characteristics of the patients. Results are indicated s mean (std) or median [p25;
p75] according to the distribution of the data.

Variables Overall (n = 1144) Hip (n = 683) Knee (n = 461) p-Value

Gender, female 580, 51% 348, 51% 232, 50% 0.30
Age, years 62 (10) 62 (10) 63 (10) 0.015

BMI, kg/m2 29.0 (10.6) 28.0 (11.1) 30.5 (9.7) <0.001
Type of surgery <0.001

Total 1010, 89% 665, 97% 345, 75%
Unicondylar 101, 8.9% / 101, 22%

Revision 22, 1.9% 10, 1.5% 12, 2.6%
Resurfacing 8, 0.7% 8, 1.2% /

Oxford Score 24 (8) 24 (8) 25 (8) 0.21
FJS 10 [4; 20] 10 [4; 21] 10 [4; 19] 0.19

OOS
Pain 46 (17) 45 (18) 46 (16) 0.41

Symptoms 50 (18) 47 (18) 54 (17) <0.001
ADL 48 (18) 46 (18) 50 (18) <0.001
QoL 30 (18) 31 (19) 29 (16) 0.30

Leisure and Sport 19 [5; 31] 25 [6; 38] 10 [0; 25] <0.001
UCLA 3 [2; 5] 3 [2; 5] 3 [2; 5] 0.30

Time in system, days 81 [63; 102] 76 [61; 96] 91 [65; 110] <0.001
Time in system since intervention, days 62 [50; 85] 59 [50; 69] 78 [50; 91] <0.001

FJS: Forgotten Joint Score, KOOS: Knee Injury and Osteoarthritis Outcome Score, HOOS: Knee Injury and
Osteoarthritis Outcome Score, UCLA: UCLA Activity Scale.

3.1. Preoperative Scores

First, we analyzed the data from the preoperative evaluation. Interestingly, when
analyzing the overall number of steps per day, we did not find any statistically significant
difference between hip and knee OA patients. However, when using the P6MC and the
P1M, we did find statistically significant differences with higher cadences in patients with
hip OA. The complete results are presented in Table 3.

Table 3. Pre-operative functional characteristics of the included patients; median [p25; p75].

Variables Overall (n = 5806) Hip (n = 3267) Knee (n = 2539) p-Value

Steps, n 4477 [2601; 6941] 4495 [2618; 6865] 4455 [2569; 7072] 0.90
P6MC, cadence 61 [44; 85] 63 [46; 85] 58 [43; 82] <0.001
P1M, cadence 92 [68; 115] 95 [70; 118] 89 [66–110] <0.001

Intensity, min/week
Light 613 [371; 938] 619 [364; 910] 609 [315; 968] <0.001

Moderate 0 [0; 14] 0 [0; 14] 0 [0; 7] 0.80
Vigorous 0 [0; 0] 0 [0; 0] 0 [0; 0] 0.89

n represents the number of days recorded.

Next, to determine whether a separate analysis is necessary for female and male
patients, we compared the pre-operative data based on gender (Figure 2).

On the one hand, for hip OA, we did not find statistically significant differences
for the P1M (97 [75–115] and 95 [71–117] for female and male, respectively, p = 0.12),
the P6MC (63 [48–83] and 62 [45–88], p = 0.81), or for the total number of steps per day
(4628 [2673–6920] and 4508 [2814–6939], p = 0.73), nor for age (62.7 (8.9) and 62.6 (9.4),
p = 0.83).
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On the other hand, for knee OA, statistically significant differences were found for
the total number of steps (5453 [3190–8444] and 3917 [2432–6217] for female and male,
respectively, p < 0.001), the P6MC (65 [49–88] and 53 [39–76], p < 0.001), and the P1M
(97 [75–115] and 83 [62–105], p < 0.001). Interestingly we found a statistically significant
difference in the age at surgery, women being older than men (65.1 (8.5) and 61.7 (8.3),
p < 0.001).

To further evaluate the potential influence of the age difference observed in knee
patients, we performed linear regression to determine if age has an influence on the
different studied parameters. The scatter plots are presented in Figure 3.

For female participants, concerning the total number of steps per day, the interaction
between age and joint is not significant (p = 0.07), but there is a significant effect of age
(β = −86 (8), p < 0.001) and joint (β = 1000 (141), p < 0.001). For the P6MC, there is no
interaction between age and OA location (p = 0.23), but there is a significant effect of both
age (β = −0.47 (0.05), p < 0.001) and joint (β = 3.2 (0.9), p = 0.001). For the P1M, there
is a significant interaction between age and joint (β = 0.26 (0.12), p = 0.031), as well as a
significant effect of age (β = −0.54 (0.07), p < 0.001) and joint (−16 (8), p = 0.042).

For male participants, concerning the total number of steps per day the interaction
between age and joint is not significant (p = 0.44), and there is no statistically significant
effect of age (β = 0.33 (0.61), p = 0.96) but a significant effect of joint (β = −720 (120),
p < 0.001). For the P6MC, there is no interaction between age and joint (p = 0.79), nor a
significant effect of age (β = −0.01 (0.05), p = 0.85), but a significant effect of joint (β = −8.3
(0.9), p < 0.001). For the P1M, there is no interaction between age and joint (p = 0.09) but
significant effects of age (β = −0.02 (0.06), p < 0.001) and joint (−9.8 (1.1), p < 0.001).

3.2. Variability of the Outcomes

As presented in Figure 4, we can clearly see a difference in terms of variability between,
on the one hand, the total number of steps per day, presenting a lot of variability, and on
the other hand, the cadence during the P6MC and the P1M being much more consistent
through the day.
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3.3. Evolution of the Parameters during the Rehabilitation Process
3.3.1. According to Recovery

When comparing the time needed to return to initial (pre-operative) values, important
differences were observed for the computed outcomes (see Figure 5).
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THA patients who did not reach their MCID at 3 months (MCID−) took statistically
7 days more to recover their pre-operative activity level (number of steps) than patients who
reached their MCID at 3 months (MCID+) (33 days for MCID+ and 40 days for MCID−);
for the P6MC, a difference of 6 days (26 days for MCID+ and 32 days for MCID−); for
P1M, the MCID+ regains the initial value after 35 days, while the MCID− did not reach the
initial value after the 60 days of follow-up.

For TKA, for the number of steps, only the MCID+ group reached the initial value after
40 days; for the P6MC, a difference of 10 days (29 days for MCID+ and 39 days for MCID−);
and for P1M, a difference of 12 days (38 days for MCID+ and 50 days for MCID−).

When comparing the trajectory of the evolution in the different groups, we observed
that for both THA and TKA, the newly developed outcomes, P6MC and P1M, allowed for
early identification of differences in comparison with the total number of steps per day
(Table 4).

Table 4. Results of the mixed effect model analysis, including the interaction with the recovery status
and the days. β and standard errors are presented.

Variables
Day Recovery Age Gender Day × Recovery Diff.

Hip

Steps, n 69.0 (1.1) 443 (77) −11.8 (7.9) −513 (155) 16.5 (1.3) 25
P6MC, cadence 0.65 (0.01) 2.44 (0.87) −0.04 (0.08) −4.34 (1.58) 0.10 (0.01) 16
P1M, cadence 0.62 (0.01) 2.7 (1.0) −0.11 (0.8) −4.1 (1.6) 0.13 (0.02) 15

Knee

Steps, n 36.5 (0.5) 452 (62) −12 (10) −720 (201) 11.8 (0.8) 14
P6MC, cadence 0.33 (0.01) 3.4 (0.7) −0.03 (0.01) −6.4 (2.0) 0.09 (0.01) 13
P1M, cadence 0.35 (0.01) 2.6 (0.8) 0.09 (0.10) −6.8 (2.2) 0.08 (0.01) 9

Diff. Difference (days); for Recovery, the MCID+ is the reference; for Gender, the reference is the female group.

Then, we analyzed the intensity of the activities through the rehabilitation process.
The evolution for light and moderate activities are presented in Figure 6 (due to the quasi
absence of vigorous activities, these results were not presented). As for the number of
steps and cadence, we observed differences between the recovery status. Interestingly, we
also observed that both THA and TKA patients are quickly able to recover higher levels of
moderate activities that were barely absent pre-surgery.
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3.3.2. According to the Type of Surgery

For patients with knee prostheses, we were able to perform comparisons according to
the type of surgery, which is an important point given the different clinics and symptoma-
tologies of these patients. There was no statistically significant difference in age between
both interventions (63.7 (6.2) and 62.7 (7.4) for TKR and UKA intervention, respectively,
p = 0.44) and equal gender distribution (χ2 = 0.71, p = 0.70).

The results of the mixed-effect models are presented in Table 5 and Figure 6.

Table 5. Results of the mixed-effect model analysis for patients with TKR, including the interaction
with the type of prosthesis and the days. β and standard errors are presented.

Variables
Knee

Day Type Day × Type Diff.

Steps, n 50 (1) 392 (147) 11 (2) 7
P6MC, cadence 0.5 (0.01) 4.8 (2.5) 0.02 (0.02) 4
P1M, cadence 0.5 (0.01) 6.3 (3.2) 0.03 (0.02) 3

Diff. Difference (days).

When comparing the time needed to return to pre-operative values, important differ-
ences were observed for the computed outcomes (Figure 7).
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For the total number of steps, only patients with UKA surgery return to their initial
values after 36 days and then continue to progress above pre-operative values, while
patients with TKR barely return to their initial value after the 90 days. On the other hand,
for the P6MC, a difference of 16 days was observed (25 days for UKA and 41 days for TKR),
as well as for the P1M, where a difference of 23 days was observed (28 days for UKA and
51 days for TKR).

Again, when comparing the different outcomes to differentiate the two interventions,
we observed that early differences are detected using the P6MC and P1M in comparison
with the total number of steps.

4. Discussion
4.1. Main Results

The results of this study provide insights into the preoperative functional charac-
teristics, variability of outcomes, and the evolution of activity parameters through the
rehabilitation process in patients with hip and knee OA undergoing THA and TKA.

The initial noteworthy difference observed in preoperative parameters was the capacity
of P6MC and P1M to distinguish between populations with knee and hip OA conditions.
In contrast, the number of steps did not exhibit such discriminatory capacity. The gender-
based analysis also revealed interesting nuances in preoperative characteristics. While
no significant differences were observed in hip OA patients based on gender, significant
differences were found in knee OA patients, including the total number of steps, P6MC
cadence, P1M cadence, and age at surgery. Female knee OA patients exhibited higher
values in these parameters. For both female and male patients, age and OA location
showed significant effects on the total number of steps per day, P6MC cadence, and P1M
cadence. These findings underscore the importance of considering age as a contributing
factor in patients with hip and knee OA.

Intraweek variability analysis revealed notable differences among the studied parame-
ters. While it is established that daily step count is correlated with cadence metrics [36],
our study revealed that the variability in the number of steps is twice as substantial as
that observed in cadence metrics. This suggests that cadence measurements such as P6MC
and P1M may offer more stable indicators of gross motor function compared to the total
number of steps per day.

Concerning the time required to return to preoperative values based on the type of
arthroplasty (THA or TKA), significant differences were observed in the recovery trajecto-
ries, with the cadence metrics (P6MC and P1M) showing early identification of differences
compared to the total number of steps per day. These results highlighted the potential of
P6MC and P1M as sensitive measures for assessing the rehabilitation progress in both THA
and TKA patients. The median value for P1M was similar to the normative value identified
in older adults (106 ± 16 and 97 ± 20 for male and female, respectively [45]. Concerning the
number of steps, our results aligned with patterns observed in numerous prior studies [46].
Patients typically resumed their pre-operative activity levels approximately six to ten weeks
after undergoing surgery, which is consistent with findings from previous accelerometry in-
vestigations [21,47]. Notably, patients who underwent TKA experienced a slower recovery
compared to those who received partial knee arthroplasty. This outcome mirrors the trends
observed in the existing literature. Additionally, patients who underwent THA tended
to recover gait quality more rapidly and demonstrated greater improvements compared
to their pre-operative levels in line with previous studies, although most of these studies
primarily focus on total step counts rather than walking session durations or patterns of
activity accumulation in these patient populations [48,49].

The cadence is often regarded as a reasonable proxy-indicator of ambulatory intensity,
with a cadence value of ≥100 steps/min in adults consistently identified as a heuristic
for ‘good walking’ [37,50]. The newly introduced metric, P6MC, as compared to P1M and
P30, exhibits an intriguing difference, wherein P6MC values are 20 to 30 steps lower than
P1M, highlighting the distinction between these metrics. Considering established cadence
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thresholds: 40–59 for purposeful stepping, 60–79 for slow walking, 80–99 for medium
walking, 100–119 for brisk walking, and >120 for fast walking [37]; it becomes apparent
that our OA population only demonstrated recovery in slow walking during the 6-min
duration, while brisk walking was restored within one minute. This could still be construed
as a diminished functional capacity during the period assessed in this study.

The previous studies showed good correlation between P6MC cadence and the official
P6MC distance; however, the direct transformation from cadence to distance is still chal-
lenging [38]. The sensitivity of this outcome in detecting older individuals with functional
capacity has been demonstrated [51]. A gait cadence of 107 steps/min during a 6MWT has
been identified as the threshold to distinguish older adults with an inability to walk, a min-
imum functional threshold (defined as 370 m) with reasonably high sensitivity (80%) and
modest specificity (57%). Interestingly, it has also been shown that the unsupervised ver-
sion of the 6-min walk test (random walk) gives the same results as the official (supervised)
6-min walk test [52].

The utilization of wearable sensors for assessing knee arthroplasty procedures is
becoming increasingly prevalent [53]. However, the discernible clinical value of this tech-
nology is still a subject of ongoing investigation. One potential indicator under scrutiny
is the variability in physical activity following surgery. Notably, patients exhibiting ex-
cessive variation in physical activity have been shown to experience more pronounced
postoperative pain [54].

It is noteworthy that only a limited number of patients with knee or hip OA adhere
to the physical activity guidelines set by the WHO [55]. In the context of TKA and THA,
the previous studies indicated a rise in light activity at 6 months postoperatively, with no
concomitant change in moderate or vigorous intensity [48]. In a comparative study the
P1M improved from 70.0 ± 23.7 preoperatively to 91.5 ± 26 at 1 year postoperatively after
TKA [56]. Our investigation suggests that this improvement is realized much earlier than
the conventional one-year postoperative timeframe. The exploration of variables related
to physical activity holds significance, given that heightened physical activity has been
associated with improvements in gait function after TKA. A suggested cutoff point of
3053 steps per day emerged as a potentially valuable predictive factor for gait function
following TKA [57]. It is to note that we observed a slight decrease in the level of physical
activities, both light and moderate, after Week 8. This can be interpreted in the context of
postoperative recovery among hip and knee patients. Notably, the hip patients engaged
with the system for an average of 59 days post-surgery (Range: 50–69), while knee patients
utilized it for an average of 78 days (Range: 50–91). Week 8 initiates at day 56 post-surgery,
suggesting that patients who recovered well likely ceased using the system around this
time. This temporal correlation suggests that the decline in activity minutes during Week 8
could be indicative of less intense activities undertaken by patients who are in the process
of recovery. It is plausible that the observed drop in activity levels is reflective of the
varying degrees of recovery among patients. Those who have recovered more robustly may
transition to less intensive activities, contributing to the reduction in recorded minute/week
values during this period.

The patients’ trajectories following arthroplasty display considerable variability, and
extensive discussions have revolved around categorizing individuals as slow or quick pro-
gressors. Notably, these discussions have primarily centered on subjective questionnaires
like patient-reported outcome measures [58]. The substantial variability in physical activity
among patients has prompted calls for the development of stratification tools [59]. In our
study, we categorized the patient population based on MCID of the FJS at the three-month
mark. This time point aligns with routine medical consultations and, in some countries,
marks the conclusion of bundled payments. Our analysis demonstrates that the activity
data hold the potential to partially predict which patients will achieve this milestone early
in the recovery process [60].
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4.2. Strengths and Limitations

This study demonstrates several notable strengths that enhance its robustness and
scientific significance. Foremost among these strengths is the study’s commitment to
real-world relevance, evident in its recognition of the critical importance of assessing
patients in ecological environment and conditions [61–64]. This approach stands in stark
contrast to conventional clinical tests, providing a more ecologically valid perspective on
the rehabilitation process.

A pivotal strength lies in the utilization of objective measurements facilitated by digital
biomarkers collected through wearable sensors. This methodology not only ensures the
continuous acquisition of real-time data but also offers a more nuanced and sensitive
evaluation compared to subjective assessments by clinicians [65–67]. Furthermore, the
integration of technology enables continuous monitoring between sessions, affording the
ability to detect even subtle changes in a patient’s status [68–70]. This feature significantly
enhances the precision of the rehabilitation process, ensuring a proactive response to
evolving patient needs.

However, the results of this study also have to be seen with various limitations. First,
we did not monitor wear time or adherence to the wearable devices. The evaluation of the
acceptability of smartwatches and activity trackers typically centered around two primary
factors: data availability and wearing time. While the majority of studies consistently
reported high levels of both data availability and wearing time (>75%) [71], the events
during the remaining 25% of the time remain unknown. This aspect could potentially
influence the total number of steps, although its impact on cadence metrics may be less
pronounced. Second, concerning the P6MC, previous studies have shown that this could
be aggregated as an unsupervised 6 min walking test. However, we cannot be sure that
the activity was walking [38,72]. However, the cumulative step count over the 6-min
duration provides valuable information about participants’ endurance and functional
capacity. Third, a notable study limitation is the potential variation in smartphone usage
among participants. The study assumes a certain level of familiarity and consistent use
of smartphones, which could introduce confounding factors if participants differ in their
comfort and proficiency with such technology (i.e., digital literacy) [73]. Additionally,
the success of the proposed approach relies on the widespread adoption and accessibility
of smartphones and wearable sensors, which may not be universally available to all
individuals undergoing rehabilitation [74]. This raises concerns about the generalizability
of the study findings to diverse populations, potentially introducing biases based on
socio-economic or demographic factors.

4.3. Future Works

As various factors influence activity recovery after surgery, such as the surgical ap-
proach [75], the use of crutches [47], and BMI [76]—it would be interesting to integrate
these parameters in more complex model to better predict the evolution of the patients
through the rehabilitation process.

The future research presents exciting opportunities for advancements and refinement
of this methodology. First, the research into user engagement strategies with wearable
devices could explore innovative approaches to enhance adherence without direct supervi-
sion. This could involve the development of user-friendly interfaces, personalized feedback
systems, or even the incorporation of elements of gamification to promote sustained and
consistent use.

Moreover, the future research could focus on expanding the scope of wearable tech-
nology beyond wearables, smartphones, exploring alternative devices or communication
methods to cater to individuals who may not have access to wearables. This inclusivity-
driven approach would contribute to a more comprehensive understanding of the benefits
and challenges associated with wearables in diverse populations.

To bolster the validity and reliability of wearable sensors, the future research could
delve into advancements in sensor technology, refining algorithms and conducting thor-
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ough validation studies. Comparative assessments against established clinical measures can
provide a clearer understanding of the accuracy and potential limitations of these devices.

Additionally, exploring the integration of artificial intelligence and machine learning
algorithms for data analysis could open new avenues for deriving meaningful insights
from the vast amount of data collected through wearables. These technologies could
help identify patterns, predict rehabilitation progress, and tailor interventions based on
individual patient needs.

5. Conclusions

This study explores the capacity for technology-assisted rehabilitation to bring about
significant changes, particularly through the incorporation of automated, unsupervised
evaluations utilizing wearable sensors in the rehabilitation of patients who have under-
gone hip and knee replacement surgeries and suffer from OA. The study emphasizes the
constraints of conventional clinical evaluations and the changing nature of real-life rehabil-
itation encounters. Using wearable sensors provides a patient-centered and ecologically
sound method, addressing the limitations of subjective evaluations conducted in clinics.

The results highlight the importance of cadence measurements, the P6MC and the
P1M, in differentiating between individuals with hip and knee conditions and monitoring
their recovery progress. These indicators demonstrate sensitivity and surpass the total
step count, offering useful insights into the functional capacity and progress of patients
throughout rehabilitation.

The use of technology-based, self-directed evaluations represents a fundamental
change in rehabilitation methods, offering improved accuracy, tailored treatments, and
heightened patient involvement.
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