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We thank Prof. Michael Stein for selecting our article for discussion and
the four discussants for their praise and criticism alike. The discussants
make a number of important points about both our particular analysis and
the more general statistical and computational issues surrounding it, and
we provide our thoughts on these in turn. It is our hope that this rejoinder
will provide both additional guidance for practitioners and directions and
suggestions for future research, both in methodology and in applications.

On some points, we can only concur. We see the link between simulation-
based residuals and score tests drawn by Schweinberger and Fritz (2023,
Sec. 3) as a promising way to formalize the approach proposed in Section 4.3
of the article to diagnose between-network lack-of-fit and suggest additional
predictors by regressing residuals on candidates. Our argument is heuris-
tic and empirical, whereas a rigorous characterization of precisely which
augmented ERGM constitutes the score test alternative hypothesis for a
particular residual regression test would certainly guide the model selection
better or suggest better tests. Similarly, their suggestion (Sec. 4) to imple-
ment user-friendly score testing is well taken, though care must be taken to
ensure that partially observed scenarios are handled correctly.

Niezink (2023, Sec. 2) makes a case for using family roles rather than
age–gender categories as predictors of contacts and makes a point that some
family compositions are categorically different from others, so the assump-
tion of smooth network size effects implicit in our use of polynomials is
questionable. Although we stand behind our model’s adequacy based on
the diagnostics we present, we agree in principle and had, in fact, consid-
ered the family role and categorical composition approach. Unfortunately,
the uncertainty inherent in inferring roles and relations from demographics
would create an errors-in-variables problem, greatly complicating the anal-
ysis. Thus, we reiterate the suggestion we made in the article: that future
surveys collect this information directly.

Other points, we address in more detail below.

1 Sample Size, Network Size, and Power

Vega Yon (2023) points out that in determining the sample size requirements
for inference for samples of networks, one must take into account both the
number of networks to sample (S) and the sizes of the individual networks
(ns). He also notes that in our application, the size distribution of networks
in the population is well-defined and exogenous.

We would add that even so, the study designer still has some discretion in
oversampling or stratifying on network sizes and compositions. The relative
amounts of (Fisher) information contained in networks of different sizes in
turn depends on the scaling regime of the model and can range from constant
in ns to linear to quadratic, depending on what network feature (edge count,
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Figure 1: Empirical power pS for detecting a gender homophily effect with
an assumed θhomophily = 1.1 as a function of number of networks S, where
each network has size 8 nodes and 20 edges in the scenario of Vega Yon
(2023, Sec. 1).

mean degree, or density, respectively) is asymptotically invariant to ns under
the model (Krivitsky and Kolaczyk, 2015).

In the simplified situation of networks of the same size and with a given
edge count, the approach suggested by Vega Yon (2023) can be used to infer
the empirical power pS (as defined by Vega Yon), which we illustrate in
Figure 1. This is, of course, only a proof of concept, and should be adapted
to the situation at hand.

2 Multicollinearity and Variance Inflation Factors

Vega Yon (2023) raises the question of multicollinearity and variance in-
flation in ERGMs for small networks. Outside of the extreme scenarios in
which multicollinearity leads to outright nonidentifiability (i.e., Section 4.1
and Appendix C in the article), whether it and high VIFs are a serious
concern depends on how the parameter estimates are intended to be used
(O’Brien, 2007, for example), and we examine their impact on our analysis
here.

In developing this discussion, we identified a calculation error that led
to incorrect standard errors for the parameter estimates given in Table 1
in the article, with those related to 2-stars, triangles and their interactions
with network size too small by an order of magnitude. None of the reported
substantive conclusions about overall effects of 2-stars, triangles and network
size change. We present the corrected standard errors in Table 1 and the
corrected omnibus and contrast tests in Tables 2 and 3, respectively.

A hurdle in using ERGM VIF in our specific case is that it is only
well-defined in models with an edge count (i.e., intercept) effect (Duxbury,
2018). Our models do not use an intercept: our mixing effects cover all of
the possible age–gender group combinations, visualized in Figure 4 in the
article. (In the language of ANOVA, we use the means, as opposed to the
effects, parametrization.)

We can nonetheless examine the impact of multicollinearity on our anal-
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Table 1: Parameter estimates and corrected standard errors for Model 1 and
Model 2.

Relationship Effect Coefficient (S.E.)
× Network-Level Effect Model 1 Model 2

edges × log(ns) −14.28 (3.78)⋆⋆⋆ −13.78 (3.69)⋆⋆⋆

× log2(ns) 5.69 (1.71)⋆⋆⋆ 5.47 (1.66)⋆⋆

if Brussels post code 0.08 (0.19) −0.02 (0.21)
× log(pop. dens. in post code) 0.04 (0.03)
if on weekend 0.14 (0.06)⋆ 0.13 (0.06)⋆

2-stars 1.91 (4.95) 1.14 (4.55)
× log(ns) −2.15 (5.87) −1.22 (5.38)
× log2(ns) 0.34 (1.72) 0.07 (1.58)

triangles 5.55 (11.55) 7.30 (10.72)
× log(ns) −3.46 (14.29) −5.65 (13.28)
× log2(ns) 0.93 (4.38) 1.60 (4.09)

Young Child with Young Child 8.60 (1.88)⋆⋆⋆ 8.66 (1.83)⋆⋆⋆

Young Child with Preadolescent 9.10 (1.88)⋆⋆⋆ 9.15 (1.84)⋆⋆⋆

Preadolescent with Preadolescent 8.17 (1.85)⋆⋆⋆ 8.24 (1.81)⋆⋆⋆

Adolescent with Adolescent 7.70 (1.84)⋆⋆⋆ 7.75 (1.80)⋆⋆⋆

Young Child with Young Adult 9.64 (2.07)⋆⋆⋆ 9.67 (2.05)⋆⋆⋆

Preadolescent with Young Adult 7.25 (1.85)⋆⋆⋆ 7.28 (1.81)⋆⋆⋆

Adolescent with Young Adult 7.73 (1.80)⋆⋆⋆ 7.82 (1.77)⋆⋆⋆

Young Adult with Young Adult 7.66 (1.85)⋆⋆⋆ 7.70 (1.81)⋆⋆⋆

Young Child with Older Female Adult 10.26 (1.85)⋆⋆⋆ 10.32 (1.81)⋆⋆⋆

Preadolescent with Older Female Adult 9.67 (1.85)⋆⋆⋆ 9.73 (1.80)⋆⋆⋆

Adolescent with Older Female Adult 8.90 (1.84)⋆⋆⋆ 8.96 (1.80)⋆⋆⋆

Older Female Adult with Older Female Adult 7.45 (1.87)⋆⋆⋆ 7.50 (1.83)⋆⋆⋆

Young Child with Older Male Adult 9.09 (1.87)⋆⋆⋆ 9.14 (1.82)⋆⋆⋆

Preadolescent with Older Male Adult 8.76 (1.83)⋆⋆⋆ 8.83 (1.79)⋆⋆⋆

Adolescent with Older Male Adult 8.20 (1.85)⋆⋆⋆ 8.26 (1.80)⋆⋆⋆

Older Female Adult with Older Male Adult 10.11 (1.84)⋆⋆⋆ 10.17 (1.80)⋆⋆⋆

if child absent −1.22 (0.30)⋆⋆⋆ −1.20 (0.30)⋆⋆⋆

Older Male Adult with Older Male Adult 6.59 (1.87)⋆⋆⋆ 6.66 (1.82)⋆⋆⋆

Older Female Adult with Senior 8.12 (1.82)⋆⋆⋆ 8.20 (1.78)⋆⋆⋆

Older Male Adult with Senior 7.51 (1.86)⋆⋆⋆ 7.58 (1.81)⋆⋆⋆

Senior with Senior 7.82 (1.81)⋆⋆⋆ 7.89 (1.77)⋆⋆⋆

Adolescent with Young Child or Preadolescent 8.07 (1.85)⋆⋆⋆ 8.13 (1.80)⋆⋆⋆

Young Adult with Older Adult 8.02 (1.84)⋆⋆⋆ 8.07 (1.80)⋆⋆⋆

Young Child or Preadolescent with Senior 8.29 (1.93)⋆⋆⋆ 8.34 (1.89)⋆⋆⋆

Adolescent or Young Adult with Senior 9.93 (2.09)⋆⋆⋆ 10.01 (2.08)⋆⋆⋆

Significance: ⋆⋆⋆ ≤ 0.001 <⋆⋆≤ 0.01 <⋆≤ 0.05
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Table 2: Selected omnibus tests for Model 1.

Effects Wald χ2 (df) P -val.

any 2-star 20.9 (3) < 0.001
any triangle 98.7 (3) < 0.001
any log(ns) or log2(ns) 78.9 (6) < 0.001
any log2(ns) 17.7 (3) 0.001
2-star or triangle log2(ns) 9.4 (2) 0.009

Table 3: Selected contrasts for Model 1.

Contrast Estimate (S.E.) P -val.

Older Female vs. Male Adults with Young Children 1.16 (0.47) 0.013
Older Female vs. Male Adults with Preadolescents 0.91 (0.29) 0.002
Older Female vs. Male Adults with Adolescents 0.70 (0.25) 0.006
Older Female > Male Adults with Seniors (one-tailed) 0.61 (0.31) 0.026

ysis directly. Figure 2 (left) shows Ĉor(vec β̂) for a representative selection of
parameters of Model 1. There are particularly strong correlations (positive
and negative, following a “checkerboard” pattern across the polynomial net-
work size effects) among the density (edges) and the endogenous (2-stars and
triangles) effects and between those effects and the mixing effects. Among
the mixing effects, all correlations are strong and positive. Referring back
to Table 1, as expected we observe particularly high standard errors for
some of these endogenous effects; and if the VIF were well-defined, it would
certainly be very high for all but a few of the parameter estimates.

However, this turns out to have little effect on the substantive conclu-
sions. The endogenous effects are not individually significant in Table 1,
but when we perform Wald omnibus tests shown in Table 2 (and Sec. 5.3
of the article), we find that the alternating signs of the coefficients com-
bine with the “checkerboard” correlations to produce highly significant χ2

statistics. Then, when we visualize the network size effects, we take a linear
combination of the estimates with positive coefficients—and the negative
correlations result in the predicted effect for a given network size being far
more precise than individual parameter estimates (Figure 3).

Lastly, but perhaps most importantly, when we compare different mix-
ing cells by taking contrasts, a strong positive correlation between these
estimates means that the contrasts in Table 3 are more precise than their
constituents in Table 1.

To examine the VIFs themselves, we reparametrize Model 1 to use an
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Figure 2: Correlation matrices of selected parameter estimates for Model 1
(left) and its effects reparametrization with root-variance-inflation-factors
(right). Most mixing effects have been omitted for space and follow the
same pattern as those shown.
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Figure 3: Estimated effects of network size on conditional log-odds of an
instance of a graph feature with 1-standard-error bounds.
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edge count statistic and omit one of the mixing cells (the baseline), specif-
ically, the Older Female Adult – Older Male Adult cell, because it has the
largest sample size. Figure 2 (right) shows the correlations and the root-
VIFs that result. We see that the intercept has “absorbed” the correlation
between the mixing effects and the network size and endogenous effects, as
well as some of the correlation among the mixing effects. Thus, VIFs are
extremely high for the endogenous and network-size effects but modest for
the mixing effects. However, it is important to keep in mind that those lat-
ter VIFs are for very specific contrasts—those with the baseline cell—which
are not of substantive interest.

3 Model Selection and Dyad-Dependent Effects

Niezink (2023, Sec. 1) highlights an important problem of efficient model
selection for ERGMs. In our application in particular, most of the effects
in the model were determined by substantive and inferential considerations,
with only a few selected using diagnostics and AIC. More generally, how-
ever, the many possible relational effects representable by increasingly rich
network data combined with the network-level effects on those effects can
create a combinatorial explosion of possibilities.

Then, indeed, starting with dyad-independent effects and only adding
dyad-dependent effects at the end as needed may turn out to be the only
computationally feasible approach for many scenarios; but this approach is
not without caveats. Model selection techniques such as stepwise regres-
sion can be sensitive to the order in which effects are considered for inclu-
sion. In the case of ERGMs, theoretical and empirical studies are needed to
confirm whether or not a model selection procedure that first selects dyad-
independent effects and then selects dyad-dependent effects would produce
systematically different results from one that selected dyad-dependent ef-
fects first or alongside. A corollary for our application would be that say,
child effect choice may have been different if we had used residuals from a
dyad-independent “Model 0d” to select it.

It may be possible to achieve the best of both worlds by substituting
log-pseudolikelihood (Strauss and Ikeda, 1990) for the log-likelihood in the
fit criterion (AIC or BIC); but whether this will also lead to systematically
different results compared to selection using the true likelihood is an open
question as well. (A further caveat is that for partially observed networks,
the correct pseudolikelihood may not be that much easier to compute than
the likelihood itself; see, for example, remarks by Krivitsky (2017, Sec. 5).)
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4 Data for Between-household Relations

Between–household contacts, discussed by Schweinberger and Fritz (2023),
present a distinct modeling challenge from data collection perspective. The
demographic-level information collected in contact diaries (and egocentric
surveys in general) typically does not enable unambiguous identification
of contacted individuals. This necessitates an approach such as that of
Krivitsky and Morris (2017), in which survey data are used to estimate the
global network statistics of interest, which are then used to estimate ERGM
parameters by sufficiency. However, while residing in the same household is
the strongest form of propinquity, between-household contacts are likely to
have a very strong geographic propinquity effect as well, which cannot be
modeled unless the contacts’ geographic information is collected.

Moreover, one mechanism for violation of the local dependence assump-
tion is that the activities household members participate in affect the connec-
tions both between and within households. Future studies should therefore
collect the necessary information about overlapping social circles or activi-
ties people engage in, and perhaps models of Wang et al. (2016) could be of
use.

5 User Guidance

Niezink (2023) lists a number of frameworks and software tools that address
a similar scenario to ergm.multi and asks which should be used when. Here,
we would draw a distinction between the choice of a statistical model and
the choice of a software package implementing the model. As we note in
Section 3.2 of the article, our framework is a fixed-effects special case of
that of Slaughter and Koehly (2016). Among the fixed-effects work listed,
our reading of the work of Vega Yon et al. (2021) and Stewart et al. (2019) is
that the classes of models they span are either equivalent to or are subclasses
of ours, the latter perhaps of the curved case outlined in Appendix B of the
article. Thus, as of this writing, the questions the practitioner should ask
are 1) whether the networks in the sample can be safely assumed to be
independent, and if not, whether between-network models such as those of
Wang et al. (2016) need to be specified; and 2) whether the fixed-effects
model is adequate or leaves unaccounted-for heterogeneity that calls for a
mixed-effects model.

Statistical software packages, on the other hand, are ever-evolving and
interdependent, and not all of the above-listed models come with user-
friendly and flexible code (e.g., Slaughter and Koehly, 2016). Thus, the
best advice we can offer to the practitioner here is to research the work-
shops, the tutorials, and the vignettes provided with the packages and on
their web sites, as well as recent papers that apply them, because those
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sources provide a continually updated view of a package’s capabilities.
On a more positive note, this interdependence can make capabilities

“emerge” without additional developer effort: for example, package Bergm
for Bayesian estimation of ERGMs (Caimo et al., 2022) does not have facil-
ities for samples of networks, but it uses ergm (Krivitsky et al., 2023) as its
back-end and so can use all ERGM specifications implemented for ergm—
including those provided by ergm.multi for modeling samples of networks.
Thus, their combination may already be able to fit at least some special
cases of Slaughter and Koehly (2016).

Lastly, we concur that when demonstrating diagnostic techniques, it is
important to demonstrate both fit and lack-of-fit look like. Appendix F of
our article provides a sampling of those, but tutorials and similar can and
should be developed as well.
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