14

C03.4 Expanding genotype-phenotype associations in biglycan-related Meester-Loeys syndrome

Josephina (Jeannette) Meester¹, **Anne Hebert**¹, Maaike Bastiaansen¹, Laura Rabaut¹, Jarl Bastianen¹, Nele Boeckx¹, Antoine Benichou², Jan D. Blankensteijn³, Paul Brennan⁴, Solène Conrad⁵, Stephanie L. Curtis⁶, Carolyn L. Dent⁷, Himanshu Goel⁸, Shuxiang Goh⁸, arjan houweling⁹, Bertrand Isidor⁵, Nicola Jackson¹⁰, Pieter Koopman¹¹, Anita Korpioja^{12;13;14}, Liina Kuuluvainen¹⁵, Karen Low¹⁶, Stephen P. Oakley^{17;18}, Nicole M. Organ¹⁷, Eline Overwater^{9;19}, Nicole Revencu²⁰, Minna Kraatari-Tiri²¹, Alison Trainer²², Claire Turner²³, Rebecca Whittington⁷, Andreas Zankl^{24;25;26}, Lut Van Laer¹, Aline Verstraeten¹, Bart Loeys^{1;27}

¹Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; ²Department of Internal and Vascular Medicine, CHU Nantes, Nantes Université, Nantes, France; ³Department of Vascular Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands; ⁴Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; ⁵Service de Génétique Médicale, CHU Nantes, Nantes, France; ⁶Bristol Heart Institute, University Hospitals Bristol & Weston, NHS Foundation Trust, Bristol, United Kingdom; ⁷South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Bristol, United Kingdom; ⁸Hunter Genetics, Waratah, Australia; ⁹Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; ¹⁰Clinical Genetics Service, University Hospitals Bristol NHS Foundation Trust. Bristol. United Kinadom: ¹¹Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium; ¹²Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland; ¹³Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; ¹⁴Medical Research Center Oulu, Oulu, Finland; ¹⁵Department of Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; ¹⁶Clinical Genetics Department, University Hospitals Bristol and Weston NHS Foundation Trust St Michael's Hospital, Bristol, United Kingdom; ¹⁷John Hunter Hospital, New Lambton Heights, Australia; ¹⁸College of Health, Medicine and Wellbeing, School of Medicine, University of Newcastle, Newcastle, Australia; ¹⁹Department of Genetics, University Medical Center Groningen, Groningen, Netherlands; ²⁰Center for Human Genetics, Cliniques universitaires Saint-Luc and Université catholique de Louvain, Brussels, Belgium; ²¹Department of Clinical Genetics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; ²²Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Australia; ²³Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; ²⁴The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; ²⁵Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia; ²⁶Garvan Institute of Medical Research, Sydney, Australia; ²⁷Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, Netherlands

Loss-of-function variants in *BGN*, an X-linked gene coding for biglycan, are associated with Meester-Loeys syndrome (MRLS), a syndromic form of aortic aneurysm/dissection. Since the initial publication of five families in 2017, we identified eleven additional MRLS families. All sixteen probands, except two, are male and had an average age at presentation of 38 years. Thirteen males and one female presented with aortic (n = 10) and/or arterial (n = 6) aneurysms/dissections, one male (11y) presented with syndromic features without cardiovascular symptoms (yet), and one female proband (42y) was identified as part of comprehensive prenatal testing. An additional 33 *BGN* variant-harbouring family members (M/F:6/27) were identified

with cascade screening. Their phenotype ranged from no cardiovascular or connective tissue phenotype to death due to aortic dissection. Identified BGN mutations causing a stop codon insertion, frameshift, or splicing defect and partial BGN deletions were shown to result in loss-of-function by cDNA and Western Blot analysis of skin fibroblasts of seven probands, or were strongly predicted to lead to loss-of-function based on the nature of the variant. Interestingly, a male proband with a deletion encompassing exon 2-8 of BGN presented with a more severe skeletal phenotype. RNA sequencing revealed expressional activation of a downstream ATPase (ATP2B3; normally repressed in skin fibroblasts) driven by the remnant BGN promotor as a possible explanation. These observations indicate that extensive analysis at RNA, cDNA and protein level is required before concluding on the pathogenicity of BGN variants; and distinct mutational mechanisms may underlie the wide phenotypic spectrum of MRLS patients.

Conflict of Interest: None declared

C03.5 Rare heterozygous variants in PTCH1 are associated with bladder exstrophy-epispadias complex

Glenda Beaman^{1;2}, Rebecca Yarwood¹, Filipa Lopes³, Raimondo Cervellione⁴, David Keene⁴, Imran Mushraq⁵, Paul Romitti⁶, Martin Lowe¹, Heiko Reutter⁷, Adrian S. Woolf^{3;8}, William Newman^{1;2}

¹University of Manchester, School of Biological Sciences, Manchester, United Kingdom; ²Manchester University NHS Foundation Trust, Manchester Centre for Genomic Medicine, Manchester, United Kingdom; ³University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, Manchester, United Kingdom; ⁴Central Manchester University Hospitals NHS Foundation Trust, Paediatric Urology, Manchester, United Kingdom; ⁵Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Paediatric Urology, London, United Kingdom; ⁶The University of Iowa, Department of Epidemiology, Iowa, United States; ⁷Friedrich-Alexander-University Erlangen-Nürnberg, Division of Neonatology and Pediatric Intensive Care Medicine, Erlangen, Germany; ⁸Manchester University NHS Foundation Trust, Royal Manchester Children's Hospital, Manchester, United Kingdom

Bladder exstrophy-epispadias complex (BEEC) is a clinically and genetically heterogeneous devastating developmental disorder which presents at birth in its classic form with a bladder exposed through the abdominal wall. Most affected children have no family history and it usually occurs as an isolated developmental anomaly. A small number of affected children have duplications at chromosome 22q11.

Through exome and Sanger sequencing, we identified 9 of 277 individuals with BEEC with very rare (MAF $<2 \times 10^{-5}$) heterozygous variants in *PTCH1*. This contrasts with 7 in 1199 healthy controls (p = 0.0008, odds ratio of 5.6 (95% Confidence interval 2.1–14.9)). The variants clustered at the 3' end of the gene and have not been associated with Gorlin syndrome or other phenotypes.

Zebrafish embryo studies of a recurrent de novo BEEC associated variant c.4246T>C (p.Phe1416Leu) in *PTCH1* demonstrated that injection of mutant and wild type human transcripts resulted in a disrupted cloaca, whereas injection of wild type or mutant sequences alone resulted in no phenotype.

We present genetic and preliminary functional evidence that putative dominant negative variants in *PTCH1* result in BEEC in a subset of individuals. We predict that these variants result in disrupted hedgehog signalling, a process integral to urogenital and midline developmental processes.

Conflict of Interest: None declared