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Current visualizations in microbiome research rely on aggregations in taxonomic
classifications or do not show less abundant taxa. We introduce Snowflake: a new
visualization method that creates a clear overview of the microbiome
composition in collected samples without losing any information due to
classification or neglecting less abundant reads. Snowflake displays every
observed OTU/ASV in the microbiome abundance table and provides a
solution to include the data’s hierarchical structure and additional information
obtained from downstream analysis (e.g., alpha- and beta-diversity) and
metadata. Based on the value-driven ICE-T evaluation methodology,
Snowflake was positively received. Experts in microbiome research found the
visualizations to be user-friendly and detailed and liked the possibility of including
and relating additional information to the microbiome’s composition. Exploring
the topological structure of the microbiome abundance table allows them to
quickly identify which taxa are unique to specific samples and which are shared
among multiple samples (i.e., separating sample-specific taxa from the core
microbiome), and see the compositional differences between samples. An R
package for constructing and visualizing Snowflake microbiome composition
graphs is available at https://gitlab.com/vda-lab/snowflake.
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1 Introduction

Data visualization is essential for exploring the microbiome, as it has become the focus
of multiple microbiome analysis tools (McMurdie and Holmes, 2013; Wang et al., 2016;
McNally et al., 2018; Buza et al., 2019; Reeder et al., 2021). The microbiome is typically
formatted in an abundance table that contains the absolute or relative counts of the
microorganisms observed in the collected samples. These microorganisms are the result of a
classification of the sequence reads into operational taxonomic units (OTU) or amplicon
sequence variants (ASV) (Kuczynski et al., 2012). This classification is done up to a certain
taxonomic level (domain, kingdom, phylum, class, order, family, genus, species), depending
on the quality and accuracy of the sequencer and the reference database, hence introducing
a hierarchical structure in the data. Based upon our previous research, we found that
preliminary analyses typically explore baseline characteristics, such as the composition of
microbiomes in collected samples, the (relative) abundance and variability (distribution) of
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observed operational taxonomic units (OTUs) or amplicon
sequence variants (ASVs), and the data’s phylogenetic structure
(Peeters et al., 2021).

Visualizations frequently used to display microbiome
composition are (stacked) bar charts, heat maps, Venn diagrams,
and tree structures (including radial trees and cladograms) (Shade
and Handelsman, 2012; Sohn et al., 2014; Lupatini et al., 2017;
Hallmaier-Wacker et al., 2019; Zhang et al., 2019; Chao et al., 2021;
Hamad et al., 2022). Both (stacked) bar charts and heat maps
provide information about the (relative) abundance of taxa
within samples or cohorts. However, because these methods use
a one-dimensional space to encode the enormous number of reads
observed in 16s rRNA sequences, they rarely represent all reads
directly. Instead, they often use aggregations in (higher level)
taxonomic classifications or neglect less abundant taxa by
combining them into an “others” category (Chao et al., 2021;
Hamad et al., 2022). Even in terms of perception, they might not
be best suited for comparing relative abundances. Comparing the
length of stacked bars amongst each other can be challenging (Saket
et al., 2018), and color saturation as a channel in heat maps has well-
known issues for comparing non-consecutive cells (Mackinlay,
1986; Munzner, 2014). Venn diagrams provide an overview of
where taxa occur in the data, distinguishing the core microbiome
from the sample or cohort-specific taxa. The main disadvantage of
this visualization is that it becomes ineffective when more than four
categorical groups need to be displayed (Shade and
Handelsman, 2012).

In the last decade, more emphasis has been put on improving the
visual encoding of the microbiome, resulting in custom
visualizations that can take multiple of these baseline
characteristics into account. Krona (Ondov et al., 2011) uses
sunburst charts in which a combination of depth and area
denotes the sample’s phylogeny, and color represents relative
abundance. Metacoder (Foster et al., 2017) introduces the “heat
tree” to display quantitative values (e.g., abundance or pairwise
differences) in the nodes and edges of the taxonomic radial tree by
means of color. GraPhlAn (Asnicar et al., 2015) lets the user
annotate a radial tree representing phylogenies with metadata
such as community abundances and host and environmental
phenotypes. Nevertheless, they all rely on taxonomic
classification aggregations rather than displaying the individual
OTUs or ASVs.

In this article, our objective is to contribute to the visual
exploration of the microbiome by providing a visualization
method called Snowflake that focuses on in-depth data
exploration and can display every individual OTU or ASV
captured in the samples. A visual overview of all sampled
microbes enables the straightforward identification of
microorganisms unique to specific samples and those shared
among multiple samples. This approach provides valuable
insights into the core microbiome composition. It aids in
identifying candidate microorganisms common to specific sample
cohorts in clinical studies (e.g., disease vs. healthy), thus enhancing
our understanding of microbiome dynamics and their relevance in
various research domains.

With Snowflake, we aim to provide a clear overview of the
microbiome composition in collected samples without
compromising on the level of detail. The strength of our design

is that it displays every observed OTU/ASV in the microbiome
abundance table without losing any information due to classification
or neglecting less abundant reads. Snowflake supports displaying the
phylogenetic structure while keeping an overview of every distinct
OTU/ASV and their presence in the samples. Moreover, additional
information obtained from further downstream analysis (e.g., alpha-
or beta-diversity) or metadata (e.g., disease status) can be visually
encoded in the visualization. Our proposed method is based on
translating the tabular microbiome abundance table into a
multivariate bipartite graph structure—hereafter referred to as
microbiome composition graph—by adding relations between
samples (rows) and OTUs/ASVs (columns). By showing the
microbiome composition graph as a node-link diagram,
differences between samples in terms of composition, richness,
and diversity can conveniently be found by looking for clusters
and connectivity in the topological structure. Our visualization
method underwent evaluation with the ICE-T methodology
(Stasko, 2014) by a group of domain experts, yielding positive
feedback. Additionally, Snowflake has been implemented in an R
package for broader accessibility and implementation.

2 Materials and methods

In this section, we will elucidate the data transformation
procedure, introduce our suggested visual encoding, and present
the evaluation process through which we tested our methods.

2.1 Data and transformation

The data used to generate the visualizations in this paper
originate from a study by Vandeputte et al. (2017), in which the
gut microbiome of 40 healthy adults was profiled via 16S sequencing.
A subset of 10 samples was taken for illustrative purposes to create
the visuals in this paper. The 16S sequencing files of these 10 samples
were reprocessed into microbiome abundance tables (storing ASVs)
using DADA2 (Callahan et al., 2016), without filtering on read
abundance. The code for reproduction is provided in the GitLab
repository (https://gitlab.com/vda-lab/snowflake).

A microbiome abundance table contains the absolute or relative
counts of the microorganisms (columns) observed in the collected
samples (rows). To transform the data into a microbiome
composition graph and create a topological overview of the
presence of an OTU/ASV in the collected samples, a relational
structure is introduced to the data (Figure 1). This transformation
results in a bipartite graph, a common format in biological studies
(Li et al., 2020; Chi et al., 2021; Calvet, 2022), where every row
(sample) and column (OTU/ASV) in the table becomes an object
(node) stored in a node list. Objects for which a non-zero cell value
exists (abundance > 0), are linked, storing its absolute and relative
abundances in a weight property. Formatting requires an edge to
have a “source” and “target” property, denoting the direction of the
link. The source property is reserved for the samples, and the target
property is for the OTUs/ASVs. The node list contains samples and
microorganisms, accompanied by all relevant information added as
node attributes (Liu et al., 2011), resulting in an attributed relational
graph structure (Weaver, 2010). Hence, baseline characteristics, as
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well as additional information obtained from further downstream
analysis (e.g., alpha- or beta-diversity) and metadata (e.g., grouping
variables), can be stored in the node attributes.

In the R package, a set of node attributes is automatically
generated for both the source (samples) and target nodes (OTUs/
ASVs). In the node attributes of the ASVs, we include the
hierarchical structure of the taxonomic classifications, the
abundance of the ASVs (col sums) in relation to the total table
abundance, and the number of samples an ASV is observed in. For
the samples, alpha richness- and diversity metrics (Chao1, Shannon,
and Inverse-Simpson) and beta diversity metrics (Bray-Curtis,
Jaccard, and Jensen-Shannon divergence) are provided as node
attributes. The microbiome abundance table is therefore
transformed into a directed graph without loss of information. In
fact, we allow researchers to include additional information on both
distinct nodes and their relationships.

2.2 Visual encoding

Pavlopoulos et al. (2018) surveyed the use of bipartite graphs in
system biology and medicine. They discussed several visual
representations for bipartite graphs: the (vertical) bipartite layout,
biadjacency matrix, projected unipartite networks, and chord
diagram. Misue (2006) makes use of anchored maps to draw
bipartite graphs, anchoring some nodes (a certain type) to certain
positions, leaving the others to move freely in the node-link diagram.
In 2019, Nobre et al. (2019) conducted a survey on state-of-the-art
multivariate network visualization and proposed guidance for
choosing between different visual encodings. They distinguish
two types of tasks—i.e., analyzing topology for given attributes
and analyzing attributes for a given topological structure—and
three types of encodings—i.e., node-link layouts, tabular layouts,
and implicit tree layouts. Tree layouts will not be considered in this
work as our primary interest is revealing the microbial composition
through the topological structure of the data.

The remaining two layouts—i.e., node-link layouts and tabular
layouts—have been compared in numerous studies (Ghoniem et al.,
2004, 2005; Keller et al., 2006). A recent study by Okoe et al. (2019)
concluded that node-link diagrams are better suited for displaying
sparse networks, as they fully leverage the two-dimensional area. In
addition, they found that adjacency matrices are more time-
consuming and less precise for finding connections and edges
between nodes. On the other hand, adjacency matrices perform
better in avoiding ambiguity problems by eliminating occlusion
problems in edge crossings, and it is easier to find nodes in
adjacency matrices.

A special type of node-link layout designed for the visualization
of bipartite graphs is the bipartite layout. Instead of the positioning
of the nodes being driven by forces, source and target nodes are
positioned separately on vertical axes, and lines denote their links.
Hence, the link direction is always left to right (source—target).
Abdelaal et al. (2022) compared this layout against the node-link
diagram and adjacency matrix in terms of five tasks conducted on
networks of different sizes, densities, and classes. In terms of cluster
detection—the task of interest for this paper—node-link diagrams
perform best in terms of accuracy and users’ assessment of task
difficulty, especially in comparison with bipartite layouts. No
significant differences, however, were found compared to the
results of the adjacency matrix. Moreover, restricting the drawing
space to only the area between the two axes makes the bipartite the
least scalable among the three representations discussed by Abdelaal
et al. (2022) with respect to network density.

Since our interests are both in the data’s topological structure
(identifying neighbors and clusters) and in exploring the node
attributes on the given topological structure, Nobre et al. (2019)
favor the use of an adjacency matrix over node-link diagrams when
no interactions are used. However, considering the network is
sparse, has two distinct node types, and has a considerable
number of nodes, topology-driven node-link layouts better suit
the structure of the data (Nobre et al., 2019; Okoe et al., 2019).
Therefore, we choose to work out a force-driven node-link layout

FIGURE 1
A visual overviewof how amicrobiome composition graph is constructed based on the tabular data format. ASV 1 is observed 10 times in sample 1, as
such a relation between both is established. ASV 3 is not observed in sample 3 for which no relation will be created.
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but provide a possible alternative representation using an
adjacency matrix.

2.2.1 Node-link diagram
Our microbiome composition graph is visually encoded as a

force-directed node-link diagram, following the approach used by
Sedlar et al. (2016). These authors previously used bipartite graphs
to visualize microbiome data. However, their focus was on the
method rather than the visual representation, and they relied on
aggregations of the OTUs/ASVs in their taxonomic classifications.
In their proposed method, they construct six “biadjacency matrices”
(one for each taxonomic level), in which links are created based on

the presence of taxa in a sample at a particular taxonomic level,
storing their relative abundance as weights. These are visualized
using node-link diagrams in Gephi (Bastian et al., 2009) based on the
ForceAtlas2 (Jacomy et al., 2014) layout algorithm. Snowflake only
builds one bipartite graph storing the OTUs/ASVs taxonomy as
node attributes such that every read is given equal importance and
no information is lost. All nodes are represented as circles and are
connected by lines if a link exists between them. Furthermore, in
comparison to Sedlar et al. (2016) Snowflake includes additional
information from downstream analysis in the visualization. To
improve the readability of the node-link diagram, the authors
advocate for the aggregation of samples into communities based

FIGURE 2
The network’s topology is annotated with the interpretation of the positioning of the ASVs. Samples are colored based on beta diversity and ASVs on
the number of samples they are observed in, using the color scales shown in Figure 4. Similarities in microbiome compositions between samples can be
identified by the similar coloring.
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on their environmental properties and to perform visual analysis at
their higher taxonomic levels. In our contribution, we address this
issue with a custom spatialization of the nodes in the node-
link diagram.

The layout of the node-link diagram is driven by the network’s
topology, using D3’s force-directed layout algorithm (Bostock et al.,
2011). All nodes repulse each other by default, but links introduce an
attraction force between the nodes they connect. As such the OTUs/
ASVs will be positioned in-between the samples they were observed
in. This results in a network spatialization driven by the relatedness
of the nodes, in which similar nodes tend to be closer to each other.
However, this cannot be taken for granted as geometric distance
does not apply in the interpretation of topology-driven node-link
diagrams (Venturini et al., 2021). A centering force is applied to
attract nodes to the middle of the screen, and an additional radial
force is applied to the sample and taxa nodes separately to improve
the readability. This force pushes sample nodes to the periphery of
an imaginary circle and pulls taxa nodes to the center proportional
to the number of samples they were observed in. In effect, this force
pulls the core microbiome to the center, with less co-appearing taxa
surrounding them (Figure 2).

Since it is often of interest to compare microbiome compositions
between certain groups (e.g., disease vs. healthy), we propose an
additional force on the x-coordinates (Figure 3A) to distinguish
these groups better. In the case of two groups, one group will be
attracted to the left part of the screen, whereas the other group will
be attracted to the right part of the screen. If the grouping variable
plays an important role in the microbiome composition, we expect
sample nodes to be perfectly aligned on their given x-coordinates.
One or more samples showing more similarities towards the other
group will end up more towards the middle of the network. If more
than two groups are to be distinguished, an additional force can be
applied to the y-coordinates (Figure 3B).

Color is used to encode the node and link attributes in the
visualization, for which we base ourselves upon the design principles

by Mackinlay (1986). After node position, saturation and hue are the
next-best visual channels for encoding quantitative data that can be
applied on networks (Nobre et al., 2019). The color encodings we are
using are shown in Figure 4. We generally suggest using saturation to
display numerical properties (e.g., alpha diversity) and hue for
categorical (e.g., disease status), although some exceptions apply.
When the difference between the minimum and the maximum
value is small (e.g., relative abundance taken over all samples), a
combination of both, called a multi-hue scale, can be more
informative. When the domain consists of a limited range of integer
values (e.g., the number of samples a taxon is observed in), we prefer to
bin these values in small intervals to increase perceptual differences.

For downstream analysis that results in matrices (e.g., pairwise
distances, similarities, and correlation), inspired by Evers et al.
(2021), we propose using multidimensional scaling (MDS) to
project the samples to a three-dimensional space. These new
dimensions can then be translated to the CIELAB color space, in
which a perceived change in color resembles its geometric distance.
Hence, similar color values denote samples with a similar
composition. As the interpretation of diversity through color
relies on the viewer’s perception, it might be cumbersome for
people with a lower visual ability (e.g., color blindness).
Nonetheless, the CIELAB color space is designed to be
perceptually uniform and addresses this problem.

To represent relational attributes (e.g., relative abundance), we
chose again to use color encoding in the nodes rather than in the
lines that link samples to taxa as they could overlap. A problem
arises when an object should have multiple colors at the same time
(i.e., when a taxon is observed in multiple samples and vice versa).
Hence, our solution is to color the connected nodes based on the link
attribute when a taxon or sample is hovered. Figure 5, shows how
hovering a taxon highlights the samples it is observed in and colors
them based on its relative abundance.

Since the use of color in categorical schemes is limited to a
certain number of distinct categories for it to be still readable, we

FIGURE 3
Figure showing the grouping forces applied on the node-link diagram: (A) force on the x-axis to distinguish groups of interest (e.g., diseased vs.
healthy in a clinical study) and (B) force on both the x- and y-axis to distinguish three groups.
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propose two alternative representations to show where the different
taxonomies occur in the node-link diagram. By using small
multiples with a common layout and highlighting the
microorganism belonging to a particular taxonomy in red, we
can get a better overview of their presence in the collected
samples (Figure 6). This representation lends itself for static
presentation, as it provides the overview of all data while at the
same time showing the details. If the interest is only in one or a set of
specific taxa, one can use a custom color scale in one node-link
diagram that highlights all taxa of interest.

2.2.2 Adjacency matrix
To visually represent the microbiome composition graph in an

adjacency matrix, samples are shown on the vertical axis, and OTUs/
ASVs are shown on the horizontal axis. The relation between the
sample and OTU/ASV is denoted in the cells (Figure 7A). One can
opt to color all cells for which a relation exists with a fixed color,
emphasizing the presence of microbes in a sample, or color them by
absolute or relative abundance (weight property). Node attributes
can be displayed in or next to their labels (e.g., text coloring). A
horizontal brush can be added to zoom in on the OTUs/
ASVs (Figure 7B).

An important aspect of an adjacency matrix’s visual clarity is the
row and column order. Over the years, much research has been
conducted on seriation algorithms that reorder the rows and

columns of tabular layouts to reveal higher-order patterns such
as clusters and highly connected vertices that might be obscured by
the adjacency matrix’s original arrangement (Behrisch et al., 2016).
Sakai et al. (2014) describe an ordering method that maximizes the
interpretability of global patterns and higher legibility on smaller
displays. Berisch et al. (2016) provides an extensive overview of such
algorithms and guide toward suitable algorithms for detecting
different patterns in networks. The application of these
algorithms is essential for understanding a network’s topology
and corrects many of the tabular layout’s limitations (Nobre
et al., 2019). Although graph-based reordering algorithms do not
seem to be applied yet in microbiome research, studies have used
hierarchical clustering (Piro and Renard, 2022) or principal
component analysis (Fahimipour et al., 2018, 2017) for
reordering. In our R package, we rely on the seriation package
available in R (Hahsler et al., 2008) and provide a horizontal brush to
zoom in on taxa or patterns of interest.

2.3 Evaluation

We evaluated Snowflake, specifically focusing on its
representation as a node-link diagram, as no novel elements are
introduced to the adjacencymatrix that has not been assessed before.
We conducted the heuristic approach proposed byWall et al. (2019),

FIGURE 4
Example color schemes to encode baseline characteristics on the nodes; nominal attributes are shown using a categorical color scale, number of
samples a taxon is observed in denoted usingmulti-hue (binned in intervals), alpha richness and diversity displayed using saturation (single-hue), and taxa
abundance relative to the total table abundance shown using sequential multi-hue. Matrices storing pairwise distances, similarities or correlations are
mapped to a three-dimensional space using multidimensional scaling (MDS) and translated to CIELAB.
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which is based on the ICE-Tmethodology (Stasko, 2014). The ICE-T
value equation consists of four key components: Insights (I),
Confidence (C), Time (T), and Essence (E). Insights focuses on
its ability to stimulate insights or provoke insightful questions, while
Confidence relates to its potential to instill confidence, knowledge,
and trust in the data, its domain, and context. Essence pertains to the
visualization’s capability to convey an overarching understanding of
the data, and Time refers to a visualization’s capacity to reduce the
time required for answering diverse data-related questions. Wall
et al. (2019) further deconstruct these components into guidelines,
each comprising a set of low-level heuristics. This approach yielded a
comprehensive 21-question questionnaire, which was employed to
evaluate our method by a group of six domain experts. This number

of participants suffices as the authors claim that five raters are
adequate to obtain consistent results using their methodology. Each
heuristic is rated on a 7-point Likert scale ranging from 1-strongly
disagree to 7-strongly agree, and a visualization can be considered
“good” if an overall cumulative average score of 5 or higher is
obtained. In the initial terminology of the questionnaire, the terms
“data cases” and “data attributes” were used and replaced by the
terms “samples” and “ASVs” as the authors noted there were some
misconceptions about it. Notes were taken during the evaluation
procedure to record evaluators’ feedback.

A user interface (UI) was designed as a proof of principle to
enhance the user’s interaction with the visualization method. This
UI featured a node-link diagram displaying the microbiome

FIGURE 5
When the cursor hovers over a taxon, its presence, as well as its relative abundance in the samples, is denoted by highlighting and coloring
(saturation) of the samples. All other taxa and samples in which the taxon is not observed in are faded. The ASV hovered in the figure, classified as
“prausnitzii”, is observed in 9 out of 10 samples but its relative abundance differs between samples.
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composition graph and a 2D projection of the samples, derived from
beta-diversity metrics, to enable users to select a set of samples for
further in-depth exploration of their microbial compositions within
the node-link diagram. Additionally, one could color the nodes
according to the color schemes discussed above and highlight taxa of
interest or those demonstrating significant differences in abundance.
To initiate the evaluation process, each participant received a
concise introduction to the visualization method. Participants

were enlightened on transforming an abundance table into a
microbiome composition graph. They gained insights into the
node-link diagram, with a focus on the distinction between
sample and ASV nodes, as well as identifying groupings in terms
of connectivity. Additionally, a comprehensive description of the
user interface (UI) and the interactions it offered was provided. To
facilitate their initial engagement with Snowflake, three data-specific
questions were also presented. One is about the identification and

FIGURE 6
A small multiple representation of the same node-link diagram, highlighting the taxa (genus level) in red. Nodes and links that are not linked to the
highlighted genus are faded, providing a clear overview of the samples the taxa are observed in. This representation lends itself well for static/
explanatory graphics.
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location of a specific species in the node-link diagram, one is
regarding the grouping of the ASVs and how these groups are
related to the selected samples, and the last one is about locating
significant differential abundant taxa. Subsequently, participants
were afforded 30 min to interact with the visualization method
through the UI. During that time, they were encouraged to
explore its features and functionalities to complete the evaluation
questionnaire.

3 Results

The evaluation of our proposed visualization method resulted in
an overall cumulative average score of 5.35 (Table 1), with a
cumulative average of 5.46 on insight (I), 5.63 on time (T),
5.08 on essence (E) and 5.04 on confidence (C). The provided
ratings are relatively positive, with no strongly negative
assessments. Notably, the visualization was well-received for
exposing individual samples and their observed ASVs, generating
data-driven questions, and facilitating direct interaction with the
data representation. It also effectively highlighted issues related to
data quality. Moreover, the visualization was commended for its
ability to provide a meaningful spatial organization of the data and
its support for smooth transitions between different levels of detail.
This suggests that the method effectively helps users organize and
navigate complex microbiome data sets, and facilitates higher-level
insights and domain knowledge extraction. However, it is
noteworthy that for specific questions, such as Q2, Q3, and Q5
(see Table 1), a degree of variation in ratings was observed. This
variance may suggest that some respondents had differing
perspectives on the visualization method. It is worth considering
that individual differences, including varying levels of experience
with data visualization, might have influenced these ratings. While
the majority of respondents provided favorable feedback, these

divergent responses underscore the importance of addressing
potential user-specific factors that could impact their
understanding and appreciation of the visualization method.
Further investigation into the individual factors contributing to
these varied responses may aid in tailoring the method to a
wider range of users and ensuring its effectiveness, even for those
with differing levels of familiarity with visual data analysis.
Furthermore, we recognize a few lower scores for Q21, indicating
a desire for better handling of potential data issues. A possible fix
could be to communicate the number of missing or incorrect values
at the return of the data transformation.

Nonetheless, we can conclude that Snowflake passes the
evaluation taken by our group of domain experts since an
average score above 5 was obtained. Their comments indicate
our method allows user-friendly exploration of the microbiome
and its composition. They especially appreciated the fact that every
read is visible, and aggregations in the taxonomic classification are
not required, although they can be done. The fact that this method
allows users to include all results from downstream analysis in the
node attributes makes it possible to relate them to the composition
and the spatialization of the network. From an immunological
perspective, changing the spatialization of the network based on
a grouping variable is considered to facilitate the identification of
candidate taxa. The inclusion of some additional features and
interactions for the drawing of, and capturing information from,
the microbiome composition graph was proposed by some of the
participants. Several participants mentioned they were eager to
apply this visualization method to their own data.

4 Discussion

This paper introduces Snowflake, a new visualization method
to visualize microbiome abundance tables using multivariate

FIGURE 7
Adjacency matrix showing microbiome abundance data in which relative abundance is denoted in the color saturation. The adjacency matrix is
sorted using a seriation algorithm (hierarchical clustering). The barcode below the adjacency matrix denotes the presence of ASVs (i.e., ASVs observed in
more samples have darker lines) and acts as a horizontal brush to zoom in on a selected group of ASVs. (A) adjacency matrix’s view without using the
horizontal brush, and (B) using the horizontal brush. See the digital version for best image quality.
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bipartite graphs. Unlike conventional microbiome visualization
methods (e.g., stacked barcharts and tree-structured
visualizations), in our design, every observed OTU/ASV in the
microbiome abundance table is visually encoded such that no
information is lost due to aggregation in taxonomic classifications
or neglecting less abundant reads. The topological structure of the
data allows users to get a visual overview of the microbiome
composition in the collected samples. We used a node-link
diagram to represent the microbiome composition graph and
provide an alternative representation using an adjacency matrix.
Using “on-node encoding,” the appearance of the node-link
diagram can be changed based on additional information stored
in the node attributes. This includes, but is not limited to, the
hierarchical structure of the data and any other information
obtained from downstream analysis (e.g., alpha-and beta-
diversity) and metadata. We suggest an appropriate color
encoding for every type of node and link attribute.

Following an evaluation study conducted with domain experts,
our visualization method has been deemed promising for the visual
exploration of microbiome data. With our visual representation, we
show that our method can be used to easily identify which
microorganisms are unique to certain samples and which are
common among multiple samples. This can provide experts with
insight into the core microbiome, and help identify candidate
microorganisms shared between certain sample cohorts in clinical
studies. By showing the microbiome composition graph as a node-
link diagram, differences between samples in terms of composition,
richness, and diversity can conveniently be found by looking at the
topological structure. By means of on-node encoding—i.e., changing
the appearance of nodes in a network—using color hue and
saturation, we present a solution for all types of additional node
and link attributes to be displayed in the visuals.

As the dataset size expands, leading to an increased number
of samples and taxa to be represented in the node-link diagram,

TABLE 1 Results obtained from the evaluation by a group of six domain experts. An overall cumulative average of 5.35 is received.

Question R1 R2 R3 R4 R5 R6 Average

Insight Q1: The visualization exposes individual samples and their observed ASVs 7 7 6 6 7 7 6.67

Q2: The visualization facilitates perceiving relationships in the data like patterns of the variables 5 6 3 5 6 6 5.17

Q3: The visualization promotes exploring relationships between individual samples as well as
different groupings of samples

7 4 2 6 4 6 4.83

Q4: The visualization helps generate data-driven questions 7 6 6 5 6 6 6

Q5: The visualization helps identify unusual or unexpected, yet valid, data characteristics or values 6 6 4 6 6 5 5.5

Q6: The visualization provides useful interactive capabilities to help investigate the data in multiple
ways

5 7 2 6 5 7 5.33

Q7: The visualization shows multiple perspectives about the data 5 5 3 4 5 5 4.5

Q8: The visualization uses an effective representation of the data that shows related and partially
related samples

4 7 5 6 6 6 5.67

Time Q9: The visualization provides a meaningful spatial organization of the data 4 7 5 6 6 5 5.5

Q10: The visualization shows key characteristics of the data at a glance 5 4 3 6 4 7 4.83

Q11: The interface supports using different attributes of the data to organize the visualization’s
appearance

6 6 3 6 5 7 5.5

Q12: The visualization supports smooth transitions between different levels of detail in viewing the
data

5 6 6 5 5 6 5.5

Q13: The visualization avoids complex commands and textual queries by providing direct
interaction with the data representation

7 7 7 7 6 7 6.83

Essence Q14: The visualization provides a comprehensive and accessible overview of the data 6 5 1 6 5 5 4.67

Q15: The visualization presents the data by providing a meaningful visual schema 6 5 3 6 6 6 5.33

Q16: The visualization facilitates generalizations and extrapolations of patterns and conclusions 4 6 5 5 4 5 4.83

Q17: The visualization helps understand how variables relate in order to accomplish different
analytic tasks

5 6 5 6 5 6 5.5

Confidence Q18: The visualization uses meaningful and accurate visual encodings to represent the data 5 6 5 6 7 6 5.83

Q19: The visualization avoids using misleading representations 7 3 3 4 6 5 4.67

Q20: The visualization promotes understanding data domain characteristics beyond the individual
samples and ASVs

7 4 6 5 5 6 5.5

Q21: If there were data issues like unexpected, duplicate, missing, or invalid data, the visualization
would highlight those issues

3 4 6 3 4 5 4.17
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our method may face challenges. These challenges encompass
potential issues in the computational efficiency of the force-
directed layout algorithm and difficulties arising from
occlusion, specifically caused by numerous overlapping links
within the node-link diagram. Therefore, our visualization
method is designed with a focus on in-depth data exploration.
While concerns about scalability for large datasets are valid, our
intended use of this visualization method is to provide a powerful
tool for users to delve into data with precision. The primary
objective is to enable users to select a specific group of samples
and examine them in intricate detail, facilitating a comprehensive
comparison of their composition in relation to each other. This
targeted use case ensures that the method excels in delivering
insights and valuable information when dealing with smaller,
carefully chosen subsets of data. Within our R package, we
provide the option to work with the adjacency matrix and
node-link diagram in an interactive way. When plotting both
visuals at once using the crosstalk R package, the user will be able
to make selections within the adjacency matrix that will update
the node-link diagram to take a closer look into the selection
made. Hence, the user can use the adjacency matrix to zoom in on
isolated sub-parts of the graph in the node-link diagram,
including one or more samples by clicking on the sample
labels. This technique is not new and has been applied in
tools such as NodeTrix (Henry et al., 2007) and MOBS
(Heylen et al., 2022).

In conclusion, with Snowflake we introduce a method for
visualizing microbiome abundance tables using multivariate
bipartite graphs. Unlike traditional microbiome visualization
techniques, Snowflake maintains the individuality of observed
microorganisms without aggregating them into taxonomic
classifications. This approach provides a comprehensive overview
of the microbiome’s composition in collected samples. Evaluation by
domain experts validates Snowflake’s potential for exploring
microbiome data, including identifying unique and common
microorganisms among samples. The method is tailored for in-
depth data exploration, focusing on precision rather than scalability,
making it valuable for detailed analysis of carefully selected
subsets of data.
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