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The logic of information flows (LIF) is a general framework in which tasks of a procedural nature can be

modeled in a declarative, logic-based fashion. The first contribution of this paper is to propose semantic and

syntactic definitions of inputs and outputs of LIF expressions. We study how the two relate and show that our

syntactic definition is optimal in a sense that is made precise. The second contribution is a systematic study of

the expressive power of sequential composition in LIF. Our results on composition tie in the results on inputs

and outputs, and relate LIF to first-order logic (FO) and bounded-variable LIF to bounded-variable FO.
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1 INTRODUCTION
The Logic of Information Flows (LIF) [26, 27] is a knowledge representation framework designed

to model and understand how information propagates in complex systems, and to find ways to

navigate it efficiently. The basic idea is that modules, that can be given procedurally or declaratively,

are the atoms of a logic whose syntax resembles first-order logic, but whose semantics produces

new modules. In LIF, atomic modules are modeled as relations with designated input and output

arguments. Computation is modeled as propagation of information from inputs to outputs, similarly

to propagation of tokens in Petri nets. The specification of a complex system then amounts to

connecting atomicmodules together. For this purpose, LIF uses the classical logic connectives, i.e., the

boolean operators, equality, and existential quantification. The goal is to start from constructs that

are well understood, and to address the fundamental question of what logical means are necessary
∗
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2 Aamer et al.

and sufficient to model computations declaratively. The eventual goal, which goes beyond the topic

of this paper, is to come up with restrictions or extensions of LIF that make the computations

efficient.

In its most general form, LIF is a rich family of logics with recursion and higher-order variables.

Atomic modules are given by formulae in various logics, and may be viewed as solving the task of

Model Expansion [22]: the input structure is expanded to satisfy the specification of a module thus

producing an output. The semantics is given in terms of pairs of structures. We can, for example,

give a graph (a relational structure) on the input of a module that returns a Hamiltonian cycle on

the output, and compose it sequentially with a module that checks whether the produced cycle is

of even length. One can vary both the expressiveness of logics for specifying atomic modules and

the operations for combining modules, to achieve desirable complexity of the computation for the

tasks of interest.

Many issues surrounding LIF, however, are already interesting in a first-order setting (see, e.g.,

[1]); and in fact such a setting is more generic than the higher-order setting, which can be obtained

by considering relations as atomary data values. Thus, in this paper, we give a self-contained, first-

order presentation of LIF. Syntactically, atomic modules here are relation atoms with designated

input and output positions. Such atoms are combined using a set of algebraic operations into LIF
expressions. The semantics is defined in terms of pairs of valuations of first-order variables; the first

valuation represents a situation right before applying the module, while the second represents a

possible situation immediately afterwards. The results in this paper are then also applicable to the

case of higher-order variables.

Our contributions can be summarized as follows.

(1) While the input and output arguments of atomic modules are specified by the vocabulary,

it is not clear how to designate the input and output variables of a complex LIF expression

that represents a compound module. Actually, coming up with formal definitions of what it

means for a variable to be an input or output is a technically and philosophically interesting

undertaking. We propose semantic definitions, based on natural intuitions, which are, of

course, open to further debate. The semantic notions of input and output turn out to be

undecidable. This is not surprising, since LIF expressions subsume classical first-order logic

formulas, for which most inference tasks in general are undecidable.

(2) We proceed to give an approximate, syntactic definition of the input and output variables of

a formula, which is effectively computable. Indeed, our syntactic definition is compositional,
meaning that the set of syntactic input (or output) variables of a formula depends only on

the top-level operator of the formula, and the syntactic inputs and outputs of the operands.

We prove our syntactic input–output notion to be sound: every semantic input or output is

also a syntactic input or output, and the syntactic inputs and outputs are connected by a

property that we call input–output determinacy. Moreover, we prove an optimality result: our

definition provides the most precise approximation to semantic input and outputs among all

compositional and sound definitions.

(3) We investigate the expressive power of sequential composition in the context of LIF. The

sequential composition of two modules is fundamental to building complex systems. Hence,

we are motivated to understand in detail whether or not this operation is expressible in terms

of the basic LIF connectives. This question turns out to be approachable through the notion

of inputs and outputs. Indeed, there turns out to be a simple expression for the composition

of io-disjoint modules. Here, io-disjointness means that inputs and outputs do not overlap.

For example, a module that computes a function of 𝑥 and returns the result in 𝑦 is io-disjoint;

a module that stores the result back in 𝑥 , thus overwriting the original input, is not.
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(4) We then use the result on io-disjoint expressions to show that composition is indeed an

expressible operator in the classical setting of LIF, where there is an infinite supply of fresh

variables. (In contrast, the expression for io-disjoint modules does not need extra variables.)

(5) Finally, we complement the above findings with a result on LIF in a bounded-variable setting:

in this setting, composition is necessarily a primitive operator.

Many of our notions and results are stated generally in terms of transition systems (binary relations)

on first-order valuations. Consequently, we believe our work is also of value to settings other than

LIF inasmuch as they involve dynamic semantics. Several such settings, where input–output

specifications are important, are discussed in the related work section.

The rest of this paper is organized as follows. In Section 2, we formally introduce the Logic

of Information Flows from a first-order perspective. Section 3 presents our study concerning the

notion of inputs and outputs of complex expressions. Section 7 then presents our study on the

expressibility of sequential composition. Section 8 discusses related work. We conclude in Section 9.

In Sections 4, 5, and 6, we give extensive proofs of theorems we discuss in Section 3.

2 PRELIMINARIES
A (module) vocabulary S is a triple (Names, ar, iar) where:

• Names is a nonempty set, the elements of which are called module names;
• ar assigns an arity to each module name in Names;
• iar assigns an input arity to each module name𝑀 in Names, where iar (𝑀) ≤ ar (𝑀).

We fix a countably infinite universe dom of data elements. An interpretation 𝐷 of S assigns to

each module name𝑀 in Names an ar (𝑀)-ary relation 𝐷 (𝑀) over dom.

Furthermore, we fix a universe of variables V. This set may be finite or infinite; the size of V will

influence the expressive power of our logic. A valuation is a function from V to dom. The set of all

valuations is denoted byV . We say that a1 and a2 agree on 𝑌 ⊆ V if a1 (𝑦) = a2 (𝑦) for all 𝑦 ∈ 𝑌 and

that they agree outside 𝑌 if they agree on V−𝑌 . Sometimes, we simply write a1 = a2 on (outside) 𝑌

to say that they agree on (outside) 𝑌 . A partial valuation on 𝑌 ⊆ V is a function from 𝑌 to dom; we

will also call this a 𝑌 -valuation. If a is a valuation, we use a |𝑌 to denote its restriction to 𝑌 . Let a be

a valuation and let a1 be a partial valuation on 𝑌 ⊆ V. Then the substitution of a1 into a , denoted

by a [a1], is defined as a1 ∪ (a |V−𝑌 ). In the special case where a1 is defined on a single variable 𝑥

with a1 (𝑥) = 𝑑 , we also write a [a1] as a [𝑥 : 𝑑].
We assume familiarity with the syntax and semantics of first-order logic (FO, relational calculus)

over S [8] and use := to mean “is by definition”.

2.1 Binary Relations on Valuations
The semantics of LIF will be defined in terms of binary relations onV (abbreviated BRV: Binary

Relations on Valuations). Before formally introducing LIF, we define operations on BRVs correspond-

ing to the classical logical connectives, adapted to a dynamic semantics. For boolean connectives,

we simply use the standard set operations. For equality, we introduce selection operators. For

existential quantification, we introduce cylindrification operators.

Let 𝐴 and 𝐵 be BRVs, let 𝑍 be a finite set of variables, and let 𝑥 and 𝑦 be variables.

• Set Operations: 𝐴 ∪ 𝐵,𝐴 ∩ 𝐵, and 𝐴 − 𝐵 are well known.

• Composition

𝐴 ; 𝐵 := {(a1, a2) | ∃a3 : (a1, a3) ∈ 𝐴 and (a3, a2) ∈ 𝐵}.
• Converse

𝐴⌣ := {(a1, a2) | (a2, a1) ∈ 𝐴}.
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• Left and Right Cylindrifications

cyl
𝑙
𝑍 (𝐴) := {(a1, a2) | ∃a ′1 : (a ′

1
, a2) ∈ 𝐴 and a ′

1
and a1 agree outside 𝑍 };

cyl
𝑟
𝑍 (𝐴) := {(a1, a2) | ∃a ′2 : (a1, a

′
2
) ∈ 𝐴 and a ′

2
and a2 agree outside 𝑍 }.

• Left and Right Selections

𝜎 l
𝑥=𝑦 (𝐴) := {(a1, a2) ∈ 𝐴 | a1 (𝑥) = a1 (𝑦)};

𝜎 r
𝑥=𝑦 (𝐴) := {(a1, a2) ∈ 𝐴 | a2 (𝑥) = a2 (𝑦)}.

• Left-to-Right Selection

𝜎 lr
𝑥=𝑦 (𝐴) := {(a1, a2) ∈ 𝐴 | a1 (𝑥) = a2 (𝑦)}.

If 𝑥 and 𝑦 are tuples of variables of length 𝑛, we write 𝜎 lr
𝑥=𝑦 (𝐴) for

𝜎 lr
𝑥1=𝑦1

𝜎 lr
𝑥2=𝑦2

. . . 𝜎 lr
𝑥𝑛=𝑦𝑛

(𝐴)

and if 𝑧 is a variable we write cyl
𝑙
𝑧 for cyl

𝑙
{𝑧 } . Intuitively, a BRV is a dynamic system that manipulates

the interpretation of variables. A pair (a1, a2) in a BRV represents that a transition from a1 to a2

is possible, i.e., that when given a1 as input, the values of the variables can be updated to a2. The

operations defined above correspond to manipulations/combinations of such dynamic systems.

Union, for instance, represents a non-deterministic choice, while composition corresponds to

composing two such systems. Cylindrification corresponds, in the dynamic view, to following the

underlying BRV followed by ignoring (erasing) some value either in the inputs or the outputs. The

selection operations correspond to performing checks, on the input, the output, or a combination

of both, after performing what the underlying BRV does.

Some of the above operators are redundant, in the sense that they can be expressed in terms of

others, for instance, 𝐴 ∩ 𝐵 = 𝐴 − (𝐴 − 𝐵). We also have:

Lemma 2.1. For any BRV 𝐴, and any variables 𝑥 and 𝑦, the following hold:

cyl
𝑟
𝑥 (𝐴) = (cyl

𝑙
𝑥 (𝐴⌣))⌣

cyl
𝑙
𝑥 (𝐴) = (cyl

𝑟
𝑥 (𝐴⌣))⌣

𝜎 r
𝑥=𝑦 (𝐴) = 𝐴 ∩ cyl

𝑙
𝑥𝜎

lr
(𝑥,𝑥)=(𝑦,𝑥)cyl

𝑙
𝑥 (𝐴)

𝜎 l
𝑥=𝑦 (𝐴) = 𝐴 ∩ cyl

𝑟
𝑥𝜎

lr
(𝑦,𝑥)=(𝑥,𝑥)cyl

𝑟
𝑥 (𝐴)

𝜎 l
𝑥=𝑦 (𝐴) = 𝜎 r

𝑥=𝑦 (𝐴⌣)⌣

The expression for 𝜎 r
𝑥=𝑦 can be explained as follows. First, we copy 𝑥 from right to left by applying

cyl
𝑙
𝑥 followed by 𝜎 lr

𝑥=𝑥 . Selection 𝜎 r
𝑥=𝑦 can now be simulated by 𝜎 lr

𝑥=𝑦 . The original 𝑥 value on the

left is restored by a final application of cyl
𝑙
𝑥 and intersecting with the original 𝐴.

2.2 The Logic of Information Flows
The language of LIF expressions 𝛼 over a vocabulary S is defined by the following grammar:

𝛼 ::= id | 𝑀 (𝑧) | 𝛼 ∪𝛼 | 𝛼 ∩𝛼 | 𝛼 −𝛼 | 𝛼 ;𝛼 | 𝛼⌣ | cyl
𝑙
𝑍 (𝛼) | cyl

𝑟
𝑍 (𝛼) | 𝜎 lr

𝑥=𝑦 (𝛼) | 𝜎 l
𝑥=𝑦 (𝛼) | 𝜎 r

𝑥=𝑦 (𝛼)
Here,𝑀 is any module name in S; 𝑍 is a finite set of variables; 𝑧 is a tuple of variables; and 𝑥,𝑦 are

variables. For atomic module expressions, i.e., expressions of the form𝑀 (𝑧), the length of 𝑧 must

equal ar (𝑀). In practice, we will often write𝑀 (𝑥 ;𝑦) for atomic module expressions, where 𝑥 is a

tuple of variables of length iar (𝑀) and 𝑦 is a tuple of variables of length ar (𝑀) − iar (𝑀).
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We will define the semantics of a LIF expression 𝛼 , in the context of a given interpretation 𝐷 ,

as a BRV which will be denoted by ⟦𝛼⟧𝐷 . Thus, adapting Gurevich’s terminology [13, 14], the

semantics ⟦𝛼⟧ of a LIF expression 𝛼 is a global BRV. Formally, we define a global BRV to be a

function 𝑄 that maps interpretations 𝐷 of S to BRVs. Thus, ⟦𝛼⟧ corresponds to the global BRV 𝑄

where 𝑄 (𝐷) = ⟦𝛼⟧𝐷 .
For atomic module expressions, we define

⟦𝑀 (𝑥 ;𝑦)⟧𝐷 := {(a1, a2) ∈ V×V | a1 (𝑥) · a2 (𝑦) ∈ 𝐷 (𝑀) and a1 and a2 agree outside 𝑦}.

Here, a1 (𝑥) · a2 (𝑦) denotes the concatenation of tuples. Intuitively, the semantics of an expression

𝑀 (𝑥 ;𝑦) represents a transition from a1 to a2: the inputs of the module are “read” in a1 and the

outputs are updated in a2. The value of every variable that is not an output is preserved; this

important semantic principle is a realization of the commonsense law of inertia [19, 20].
We further define

⟦id⟧𝐷 := {(a, a) | a ∈ V}.
The semantics of other operators is obtained directly by applying the corresponding operation on

BRVs, e.g.,

⟦𝛼 − 𝛽⟧𝐷 := ⟦𝛼⟧𝐷 − ⟦𝛽⟧𝐷 .
⟦𝜎 lr

𝑥=𝑦 (𝛼)⟧𝐷 := 𝜎 lr
𝑥=𝑦 (⟦𝛼⟧𝐷 ).

We say that 𝛼 and 𝛽 are equivalent if ⟦𝛼⟧𝐷 = ⟦𝛽⟧𝐷 for each interpretation 𝐷 , i.e., if they denote

the same global BRV.

2.3 Satisfiability of LIF Expressions
In this section, wewill show that the problem of decidingwhether a given LIF expression is satisfiable

is undecidable. Thereto we begin by noting that first-order logic (FO) is naturally embedded in

LIF in the following manner. When evaluating FO formulas on interpretations, we agree that the

domain of quantification is always dom.

Lemma 2.2. Let S be a vocabulary with iar (𝑅) = 0 for every 𝑅 ∈ S. Then, for every FO formula 𝜑
over S, there exists a LIF expression 𝛼𝜑 such that for every interpretation 𝐷 the following holds:

⟦𝛼𝜑⟧𝐷 = {(a, a) | 𝐷,a |= 𝜑}.

Proof. The proof is by structural induction on 𝜑 .

• If 𝜑 is 𝑥 = 𝑦, take 𝛼𝜑 = 𝜎 r
𝑥=𝑦 (id).

• If 𝜑 is 𝑅(𝑥) for some 𝑅 ∈ S, take 𝛼𝜑 = id ∩ 𝑅(;𝑥).
• If 𝜑 is 𝜑1 ∨ 𝜑2, take 𝛼𝜑 = 𝛼𝜑1

∪ 𝛼𝜑2
.

• If 𝜑 is ¬𝜑1, take 𝛼𝜑 = id − 𝛼𝜑1
.

• If 𝜑 is ∃𝑥 𝜑1, take 𝛼𝜑 = 𝜎 lr
𝑥=𝑥 (cyl

𝑙
𝑥 (cyl

𝑟
𝑥 (𝛼𝜑1

))). □

It is well known that satisfiability of FO formulas over a fixed countably infinite domain is

undecidable. This leads to the following undecidability result.

Problem: Satisfiability
Given: a LIF expression 𝛼 .

Decide: Is there an interpretation 𝐷 such that ⟦𝛼⟧𝐷 ≠ ∅?

Proposition 2.3. The satisfiability problem is undecidable.
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6 Aamer et al.

Proof. The proof is by reduction from the satisfiability of FO formulas. Let 𝜑 be an FO formula

and let 𝛼𝜑 be the LIF expression obtained from Lemma 2.2. It is clear that 𝛼𝜑 is satisfiable if and

only if 𝜑 is. □

3 INPUTS AND OUTPUTS
We are now ready to study inputs and outputs of LIF expressions, and, more generally, of global

BRVs. We first investigate what inputs and outputs mean on the semantic level before introducing

a syntactic definition for LIF expressions.

3.1 Semantic Inputs and Outputs for Global BRVs
Intuitively, an output is a variable whose value can be changed by the expression, i.e., a variable

that is not subject to inertia.

Definition 3.1. A variable 𝑥 is a semantic output for a global BRV𝑄 if there exists an interpretation

𝐷 and (a1, a2) ∈ 𝑄 (𝐷) such that a1 (𝑥) ≠ a2 (𝑥). We use 𝑂sem (𝑄) to denote the set of semantic

output variables of 𝑄 . If 𝛼 is a LIF expression, we call a variable a semantic output of 𝛼 if it is a

semantic output of ⟦𝛼⟧. We also write 𝑂sem (𝛼) for the semantic outputs of 𝛼 . A variable that is

not a semantic output is also called an inertial variable.

Defining semantic inputs is a bit more subtle. Intuitively, a variable is an input for a BRV if its

value on the left-hand side matters for determining the right-hand side (i.e., that if the value of the

input would have been different, so would have been the right-hand side; which is in fact a very

coarse counterfactual definition of actual causality [18]). However, a naive formalization of this

intuition would result in a situation in which all inertial variables (variables that are not outputs)

are inputs since their value on the right-hand side always equals to the one on the left-hand side. A

slight refinement of our intuition is that the inputs are those variables whose value matters for

determining the possible values of the outputs. This is formalized in the following definitions.

Definition 3.2. Let 𝑄 be a global BRV and 𝑋,𝑌 be sets of variables. We say that 𝑋 determines 𝑄
on 𝑌 if for every interpretation 𝐷 , every (a1, a2) ∈ 𝑄 (𝐷) and every a ′

1
such that a ′

1
= a1 on 𝑋 , there

exists a a ′
2
such that a ′

2
= a2 on 𝑌 and (a ′

1
, a ′

2
) ∈ 𝑄 (𝐷).

Definition 3.3. A variable 𝑥 is a semantic input for a global BRV 𝑄 if V − {𝑥} does not determine

𝑄 on 𝑂sem (𝑄). The set of input variables of 𝑄 is denoted by 𝐼 sem (𝑄). A variable is a semantic input
of a LIF expression 𝛼 if it is a semantic input of ⟦𝛼⟧; the semantic inputs of 𝛼 are denoted by

𝐼 sem (𝛼).

From Definition 3.2, we can rephrase the definition for semantic inputs to:

Proposition 3.4. A variable 𝑥 is a semantic input for a global BRV 𝑄 if and only if there is an
interpretation 𝐷 , a value 𝑑 ∈ dom, and (a1, a2) ∈ 𝑄 (𝐷) such that there is no valuation a ′

2
that agrees

with a2 on 𝑂sem (𝑄) and (a1 [𝑥 : 𝑑], a ′
2
) ∈ 𝑄 (𝐷).

The following proposition shows that the semantic inputs of 𝑄 are indeed exactly the variables

that determine 𝑄 .

Proposition 3.5. If a set of variables 𝑋 determines a global BRV𝑄 on𝑂sem (𝑄), then 𝐼 sem (𝑄) ⊆ 𝑋 .

Proof. Let 𝑣 be any variable in 𝐼 sem (𝑄). We know thatV−{𝑣} does not determine𝑄 on𝑂sem (𝑄).
If 𝑣 ∉ 𝑋 , then 𝑋 ⊆ V − {𝑣}, so 𝑋 would not determine 𝑄 on 𝑂sem (𝑄), which is impossible. Hence,

𝑣 must be in 𝑋 as desired. □
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Inputs, Outputs, and Composition in the Logic of Information Flows 7

Under a mild assumption, also the converse to Proposition 3.5 holds:
1

Proposition 3.6. Assume there exists a finite set of variables that determines a global BRV 𝑄 on
𝑂sem (𝑄). Then, 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄).

Proof. Let (a1, a2) ∈ 𝑄 (𝐷) and a ′
1
= a1 on 𝐼 sem (𝑄) for some interpretation 𝐷 and valuations a1,

a2, and a
′
1
. To show that 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄), we need to find a valuation a ′

2
such

that (a ′
1
, a ′

2
) ∈ 𝑄 (𝐷) and a ′

2
= a2 on 𝑂

sem (𝑄). By assumption, let 𝑋 be a finite set of variables that

determines 𝑄 on 𝑂sem (𝑄).
Thereto, take a ′′

1
to be the valuation a ′

1
[a1 |𝑋 ] which is the valuation a ′

1
after changing the values

for the variables in𝑋 to be as in a1. Thus, a
′′
1
= a1 on𝑋 , while a ′′

1
= a ′

1
outside𝑋 . Since𝑋 determines

𝑄 on 𝑂sem (𝑄), we know that there is a valuation a ′′
2
such that (a ′′

1
, a ′′

2
) ∈ 𝑄 (𝐷) and a ′′

2
= a2 on

𝑂sem (𝑄). To reach our goal, we would like to do incremental changes to a ′′
1
in order to be similar to

a ′
1
while showing that each of the intermediate valuations does satisfy the determinacy conditions.

From construction, we know that a ′′
1
= a ′

1
on 𝑋 ∩ 𝐼 sem (𝑄). Using the finiteness assumption for 𝑋 ,

let 𝑋 − 𝐼 sem (𝑄) be the set of variables {𝑥1, . . . , 𝑥𝑛}. Define the sequence of valuations `0, `1, . . . , `𝑛
such that

• `0 := a ′′
1
; and

• `𝑖 := `𝑖−1 [{𝑥𝑖 ↦→ a ′
1
(𝑥𝑖 )}] so `𝑖 is `𝑖−1 after changing the value of 𝑥𝑖 to be as in a ′

1
.

We claim that for 𝑖 ∈ {0, . . . , 𝑛}, there exists a valuation ^𝑖 such that (`𝑖 , ^𝑖 ) ∈ 𝑄 (𝐷) and ^𝑖 = a2

on 𝑂sem (𝑄). Since `𝑛 is clearly the same valuation as a ′
1
, we can then take a ′

2
to be ^𝑛 which is the

required.

We verify our claim by induction.

Base Case: for 𝑖 = 0, we can see that ^0 = a ′′
2
.

Inductive Step: for 𝑖 > 0, by assumption, we know that there is a valuation ^𝑖−1 such that

(`𝑖−1, ^𝑖−1) ∈ 𝑄 (𝐷) and ^𝑖−1 = a2 on 𝑂sem (𝑄). It is clear that `𝑖 = `𝑖−1 outside {𝑥𝑖 } which
is V − {𝑥𝑖 }. Since 𝑥𝑖 ∉ 𝐼 sem (𝑄), we know that V − {𝑥𝑖 } determines 𝑄 on 𝑂sem (𝑄). Hence,
there is a valuation ^𝑖 such that (`𝑖 , ^𝑖 ) ∈ 𝑄 (𝐷) and ^𝑖 = ^𝑖−1 on𝑂

sem (𝑄). Since ^𝑖−1 = a2 on

𝑂sem (𝑄), we can see that ^𝑖 = a2 on 𝑂
sem (𝑄). □

In the next remark, we show that without our assumption, we can find an example of a global

BRV that is not determined on its semantic outputs by its semantic inputs.

Remark 3.7. Let 𝑄 be the global BRV that maps every 𝐷 to the same BRV, namely:

𝑄 (𝐷) = {(a1, a2) ∈ V ×V | a1 and a2 differ on finitely many variables}.

Since the variables that can be changed by 𝑄 are not restricted, we see that 𝑂sem (𝑄) = V. We now

verify that 𝐼 sem (𝑄) = ∅. Let 𝑣 be any variable. We can see that 𝑣 ∉ 𝐼 sem (𝑄). Thereto, we check that

V − {𝑣} determines 𝑄 on 𝑂sem (𝑄). Let 𝐷 be an interpretation and a1, a2, and a
′
1
valuations such

that (a1, a2) ∈ 𝑄 (𝐷) and a ′
1
= a1 outside {𝑣}. Since a1 and a2 differ on finitely many variables, we

can see that a ′
1
and a2 also do. Hence, (a ′

1
, a2) ∈ 𝑄 (𝐷).

Finally, we verify that 𝐼 sem (𝑄) does not determine 𝑄 on 𝑂sem (𝑄). To see a counterexample, let

𝐷 be an interpretation and a1 be the valuation that assigns 1 to every variable. We can see that

(a1, a1) ∈ 𝑄 (𝐷). Let a2 be the valuation that assigns 2 to every variable. It is clear that a2 = a1 on

𝐼 sem (𝑄) = ∅, however, clearly (a2, a1) ∉ 𝑄 (𝐷). By Proposition 3.6, we know that there is no finite

set of variables that does determine 𝑄 on 𝑂sem (𝑄). □

1
Proposition 3.6 indeed provides a converse to Proposition 3.5: given that 𝐼 sem (𝑄) determines𝑄 on𝑂sem (𝑄) and 𝐼 sem (𝑄) ⊆
𝑋 for some set 𝑋 , clearly also 𝑋 determines𝑄 on𝑂sem (𝑄) .
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The reader should not be lulled into believing that 𝐼 sem (𝑄) determines a global BRV𝑄 on the set

V of all variables since 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄) and no other variable outside 𝑂sem (𝑄)
can have its value changed. In the following remark, we give a simple counterexample.

Remark 3.8. We show that 𝐼 sem (𝑄) does not necessarily determine 𝑄 on V for every global BRV

𝑄 . Take 𝑄 to be defined by the LIF expression 𝜎 l
𝑥=𝑦 (id), so, for every 𝐷 , we have

𝑄 (𝐷) = {(a, a) | a ∈ V such that a (𝑥) = a (𝑦)}.
It is clear that 𝑂sem (𝑄) = ∅ and 𝐼 sem (𝑄) = {𝑥,𝑦}.

Let a1 be the valuation that assigns 1 to every variable. Clearly, (a1, a1) ∈ 𝑄 (𝐷) for any interpre-

tation 𝐷 . Now take a ′
1
to be the valuation that assigns 1 to 𝑥 and 𝑦, while it assigns 2 to every other

variable. It is clear that a ′
1
= a1 on 𝐼 sem (𝑄).

If 𝐼 sem (𝑄) were to determine 𝑄 on V, we should find a valuation a2 that agrees with a1 on V
such that (a ′

1
, a2) ∈ 𝑄 (𝐷). In other words, this means that (a ′

1
, a1) ∈ 𝑄 (𝐷), which is clearly not

possible. □

Following the above remark, we note that in order to determine a global BRV 𝑄 on the set V of

all variables we need to know the values of the input variables of 𝑄 along with the values of the

variables outside the outputs of 𝑄 . In the following proposition, we show that when the inputs

determine𝑄 on the outputs, also a variant of the notion of determinacy holds, compared to the one

we defined in Definition 3.2.

Proposition 3.9. Let 𝑄 be a global BRV. If 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄), then for every
interpretation 𝐷 , every (a1, a2) ∈ 𝑄 (𝐷) and every a ′

1
that agrees with a1 on 𝐼 sem (𝑄) and outside

𝑂sem (𝑄), we have (a ′
1
, a2) ∈ 𝑄 (𝐷).

Proof. Suppose that

(a1, a2) ∈ 𝑄 (𝐷) and a ′
1
= a1 on 𝐼 sem (𝑄) and outside 𝑂sem (𝑄). (1)

By definition of 𝑂sem (𝑄), all variables outside 𝑂sem (𝑄) are inertial, so
a1 = a2 outside 𝑂

sem (𝑄). (2)

Since 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄), by Definition 3.2 there exists a ′
2
such that

(i) a ′
2
= a2 on 𝑂

sem (𝑄);
(ii) (a ′

1
, a ′

2
) ∈ 𝑄 (𝐷).

From (ii) and the definition of semantic outputs, we have

a ′
1
= a ′

2
outside 𝑂sem (𝑄). (3)

Chaining together Equations 3, 1 and 2, we obtain that a ′
2
= a2 outside 𝑂

sem (𝑄). Combining this

with (i), we obtain a2 = a ′
2
. Whence, by (ii), (a ′

1
, a2) ∈ 𝑄 (𝐷) as desired. □

Intuitively, the inputs and outputs are the only variables that matter for a given global BRV,

similar to how in classical logic the free variables are the only ones that matter. All other variables

can take arbitrary values, but, their values are preserved by inertia, i.e., remain unchanged by the

dynamic system. We now formalize this intuition.

Definition 3.10. Let 𝑄 be a global BRV and 𝑋 a set of variables. We say that 𝑄 is inertially
cylindrified on 𝑋 if:

(1) all variables in 𝑋 are inertial; and

(2) for every interpretation𝐷 , every (a1, a2) ∈ 𝑄 (𝐷), and every𝑋 -valuationa ′ also (a1 [a ′], a2 [a ′]) ∈
𝑄 (𝐷).
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Proposition 3.11. Every global BRV 𝑄 is inertially cylindrified outside the semantic inputs and
outputs of 𝑄 assuming that 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄).

Proof. Let 𝑄 be a global BRV such that 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄). Moreover, let 𝑋

be the set of variables that are neither semantic inputs nor semantic outputs of 𝑄 . It is trivial to

show that all the variables in 𝑋 are inertial since none of the variables in 𝑋 is a semantic output

of 𝑄 . What remains to show is that for every interpretation 𝐷 , every (a1, a2) ∈ 𝑄 (𝐷), and every

𝑋 -valuation a ′ also (a1 [a ′], a2 [a ′]) ∈ 𝑄 (𝐷).
Let (a1, a2) ∈ 𝑄 (𝐷) for an arbitrary interpretation 𝐷 and let a ′

1
= a1 [a ′] be a valuation for some

𝑋 -valuation a ′. Since a ′
1
= a1 on 𝐼 sem (𝑄), we know by determinacy that there is a valuation a ′

2
such

that (a ′
1
, a ′

2
) ∈ 𝑄 (𝐷) and a ′

2
= a2 on 𝑂sem (𝑄). We now argue that a ′

2
= a2 [a ′]. On the variables of

𝑂sem (𝑄), we know that a2 = a2 [a ′], whence, a ′2 = a2 [a ′] on𝑂sem (𝑄). Nowwe consider the variables

that are not in 𝑂sem (𝑄). It is clear that a1 = a2 outside 𝑂
sem (𝑄), whence, a1 [a ′] = a ′

1
= a ′

2
= a2 [a ′]

outside 𝑂sem (𝑄). □

Remark 3.12. Without the assumption, we can give an example of a global BRV that is not

inertially cylindrified outside its semantic inputs and outputs. Let 𝑄 be the global BRV that maps

every 𝐷 to the same BRV, namely:

𝑄 (𝐷) = {(a, a) | a ∈ V and no value in the domain occurs infinitely often in a}.

It is clear that 𝑂sem (𝑄) = ∅ and 𝐼 sem (𝑄) = ∅.
We proceed to verify that 𝑄 is not inertially cylindrified on V. Let 𝐷 be any interpretation and

a be any valuation that maps every variable to a unique value from the domain. We can see that

(a, a) ∈ 𝑄 (𝐷) since every value in a appears only once. Now fix some 𝑎 ∈ dom arbitrarily and

consider the valuation a ′ that maps every variable to 𝑎. We can see that (a [a ′], a [a ′]) ∉ 𝑄 (𝐷) since
𝑎 appears infinitely often in a ′ = a [a ′]. □

We remark that the converse of Proposition 3.11 is not true:

Remark 3.13. Consider the same global BRV Q discussed in Remark 3.7 where we showed that

𝐼 sem (𝑄) does not determine 𝑄 on 𝑂sem (𝑄). Recall that 𝑂sem (𝑄) = V, so the set of variables outside

the semantic inputs and outputs is empty. Trivially, however, 𝑄 is inertially cylindrified on ∅.

3.2 Semantic Inputs and Outputs for LIF Expressions
As we have discussed in the previous section, if there is a finite set of variables that determines a

global BRV on its semantic outputs, then the global BRV has the properties of determinacy and

inertial cylindrification. Indeed, that is the assumption made in Proposition 3.6 from which results

like Proposition 3.9 and Proposition 3.11 follow. For the correctness of our later arguments it

is important to emphasize that this assumption is indeed satisfied for global BRVs that are the

semantics of LIF expressions. Indeed, in Section 3.3, we will show that there does exist, for every

LIF expression 𝛼 , a finite set of variables, what we will call the “syntactic input variables” of 𝛼 , that

does determine ⟦𝛼⟧ on a set of “syntactic output variables”, which will include𝑂sem (𝛼) as desired.
For atomic LIF expressions, the semantic inputs and outputs are easy to determine, as we will

show first. Unfortunately, we show next that the problem is undecidable for general expressions.

We show that semantic inputs and outputs are exactly what one expects for atomic modules:

Proposition 3.14. If 𝛼 is an atomic LIF expressions𝑀 (𝑥 ;𝑦), then
• 𝐼 sem (𝛼) = {𝑥𝑖 | 𝑥 = 𝑥1, . . . , 𝑥𝑛 for 𝑖 ∈ {1, . . . , 𝑛}}; and
• 𝑂sem (𝛼) = {𝑦𝑖 | 𝑦 = 𝑦1, . . . , 𝑦𝑚 for 𝑖 ∈ {1, . . . ,𝑚}}.
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Example 3.15. A variable can be both input and output of a given expression. A very simple

example is an atomic module 𝑃1 (𝑥 ;𝑥). To illustrate where this can be useful, assume dom = Z and
consider an interpretation 𝐷 such that 𝐷 (𝑃1) = {(𝑛, 𝑛 + 1) | 𝑛 ∈ Z}. In that case, the expression

𝑃1 (𝑥 ;𝑥) represents a dynamic system in which the value of 𝑥 is incremented by 1; 𝑥 is an output of

the system since its value is changed; it is an input since its original value matters for determining

its value in the output.

We will now show that the problem of deciding whether a given variable is a semantic input

or output of a LIF expression is undecidable. Proposition 2.3 showed that satisfiability of LIF

expressions is undecidable. This leads to the following undecidability results.

Problem: Semantic Output Membership
Given: a variable 𝑥 and a LIF expression 𝛼 .

Decide: 𝑥 ∈ 𝑂sem (𝛼)?

Proposition 3.16. The semantic output membership problem is undecidable.

Proof. The proof is by reduction from the satisfiability of LIF expressions. Let 𝛼 be a LIF

expression. Take 𝛽 to be cyl
𝑙
𝑥 (𝛼). What remains to show is that 𝑥 ∈ 𝑂sem (𝛽) ⇔ 𝛼 is satisfiable.

(⇒) Let 𝑥 ∈ 𝑂sem (𝛽). Then, there is certainly an interpretation 𝐷 and valuations a1 and a2 such

that (a1, a2) ∈ ⟦cyl
𝑙
𝑥 (𝛼)⟧𝐷 . Hence, there is also a valuation a ′

1
such that (a ′

1
, a2) ∈ ⟦𝛼⟧𝐷 . Certainly,

𝛼 is satisfiable.

(⇐) Let 𝛼 be satisfiable. Then, there is an interpretation 𝐷 and valuations a1 and a2 such that

(a1, a2) ∈ ⟦𝛼⟧𝐷 . Also, let a ′ be an {𝑥}-valuation that maps 𝑥 to 𝑎 with 𝑎 ≠ a2 (𝑥). It is clear then
that (a1 [a ′], a2) ∈ ⟦cyl

𝑙
𝑥 (𝛼)⟧𝐷 . We thus see that 𝑥 ∈ 𝑂sem (𝛽). □

Problem: Semantic Input Membership
Given: a variable 𝑥 and a LIF expression 𝛼 .

Decide: 𝑥 ∈ 𝐼 sem (𝛼)?

Proposition 3.17. The semantic input membership problem is undecidable.

Proof. Let 𝛼 be a LIF expression. Take 𝛽 to be 𝜎 l
𝑥=𝑧 (𝛼), where 𝑧 is a variable that is not used in

𝛼 and different from 𝑥 . What remains to show is that 𝑥 ∈ 𝐼 sem (𝛽) ⇔ 𝛼 is satisfiable.

(⇒) Let 𝑥 ∈ 𝐼 sem (𝛽). Then, certainly, there is an interpretation 𝐷 and valuations a1 and a2 such

that (a1, a2) ∈ ⟦𝜎 l
𝑥=𝑧 (𝛼)⟧𝐷 ⊆ ⟦𝛼⟧𝐷 . Certainly, 𝛼 is satisfiable.

(⇐) Let 𝛼 be satisfiable. Then, there is an interpretation 𝐷 and valuations a1 and a2 such that

(a1, a2) ∈ ⟦𝛼⟧𝐷 . Without loss of generality, we can assume that a1 (𝑧) = a1 (𝑥) since 𝑧 is a fresh

variable. Hence, (a1, a2) ∈ ⟦𝜎 l
𝑥=𝑧 (𝛼)⟧𝐷 . Let a ′1 be a valuation that agrees with a1 outside 𝑥 such

that a ′
1
(𝑥) ≠ a1 (𝑥). Since 𝑥 and 𝑧 are different variables, also a ′

1
(𝑥) ≠ a ′

1
(𝑧), so clearly there is no

valuation a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝜎 l

𝑥=𝑧 (𝛼)⟧𝐷 . We then see that 𝑥 ∈ 𝐼 sem (𝛽). □

3.3 Syntactic Inputs and Outputs
Since the membership problems for both semantic inputs and semantic outputs are undecidable, to

determine inputs and outputs in practice, we will need decidable approximations of these concepts.

Before giving our syntactic definition, we define some properties of candidate definitions.

Definition 3.18. Let 𝐼 and 𝑂 be functions from LIF expressions to sets of variables. We say that

(𝐼 ,𝑂) is a sound input–output definition if the following hold:

• If 𝛼 = 𝑀 (𝑥 ;𝑦), then 𝐼 (𝛼) = 𝑥 and 𝑂 (𝛼) = 𝑦,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: February 2018.



Inputs, Outputs, and Composition in the Logic of Information Flows 11

• 𝑂 (𝛼) ⊇ 𝑂sem (𝛼), and
• 𝐼 (𝛼) determines ⟦𝛼⟧ on 𝑂 (𝛼).

The first condition states that on atomic expressions (of which we know the inputs), 𝐼 and 𝑂 are

defined correctly. The next condition states𝑂 approximates the semantic notion correctly. We only

allow for overapproximations; that is, false positives are allowed while false negatives are not. The

reason for this is that falsely marking a variable as non-output while it is actually an output would

mean incorrectly assuming the variable cannot change value. The last condition establishes the

relation between 𝐼 and 𝑂 , and is called input–output determinacy. It states that the inputs need to

be large enough to determine the outputs, as such generalizing the defining condition of semantic

inputs.

We first remark that a proposition similar to Proposition 3.5 can be made about sound output

definitions.

Proposition 3.19. Let (𝐼 ,𝑂) be a sound input-output definition, 𝛼 be a LIF expression, and 𝑋 a set
of variables. If 𝑋 determines ⟦𝛼⟧ on 𝑂 (𝛼), then 𝐼 sem (𝛼) ⊆ 𝑋 .

Proof. By soundness, we know that 𝑂sem (𝛼) ⊆ 𝑂 (𝛼). It follows that 𝑋 determines ⟦𝛼⟧ on

𝑂sem (𝛼). Indeed, in general, if 𝑋 determines ⟦𝛼⟧ on some 𝑌 , then clearly also 𝑋 determines ⟦𝛼⟧
on 𝑍 for any set 𝑍 such that 𝑍 ⊆ 𝑌 . By Proposition 3.5, then, we obtain 𝐼 sem (𝛼) ⊆ 𝑋 . □

This proposition along with the input-output determinacy condition imply a condition similar

to the second condition about the inputs:

Proposition 3.20. Let (𝐼 ,𝑂) be a sound input-output definition and 𝛼 be a LIF expression. Then,
𝐼 (𝛼) ⊇ 𝐼 sem (𝛼).

Proof. The proof follows from Proposition 3.19 and knowing that 𝐼 (𝛼) determines ⟦𝛼⟧ on

𝑂 (𝛼). □

Besides requiring that our definitions to be sound, we will focus on definitions that are composi-
tional, in the sense that definitions of inputs and outputs of compound expressions can be given in

terms of their direct subexpressions essentially treating subexpressions as black boxes. This means

that the definition nicely follows the inductive definition of the syntax. Formally,

Definition 3.21. Suppose 𝐼 and 𝑂 are functions from LIF expression to sets of variables. We

say that (𝐼 ,𝑂) is compositional if for all LIF expressions 𝛼1, 𝛼2, 𝛽1, and 𝛽2 with 𝐼 (𝛼1) = 𝐼 (𝛼2),
𝑂 (𝛼1) = 𝑂 (𝛼2), 𝐼 (𝛽1) = 𝐼 (𝛽2), and 𝑂 (𝛽1) = 𝑂 (𝛽2) the following hold:

• For every unary operator □: 𝐼 (□𝛼1) = 𝐼 (□𝛼2), and 𝑂 (□𝛼1) = 𝑂 (□𝛼2); and
• For every binary operator ⊡: 𝐼 (𝛼1 ⊡ 𝛽1) = 𝐼 (𝛼2 ⊡ 𝛽2), and 𝑂 (𝛼1 ⊡ 𝛽1) = 𝑂 (𝛼2 ⊡ 𝛽2).

The previous definition essentially states that in order to be compositional, the inputs and outputs

of 𝛼1 ⊡ 𝛽1 and □𝛼1 should only depend on the inputs and outputs of 𝛼1 and 𝛽1, and not on their

inner structure.

The following lemma rephrases input–output determinacy in terms of the inputs and outputs: in

order to determine the output-value of an inertial variable, we need to know its input-value.

Lemma 3.22. Let (𝐼 ,𝑂) be a sound input–output definition and let 𝛼 be a LIF expression.
(1) If 𝛼 is satisfiable, then 𝑂 (𝛼) −𝑂sem (𝛼) ⊆ 𝐼 (𝛼).
(2) Moreover, if (𝐼 ,𝑂) is compositional, then𝑂 (𝛼)−𝑂sem (𝛼) ⊆ 𝐼 (𝛼) holds even if 𝛼 is not satisfiable.

Proof. Let 𝑥 ∈ 𝑂 (𝛼) −𝑂sem (𝛼). For the sake of contradiction, assume that 𝑥 ∉ 𝐼 (𝛼), so Propo-

sition 3.11 is applicable since 𝑥 ∉ 𝐼 sem (𝛼) as we know by the soundness of (𝐼 ,𝑂). Hence, ⟦𝛼⟧ is
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inertially cylindrified on {𝑥}. We claim that this contradicts the fact that (𝐼 ,𝑂) is a sound definition.
In particular, we can verify that 𝐼 (𝛼) can not determine ⟦𝛼⟧ on 𝑂 (𝛼) in case 𝛼 is satisfiable. Let

𝐷 be an interpretation and a1 and a2 be valuations such that (a1, a2) ∈ ⟦𝛼⟧𝐷 . We also know that

a1 (𝑥) = a2 (𝑥) since ⟦𝛼⟧ is inertially cylindrified on {𝑥}. Take a ′
1
to be the valuation a1 [{𝑥 ↦→ 𝑎}]

where 𝑎 ≠ a1 (𝑥). By determinacy, we know that there is a valuation a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷

and a ′
2
= a2 on𝑂 (𝛼). Thus, a ′

2
(𝑥) = a2 (𝑥) ≠ 𝑎 since 𝑥 ∈ 𝑂 (𝛼). On the other hand, a ′

2
(𝑥) = a ′

1
(𝑥) = 𝑎

since ⟦𝛼⟧ is inertially cylindrified on {𝑥}. Hence, a contradiction.
For the compositional case, we can always replace subexpressions by atomic expressions with

the same inputs and outputs to ensure satisfiability. It is clear that when 𝛼 is an atomic module

expression, it is always satisfiable. Now, consider any LIF expression 𝛼 which is of the form □𝛼1

or 𝛼1 ⊡ 𝛼2, where □ is any of the unary operators and ⊡ is any of the binary operator. Construct

two atomic expressions 𝑀1 and 𝑀2 such that 𝐼 (𝑀𝑖 ) = 𝐼 (𝛼𝑖 ) and 𝑂 (𝑀𝑖 ) = 𝑂 (𝛼𝑖 ) for 𝑖 = 1, 2. By

compositionality, we know that 𝐼 (□𝛼1) = 𝐼 (□𝑀1) and 𝑂 (□𝛼1) = 𝑂 (□𝑀1) for any unary operator,

while 𝐼 (𝛼1 ⊡ 𝛼2) = 𝐼 (𝑀1 ⊡𝑀2) and 𝑂 (𝛼1 ⊡ 𝛼2) = 𝑂 (𝑀1 ⊡𝑀2) for any binary operator. Next, we

give examples for an interpretation 𝐷 in which any ⟦□𝑀1⟧𝐷 and ⟦𝑀1 ⊡𝑀2⟧𝐷 can be shown not

be empty, so □𝑀1 and𝑀1 ⊡𝑀2 are satisfiable expressions.

In what follows, let a1 be the valuation that assigns 1 to every variable.

Case ⊡ is −. Let 𝐷 be the interpretation with

• 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}; and
• 𝐷 (𝑀2) = ∅.

It is clear that (a1, a1) ∈ ⟦𝑀1⟧𝐷 , and (a1, a1) ∉ ⟦𝑀2⟧𝐷 , whence, (a1, a1) ∈ ⟦𝑀1 −𝑀2⟧𝐷 .

All other cases. Let 𝐷 be the interpretation with

• 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}; and
• 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}.

We can see that (a1, a1) ∈ ⟦𝑀1⟧𝐷 . Consequently, (a1, a1) ∈ ⟦□𝑀1⟧𝐷 for any unary operator □.
We can also see that (a1, a1) ∈ ⟦𝑀2⟧𝐷 , whence, (a1, a1) ∈ ⟦𝑀1 ⊡ 𝑀2⟧𝐷 for any binary operator

⊡ ∈ {∪,∩, ; }. □

We now provide a sound and compositional input–output definition. While the definition might

seem complex, there is a good reason for the different cases. Indeed, as we show below in Theo-

rem 3.28, our definition is optimal among the sound and compositional definitions. In the definition,

the condition 𝑥 =syn 𝑦 simply means that 𝑥 and 𝑦 are the same variable. Moreover, △ denotes the

symmetric difference of two sets, precisely, 𝐴 △ 𝐵 := (𝐴 ∪ 𝐵) − (𝐴 ∩ 𝐵).

Definition 3.23. The syntactic inputs and outputs of a LIF expression 𝛼 , denoted 𝐼 syn (𝛼) and
𝑂syn (𝛼) respectively, are defined recursively as given in Table 1.

While it would be tedious to discuss the motivation for all the cases of Definition 3.23 (their

motivation will be clarified in Theorem 3.28), we discuss here one of the most difficult parts, namely

the case where 𝛼 = 𝜎𝑙𝑟𝑥=𝑦 (𝛼1). For a given interpretation 𝐷 ,

⟦𝛼⟧𝐷 = {(a1, a2) ∈ ⟦𝛼1⟧𝐷 | a1 (𝑥) = a2 (𝑦)}.
First, since ⟦𝛼⟧𝐷 ⊆ ⟦𝛼1⟧𝐷 , it is clear that the outputs of 𝛼 should be a subset of those of 𝛼1 (if 𝛼1

admits no pairs in its semantics that change the value of a variable, then neither does 𝛼). For the

special case in which 𝑥 and 𝑦 are the same variable, this selection enforces 𝑥 to be inertial, i.e., it

should not be an output of 𝛼 .

Secondly, all inputs of 𝛼1 remain inputs of 𝛼 . Since we select those pairs whose 𝑦-value on

the right equals the 𝑥-value on the left, clearly 𝑥 must be an input of 𝛼 (the special case 𝑥 =syn 𝑦
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𝛼 𝐼 syn (𝛼) 𝑂syn (𝛼)
id ∅ ∅
𝑀 (𝑥 ;𝑦) {𝑥1, . . . , 𝑥𝑛} where 𝑥 = 𝑥1, . . . , 𝑥𝑛 {𝑦1, . . . , 𝑦𝑛} where 𝑦 = 𝑦1, . . . , 𝑦𝑛

𝛼1 ∪ 𝛼2 𝐼 syn (𝛼1) ∪ 𝐼 syn (𝛼2) ∪ (𝑂syn (𝛼1) △𝑂syn (𝛼2)) 𝑂syn (𝛼1) ∪𝑂syn (𝛼2)
𝛼1 ∩ 𝛼2 𝐼 syn (𝛼1) ∪ 𝐼 syn (𝛼2) ∪ (𝑂syn (𝛼1) △𝑂syn (𝛼2)) 𝑂syn (𝛼1) ∩𝑂syn (𝛼2)
𝛼1 − 𝛼2 𝐼 syn (𝛼1) ∪ 𝐼 syn (𝛼2) ∪ (𝑂syn (𝛼1) △𝑂syn (𝛼2)) 𝑂syn (𝛼1)
𝛼1 ; 𝛼2 𝐼 syn (𝛼1) ∪ (𝐼 syn (𝛼2) −𝑂syn (𝛼1)) 𝑂syn (𝛼1) ∪𝑂syn (𝛼2)
𝛼⌣

1
𝑂syn (𝛼1) ∪ 𝐼 syn (𝛼1) 𝑂syn (𝛼1)

cyl
𝑙
𝑥 (𝛼1) 𝐼 syn (𝛼1) − {𝑥} 𝑂syn (𝛼1) ∪ {𝑥}

cyl
𝑟
𝑥 (𝛼1) 𝐼 syn (𝛼1) 𝑂syn (𝛼1) ∪ {𝑥}

𝜎 lr
𝑥=𝑦 (𝛼1)


𝐼 syn (𝛼1) if 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂syn (𝛼1)
𝐼 syn (𝛼1) ∪ {𝑥,𝑦} if 𝑥 ≠syn 𝑦 and 𝑦 ∉ 𝑂syn (𝛼1)
𝐼 syn (𝛼1) ∪ {𝑥} otherwise

{
𝑂syn (𝛼1) − {𝑥} if 𝑥 =syn 𝑦

𝑂syn (𝛼1) otherwise

𝜎 l
𝑥=𝑦 (𝛼1)

{
𝐼 syn (𝛼1) if 𝑥 =syn 𝑦

𝐼 syn (𝛼1) ∪ {𝑥,𝑦} otherwise

𝑂syn (𝛼1)

𝜎 r
𝑥=𝑦 (𝛼1)

{
𝐼 syn (𝛼1) if 𝑥 =syn 𝑦

𝐼 syn (𝛼1) ∪ ({𝑥,𝑦} −𝑂syn (𝛼1)) otherwise

𝑂syn (𝛼1)

Table 1. Syntactic inputs and outputs for LIF expressions.

and 𝑦 ∉ 𝑂syn (𝛼1) only covers cases where 𝛼1 and 𝛼 are actually equivalent). Whether 𝑦 is an

input depends on 𝛼1: if 𝑦 ∉ 𝑂syn (𝛼1), 𝑦 is inertial. Since we compare the input-value of 𝑥 with the

output-value of 𝑦, essentially this is the same as comparing the input-values of both variables, i.e.,

the value of 𝑦 on the input-side matters. On the other hand, if 𝑦 ∈ 𝑂syn (𝛼1), the value of 𝑦 can be

changed by 𝛼1 and thus this selection does not force 𝑦 to be an input.

Our syntactic definition is clearly compositional (since we only use the inputs and outputs of

subexpressions). An important result is that our definition is also sound, i.e., our syntactic concepts

are overapproximations of the semantic concepts.

Theorem 3.24 (Soundness Theorem). (𝐼 syn,𝑂syn) is a sound input–output definition.

Proof. The proof is given in Section 4. □

Of course, since the semantic notions of inputs and outputs are undecidable and our syntactic

notions clearly are decidable, expressions exist in which the semantic and syntactic notions do not

coincide. We give some examples.

Example 3.25. Consider the LIF expression

𝛼 := 𝜎 l
𝑥=𝑦𝜎

r
𝑥=𝑦 (𝑅(𝑥 ;𝑦)).

In this case, 𝑂sem (𝛼) = ∅. However, it can be verified that 𝑂syn (𝛼) = {𝑥,𝑦}.
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Example 3.26. Consider the LIF expression

𝛼 := 𝜎 lr
𝑥=𝑥cyl

𝑟
𝑥cyl

𝑙
𝑥 (𝑃 (𝑥 ; )) .

While the expression 𝑃 (𝑥 ; ) may look erroneous at first sight, it is an allowed expression, where 𝑃

denotes an atomic module with input arity one and output arity zero.

In this expression, we first cylindrify 𝑥 on both sides and afterwards only select those pairs that

have inertia, therefore, we reach an expression 𝛼 that is equivalent to id. As such, 𝑥 is inertially

cylindrified in 𝛼 where 𝑥 ∉ 𝑂sem (𝛼) and 𝑥 ∉ 𝐼 sem (𝛼). However, 𝐼 syn (𝛼) = {𝑥}.

These examples suggest that our definitions can be improved. Indeed, one can probably keep

coming up with ad-hoc but more precise approximations of inputs and outputs for various specific

patterns of expressions. Such improvements would not be compositional, as they would be based

on inspecting the structure of subexpressions. In the following results, we show that (𝐼 syn,𝑂syn) is
actually the most precise sound and compositional input–output definition.

Theorem 3.27 (Precision Theorem). Let 𝛼 be a LIF expression that is either atomic, or a unary
operator applied to an atomic module expression, or a binary operator applied to two atomic module
expressions involving different module names. Then

𝑂sem (𝛼) = 𝑂syn (𝛼) and 𝐼 sem (𝛼) = 𝐼 syn (𝛼).

Proof. The proof is given in Section 5. □

Now, the precision theorem forms the basis for our main result on syntactic inputs and outputs,

which states that Definition 3.23 yields the most precise sound and compositional input–output

definition.

Theorem 3.28 (Optimality Theorem). Suppose (𝐼 ,𝑂) is a sound and compositional input–output
definition. Then for each LIF expression 𝛼 ,

𝐼 syn (𝛼) ⊆ 𝐼 (𝛼) and 𝑂syn (𝛼) ⊆ 𝑂 (𝛼).

Proof. The proof is given in Section 6. □

4 SOUNDNESS THEOREM PROOF
In this section, we prove Theorem 3.24. Thereto, we need to verify its three conditions for every

LIF expression 𝛼 according to Definition 3.18:

Atomic Module Case: If 𝛼 = 𝑀 (𝑥 ;𝑦), then 𝐼 syn (𝛼) = 𝑥 and 𝑂syn (𝛼) = 𝑦.

This is clear from the definitions.

Output Approximation: 𝑂syn (𝛼) ⊇ 𝑂sem (𝛼).
The output approximation property is shown in Proposition 4.1, which is given in Section 4.1.

Syntactic Input-Output Determinacy: 𝐼 syn (𝛼) determines ⟦𝛼⟧ on 𝑂syn (𝛼).
The syntactic input-output determinacy property is shown in Lemma 4.6, which is given in

Section 4.3. First, however, in Section 4.2, we need to prove a syntactic version of Proposi-

tion 3.11, which will be used in the proof of the syntactic input-output determinacy property.

4.1 Proof of Output Approximation
In this section, we prove:

Proposition 4.1. Let 𝛼 be a LIF expression. Then, 𝑂sem (𝛼) ⊆ 𝑂syn (𝛼).

To prove this proposition, we introduce the following notion which is related to Definition 3.10.
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Definition 4.2. A BRV 𝐵 has inertia outside a set of variables 𝑍 if for every (a1, a2) ∈ 𝐵, we have

a1 = a2 outside 𝑍 . A global BRV𝑄 has inertia outside a set of variables 𝑍 if𝑄 (𝐷) has inertia outside
𝑍 for every interpretation 𝐷 .

Using this notion, Proposition 4.1 can be equivalently formulated as follows.

Proposition 4.3 (Inertia Property). Let 𝛼 be a LIF expression. Then, ⟦𝛼⟧ has inertia outside
𝑂syn (𝛼).

In the remainder of this section we prove the inertia property by structural induction on the

shape of LIF expressions. Also, we remove the superscript from 𝑂syn
and refer to it simply by 𝑂 .

4.1.1 Atomic Modules. Let 𝛼 be of the form 𝑀 (𝑥 ;𝑦). Recall that 𝑂 (𝛼) = 𝑌 where 𝑌 is the set

of variables in 𝑦. The property directly follows from the definition of the semantics for atomic

modules.

4.1.2 Identity. Let 𝛼 be of the form id. Recall that 𝑂 (𝛼) = ∅. The property directly follows from

the definition of id.

4.1.3 Union. Let 𝛼 be of the form 𝛼1∪𝛼2. Recall that𝑂 (𝛼) = 𝑂 (𝛼1)∪𝑂 (𝛼2). If (a1, a2) ∈ ⟦𝛼1∪𝛼2⟧𝐷 ,
then at least one of the following holds:

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Then, by induction we know that a1 = a2 outside 𝑂 (𝛼1). Since 𝑂 (𝛼1) ⊆
𝑂 (𝛼1) ∪𝑂 (𝛼2) = 𝑂 (𝛼), we know that a1 = a2 outside 𝑂 (𝛼).

(2) (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Similar.

4.1.4 Intersection. Let 𝛼 be of the form 𝛼1 ∩ 𝛼2. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1) ∩ 𝑂 (𝛼2). If (a1, a2) ∈
⟦𝛼1 ∩ 𝛼2⟧𝐷 , then (a1, a2) ∈ ⟦𝛼1⟧𝐷 and (a1, a2) ∈ ⟦𝛼2⟧𝐷 . By induction, a1 = a2 outside 𝑂 (𝛼1) and
also a1 = a2 outside 𝑂 (𝛼2). Hence, a1 = a2 outside 𝑂 (𝛼1) ∩𝑂 (𝛼2).

4.1.5 Composition. Let 𝛼 be of the form 𝛼1 ; 𝛼2. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2). If (a1, a2) ∈
⟦𝛼1 ; 𝛼2⟧𝐷 , then there exists a valuation a such that (a1, a) ∈ ⟦𝛼1⟧𝐷 and (a, a2) ∈ ⟦𝛼2⟧𝐷 . By
induction, a1 = a outside 𝑂 (𝛼1) and also a = a2 outside 𝑂 (𝛼2). Hence, a1 = a2 = a outside

𝑂 (𝛼1) ∪𝑂 (𝛼2).

4.1.6 Difference. Let 𝛼 be of the form 𝛼1 − 𝛼2. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1). The proof then follows

immediately by induction.

4.1.7 Converse. Let 𝛼 be of the form 𝛼⌣
1
. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1). The proof is immediate by

induction.

4.1.8 Left and Right Selections. Let 𝛼 be of the form 𝜎 l
𝑥=𝑦 (𝛼1) or 𝜎 r

𝑥=𝑦 (𝛼1). Recall that𝑂 (𝛼) = 𝑂 (𝛼1).
The proof is immediate by induction.

4.1.9 Left-to-Right Selection. Let 𝛼 be of the form 𝜎 lr
𝑥=𝑦 (𝛼1). Recall the definition:

𝑂 (𝛼) =
{
𝑂 (𝛼1) if 𝑥 ≠syn 𝑦

𝑂 (𝛼1) − {𝑥} otherwise

If (a1, a2) ∈ ⟦𝜎 lr
𝑥=𝑦 (𝛼1)⟧𝐷 , then we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) a1 (𝑥) = a2 (𝑦).

By induction from (1), we know that a1 = a2 outside 𝑂 (𝛼1). Hence, for 𝑥 ≠syn 𝑦 case we are done.

In the other case, i.e., when 𝑥 and 𝑦 are the same variable, we must additionally show that

a1 (𝑥) = a2 (𝑥). This follows from (2) since now 𝑥 and 𝑦 are the same variable.
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4.1.10 Right and Left Cylindrifications. Let 𝛼 be of the form cyl
𝑟
𝑥 (𝛼1). The case for left cylindrifi-

cation is analogous. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1) ∪ {𝑥}. If (a1, a2) ∈ ⟦cyl
𝑟
𝑥 (𝛼1)⟧𝐷 , then there exists a

such that

(1) (a1, a) ∈ ⟦𝛼1⟧𝐷 ;
(2) a = a2 outside {𝑥}.

By induction from (1), we know that a1 = a outside 𝑂 (𝛼1). Combining this with (2), we know that

a1 = a2 outside 𝑂 (𝛼1) ∪ {𝑥} as desired.

4.2 Proof of Syntactic Free Variable Property
Lemma 4.4 (Syntactic Free Variable Property). Let 𝛼 be a LIF expression. Denote 𝐼 syn (𝛼) ∪

𝑂syn (𝛼) by fvars(𝛼). Then, 𝛼 is inertially cylindrified on V − fvars(𝛼).

In the proof of this Lemma, we will often make use of Lemma 4.5. In what follows, for a set of

variables 𝑋 , we define 𝑋 to be V − 𝑋 . In the rest of the section, we remove the superscript from

𝑂syn
and refer to it simply by 𝑂 .

Lemma 4.5. Let 𝐵 be a BRV that has inertia on 𝑌 . Then, 𝐵 is inertially cylindrified on 𝑌 if and only
if 𝐵 is inertially cylindrified on every 𝑋 ⊆ 𝑌 .

Proof. The ‘if’-direction is immediate.
2
Let us now consider the ‘only if’. To this end, suppose

that (a1, a2) ∈ 𝐵 and that a is a partial valuation on 𝑋 . Extend a to a valuation a ′ by a ′ = a1 on

𝑌 − 𝑋 . Since 𝐵 has inertia on 𝑌 , we know that a1 = a2 = a ′ on 𝑌 − 𝑋 . Thus, a1 [a ′] = a1 [a] and
a2 [a ′] = a2 [a]. The lemma now directly follows since 𝐵 is inertially cylindrified on 𝑌 . □

This Lemma is always applicable for any LIF expression 𝛼 and 𝑌 = V − fvars(𝛼). Indeed, for
every interpretation 𝐷 , we know by Proposition 4.3 that ⟦𝛼⟧𝐷 has inertia outside𝑂 (𝛼) ⊆ fvars(𝛼).

We are now ready to prove Lemma 4.4.

4.2.1 Atomic Modules. Let 𝛼 be of the form𝑀 (𝑥 ;𝑦). Recall that fvars(𝛼) = 𝑋 ∪ 𝑌 where 𝑋 and 𝑌

are the variables in 𝑥 and 𝑦, respectively. The property directly follows from the definition of the

semantics for atomic modules.

4.2.2 Identity. Let 𝛼 be of the form id. Recall that fvars(𝛼) = ∅. The property directly follows from

the definition of id.

4.2.3 Union. Let 𝛼 be of the form 𝛼1 ∪𝛼2. Recall that fvars(𝛼) = fvars(𝛼1) ∪ fvars(𝛼2). If (a1, a2) ∈
⟦𝛼⟧𝐷 , then (a1, a2) ∈ ⟦𝛼1⟧𝐷 or (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Let𝑌 = V−fvars(𝛼) and let a be a partial valuation
on 𝑌 . Assume without loss of generality that (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Clearly, 𝑌 ⊆ V − fvars(𝛼1) since
fvars(𝛼1) ⊆ fvars(𝛼). By induction and Lemma 4.5, we know that (a1 [a], a2 [a]) ∈ ⟦𝛼1⟧𝐷 ⊆ ⟦𝛼⟧𝐷
as desired.

4.2.4 Intersection. Let 𝛼 be of the form 𝛼1 ∩ 𝛼2. Recall that fvars(𝛼) = fvars(𝛼1) ∪ fvars(𝛼2). If
(a1, a2) ∈ ⟦𝛼⟧𝐷 , then (a1, a2) ∈ ⟦𝛼1⟧𝐷 and (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Let𝑌 = V− fvars(𝛼) and let a be a par-
tial valuation on 𝑌 . Clearly, 𝑌 ⊆ V− fvars(𝛼𝑖 ) with 𝑖 = 1, 2 since fvars(𝛼𝑖 ) ⊆ fvars(𝛼). By induction
and Lemma 4.5, we know that (a1 [a], a2 [a]) ∈ ⟦𝛼𝑖⟧𝐷 with 𝑖 = 1, 2, whence (a1 [a], a2 [a]) ∈ ⟦𝛼⟧𝐷
as desired.

2
We remind the reader that a statement of the form ‘Φ if and only if Ψ’ states the equivalence Φ ⇔ Ψ, with ‘if’ standing for

the implication ⇐ and ‘only if’ standing for the implication ⇒.
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4.2.5 Composition. Let 𝛼 be of the form 𝛼1 ; 𝛼2. Recall that fvars(𝛼) = fvars(𝛼1) ∪ fvars(𝛼2). If
(a1, a2) ∈ ⟦𝛼⟧𝐷 , then there exists a valuation a3 such that (a1, a3) ∈ ⟦𝛼1⟧𝐷 and (a3, a2) ∈ ⟦𝛼2⟧𝐷 .
Let 𝑌 = V − fvars(𝛼) and let a be a partial valuation on 𝑌 . Clearly, 𝑌 ⊆ V − fvars(𝛼𝑖 ) with 𝑖 = 1, 2

since fvars(𝛼𝑖 ) ⊆ fvars(𝛼). By induction and Lemma 4.5, we know that (a1 [a], a3 [a]) ∈ ⟦𝛼1⟧𝐷 and

(a3 [a], a2 [a]) ∈ ⟦𝛼2⟧𝐷 . Therefore, we may conclude that (a1 [a], a2 [a]) ∈ ⟦𝛼1 ; 𝛼2⟧𝐷 .

4.2.6 Difference. Let 𝛼 be of the form 𝛼1 − 𝛼2. Recall that fvars(𝛼) = fvars(𝛼1) ∪ fvars(𝛼2). If
(a1, a2) ∈ ⟦𝛼⟧𝐷 , then we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 . By inertia, we know that a1 = a2 outside 𝑂 (𝛼1) ⊆ fvars(𝛼1) ⊆ fvars(𝛼).
(2) (a1, a2) ∉ ⟦𝛼2⟧𝐷 .

Let𝑌 = V−fvars(𝛼) and leta be a partial valuation on𝑌 . Clearly,𝑌 ⊆ V−fvars(𝛼𝑖 ) with 𝑖 = 1, 2 since

fvars(𝛼𝑖 ) ⊆ fvars(𝛼). By induction from (1) and Lemma 4.5, we know that (a1 [a], a2 [a]) ∈ ⟦𝛼1⟧𝐷 .
All that remains is to show that (a1 [a], a2 [a]) ∉ ⟦𝛼2⟧𝐷 Now, suppose for the sake of contradiction

that (a1 [a], a2 [a]) ∈ ⟦𝛼2⟧𝐷 . By induction and Lemma 4.5, we know that ((a1 [a]) [a1 |𝑌 ], (a2 [a]) [a1 |𝑌 ]) ∈
⟦𝛼2⟧𝐷 . Clearly, (a1 [a]) [a1 |𝑌 ] = a1. Moreover, (a2 [a]) [a1 |𝑌 ] = a2 since a1 = a2 outside fvars(𝛼) by
(1). We have thus obtained that (a1, a2) ∈ ⟦𝛼2⟧𝐷 , which contradicts (2).

4.2.7 Converse. Let 𝛼 be of the form 𝛼⌣
1
. Recall that fvars(𝛼) = fvars(𝛼1). The property follows

directly by induction since fvars(𝛼1) = fvars(𝛼⌣
1
).

4.2.8 Left Selection. Let 𝛼 be of the form 𝜎 l
𝑥=𝑦 (𝛼1). Recall the definition:

fvars(𝛼) =
{
fvars(𝛼1) if 𝑥 =syn 𝑦

fvars(𝛼1) ∪ {𝑥,𝑦} otherwise

In case of 𝑥 =syn 𝑦, clearly ⟦𝜎 l
𝑥=𝑦 (𝛼1)⟧𝐷 = ⟦𝛼1⟧𝐷 . The property holds trivially by induction. In the

other case when 𝑥 ≠syn 𝑦, if (a1, a2) ∈ ⟦𝛼⟧𝐷 , then (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Let 𝑌 = V − fvars(𝛼) and let a

be a partial valuation on 𝑌 . Clearly, 𝑌 ⊆ V − fvars(𝛼1) since fvars(𝛼1) ⊆ fvars(𝛼). By induction

and Lemma 4.5, we know that (a1 [a], a2 [a]) ∈ ⟦𝛼1⟧𝐷 . Moreover, since {𝑥,𝑦} ∩ 𝑌 = ∅, we know
that the selection does not look at a , whence (a1 [a], a2 [a]) ∈ ⟦𝜎 l

𝑥=𝑦 (𝛼1)⟧𝐷 as desired.

4.2.9 Right Selection. Let 𝛼 be of the form 𝜎 r
𝑥=𝑦 (𝛼1). Recall the definition:

fvars(𝛼) =
{
fvars(𝛼1) if 𝑥 =syn 𝑦

fvars(𝛼1) ∪ {𝑥,𝑦} otherwise

In case of 𝑥 =syn 𝑦, clearly ⟦𝜎 r
𝑥=𝑦 (𝛼1)⟧𝐷 = ⟦𝛼1⟧𝐷 . Hence, the property holds trivially by induction.

In the other case, it is analogous to 𝜎 l
𝑥=𝑦 (𝛼1) since here also {𝑥,𝑦} ∩ (V − fvars(𝛼)) = ∅.

4.2.10 Left-to-Right Selection. Let 𝛼 be of the form 𝜎 lr
𝑥=𝑦 (𝛼1). Recall the definition:

fvars(𝛼) =
{
fvars(𝛼1) if 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1)
fvars(𝛼1) ∪ {𝑥,𝑦} otherwise

In case of 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1), clearly ⟦𝜎 lr
𝑥=𝑦 (𝛼1)⟧𝐷 = ⟦𝛼1⟧𝐷 . Hence, the property holds trivially

by induction. In the other case, it is analogous to 𝜎 l
𝑥=𝑦 (𝛼1) since here also {𝑥,𝑦}∩(V−fvars(𝛼)) = ∅.

4.2.11 Right and Left Cylindrifications. Let 𝛼 be of the form cyl
𝑟
𝑥 (𝛼1). The case for left cylindrifi-

cation is analogous. Recall that fvars(𝛼) = fvars(𝛼1) ∪ {𝑦}. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then there exists a

valuation a3 such that

(1) (a1, a3) ∈ ⟦𝛼1⟧𝐷 ;
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(2) a3 = a2 outside {𝑥}.
Let 𝑌 = V − fvars(𝛼) and let a be a partial valuation on 𝑌 . Clearly, 𝑌 ⊆ V − fvars(𝛼1) since
fvars(𝛼1) ⊆ fvars(𝛼). By induction from (1) and Lemma 4.5 we know that (a1 [a], a3 [a]) ∈ ⟦𝛼1⟧𝐷 .
Since 𝑥 ∉ 𝑌 , we know from (2) that a3 [a] = a2 [a] outside {𝑥}. Hence, we can conclude that

(a1 [a], a2 [a]) ∈ ⟦𝛼⟧𝐷 .

4.3 Proof of Syntactic Input-Output Determinacy
Syntactic Input-Output determinacy follows from the proof of the following Lemma.

Lemma 4.6 (Syntactic Input-Output Determinacy). Let 𝛼 be a LIF expression. Then, for every
interpretation 𝐷 , every (a1, a2) ∈ ⟦𝛼⟧𝐷 and every a ′

1
that agrees with a1 on 𝐼 syn (𝛼), there exists a

valuation a ′
2
that agrees with a2 on 𝑂syn (𝛼) and (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

In the proof, we will make use of a useful alternative formulation of syntactic input-output

determinacy which is defined next.

Definition 4.7 (Alternative Input-Output Determinacy). A LIF expression 𝛼 is said to satisfy

alternative input-output determinacy if for every interpretation 𝐷 , every (a1, a2) ∈ ⟦𝛼⟧𝐷 and every

a ′
1
that agrees with a1 on 𝐼 syn (𝛼) and outside 𝑂syn (𝛼), we have (a ′

1
, a2) ∈ ⟦𝛼⟧𝐷 .

The following Lemma shows that the two notions are equivalent. In what follows, will remove

the superscript from 𝐼 syn
and 𝑂syn

and refer to them as 𝐼 and 𝑂 , respectively.

Lemma 4.8. Every LIF expression 𝛼 satisfies alternative input-output determinacy if and only if it
satisfies syntactic input-output determinacy.

Proof. The proof of the ‘if’-direction is similar to the proof of Proposition 3.9. Now, we proceed

to verify the other direction. Suppose that (a1, a2) ∈ ⟦𝛼⟧𝐷 and a ′
1
= a1 on 𝐼 (𝛼). We now construct a

new valuation a ′′
1
such that it agrees with a ′

1
on fvars(𝛼) and it agrees with a1 elsewhere. We thus

have the following properties for a ′′
1
:

(1) a ′′
1
= a ′

1
on fvars(𝛼), and

(2) a ′′
1
= a1 on V − fvars(𝛼).

We know that a ′
1
= a1 on 𝐼 (𝛼) by assumption, whence (1) implies that a ′′

1
= a1 on 𝐼 (𝛼) since

𝐼 (𝛼) ⊆ fvars(𝛼). Combining this with (2), we know that a ′′
1
= a1 on 𝐼 (𝛼) and outside fvars(𝛼). Thus,

alternative input-output determinacy implies that (a ′′
1
, a2) ∈ ⟦𝛼⟧𝐷 . Since a ′′1 = a ′

1
on fvars(𝛼), we

know that there is a partial valuation a on V − fvars(𝛼) such that a ′′
1
[a] = a ′

1
. By syntactic free

variable, we know that (a ′′
1
[a], a2 [a]) ∈ ⟦𝛼⟧𝐷 . Thus, (a ′1, a2 [a]) ∈ ⟦𝛼⟧𝐷 as desired. □

We are now ready for the proof of Lemma 4.6. In this proof, we will use the notation 𝑋 to mean

V − 𝑋 . Moreover, since we established by Lemma 4.8 that the two definitions for input-output

determinacy are equivalent, we will verify any of them for each LIF expression.

4.3.1 Atomic Modules. Let 𝛼 be of the form𝑀 (𝑥 ;𝑦). Recall the definitions:
• 𝐼 (𝛼) = 𝑋 where 𝑋 are the variables in 𝑥 ;

• 𝑂 (𝛼) = 𝑌 where 𝑌 are the variables in 𝑦.

Syntactic input-output determinacy directly follows from the definition of the semantics for atomic

modules.

4.3.2 Identity. Let 𝛼 be of the form id. Recall that the definition for 𝐼 (𝛼) = 𝑂 (𝛼) = ∅. We proceed to

verify that𝛼 satisfies alternative input-output determinacy. Indeed, this is true since𝑂 (𝛼)∪𝐼 (𝛼) = V.
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4.3.3 Union. Let 𝛼 be of the form 𝛼1 ∪ 𝛼2. Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2));
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2).

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then
(a1, a2) ∈ ⟦𝛼1⟧𝐷 or (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Assume without loss of generality that (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Now,
let a ′

1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). Moreover, we have the following:

𝑂 (𝛼) ∪ 𝐼 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2))

= 𝑂 (𝛼1) ∩𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)

= 𝑂 (𝛼1) ∪𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)

Therefore, certainly a ′
1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). Thus, (a ′1, a2) ∈ ⟦𝛼1⟧𝐷 by induction and Lemma 4.8,

whence (a ′
1
, a2) ∈ ⟦𝛼⟧𝐷 as desired.

4.3.4 Intersection. Let 𝛼 be of the form 𝛼1 ∩ 𝛼2. Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2));
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∩𝑂 (𝛼2).

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then
(a1, a2) ∈ ⟦𝛼1⟧𝐷 and (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Now, let a ′ be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼).

Just as in the case for ∪, we have that 𝑂 (𝛼) ∪ 𝐼 (𝛼) = 𝑂 (𝛼1) ∪ 𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2). Therefore,
certainly a ′

1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). Thus, (a ′1, a2) ∈ ⟦𝛼1⟧𝐷 and (a ′

1
, a2) ∈ ⟦𝛼2⟧𝐷 by induction and

Lemma 4.8, whence (a ′
1
, a2) ∈ ⟦𝛼⟧𝐷 as desired.

4.3.5 Composition. Let 𝛼 be of the form 𝛼1 ; 𝛼2. Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ (𝐼 (𝛼2) −𝑂 (𝛼1));
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2).

We proceed to verify that 𝛼 satisfies syntactic input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then
there exists a valuation a such that

(i) (a1, a) ∈ ⟦𝛼1⟧𝐷 ;
(ii) (a, a2) ∈ ⟦𝛼2⟧𝐷 .

Now, let a ′
1
be a valuation such that

a ′
1
= a1 on 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ (𝐼 (𝛼2) −𝑂 (𝛼1)) . (1)

Since 𝐼 (𝛼1) ⊆ 𝐼 (𝛼), then by induction there exists a valuation a ′ such that

(iii) (a ′
1
, a ′) ∈ ⟦𝛼1⟧𝐷 ;

(iv) a ′ = a on 𝑂 (𝛼1).
By applying inertia to (i) and (iii) we get that a1 = a and a ′

1
= a ′ outside 𝑂 (𝛼1). Combining this

with (1) we have that a ′ = a ′
1
= a1 = a on 𝐼 (𝛼) ∩𝑂 (𝛼1) = (𝐼 (𝛼1) ∪ 𝐼 (𝛼2)) −𝑂 (𝛼1). Together with

(iv), this implies that

a ′ = a on 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼1). (2)

By induction from (ii), there exists a ′
2
such that

(v) (a ′, a ′
2
) ∈ ⟦𝛼2⟧𝐷 ;

(vi) a ′
2
= a2 on 𝑂 (𝛼2).
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From (iii) and (vi) we get that (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . All that remains to be shown is that a ′

2
= a2 on𝑂 (𝛼).

By applying inertia to (ii) and (v) we get that

a = a2 outside 𝑂 (𝛼2);
a ′ = a ′

2
outside 𝑂 (𝛼2).

Combining this with 2 we have that a ′
2
= a2 on (𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼1)) ∩𝑂 (𝛼2) = (𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪

𝑂 (𝛼1)) − 𝑂 (𝛼2). Together with (vi) this implies that a ′
2
= a2 on 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ 𝑂 (𝛼1) ∪ 𝑂 (𝛼2),

whence a ′
2
= a2 on 𝑂 (𝛼) as desired.

4.3.6 Difference. Let 𝛼 be of the form 𝛼1 − 𝛼2. Recall that

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2));
• 𝑂 (𝛼) = 𝑂 (𝛼1).

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then
we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) (a1, a2) ∉ ⟦𝛼2⟧𝐷 .

Now, let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). Since 𝑂 (𝛼1) ⊆ 𝑂 (𝛼) and 𝐼 (𝛼1) ⊆ 𝐼 (𝛼),

then a ′
1
= a1 on𝑂 (𝛼1) ∪ 𝐼 (𝛼1). Thus, by induction from (1) and Lemma 4.8, we know that (a ′

1
, a2) ∈

⟦𝛼1⟧𝐷 .
To prove that (a ′

1
, a2) ∈ ⟦𝛼⟧𝐷 , all that remains is to show that (a ′

1
, a2) ∉ ⟦𝛼2⟧𝐷 . Assume for

the sake of contradiction that (a ′
1
, a2) ∈ ⟦𝛼2⟧𝐷 . Since a ′1 = a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼) and 𝑂 (𝛼) ∪ 𝐼 (𝛼) =

𝑂 (𝛼1) ∪𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2), we know that a ′
1
= a1 on𝑂 (𝛼2) ∪ 𝐼 (𝛼2). Hence, (a1, a2) ∈ ⟦𝛼2⟧𝐷 by

induction and Lemma 4.8, which contradicts (2).

4.3.7 Converse. Let 𝛼 be of the form 𝛼⌣
1
. Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪𝑂 (𝛼1);
• 𝑂 (𝛼) = 𝑂 (𝛼1).

Alternative input-output determinacy holds since 𝑂 (𝛼) ∪ 𝐼 (𝛼) = V.

4.3.8 Left Selection. Let 𝛼 be of the form 𝜎 l
𝑥=𝑦 (𝛼1). Recall the definitions:

• 𝐼 (𝛼) =
{
𝐼 (𝛼1) 𝑥 =syn 𝑦

𝐼 (𝛼1) ∪ {𝑥,𝑦} otherwise

• 𝑂 (𝛼) = 𝑂 (𝛼1).
We proceed to verify that 𝛼 satisfies alternative input-output determinacy. Clearly, the property

holds trivially by induction in case of 𝑥 =syn 𝑦. Indeed, in this case, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 . In the other

case when 𝑥 ≠syn 𝑦, if (a1, a2) ∈ ⟦𝛼⟧𝐷 , then we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) a1 (𝑥) = a1 (𝑦);

Let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). In all cases, 𝑂 (𝛼) ⊆ 𝑂 (𝛼1). Hence,

𝑂 (𝛼1) ⊆ 𝑂 (𝛼). Moreover, in all cases 𝐼 (𝛼1) ⊆ 𝐼 (𝛼). Thus, a ′
1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). By induction

from (1) and Lemma 4.8, we know that (a ′
1
, a2) ∈ ⟦𝛼1⟧𝐷 .

All that remains to be shown is that a ′
1
(𝑥) = a ′

1
(𝑦). Since {𝑥,𝑦} ⊆ 𝐼 (𝛼), we know that a ′

1
= a1 on

{𝑥,𝑦} by assumption. Hence, a ′
1
(𝑥) = a ′

1
(𝑦) by (2).
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4.3.9 Right Selection. Let 𝛼 be of the form 𝜎 r
𝑥=𝑦 (𝛼1). Recall the definitions:

• 𝐼 (𝛼) =
{
𝐼 (𝛼1) 𝑥 =syn 𝑦

𝐼 (𝛼1) ∪ ({𝑥,𝑦} −𝑂 (𝛼1)) otherwise

• 𝑂 (𝛼) = 𝑂 (𝛼1).
We proceed to verify that 𝛼 satisfies alternative input-output determinacy. Clearly, the property

holds trivially by induction in case of 𝑥 =syn 𝑦. Indeed, in this case, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 . In the other

case when 𝑥 ≠syn 𝑦, if (a1, a2) ∈ ⟦𝛼⟧𝐷 , then we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) a2 (𝑥) = a2 (𝑦).

Let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). In all cases, 𝑂 (𝛼) ⊆ 𝑂 (𝛼1). Hence,

𝑂 (𝛼1) ⊆ 𝑂 (𝛼). Moreover, in all cases 𝐼 (𝛼1) ⊆ 𝐼 (𝛼). Thus,a ′
1
= a1 on𝑂 (𝛼1)∪𝐼 (𝛼1). By induction from

(1) and Lemma 4.8, we know that (a ′
1
, a2) ∈ ⟦𝛼1⟧𝐷 . Together with (2), we know that (a ′

1
, a2) ∈ ⟦𝛼⟧𝐷 .

4.3.10 Left-to-Right Selection. Let 𝛼 be of the form 𝜎 lr
𝑥=𝑦 (𝛼1). Recall the definitions:

• 𝐼 (𝛼) =


𝐼 (𝛼1) 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1)
𝐼 (𝛼1) ∪ {𝑥,𝑦} 𝑥 ≠syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1)
𝐼 (𝛼1) ∪ {𝑥} otherwise

• 𝑂 (𝛼) =
{
𝑂 (𝛼1) − {𝑥} 𝑥 =syn 𝑦

𝑂 (𝛼1) otherwise

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷
in case of 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1). Hence, the property holds trivially by induction. In the other

cases, if (a1, a2) ∈ ⟦𝛼⟧𝐷 , then we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) a1 (𝑥) = a2 (𝑦).

Let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). In all cases, 𝑂 (𝛼) ⊆ 𝑂 (𝛼1). Hence,

𝑂 (𝛼1) ⊆ 𝑂 (𝛼). Moreover, in all cases 𝐼 (𝛼1) ⊆ 𝐼 (𝛼). Thus, a ′
1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). By induction

from (1) and Lemma 4.8, we know that (a ′
1
, a2) ∈ ⟦𝛼1⟧𝐷 . All that remains to be shown is that

a ′
1
(𝑥) = a2 (𝑦). Since 𝑥 ∈ 𝐼 (𝛼) and a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼), we have a ′

1
(𝑥) = a1 (𝑥). Together with

(2), we get that a ′
1
(𝑥) = a2 (𝑦) as desired, whence (a ′1, a2) ∈ ⟦𝛼⟧𝐷 .

4.3.11 Right Cylindrification. Let 𝛼 be of the form cyl
𝑟
𝑥 (𝛼1). Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1);
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∪ {𝑥};
• fvars(𝛼) = fvars(𝛼1) ∪ {𝑥}.

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then
there exists a valuation a ′

2
such that

(1) (a1, a
′
2
) ∈ ⟦𝛼1⟧𝐷 ;

(2) a ′
2
= a2 outside {𝑥}.

Now, let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). We now split the proof in two cases:

• Suppose that 𝑥 ∈ fvars(𝛼1). Then, fvars(𝛼) = fvars(𝛼1). Thus, we know that a ′
1
= a1 on

fvars(𝛼1)∪𝐼 (𝛼1), whence a ′1 = a1 on𝑂 (𝛼1)∪𝐼 (𝛼1). Thus, by induction from (1) and Lemma 4.8,

we know that (a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 . Hence, (a ′1, a2) ∈ ⟦𝛼⟧𝐷 .
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• Conversely, suppose that 𝑥 ∉ fvars(𝛼1). We have𝑂 (𝛼) ∪ 𝐼 (𝛼) = (𝑂 (𝛼1) ∪ 𝐼 (𝛼1)) − {𝑥}. Thus,
a ′

1
[a1 | {𝑥 }] = a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1) since a ′1 = a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). By induction and Lemma 4.8,

then (a ′
1
[a1 | {𝑥 }], a ′2) ∈ ⟦𝛼1⟧𝐷 . By syntactic free variable, we know that (a ′

1
[a1 | {𝑥 }] [a ′1 | {𝑥 }], a ′2 [a ′1 | {𝑥 }]) ∈

⟦𝛼1⟧𝐷 since 𝑥 ∉ fvars(𝛼1). Clearly, a ′1 [a1 | {𝑥 }] [a ′1 | {𝑥 }] = a ′
1
, whence (a ′

1
, a ′

2
[a ′

1
| {𝑥 }]) ∈ ⟦𝛼1⟧𝐷 .

Consequently, (a ′
1
, a2) ∈ ⟦𝛼⟧𝐷 as desired.

4.3.12 Left Cylindrification. Let 𝛼 be of the form cyl
𝑙
𝑥 (𝛼1). Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) − {𝑥};
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∪ {𝑥}.

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then
there exists a valuation a ′

1
such that

(i) a ′
1
= a1 outside {𝑥};

(ii) (a ′
1
, a2) ∈ ⟦𝛼1⟧𝐷 .

Now, let a be a valuation such that

a = a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). (1)

Clearly, a [a ′
1
| {𝑥 }] = a outside {𝑥}. Since 𝑥 ∉ 𝑂 (𝛼) ∪ 𝐼 (𝛼), we also know that a [a ′

1
| {𝑥 }] = a on

𝑂 (𝛼) ∪ 𝐼 (𝛼). Combining this with (1), we get that a [a ′
1
| {𝑥 }] = a ′

1
on 𝑂 (𝛼) ∪ 𝐼 (𝛼) ∪ {𝑥}. Clearly,

𝑂 (𝛼) ∪ 𝐼 (𝛼) ∪ {𝑥} ⊇ 𝑂 (𝛼1) ∪ 𝐼 (𝛼1), whence a [a ′1 | {𝑥 }] = a ′
1
on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). By induction from

(ii) and Lemma 4.8, we get that (a [a ′
1
| {𝑥 }], a2) ∈ ⟦𝛼1⟧𝐷 , whence also (a, a2) ∈ ⟦𝛼1⟧𝐷 .

5 PRECISION THEOREM PROOF
In this section, we prove Theorem 3.27. By soundness and Proposition 3.20, it suffices to prove

𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼) for every LIF expression 𝛼 . For the latter inequality,

it will be convenient to use the equivalent definition of semantic input variables introduced in

Proposition 3.4. Moreover, in the proof of the Precision Theorem, we will often make use of the

following two technical lemmas.

Lemma 5.1. Let 𝑀 be a nullary relation name and let 𝐷 be an interpretation where 𝐷 (𝑀) is
nonempty. Then ⟦𝑀 ()⟧𝐷 consists of all identical pairs of valuations.

Proof. The proof follows directly from the semantics of atomic modules. □

Lemma 5.2. Suppose 𝛼1 = 𝑀1 (𝑥1;𝑦1) and 𝛼2 = 𝑀2 (𝑥2;𝑦2) where𝑀1 ≠ 𝑀2. Let 𝛼 be either 𝛼1 ∪ 𝛼2

or 𝛼1 − 𝛼2. Assume that 𝑂syn (𝛼𝑖 ) ⊆ 𝑂sem (𝛼𝑖 ) and 𝐼 syn (𝛼𝑖 ) ⊆ 𝐼 sem (𝛼𝑖 ) for 𝑖 = 1, 2. Let 𝑗 ≠ 𝑘 ∈ {1, 2}.
If ⟦𝛼⟧𝐷 = ⟦𝛼𝑘⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀 𝑗 ) is empty, then 𝑂syn (𝛼𝑘 ) ⊆ 𝑂sem (𝛼) and
𝐼 syn (𝛼𝑘 ) ⊆ 𝐼 sem (𝛼).

Proof. First, we verify that 𝑂syn (𝛼𝑘 ) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂syn (𝛼𝑘 ). Since 𝑂syn (𝛼𝑘 ) ⊆ 𝑂sem (𝛼𝑘 ),
then 𝑣 ∈ 𝑂sem (𝛼𝑘 ). By definition, we know that there is an interpretation 𝐷 ′

and (a1, a2) ∈ ⟦𝛼𝑘⟧𝐷′

such that a1 (𝑣) ≠ a2 (𝑣). Take 𝐷 ′′
to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any𝑀 ≠ 𝑀 𝑗

while 𝐷 ′′(𝑀 𝑗 ) is empty. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷′′ , whence, 𝑀 𝑗 ≠ 𝑀𝑘 and ⟦𝛼⟧𝐷′′ = ⟦𝛼𝑘⟧𝐷′ . It

follows then that 𝑣 ∈ 𝑂sem (𝛼).
Similarly, we proceed to verify 𝐼 syn (𝛼𝑘 ) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 syn (𝛼𝑘 ). Since 𝐼 syn (𝛼𝑘 ) ⊆ 𝐼 sem (𝛼𝑘 ),

then 𝑣 ∈ 𝐼 sem (𝛼𝑘 ). By definition, we know that there is an interpretation 𝐷 ′
, (a1, a2) ∈ ⟦𝛼𝑘⟧𝐷′ , and

a ′
1
(𝑣) ≠ a1 (𝑣) such that (a ′

1
, a ′

2
) ∉ ⟦𝛼𝑘⟧𝐷′ for every valuation a ′

2
that agrees with a2 on 𝑂

sem (𝛼𝑘 ).
Take𝐷 ′′

to be the interpretation where𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any𝑀 ≠ 𝑀 𝑗 while𝐷
′′(𝑀 𝑗 ) is empty.

Clearly, ⟦𝛼⟧𝐷′′ = ⟦𝛼𝑘⟧𝐷′ , whence,𝑀 𝑗 ≠ 𝑀𝑘 . Therefore, 𝑂
sem (𝛼𝑘 ) ⊆ 𝑂sem (𝛼). Hence, 𝑣 ∈ 𝐼 sem (𝛼).
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Indeed, (a1, a2) ∈ ⟦𝛼⟧𝐷′′ and for any valuation a ′
2
if a ′

2
agrees with a2 on 𝑂sem (𝛼), then a ′

2
agrees

with a2 on 𝑂
sem (𝛼𝑘 ). □

The proof of Theorem 3.27 is done by extensive case analysis. Intuitively, for each of the different

operations, and every variable 𝑧 ∈ 𝑂syn (𝛼), we construct an interpretation 𝐷 such that 𝑧 is not

inertial in ⟦𝛼⟧𝐷 and thus 𝑧 ∈ 𝑂sem (𝛼). Similarly, for every variable 𝑧 ∈ 𝐼 syn (𝛼), we construct an
interpretation 𝐷 as a witness of the fact that V − {𝑧} does not determine ⟦𝛼⟧ on 𝑂sem (𝛼) and thus

that 𝑧 ∈ 𝐼 sem (𝛼). In the proof, we often remove the superscript from 𝐼 syn
and𝑂syn

and refer to them

by 𝐼 and 𝑂 , respectively.

5.1 Atomic Modules
Let 𝛼 be of the form 𝛼1, where 𝛼1 is𝑀 (𝑥 ;𝑦). Recall the definition:

• 𝑂syn (𝛼) = 𝑌 , where 𝑌 are the variables in 𝑦;

• 𝐼 syn (𝛼) = 𝑋 , where 𝑋 are the variables in 𝑥 .

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑌 . Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.
Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on 𝑌 and 1

everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since a1 (𝑥) · a2 (𝑦) ∈ 𝐷 (𝑀) and a1 agrees with a2 outside

𝑌 . Hence, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).
Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝑋 . Consider the same interpretation 𝐷 and

the same valuations a1 and a2 as discussed above. We already established that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take
a ′

1
:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

Indeed, this is true since 𝑣 ∈ 𝑋 . Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

5.2 Identity
Let𝛼 be of the form id.We recall that 𝐼 syn (𝛼) and𝑂syn (𝛼) are both empty. Hence,𝑂syn (𝛼) ⊆ 𝑂sem (𝛼)
and 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼) is trivial.

5.3 Union
Let 𝛼 be of the form 𝛼1 ∪ 𝛼2, where 𝛼1 is𝑀1 (𝑥1;𝑦1) and 𝛼2 is𝑀2 (𝑥2;𝑦2). We distinguish different

cases based on whether𝑀1 or𝑀2 is nullary. If𝑀1 and𝑀2 are both nullary there is nothing to prove.

5.3.1 𝑀1 is nullary, 𝑀2 is not. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼2⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀1) is
empty. By induction and Lemma 5.2, we establish that 𝑂syn (𝛼2) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼2) ⊆ 𝐼 sem (𝛼).
Since 𝐼 (𝛼1) and 𝑂 (𝛼1) are both empty, then we observe that

• 𝑂syn (𝛼) = 𝑂 (𝛼2);
• 𝐼 syn (𝛼) = 𝐼 (𝛼2) ∪𝑂 (𝛼2).

Thus, 𝑂 (𝛼2) ⊆ 𝑂sem (𝛼) and 𝐼 (𝛼2) ⊆ 𝐼 sem (𝛼) is trivial.
We proceed to verify𝑂 (𝛼2) − 𝐼 (𝛼2) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼2) − 𝐼 (𝛼2). Consider the interpretation

𝐷 where 𝐷 (𝑀1) is not empty and

𝐷 (𝑀2) = {(1, . . . , 1; 2, . . . , 2)}.
Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 by

Lemma 5.1. Take a ′
1

:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there for every

valuation a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 , we show that a ′

2
and a1 disagrees on 𝑂sem (𝛼). Thereto,

suppose (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 , whence a ′2 = a ′

1
by Lemma 5.1. Indeed,

𝑣 ∈ 𝑂 (𝛼2), 𝑂 (𝛼2) ⊆ 𝑂sem (𝛼), and a ′
2
(𝑣) = 2 but a1 (𝑣) = 1. Otherwise, (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 . However,
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since 𝑣 ∈ 𝑂 (𝛼2), then a ′
2
(𝑣) = 2 as well. Therefore, there is no a ′

2
that agrees with a1 on 𝑂sem (𝛼)

and (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 at the same time. We conclude that 𝑣 ∈ 𝐼 sem (𝛼).

5.3.2 𝑀2 is nullary,𝑀1 is not. This case is symmetric to the previous one.

5.3.3 Neither𝑀1 nor𝑀2 is nullary. Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2)).

We first proceed to verify that 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). By induction, 𝑂syn (𝛼𝑖 ) = 𝑂sem (𝛼𝑖 ) for 𝑖 = 1 or

2. Consequently, if 𝑣 ∈ 𝑂 (𝛼𝑖 ), then there is an interpretation 𝐷𝑖 , and (a1, a2) ∈ ⟦𝛼𝑖⟧𝐷 such that

a1 (𝑣) ≠ a2 (𝑣). Indeed, 𝑣 ∈ 𝑂sem (𝛼) since (⟦𝛼1⟧𝐷 ∪ ⟦𝛼2⟧𝐷 ) ⊆ ⟦𝛼⟧𝐷 for any interpretation 𝐷 .

We then proceed to verify that 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). The proof has four possibilities. Each case is

discussed separately below.

When 𝑣 ∈ 𝐼 (𝛼1). If 𝑣 ∈ 𝐼 (𝛼1) and𝑀1 ≠ 𝑀2, it is clear that ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation

𝐷 where 𝐷 (𝑀2) is empty. By Lemma 5.2 and by induction, we easily establish that 𝑣 ∈ 𝐼 sem (𝛼).

When 𝑣 ∈ 𝐼 (𝛼2). This case is symmetric to the previous one.

When 𝑣 ∈ 𝑂 (𝛼1) − (𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)). If 𝑣 ∈ 𝑂 (𝛼1) − (𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)), then consider

the interpretation 𝐷 such that 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)} and 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let
a1 be the valuation that is 2 on 𝑣 and 1 elsewhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 , whence (a1, a1) ∈ ⟦𝛼2⟧𝐷 .
Now take a ′

1
:= a1 [𝑣 : 1]. If we can show that a ′

2
does not agree with a1 on𝑂

sem (𝛼) for any valuation
a ′

2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 , we are done. Thereto, suppose that there exists a valuation a ′

2
such

that (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

• In particular, if (a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 , then a ′2 (𝑣) = 1 since 𝑣 ∈ 𝑂 (𝛼1).

• Otherwise, if (a ′
1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 , then a ′2 (𝑣) = a ′

1
(𝑣) = 1 since 𝑣 ∉ (𝐼 (𝛼2) ∪𝑂 (𝛼2)).

In both cases, a ′
2
have to be 1 on 𝑣 which disagrees with a1 on 𝑣 . Since 𝑣 ∈ 𝑂 (𝛼1) and 𝑂 (𝛼1) ⊆

𝑂sem (𝛼), then a ′
2
does not agree with a1 on 𝑂

sem (𝛼) as desired. We conclude that 𝑣 ∈ 𝐼 sem (𝛼).

When 𝑣 ∈ 𝑂 (𝛼2) − (𝑂 (𝛼1) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)). This case is symmetric to the previous one.

5.4 Intersection
Let 𝛼 be of the form 𝛼1 ∩ 𝛼2, where 𝛼1 is𝑀1 (𝑥1;𝑦1) and 𝛼2 is𝑀2 (𝑥2;𝑦2). We distinguish different

cases based on whether𝑀1 or𝑀2 is nullary. If𝑀1 and𝑀2 are both nullary there is nothing to prove.

5.4.1 𝑀1 is nullary,𝑀2 is not. In this case, 𝐼 (𝛼1) and 𝑂 (𝛼1) are both empty, then we observe that

• 𝑂syn (𝛼) = ∅;
• 𝐼 syn (𝛼) = 𝐼 (𝛼2) ∪𝑂 (𝛼2).

It is trivial to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) since 𝑂syn (𝛼) is empty.

We proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼2)∪𝑂 (𝛼2). Consider an interpretation𝐷 where

𝐷 (𝑀1) is not empty and 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere.

Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 and (a1, a1) ∈ ⟦𝛼2⟧𝐷 . Take a ′1 := a1 [𝑣 : 2]. We

establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no valuation a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

Thereto, suppose (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼2), it is clear that (a ′1, a ′2) ∉ ⟦𝛼1⟧𝐷 . In

the other case when 𝑣 ∈ 𝑂 (𝛼2) − 𝐼 (𝛼2), there is no a ′2 such that (a ′
1
, a ′

2
) belongs to both ⟦𝛼1⟧𝐷 and

⟦𝛼2⟧𝐷 . Indeed, the value for a ′2 (𝑣) will never be agreed upon by 𝛼1 and 𝛼2. Hence, (a ′1, a ′2) ∉ ⟦𝛼⟧𝐷
as desired. We conclude that 𝑣 ∈ 𝐼 sem (𝛼).

5.4.2 𝑀2 is nullary,𝑀1 is not. This case is symmetric to the previous one.
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5.4.3 Neither𝑀1 nor𝑀2 is nullary. Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∩𝑂 (𝛼2);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2)).

We first proceed to verify𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) ∩𝑂 (𝛼2). Consider an interpretation

𝐷 such that 𝐷 (𝑀1) = {(1, . . . , 1;𝑜1, . . . , 𝑜𝑚)}, where 𝑜1, . . . , 𝑜𝑚 are all the combinations of {1, 2}.
Similarly,

𝐷 (𝑀2) = {(1, . . . , 1;𝑜1, . . . , 𝑜𝑛)},
where 𝑜1, . . . , 𝑜𝑛 are all the combinations of {1, 2}.

Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on𝑂 (𝛼1)∩𝑂 (𝛼2)
and 1 elsewhere. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 , whence (a1, a2) ∈ ⟦𝛼1⟧𝐷 and (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Hence,
𝑣 ∈ 𝑂sem (𝛼). Indeed, a2 (𝑣) ≠ a1 (𝑣) for 𝑣 ∈ 𝑂syn (𝛼).

We then proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2)). Consider
an interpretation 𝐷 where 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}. Similarly, 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}.
Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 , whence (a1, a1) ∈ ⟦𝛼1⟧𝐷 and

(a1, a1) ∈ ⟦𝛼2⟧𝐷 . Take a ′1 := a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no

valuation a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed, this is clear when 𝑣 ∈ 𝐼 (𝛼1) or 𝑣 ∈ 𝐼 (𝛼2). On the

other hand, when 𝑣 ∈ (𝑂 (𝛼1) △ 𝑂 (𝛼2)) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2)), we have a ′2 for which (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷

whence (a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 and (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 . This is not possible since 𝑣 belongs to either 𝑂 (𝛼1)

or 𝑂 (𝛼2), but not both. Hence, the value for a ′2 (𝑣) will never be agreed upon by 𝛼1 and 𝛼2. We

conclude that 𝑣 ∈ 𝐼 sem (𝛼).

5.5 Difference
Let 𝛼 be of the form 𝛼1 − 𝛼2, where 𝛼1 is𝑀1 (𝑥1;𝑦1) and 𝛼2 is𝑀2 (𝑥2;𝑦2). We distinguish different

cases based on whether𝑀1 or𝑀2 is nullary. If𝑀1 and𝑀2 are both nullary there is nothing to prove.

5.5.1 𝑀1 is nullary, 𝑀2 is not. In this case, 𝐼 (𝛼1) and 𝑂 (𝛼1) are empty. In particular, 𝑂syn (𝛼) is
empty, so 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) is trivial.

We proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Observe that
𝐼 syn (𝛼) = 𝐼 (𝛼2) ∪𝑂 (𝛼2).

Let 𝑣 ∈ 𝐼 syn (𝛼). Consider the interpretation𝐷 where𝐷 (𝑀1) is not empty and𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}.
Let a1 be the valuation that is 2 on 𝑣 and 1 elsewhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 1].
We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto,

suppose (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 , whence a ′2 = a ′

1
by Lemma 5.1. However,

(a ′
1
, a ′

1
) ∈ ⟦𝛼2⟧𝐷 , so (a ′

1
, a ′

2
) ∉ ⟦𝛼⟧𝐷 as desired.

5.5.2 𝑀2 is nullary, 𝑀1 is not. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀2) is
empty. By induction and Lemma 5.2, we establish that 𝑂syn (𝛼1) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼1) ⊆ 𝐼 sem (𝛼).
Since 𝐼 (𝛼2) and 𝑂 (𝛼2) are both empty, then we observe that

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪𝑂 (𝛼1).

Thus, 𝑂 (𝛼1) ⊆ 𝑂sem (𝛼) and 𝐼 (𝛼1) ⊆ 𝐼 sem (𝛼) is trivial.
We proceed to verify𝑂 (𝛼1) − 𝐼 (𝛼1) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) − 𝐼 (𝛼1). Consider the interpretation

𝐷 where 𝐷 (𝑀2) is not empty and 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 2

on 𝑣 and 1 elsewhere and let a2 be the valuation that is 1 everywhere. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 .
Take a ′

1
:= a1 [𝑣 : 1]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which

(a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose (a ′1, a ′2) ∈ ⟦𝛼⟧𝐷 . In particular, (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 , whence a ′2 = a ′

1

from the structure of 𝐷 . However, (a ′
1
, a ′

1
) ∈ ⟦𝛼2⟧𝐷 by Lemma 5.1, so (a ′

1
, a ′

2
) ∉ ⟦𝛼⟧𝐷 as desired.
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5.5.3 Neither𝑀1 nor𝑀2 is nullary. Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2)).

The proof of 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) is done together with the proof that 𝑣 ∈ 𝐼 sem (𝛼) for every
𝑣 ∈ 𝐼 (𝛼1). Discussions for the other cases for 𝑣 ∈ 𝐼 syn (𝛼) follow afterwards. Since 𝑀1 ≠ 𝑀2, it is

clear that ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀2) is empty. By induction and Lemma

5.2, we establish that 𝑂syn (𝛼1) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼1) ⊆ 𝐼 sem (𝛼). Thus, 𝑂 (𝛼1) ⊆ 𝑂sem (𝛼) and
𝐼 (𝛼1) ⊆ 𝐼 sem (𝛼) is trivial.

When 𝑣 ∈ 𝐼 (𝛼2) − 𝐼 (𝛼1). Let 𝑣 ∈ 𝐼 (𝛼2) − 𝐼 (𝛼1). Consider an interpretation 𝐷 where 𝐷 (𝑀1) =
{(1, . . . , 1; 1, . . . , 1)} and similarly 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that 2 on 𝑣

and 1 elsewhere. Also, let a2 be the valuation that is 1 on𝑂 (𝛼1) and agrees with a1 everywhere else.

Clearly, (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Further, (a1, a2) ∉ ⟦𝛼2⟧𝐷 . Indeed, since 𝑣 ∈ 𝐼 (𝛼2) then a1 should have

the value of 1 on 𝑣 for (a1, a2) to be in ⟦𝛼2⟧𝐷 . Take a ′1 := a1 [𝑣 : 1]. We establish that 𝑣 ∈ 𝐼 sem (𝛼)
by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose that (a ′1, a ′2) ∈ ⟦𝛼⟧𝐷 .

Hence, (a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 and (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 . Indeed, (a ′1, a ′2) ∈ ⟦𝛼1⟧𝐷 whence a ′

1
= a ′

2
. Clearly,

(a ′
1
, a ′

1
) ∈ ⟦𝛼2⟧𝐷 showing that (a ′

1
, a ′

1
) ∉ ⟦𝛼⟧𝐷 as desired. Therefore, 𝑣 ∈ 𝐼 sem (𝛼).

When 𝑣 ∈ (𝑂 (𝛼1) △𝑂 (𝛼2)) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2)). Let 𝑣 ∈ (𝑂 (𝛼1) △𝑂 (𝛼2)) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2)). Consider
an interpretation 𝐷 where 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)} and 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1

be the valuation that is 2 on 𝑣 and 1 elsewhere. Also let a2 be the valuation that is 1 on 𝑂 (𝛼1)
and agrees with a1 everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Furthermore, (a1, a2) ∉ ⟦𝛼2⟧𝐷 . In
particular, when 𝑣 ∈ 𝑂 (𝛼1) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼2)), we know that a1 (𝑣) = 2 and a2 (𝑣) = 1. Since

𝑣 ∉ 𝑂 (𝛼2), then (a1, a2) ∉ ⟦𝛼2⟧𝐷 . In the other case, when 𝑣 ∈ 𝑂 (𝛼2) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼1)), we
know that a1 (𝑣) = a2 (𝑣) = 2 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Consequently, (a1, a2) ∉ ⟦𝛼2⟧𝐷 since 𝑣 ∈ 𝑂 (𝛼2)
but a2 (𝑣) = 2. We verify that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 1]. We establish that 𝑣 ∈ 𝐼 sem (𝛼)
by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose that (a ′1, a ′2) ∈ ⟦𝛼⟧𝐷 .

Hence, (a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 and (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 . Indeed, (a ′1, a ′2) ∈ ⟦𝛼1⟧𝐷 whence a ′

1
= a ′

2
. Clearly,

(a ′
1
, a ′

1
) ∈ ⟦𝛼2⟧𝐷 showing that (a ′

1
, a ′

1
) ∉ ⟦𝛼⟧𝐷 as desired. Therefore, 𝑣 ∈ 𝐼 sem (𝛼).

5.6 Composition
Let 𝛼 be of the form 𝛼1 ; 𝛼2, where 𝛼1 is 𝑀1 (𝑥1;𝑦1) and 𝛼2 is 𝑀2 (𝑥2;𝑦2). We distinguish different

cases based on whether𝑀1 or𝑀2 is nullary. If𝑀1 and𝑀2 are both nullary there is nothing to prove.

5.6.1 𝑀1 is nullary, 𝑀2 is not. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼2⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀1) is
not empty. In this case, 𝐼 (𝛼1) and 𝑂 (𝛼1) are both empty, then we observe that

• 𝑂syn (𝛼) = 𝑂 (𝛼2);
• 𝐼 syn (𝛼) = 𝐼 (𝛼2).

First, we verify𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼2). We know that𝑂syn (𝛼2) ⊆ 𝑂sem (𝛼2) by induction,
then 𝑣 ∈ 𝑂sem (𝛼2). By definition, we know that there is an interpretation 𝐷 ′

and (a1, a2) ∈ ⟦𝛼2⟧𝐷′

such that a1 (𝑣) ≠ a2 (𝑣). Take 𝐷 ′′
to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any𝑀 ≠ 𝑀1

while 𝐷 ′′(𝑀1) is not empty. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷′′ , whence, 𝑀1 ≠ 𝑀2, (a1, a1) ∈ ⟦𝛼1⟧𝐷′′ by

Lemma 5.1, and ⟦𝛼⟧𝐷′′ = ⟦𝛼2⟧𝐷′ . It follows then that 𝑣 ∈ 𝑂sem (𝛼).
Similarly, we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼2). We know that 𝐼 syn (𝛼2) ⊆

𝐼 sem (𝛼2) by induction, then 𝑣 ∈ 𝐼 sem (𝛼2). By definition, we know that there is an interpretation 𝐷 ′
,

(a1, a2) ∈ ⟦𝛼2⟧𝐷′ , and a ′
1
(𝑣) ≠ a1 (𝑣) such that (a ′

1
, a ′

2
) ∉ ⟦𝛼2⟧𝐷′ for every valuation a ′

2
that agrees

with a2 on 𝑂
sem (𝛼2).
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Take 𝐷 ′′
to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any 𝑀 ≠ 𝑀1 while 𝐷 ′′(𝑀1) is

not empty. Clearly, ⟦𝛼⟧𝐷′′ = ⟦𝛼2⟧𝐷′ , whence, 𝑀1 ≠ 𝑀2. Therefore, 𝑂
sem (𝛼2) ⊆ 𝑂sem (𝛼). Hence,

𝑣 ∈ 𝐼 sem (𝛼). Indeed, (a1, a2) ∈ ⟦𝛼⟧𝐷′′ and for any valuation a ′
2
if a ′

2
agrees with a2 on𝑂

sem (𝛼), then
a ′

2
agrees with a2 on 𝑂

sem (𝛼2).

5.6.2 𝑀2 is nullary, 𝑀1 is not. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀2) is
not empty. In this case, 𝐼 (𝛼2) and 𝑂 (𝛼2) are both empty, then we observe that

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

First, we verify𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). We know that𝑂syn (𝛼1) ⊆ 𝑂sem (𝛼1) by induction,
then 𝑣 ∈ 𝑂sem (𝛼1). By definition, we know that there is an interpretation 𝐷 ′

and (a1, a2) ∈ ⟦𝛼1⟧𝐷′

such that a1 (𝑣) ≠ a2 (𝑣). Take 𝐷 ′′
to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any𝑀 ≠ 𝑀2

while 𝐷 ′′(𝑀2) is not empty. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷′′ , whence, 𝑀1 ≠ 𝑀2, (a2, a2) ∈ ⟦𝛼2⟧𝐷′′ by

Lemma 5.1, and ⟦𝛼⟧𝐷′′ = ⟦𝛼1⟧𝐷′ . It follows then that 𝑣 ∈ 𝑂sem (𝛼).
Similarly, we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1). We know that 𝐼 syn (𝛼1) ⊆

𝐼 sem (𝛼1) by induction, then 𝑣 ∈ 𝐼 sem (𝛼1). By definition, we know that there is an interpretation 𝐷 ′
,

(a1, a2) ∈ ⟦𝛼1⟧𝐷′ , and a ′
1
(𝑣) ≠ a1 (𝑣) such that (a ′

1
, a ′

2
) ∉ ⟦𝛼1⟧𝐷′ for every valuation a ′

2
that agrees

with a2 on 𝑂
sem (𝛼1).

Take 𝐷 ′′
to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any 𝑀 ≠ 𝑀2 while 𝐷 ′′(𝑀2) is

not empty. Clearly, ⟦𝛼⟧𝐷′′ = ⟦𝛼1⟧𝐷′ , whence, 𝑀1 ≠ 𝑀2. Therefore, 𝑂
sem (𝛼1) ⊆ 𝑂sem (𝛼). Hence,

𝑣 ∈ 𝐼 sem (𝛼). Indeed, (a1, a2) ∈ ⟦𝛼⟧𝐷′′ and for any valuation a ′
2
if a ′

2
agrees with a2 on𝑂

sem (𝛼), then
a ′

2
agrees with a2 on 𝑂

sem (𝛼1).

5.6.3 Neither𝑀1 nor𝑀2 is nullary. Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ (𝐼 (𝛼2) −𝑂 (𝛼1)).

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) ∪𝑂 (𝛼2). Consider an interpretation

𝐷 such that

𝐷 (𝑀1) = {(1, . . . , 1; 2, . . . , 2), (𝑖1, . . . , 𝑖𝑚 ; 3, . . . , 3)},

where 𝑖1, . . . , 𝑖𝑚 are all the combinations of {1, 2}. Similarly,

𝐷 (𝑀2) = {(1, . . . , 1; 2, . . . , 2), (𝑖1, . . . , 𝑖𝑛 ; 3, . . . , 3)},

where 𝑖1, . . . , 𝑖𝑛 are all the combinations of {1, 2}.
Let a1 be the valuation that is 1 everywhere. Also, let a be the valuation that is 2 on 𝑂 (𝛼1) and 1

elsewhere. Clearly, (a1, a) ∈ ⟦𝛼1⟧𝐷 . Let a2 be the valuation that is 3 on 𝑂 (𝛼2), 2 on 𝑂 (𝛼1) −𝑂 (𝛼2),
and 1 elsewhere. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 , whence (a, a2) ∈ ⟦𝛼2⟧𝐷 . Hence, 𝑣 ∈ 𝑂sem (𝛼). Indeed,
a2 (𝑣) ≠ a1 (𝑣) for 𝑣 ∈ 𝑂syn (𝛼).

Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ (𝐼 (𝛼2) − 𝑂 (𝛼1)). Consider an
interpretation 𝐷 where 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)} and similarly 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}.
Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 , whence (a1, a1) ∈ ⟦𝛼1⟧𝐷 and

(a1, a1) ∈ ⟦𝛼2⟧𝐷 .
Take a ′

1
:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no valuation a ′

2
for

which (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1). Clearly, there is no a ′2 such that (a ′

1
, a ′

2
) ∈

⟦𝛼1⟧𝐷 . On the other hand, when 𝑣 ∈ 𝐼 (𝛼2) − 𝑂 (𝛼1). Clearly, (a ′1, a) ∈ ⟦𝛼1⟧𝐷 , whence a = a ′
1
.

However, there is no a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 . Thus, there is no a ′2 such that (a ′

1
, a ′

2
) ∉ ⟦𝛼⟧𝐷

as desired. We conclude that 𝑣 ∈ 𝐼 sem (𝛼).
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5.7 Converse
Let 𝛼 be of the form 𝛼⌣

1
, where 𝛼1 := 𝑀 (𝑥 ;𝑦). Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪𝑂 (𝛼1).

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.

Let a1 be the valuation that is 2 on 𝑂 (𝛼1) and 1 elsewhere. Also let a2 be the valuation that is

1 everywhere. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a2, a1) ∈ ⟦𝛼1⟧𝐷 . Therefore, 𝑣 ∈ 𝑂sem (𝛼) since
a1 (𝑣) ≠ a2 (𝑣).

Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪𝑂 (𝛼1). Consider the same interpreta-

tion 𝐷 and the same valuations a1 and a2. We established that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 3].
We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed,

when 𝑣 ∈ 𝑂 (𝛼1), then a1 has to be 2 on 𝑣 . In the other case, when 𝑣 ∈ 𝐼 (𝛼1) −𝑂 (𝛼1), then a1 has to

be 1 on 𝑣 . Thus, there is no a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 as desired. Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

5.8 Left Cylindrification
Let 𝛼 be of the form cyl

𝑙
𝑥 (𝛼1), where 𝛼1 := 𝑀 (𝑥 ;𝑦). Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∪ {𝑥};
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) − {𝑥}.

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) ∪ {𝑥}. Consider an interpretation 𝐷

where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.
Let a1 be the valuation that is 3 on 𝑥 and 1 elsewhere. Also let a2 be the valuation that is 2 on

𝑂 (𝛼1) and 1 everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1 [𝑥 : 1], a2) ∈ ⟦𝛼1⟧𝐷 . Therefore,
𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).

Nowwe proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1)−{𝑥}. Consider the same interpretation

𝐷 and the same valuations a1 and a2. We established that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 2]. We

establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed, this is

true since 𝑣 ∈ 𝐼 (𝛼1) − {𝑥}. Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

5.9 Right Cylindrification
Let 𝛼 be of the form cyl

𝑟
𝑥 (𝛼1), where 𝛼1 := 𝑀 (𝑥 ;𝑦). Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∪ {𝑥};
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) ∪ {𝑥}. Consider an interpretation 𝐷

where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.
Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) and
on 𝑥 and 1 everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since either (a1, a2 [𝑥 : 1]) ∈ ⟦𝛼1⟧𝐷 or

(a1, a2) ∈ ⟦𝛼1⟧𝐷 . Therefore, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).
Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1). Consider the same interpretation 𝐷

and the same valuations a1 and a2. We established that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 2]. We

establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed, this is

true since 𝑣 ∈ 𝐼 (𝛼1). Consequently, 𝑣 ∈ 𝐼 sem (𝛼).
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5.10 Left Selection
Let 𝛼 be of the form 𝜎 l

𝑥=𝑦 (𝛼1), where 𝛼1 := 𝑀 (𝑢; �̄�), 𝑢 = 𝑢1, . . . , 𝑢𝑛 , and �̄� = 𝑤1, . . . ,𝑤𝑚 . We

distinguish different cases based on whether 𝑥 =syn 𝑦.

When 𝑥 and 𝑦 are the same variable (𝑥 =syn 𝑦). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

We proceed to verify that 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Indeed, this is true since

⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷 because of 𝑥 =syn 𝑦.

When 𝑥 and 𝑦 are different variables (𝑥 ≠syn 𝑦). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ {𝑥,𝑦}.

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.
Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) and
1 everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a1 (𝑦). Therefore,
𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).

Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥,𝑦}. Consider an interpretation

𝐷 where

𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}.
Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 and

a1 (𝑥) = a1 (𝑦). Take a ′1 := a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′
2

for which (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1), it is clear that there is no a ′2 such that

(a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 . In the other case, when 𝑣 is either 𝑥 or 𝑦, there is no a ′

2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

Indeed, this is true since 𝑥 ≠syn 𝑦 and a ′
1
(𝑥) ≠ a ′

1
(𝑦). Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

5.11 Right Selection
Let 𝛼 be of the form 𝜎 r

𝑥=𝑦 (𝛼1), where 𝛼1 := 𝑀 (𝑢; �̄�), 𝑢 = 𝑢1, . . . , 𝑢𝑛 , and �̄� = 𝑤1, . . . ,𝑤𝑚 . We

distinguish different cases based on whether 𝑥 =syn 𝑦.

When 𝑥 and 𝑦 are the same variable (𝑥 =syn 𝑦). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

We proceed to verify that 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Indeed, this is true since

⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷 because of 𝑥 =syn 𝑦.

When 𝑥 and 𝑦 are different variables (𝑥 ≠syn 𝑦). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ ({𝑥,𝑦} −𝑂 (𝛼1)).

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(𝑖1, . . . , 𝑖𝑛 ; 2, . . . , 2)},
such that 𝑖 𝑗 = 2 if 𝑢 𝑗 is either 𝑥 or 𝑦 and 𝑢 𝑗 ∉ 𝑂 (𝛼1), otherwise, 𝑢 𝑗 = 1. Let a1 be the valuation that

is 2 on 𝑥 if 𝑥 ∉ 𝑂 (𝛼1), 2 on 𝑦 if 𝑦 ∉ 𝑂 (𝛼1), and 1 everywhere. Also let a2 be the valuation that is 2

on 𝑂 (𝛼1) and agrees with a1 everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and

a2 (𝑥) = a2 (𝑦). Therefore, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).
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Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥,𝑦}. Consider an interpretation

𝐷 where 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly,

(a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a1 (𝑦). Take a ′1 := a1 [𝑣 : 2]. We establish that

𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1),

it is clear that there is no a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 . Now we need to verify the same when 𝑣 is

𝑥 or 𝑦 and 𝑣 ∉ 𝐼 (𝛼1). Thereto, suppose (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In the case of 𝑣 is 𝑥 and 𝑥 ∉ 𝐼 (𝛼1), this is

only possible when 𝑥 ∉ 𝑂 (𝛼1). Therefore, a ′2 (𝑥) = a ′
1
(𝑥) = 2 but a ′

2
(𝑦) = 1 whether 𝑦 ∈ 𝑂 (𝛼1) or

not. Hence, (a ′
1
, a ′

2
) ∉ ⟦𝛼⟧𝐷 since 𝑥 ≠syn 𝑦 and a ′

2
(𝑥) ≠ a ′

2
(𝑦). The case when 𝑣 is 𝑦 and 𝑦 ∉ 𝐼 (𝛼1) is

symmetric. Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

5.12 Left-to-Right Selection
Let 𝛼 be of the form 𝜎 lr

𝑥=𝑦 (𝛼1), where 𝛼1 := 𝑀 (𝑢; �̄�), 𝑢 = 𝑢1, . . . , 𝑢𝑛 , and �̄� = 𝑤1, . . . ,𝑤𝑚 . We

distinguish different cases based on whether 𝑥 =syn 𝑦 and 𝑦 ∈ 𝑂 (𝛼1).

When 𝑥 =syn 𝑦 and 𝑦 ∈ 𝑂 (𝛼1). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) − {𝑥};
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ {𝑥}.

In what follows, since 𝑥 =syn 𝑦 we will refer to both of them with 𝑥 . We first proceed to ver-

ify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) − {𝑥}. Consider an interpretation 𝐷 such that 𝐷 (𝑀) =

{(1, . . . , 1;𝑜1, . . . , 𝑜𝑚)} where 𝑜 𝑗 = 1 if 𝑤 𝑗 = 𝑦, otherwise 𝑜 𝑗 = 2 . Let a1 be the valuation that

is 1 everywhere. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) − {𝑥} and 1 everywhere else.

Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a2 (𝑥). Therefore, 𝑣 ∈ 𝑂sem (𝛼) since
a1 (𝑣) ≠ a2 (𝑣).

Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥}. Consider an interpretation 𝐷

where

𝐷 (𝑀) = {(1, . . . , 1; 1, . . . , 1)}.
Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 . Take
a ′

1
:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

Thereto, suppose that (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1) it is clear that (a ′1, a ′2) ∉ ⟦𝛼1⟧𝐷 .

On the other hand, when 𝑣 = 𝑥 and 𝑥 ∈ 𝑂 (𝛼1) − 𝐼 (𝛼1), clearly a ′1 (𝑥) = 2 ≠ 1 = a ′
2
(𝑥). Consequently,

𝑣 ∈ 𝐼 sem (𝛼).

When 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

In what follows, since 𝑥 =syn 𝑦 we will refer to both of them with 𝑥 . We proceed to verify𝑂syn (𝛼) ⊆
𝑂sem (𝛼) and 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Indeed, this is true since ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷

because of 𝑥 =syn 𝑦 and 𝑥 ∉ 𝑂 (𝛼1).

When 𝑥 ≠syn 𝑦 and 𝑦 ∈ 𝑂 (𝛼1). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ {𝑥}.

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 such

that

𝐷 (𝑀) = {(𝑖1, . . . , 𝑖𝑛 ;𝑜1, . . . , 𝑜𝑚)},
where 𝑖 𝑗 = 2 if 𝑢 𝑗 = 𝑥 , otherwise 𝑖 𝑗 = 1. Also, 𝑜 𝑗 = 3 if 𝑤 𝑗 = 𝑥 , otherwise 𝑜 𝑗 = 2 . Let a1

be the valuation that is 2 on 𝑥 and 1 everywhere else. Also let a2 be the valuation that is 2 on

𝑂 (𝛼1) − {𝑥}, 3 on 𝑥 if 𝑥 ∈ 𝑂 (𝛼1) and agrees with a1 everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷
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since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a2 (𝑦). Therefore, 𝑣 ∈ 𝑂sem (𝛼). Indeed, in both cases whether

𝑥 ∈ 𝑂 (𝛼1) or not, a1 (𝑣) ≠ a2 (𝑣).
Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥}. Consider an interpretation 𝐷

where

𝐷 (𝑀) = {(1, . . . , 1; 1, . . . , 1)}.
Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 . Take
a ′

1
:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

Thereto, suppose that (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1) it is clear that (a ′1, a ′2) ∉ ⟦𝛼1⟧𝐷 .

On the other hand, when 𝑣 = 𝑥 and 𝑦 ∈ 𝑂 (𝛼1), clearly a ′
1
(𝑥) = 2 ≠ 1 = a ′

2
(𝑦). Consequently,

𝑣 ∈ 𝐼 sem (𝛼).

When 𝑥 ≠syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ {𝑥,𝑦}.

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 such

that

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.
Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) and 1

everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a2 (𝑦). Indeed, this is
true since 𝑦 ∉ 𝑂 (𝛼1), then a1 (𝑦) = a2 (𝑦). Therefore, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).
Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥,𝑦}. Consider an interpretation

𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 1, . . . , 1)}.
Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 . Take
a ′

1
:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

Thereto, suppose that (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1) it is clear that (a ′1, a ′2) ∉ ⟦𝛼1⟧𝐷 .

On the other hand, when 𝑣 = 𝑥 or 𝑣 = 𝑦, clearly a ′
1
(𝑥) ≠ (a ′

1
(𝑦) = a ′

2
(𝑦)) since 𝑦 ∉ 𝑂 (𝛼1) and

𝑥 ≠syn 𝑦. Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

6 OPTIMALITY THEOREM PROOF
In this section, we prove Theorem 3.28. Thus, we would like to show that

𝐼 syn (𝛼) ⊆ 𝐼 (𝛼) and 𝑂syn (𝛼) ⊆ 𝑂 (𝛼).
for any LIF expression 𝛼 , assuming that (𝐼 ,𝑂) is a sound and compositional input–output definition.

The proof is by induction on the structure of 𝛼 .

Atomic Modules. For atomic module expressions 𝛼 , this follows directly from Theorem 3.27.

Identity. For 𝛼 = id, this is immediate since 𝐼 syn (id) = 𝑂syn (id) = ∅.

Binary Operators. For 𝛼 = 𝛼1 ⊡ 𝛼2, where ⊡ is a binary operator, we define two atomic module

expressions 𝛼 ′
1
= 𝑀1 (𝑥 ;𝑦) and 𝛼 ′

2
= 𝑀2 (𝑢, 𝑣) where 𝑥 = 𝐼 (𝛼1), 𝑦 = 𝑂 (𝛼1), 𝑢 = 𝐼 (𝛼2), and 𝑣 = 𝑂 (𝛼2)

with𝑀𝑖 distinct module names of the right arity.

Since (𝐼 ,𝑂) is sound, we know that the following holds for 𝑖 ∈ {1, 2}:
𝐼 (𝛼𝑖 ) = 𝐼 (𝛼 ′

𝑖 ) = 𝐼 syn (𝛼 ′
𝑖 ) and 𝑂 (𝛼𝑖 ) = 𝑂 (𝛼 ′

𝑖 ) = 𝑂syn (𝛼 ′
𝑖 ). (1)

Moreover by soundness and Proposition 3.20, we know that

𝐼 sem (𝛼 ′
1
⊡ 𝛼 ′

2
) ⊆ 𝐼 (𝛼 ′

1
⊡ 𝛼 ′

2
) and 𝑂sem (𝛼 ′

1
⊡ 𝛼 ′

2
) ⊆ 𝑂 (𝛼 ′

1
⊡ 𝛼 ′

2
). (2)
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From the Precision Theorem, we know that

𝐼 syn (𝛼 ′
1
⊡ 𝛼 ′

2
) = 𝐼 sem (𝛼 ′

1
⊡ 𝛼 ′

2
) and 𝑂syn (𝛼 ′

1
⊡ 𝛼 ′

2
) = 𝑂sem (𝛼 ′

1
⊡ 𝛼 ′

2
). (3)

From the compositionality of (𝐼 ,𝑂), we know that

𝐼 (𝛼 ′
1
⊡ 𝛼 ′

2
) = 𝐼 (𝛼1 ⊡ 𝛼2) and 𝑂 (𝛼 ′

1
⊡ 𝛼 ′

2
) = 𝑂 (𝛼1 ⊡ 𝛼2). (4)

By combining Equations (2–4), we find that

𝐼 syn (𝛼 ′
1
⊡ 𝛼 ′

2
) ⊆ 𝐼 (𝛼1 ⊡ 𝛼2) and 𝑂syn (𝛼 ′

1
⊡ 𝛼 ′

2
) ⊆ 𝑂 (𝛼1 ⊡ 𝛼2). (5)

We now claim the following

𝐼 syn (𝛼1 ⊡ 𝛼2) ⊆ 𝐼 syn (𝛼 ′
1
⊡ 𝛼 ′

2
) and 𝑂syn (𝛼1 ⊡ 𝛼2) ⊆ 𝑂syn (𝛼 ′

1
⊡ 𝛼 ′

2
). (6)

If we prove our claim, then combining Equations (5–6) establishes our theorem for binary operators.

First, we prove our claim for the inductive cases for outputs of the different binary operators.

From the inductive hypothesis and Equation (1), we know that for 𝑖 ∈ {1, 2}:
𝑂syn (𝛼𝑖 ) ⊆ 𝑂 (𝛼𝑖 ) = 𝑂syn (𝛼 ′

𝑖 ).
Hence, it is clear that

• 𝑂syn (𝛼1)∪𝑂syn (𝛼2) is a subset of𝑂syn (𝛼 ′
1
)∪𝑂syn (𝛼 ′

2
), which settles the cases when ⊡ ∈ {∪, ;}

since 𝑂syn (𝛽 ⊡ 𝛾) = 𝑂syn (𝛽) ∪𝑂syn (𝛾) for any LIF expressions 𝛽 and 𝛾 ;

• 𝑂syn (𝛼1) ∩𝑂syn (𝛼2) is a subset of 𝑂syn (𝛼 ′
1
) ∩𝑂syn (𝛼 ′

2
), which settles the case when ⊡ is ∩

since 𝑂syn (𝛽 ⊡ 𝛾) = 𝑂syn (𝛽) ∩𝑂syn (𝛾) for any LIF expressions 𝛽 and 𝛾 ;

• 𝑂syn (𝛼1) is a subset of𝑂syn (𝛼 ′
1
), which settles the case when⊡ is− since𝑂syn (𝛽⊡𝛾) = 𝑂syn (𝛽)

for any LIF expressions 𝛽 and 𝛾 .

Now, we consider the inductive cases for the inputs of the different binary operators. Similar to

the outputs, we know that for 𝑖 ∈ {1, 2}:
𝐼 syn (𝛼𝑖 ) ⊆ 𝐼 (𝛼𝑖 ) = 𝐼 syn (𝛼 ′

𝑖 ).
Consequently,

• when 𝑥 ∈ 𝐼 syn (𝛼1) ∪ (𝐼 syn (𝛼2) −𝑂syn (𝛼1)), we consider the following cases:

– if 𝑥 ∈ 𝐼 syn (𝛼1), then it is clear that 𝑥 ∈ 𝐼 syn (𝛼 ′
1
);

– if 𝑥 ∈ (𝐼 syn (𝛼2) −𝑂syn (𝛼1)), then we know that 𝑥 ∈ 𝐼 syn (𝛼 ′
2
). Moreover, since 𝑥 ∉ 𝑂syn (𝛼1),

we know by soundness of (𝐼 syn,𝑂syn) that 𝑥 ∉ 𝑂sem (𝛼1). Now, we differentiate between
two cases

∗ when 𝑥 ∉ 𝑂syn (𝛼 ′
1
), it is clear that 𝑥 ∈ (𝐼 syn (𝛼 ′

2
) −𝑂syn (𝛼 ′

1
));

∗ when 𝑥 ∈ 𝑂syn (𝛼 ′
1
), we know from Equation (1) that 𝑥 ∈ 𝑂 (𝛼1). From Lemma 3.22 and

Equation (1), it follows that 𝑥 ∈ 𝐼 (𝛼1) and 𝑥 ∈ 𝐼 syn (𝛼 ′
1
).

In all cases, we verify that 𝑥 ∈ 𝐼 syn (𝛼 ′
1
) ∪ (𝐼 syn (𝛼 ′

2
) −𝑂syn (𝛼 ′

1
)). This settles the case when ⊡

is ; since 𝐼 syn (𝛽 ⊡ 𝛾) = 𝐼 syn (𝛽) ∪ (𝐼 syn (𝛾) −𝑂syn (𝛽)) for any LIF expressions 𝛽 and 𝛾 .

• when 𝑥 ∈ 𝐼 syn (𝛼1) ∪ 𝐼 syn (𝛼2) ∪ (𝑂syn (𝛼1) △𝑂syn (𝛼2)), we consider the following cases:

– if 𝑥 ∈ 𝐼 syn (𝛼𝑖 ) for some 𝑖 , then it is clear that 𝑥 ∈ 𝐼 syn (𝛼 ′
𝑖 );

– if 𝑥 ∈ 𝑂syn (𝛼𝑖 ) −𝑂syn (𝛼 𝑗 ) for 𝑖 ≠ 𝑗 , we know that 𝑥 ∈ 𝑂syn (𝛼 ′
𝑖 ). Since 𝑥 ∉ 𝑂syn (𝛼 𝑗 ), we

know by soundness that 𝑥 ∉ 𝑂sem (𝛼 𝑗 ). Now, we differentiate between two cases

∗ when 𝑥 ∉ 𝑂syn (𝛼 ′
𝑗 ), it is clear that 𝑥 ∈ (𝑂syn (𝛼 ′

𝑖 ) △𝑂syn (𝛼 ′
𝑗 ));

∗ when 𝑥 ∈ 𝑂syn (𝛼 ′
𝑗 ), we know from Equation (1) that 𝑥 ∈ 𝑂 (𝛼 𝑗 ). From Lemma 3.22 and

Equation (1), it follows that 𝑥 ∈ 𝐼 (𝛼 𝑗 ) and 𝑥 ∈ 𝐼 syn (𝛼 ′
𝑗 ).

In all cases, we verify that 𝑥 ∈ 𝐼 syn (𝛼 ′
1
) ∪ 𝐼 syn (𝛼 ′

2
) ∪ (𝑂syn (𝛼 ′

1
) △𝑂syn (𝛼 ′

2
)). This settles the

cases when ⊡ ∈ {∪,∩,−} since 𝐼 syn (𝛽 ⊡𝛾) = 𝐼 syn (𝛽) ∪ 𝐼 syn (𝛾) ∪ (𝑂syn (𝛽) △𝑂syn (𝛾)) for any
LIF expressions 𝛽 and 𝛾 .
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Unary Operators. We follow a similar approach for unary operators. For 𝛼 = □𝛼1, where □ is

a unary operator, we define one atomic module expression 𝛼 ′
1
= 𝑀1 (𝑥 ;𝑦) where 𝑥 = 𝐼 (𝛼1), and

𝑦 = 𝑂 (𝛼1).
Since (𝐼 ,𝑂) is sound, we know that the following holds:

𝐼 (𝛼1) = 𝐼 (𝛼 ′
1
) = 𝐼 syn (𝛼 ′

1
) and 𝑂 (𝛼1) = 𝑂 (𝛼 ′

1
) = 𝑂syn (𝛼 ′

1
). (7)

Moreover, we know that

𝐼 sem (□𝛼 ′
1
) ⊆ 𝐼 (□𝛼 ′

1
) and 𝑂sem (□𝛼 ′

1
) ⊆ 𝑂 (□𝛼 ′

1
) . (8)

From the precision theorem, we know that

𝐼 syn (□𝛼 ′
1
) = 𝐼 sem (□𝛼 ′

1
) and 𝑂syn (□𝛼 ′

1
) = 𝑂sem (□𝛼 ′

1
). (9)

From the compositionality of (𝐼 ,𝑂), we know that

𝐼 (□𝛼 ′
1
) = 𝐼 (□𝛼1) and 𝑂 (□𝛼 ′

1
) = 𝑂 (□𝛼1). (10)

By combining Equations (8–10), we find that

𝐼 syn (□𝛼 ′
1
) ⊆ 𝐼 (□𝛼1) and 𝑂syn (□𝛼 ′

1
) ⊆ 𝑂 (□𝛼1). (11)

We now claim the following

𝐼 syn (□𝛼1) ⊆ 𝐼 syn (□𝛼 ′
1
) and 𝑂syn (□𝛼1) ⊆ 𝑂syn (□𝛼 ′

1
). (12)

If we prove our claim, then combining Equations (11–12) establishes our theorem for unary

operators.

Proving our claim for the inductive cases for outputs of the different unary operators follows

directly from the inductive hypothesis and Equation (7), which states that

𝑂syn (𝛼1) ⊆ 𝑂 (𝛼1) = 𝑂syn (𝛼 ′
1
).

Indeed, 𝑂syn (□𝛼1) and 𝑂syn (□𝛼 ′
1
), respectively, simply equal 𝑂syn (𝛼1) and 𝑂syn (𝛼 ′

1
), except for the

possible addition or removal of some fixed variable that depends only on □.
Now, we consider the inductive cases for inputs. Similar to the outputs, we know that

𝐼 syn (𝛼1) ⊆ 𝐼 (𝛼1) = 𝐼 syn (𝛼 ′
1
).

Here, we only discuss the cases for 𝜎 lr
𝑥=𝑦 and 𝜎 r

𝑥=𝑦 as all the other cases again follow directly from

the above inclusion and the definition of 𝐼 syn
.

We begin by the cases for 𝜎 lr
𝑥=𝑦 . The cases are:

• when 𝑦 ∈ 𝑂syn (𝛼1), we have

𝐼 syn (𝜎 lr
𝑥=𝑦 (𝛼1)) = 𝐼 syn (𝛼1) ∪ {𝑥} ⊆ 𝐼 syn (𝛼 ′

1
) ∪ {𝑥} = 𝐼 syn (𝜎 lr

𝑥=𝑦 (𝛼 ′
1
)) .

• when 𝑦 ∉ 𝑂syn (𝛼1) and 𝑥 =syn 𝑦, we have

𝐼 syn (𝜎 lr
𝑥=𝑦 (𝛼1)) = 𝐼 syn (𝛼1) ⊆ 𝐼 syn (𝛼 ′

1
) ⊆ 𝐼 syn (𝜎 lr

𝑥=𝑦 (𝛼 ′
1
)).

• when 𝑦 ∉ 𝑂syn (𝛼1) and 𝑥 ≠syn 𝑦, by definition

𝐼 syn (𝜎 lr
𝑥=𝑦 (𝛼1)) = 𝐼 syn (𝛼1) ∪ {𝑥,𝑦}.

In case 𝑦 ∉ 𝑂syn (𝛼 ′
1
), we are done since 𝐼 syn (𝛼1) ∪ {𝑥,𝑦} ⊆ 𝐼 syn (𝛼 ′

1
) ∪ {𝑥,𝑦} = 𝐼 syn (𝜎 lr

𝑥=𝑦 (𝛼 ′
1
)).

Otherwise, 𝑦 ∈ 𝑂syn (𝛼 ′
1
) in which case 𝐼 syn (𝜎 lr

𝑥=𝑦 (𝛼 ′
1
)) = 𝐼 syn (𝛼 ′

1
) ∪ {𝑥}. What remains to

show is that 𝑦 ∈ 𝐼 syn (𝛼 ′
1
). By Equation 7, we have 𝑦 ∈ 𝑂 (𝛼1). Moreover, 𝑦 ∉ 𝑂sem (𝛼1) since

𝑦 ∉ 𝑂syn (𝛼1). By Lemma 3.22 and Equation 7, we obtain 𝑦 ∈ 𝐼 (𝛼1) = 𝐼 syn (𝛼 ′
1
) as desired.
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Finally, we consider the case for 𝜎 r
𝑥=𝑦 when 𝑥 ≠syn 𝑦. The case when 𝑥 =syn 𝑦 follows directly. By

definition,

𝐼 syn (𝜎 r
𝑥=𝑦 (𝛼1)) = 𝐼 syn (𝛼1) ∪ ({𝑥,𝑦} −𝑂syn (𝛼1)) .

We can focus on 𝑧 ∈ {𝑥,𝑦}. If 𝑧 ∈ 𝑂syn (𝛼1) or 𝑧 ∉ 𝑂syn (𝛼 ′
1
), we are done. Now, consider the case

when 𝑧 ∉ 𝑂syn (𝛼1), but 𝑧 ∈ 𝑂syn (𝛼 ′
1
). Similar to our reasoning for the last case in 𝜎 lr

𝑥=𝑦 , we can

show that 𝑧 ∈ 𝐼 syn (𝛼 ′
1
), whence, 𝑧 ∈ 𝐼 syn (𝜎 lr

𝑥=𝑦 (𝛼 ′
1
)) by definition.

7 PRIMITIVITY OF COMPOSITION
We now turn our attention to the study of composition in LIF. Indeed, LIF has a rich set of logical

operators already, plus an explicit operator (;) for sequential composition. This begs the question

whether composition is not already definable in terms of the other operators.

We begin by showing that for “well-behaved” expressions (all subexpressions have disjoint inputs

and outputs) composition is redundant in LIF: every well-behaved LIF expression is equivalent to a

LIF expression that does not use composition. As a corollary, we will obtain that composition is

generally redundant if there is an infinite supply of variables. In contrast, in the bounded variable

case, we will show that composition is primitive in LIF. Here, we use LIFnc to denote the fragment

of LIF without composition.

7.1 When Inputs and Outputs are Disjoint, Composition is Non-Primitive
Our first non-primitivity result is based on inputs and outputs. We say that a LIF expression 𝛽

is io-disjoint if 𝑂sem (𝛽) ∩ 𝐼 sem (𝛽) = ∅. The following theorem implies that if 𝛼 , 𝛽 , and all their

subexpressions are io-disjoint, we can rewrite 𝛼 ; 𝛽 into a LIFnc expression. Of course, this property

also holds in case 𝑂syn (𝛽) ∩ 𝐼 syn (𝛽) = ∅ since the syntactic inputs and outputs overapproximate

the semantic ones.

Theorem 7.1. Let 𝛼 and 𝛽 be LIF expressions such that 𝛽 is io-disjoint. Then, 𝛼 ; 𝛽 is equivalent to

𝛾 := cyl
𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂sem (𝛼) (𝛽).

Intuitively, the reason why this expression works is as follows: we cylindrify 𝛼 on the right. In

general, this might result in a loss of information, but since we are only cylindrifying outputs of 𝛽 ,

this means we only forget the information that would be overwritten by 𝛽 anyway. Since the inputs

and outputs of 𝛽 are disjoint, 𝛽 does not need to know what 𝛼 did to those variables in order to

determine its own outputs. We also cylindrify 𝛽 on the left on the outputs of 𝛼 , since these values

will be set by 𝛼 . One then still needs to be careful in showing that the intersection indeed removes

all artificial pairs, by exploiting the fact that expressions are inertial outside their output.

Proof of Theorem 7.1. Let 𝐷 be an interpretation. First, we show that ⟦𝛼 ; 𝛽⟧𝐷 ⊆ ⟦𝛾⟧𝐷 . If
(a1, a2) ∈ ⟦𝛼 ; 𝛽⟧𝐷 , then there is a a3 such that (a1, a3) ∈ ⟦𝛼⟧𝐷 and (a3, a2) ∈ ⟦𝛽⟧𝐷 . By definition

of the outputs of 𝛽 , a3 and a2 agree outside 𝑂
sem (𝛽). Hence, (a1, a2) ∈ ⟦cyl

𝑟
𝑂sem (𝛽) (𝛼)⟧𝐷 . Similarly,

we can show that (a1, a2) ∈ ⟦cyl
𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷 .

For the other inclusion, assume that (a1, a2) ∈ ⟦𝛾⟧𝐷 . Using the definition of the semantics of

cylindrification, we find a ′
2
such that (a1, a

′
2
) ∈ ⟦𝛼⟧𝐷 and a2 agrees with a ′

2
outside 𝑂sem (𝛽) and

we find a a ′
1
such that a ′

1
agrees with a1 outside 𝑂

sem (𝛼) and (a ′
1
, a2) ∈ ⟦𝛽⟧𝐷 . Using the definition

of output of 𝛽 , we know that also a ′
1
agrees with a2 outside the outputs of 𝛽 , thus a

′
1
and a ′

2
agree

outside the outputs of 𝛽 , and hence definitely on the inputs of 𝛽 . We can apply Proposition 3.6 thanks

to the (𝐼 syn,𝑂syn) soundness, 𝐼 syn (𝛼) is finite and determines 𝑂syn (𝛼), which contains 𝑂sem (𝛼). So
we guarantee that 𝛽 is determined by its inputs, whence, there exists a a ′′

2
such that (a ′

2
, a ′′

2
) ∈ ⟦𝛽⟧𝐷

where a ′′
2

= a2 on the outputs of 𝛽 and, since 𝛽 is inertial outside its outputs, a ′′
2

= a ′
2
outside
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the outputs of 𝛽 . But we previously established that a ′
2
agrees with a2 outside the outputs of 𝛽 ,

whence a ′′
2
= a2. Summarized we now found that (a1, a

′
2
) ∈ ⟦𝛼⟧𝐷 and (a ′

2
, a2) ∈ ⟦𝛽⟧𝐷 , whence,

(a1, a2) ∈ ⟦𝛼 ; 𝛽⟧𝐷 as desired. □

Given the undecidability results of Section 3, Theorem 7.1 is not effective. We can however give

the following syntactic variant.

Theorem 7.2. Let 𝛼 and 𝛽 be LIF expressions such that 𝑂syn (𝛽) ∩ 𝐼 syn (𝛽) = ∅. Then, 𝛼 ; 𝛽 is
equivalent to

cyl
𝑟
𝑂syn (𝛽) (𝛼) ∩ cyl

𝑙
𝑂syn (𝛼) (𝛽).

Proof. Since 𝐼 syn (𝛽) ∩ 𝑂syn (𝛽) = ∅, we obtain by Lemma 3.22 that 𝑂sem (𝛽) = 𝑂syn (𝛽). Thus,
we alternatively show that 𝛼 ; 𝛽 is equivalent to the expression

cyl
𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂syn (𝛼) (𝛽).

We can also see that 𝛽 is io-disjoint, since 𝐼 syn (𝛽) ∩𝑂syn (𝛽) = ∅ and (𝐼 syn,𝑂syn) is sound. Thus,
if we show that

⟦cyl
𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 = ⟦cyl

𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷

for any interpretation 𝐷 , we can apply Theorem 7.1 and we are done.

Thereto, let 𝐷 be an interpretation. By soundness, it is clear that

⟦cyl
𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷 ⊆ ⟦cyl

𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 , so ⟦cyl

𝑟
𝑂sem (𝛽) (𝛼)∩cyl

𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷 ⊆ ⟦cyl

𝑟
𝑂sem (𝛽) (𝛼)∩cyl

𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 .

What remains to show is that the other inclusion also holds. Thereto, let (a1, a2) ∈ ⟦cyl
𝑟
𝑂sem (𝛽) (𝛼)∩

cyl
𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 . Clearly, (a1, a2) ∈ ⟦cyl

𝑟
𝑂sem (𝛽) (𝛼)⟧𝐷 and (a1, a2) ∈ ⟦cyl

𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 . From (a1, a2) ∈

⟦cyl
𝑟
𝑂sem (𝛽) (𝛼)⟧𝐷 , we can see thata1 = a2 outside𝑂

sem (𝛼)∪𝑂sem (𝛽). From (a1, a2) ∈ ⟦cyl
𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 ,

we can see that there is a valuation a ′
1
such that (a ′

1
, a2) ∈ ⟦𝛽⟧𝐷 and a ′

1
= a1 outside𝑂

syn (𝛼). Define
a ′′

1
to be the valuation a ′

1
[a1 |𝑂sem (𝛽) ]. By construction and io-disjointness of 𝛽 , we see that a ′′1 = a ′

1
on

𝐼 sem (𝛽) and outside𝑂sem (𝛽). By Proposition 3.9, we obtain that (a ′′
1
, a2) ∈ ⟦𝛽⟧𝐷 . Define a to be the

valuation a ′′
1
[a1 |𝑂sem (𝛼) ]. By the semantics of cylindrification, we see that (a, a2) ∈ ⟦cyl

𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷 .

Consequently, a = a2 outside𝑂
sem (𝛼) ∪𝑂sem (𝛽). Before, we established that a1 and a2 agree outside

the same set of variables. So we obtain that a = a2 = a1 outside 𝑂
sem (𝛼) ∪𝑂sem (𝛽). Moreover, we

know by construction that a = a ′′
1
= a1 on 𝑂

sem (𝛽) ∪𝑂sem (𝛼). Then, a is the same valuation as a1.

So we obtain that (a1, a2) ∈ ⟦cyl
𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷 as desired. □

Example 7.3 (Example 3.15 continued). Consider the expression

𝛼 = 𝑃1 (𝑥 ;𝑥) ; 𝑃1 (𝑥 ;𝑦).
with the interpretation𝐷 in Example 3.15. In that case, 𝛼 first increments 𝑥 by one and subsequently

sets the value of 𝑦 to one higher than 𝑥 . Stated differently,

⟦𝛼⟧𝐷 =
{
(a1, a2) | a2 (𝑥) = a1 (𝑥) + 1 ∧ a2 (𝑦) = a2 (𝑥) + 1 and a1 (𝑧) = a2 (𝑧) for 𝑧 ∉ {𝑥,𝑦}

}
Theorem 7.1 tells us that 𝛼 is equivalent to

cyl
𝑟
𝑦 (𝑃1 (𝑥 ;𝑥)) ∩ cyl

𝑙
𝑥 (𝑃1 (𝑥 ;𝑦)).

We see that

⟦cyl
𝑟
𝑦 (𝑃1 (𝑥 ;𝑥))⟧𝐷 =

{
(a1, a2) | a2 (𝑥) = a1 (𝑥) + 1 and a1 (𝑧) = a2 (𝑧) for 𝑧 ∉ {𝑥,𝑦}

}
,

⟦cyl
𝑙
𝑥 (𝑃1 (𝑥 ;𝑦))⟧𝐷 =

{
(a1, a2) | a2 (𝑦) = a2 (𝑥) + 1 and a1 (𝑧) = a2 (𝑧) for 𝑧 ∉ {𝑥,𝑦}

}
.

The intersection of these indeed equals ⟦𝛼⟧𝐷 .
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Theorem 7.1 no longer holds in general if 𝛽 can have overlapping inputs and outputs, as the

following example illustrates.

Example 7.4. Consider the expression

𝛼 := 𝑃1 (𝑥 ;𝑥) ; 𝑃1 (𝑥 ;𝑥).
with the interpretation 𝐷 as in the example above. In this case, 𝛼 increments the value of 𝑥 by two.

However, ⟦cyl
𝑟
𝑥 (𝑃1 (𝑥 ;𝑥))⟧𝐷 and ⟦cyl

𝑙
𝑥 (𝑃1 (𝑥 ;𝑥))⟧𝐷 are both equal to

{(a1, a2) | a1 (𝑧) = a2 (𝑧) for all 𝑧 ≠ 𝑥}.
Hence, indeed, in this case 𝛼 is not equivalent to

cyl
𝑟
𝑥 (𝑃1 (𝑥 ;𝑥)) ∩ cyl

𝑙
𝑥 (𝑃1 (𝑥 ;𝑥)).

7.2 If V is Infinite, Composition is Non-Primitive
We know from Theorem 7.1 that if 𝛽 is io-disjoint, 𝛼 and 𝛽 can be composed without using the

composition operator. If V is sufficiently large, we can force any expression 𝛽 to be io-disjoint by

having 𝛽 write its outputs onto unused variables instead of its actual outputs. The composition

can then be eliminated following Theorem 7.1, after which we move the variables back so that

the “correct” outputs are used. What we need to show is that “moving the variables around”, as

described above, is expressible without composition. As before, we define the operators on BRVs

but their definition is lifted to LIF expressions in a straightforward way.

Definition 7.5. Let 𝐵 be a BRV and let 𝑥 and 𝑦 be disjoint tuples of distinct variables of the same

length. The right move is defined as follows:

mv
r
𝑥→𝑦 (𝐵) := {(a1, a

′
2
) | a ′

2
(𝑥) = a1 (𝑥) and ∃a2 : (a1, a2) ∈ 𝐵 and a ′

2
(𝑦) = a2 (𝑥) and a2 = a ′

2
outside 𝑥∪𝑦}.

This operation can be expressed without composition, which we show in the following lemma:

Lemma 7.6. Let 𝑥 and 𝑦 be disjoint tuples of distinct variables of the same length. Then, for any
BRV 𝐵, we have

mv
r
𝑥→𝑦 (𝐵) = 𝜎 lr

𝑥=𝑥cyl
𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝐵).

Proof. We give a “proof by picture”. Consider an arbitrary (a1, a2) ∈ 𝐵:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 ¯𝑑 𝑒 ¯𝑓

We will verify that when we apply the LHS and the RHS on this pair of valuations, we obtain

identical results.

For the LHS, we see that mv
r
𝑥→𝑦 (𝐵) yields the following pair of valuations when applied on

(a1, a2):
𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 𝑎 ¯𝑑 ¯𝑓

Now, we check the RHS. We see that the following set of pairs of valuations is the result of

cyl
𝑟
𝑦 (𝐵) when applied on (a1, a2):

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 ¯𝑑 ∗ ¯𝑓

Here the asterisk denotes a “wildcard”, i.e., any valuation on 𝑦 is allowed.
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Then, we see that 𝜎 r
𝑥=𝑦cyl

𝑟
𝑦 (𝐵) yields:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 ¯𝑑 ¯𝑑 ¯𝑓

Next, we see that cyl
𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝐵) yields:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 ∗ ¯𝑑 ¯𝑓

Finally, we see that 𝜎 lr
𝑥=𝑥cyl

𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝐵) yields the following pair of valuations which is the

same as the result of the LHS.

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 𝑎 ¯𝑑 ¯𝑓

□

Lemma 7.7. Let 𝐴 and 𝐵 be BRVs and let 𝑥 and 𝑦 be disjoint tuples of distinct variables of the same
length such that all variables in 𝑦 are inertially cylindrified in 𝐴 and 𝐵. In that case:

𝐴 ; 𝐵 = mv
r
𝑦→𝑥 (𝐴 ; mv

r
𝑥→𝑦 (𝐵))

What this lemma shows is that we can temporarily move certain variables (the 𝑥) to unused

variables (the 𝑦) and then move them back. The proof of this lemma is:

Proof of Lemma 7.7. Again we give a proof by picture. Let the left be a generic pair of valuations

that belongs to 𝐴, while the one on the right be a generic one that belongs to 𝐵. The “−” here
represents inertial cylindrification.

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 − ¯𝑏 𝑐 − ¯𝑑

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑒 − ¯𝑓 𝑔 − ¯ℎ

For the LHS, we see that composition can only be applied if 𝑐 = 𝑒 and
¯𝑑 = ¯𝑓 . Under this

assumption, we get that 𝐴 ; 𝐵 yields the following:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 − ¯𝑏 𝑔 − ¯ℎ

Now, we check the RHS. We see that mv
r
𝑥→𝑦 (𝐵) yields the following when applied on the generic

pair belonging to 𝐵:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑒 ∗ ¯𝑓 𝑒 𝑔 ¯ℎ

To apply the composition in the RHS, we must have 𝑐 = 𝑒 and
¯𝑑 = ¯𝑓 , which are the same

restrictions we had in applying the composition in the LHS, so the expression 𝐴 ; mv
r
𝑥→𝑦 (𝐵) yields:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ∗ ¯𝑏 𝑒 𝑔 ¯ℎ
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Finally, applying the last move operation, mv
r
𝑦→𝑥 (𝐴 ; mv

r
𝑥→𝑦 (𝐵)) yields:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 − ¯𝑏 𝑔 − ¯ℎ

which is clearly identical to what we had from the LHS. □

This finally brings us to the main result of the current subsection.

Theorem 7.8. If V is infinite, then every LIF expression is equivalent to a LIFnc expression.

Proof. We prove this theorem by induction on the number of compositions operators in a LIF

expression 𝛾 . The base case (no composition operators), is trivial. For the inductive case, consider an

expression [ containing at least one composition operator. We show how to rewrite [ equivalently

with one composition operator less. Thereto, take any subexpression 𝛼 ; 𝛽 such that 𝛼 and 𝛽 are

LIFnc expressions. We eliminate this composition as follows. Choose a tuple of variables 𝑦 of the

same length as𝑂syn (𝛽), such that 𝑦 does not occur in 𝛾 . In that case, 𝑦 is inertially cylindrified in 𝛼

and in 𝛽 , and hence, Lemma 7.7 yields that 𝛼 ; 𝛽 is equivalent to

mv
r
𝑦→𝑂syn (𝛽) (𝛼 ; mv

r
𝑂syn (𝛽)→𝑦

(𝛽)) .

We will next show that mv
r
𝑂syn (𝛽)→𝑦

(𝛽) is io-disjoint. Indeed, from the equivalence in Lemma 7.6

and the soundness of our definitions, we can see that

𝑂sem (mv
r
𝑂syn (𝛽)→𝑦

(𝛽)) = 𝑂sem (𝜎 lr
𝑥=𝑥cyl

𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝛽)) ⊆ 𝑂syn (𝜎 lr

𝑥=𝑥cyl
𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝛽)) = 𝑂syn (𝛽)∪𝑦.

Moreover, we generally have𝑂sem (mv
r
𝑥→𝑦 (𝛾)) ∩𝑥 = ∅ for any 𝑥 and any LIF expression 𝛾 in which

𝑦 is inertially cylindrified. As a consequence, 𝑂sem (mv
r
𝑂syn (𝛽)→𝑦

(𝛽)) ⊆ 𝑦.

Also, we can see that

𝐼 sem (mv
r
𝑂syn (𝛽)→𝑦

(𝛽)) = 𝐼 sem (𝜎 lr
𝑥=𝑥cyl

𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝛽)) ⊆ 𝐼 syn (𝜎 lr

𝑥=𝑥cyl
𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝛽)) = 𝐼 syn (𝛽)∪𝑂syn (𝛽).

Since 𝑦 does not occur in 𝛽 , we indeed obtain that is mv
r
𝑂syn (𝛽)→𝑦

(𝛽) io-disjoint.

𝑂sem (mv
r
𝑂syn (𝛽)→𝑦

(𝛽)) ⊆ 𝑦 ∩ (𝐼 syn (𝛽) ∪𝑂syn (𝛽)) = ∅.

We can now apply Theorem 7.2 to eliminate the composition yielding the LIFnc expression

mv
r
𝑦→𝑂syn (𝛽) (cyl

𝑟
𝑂syn (mv

r
𝑂syn (𝛽 )→�̄�

(𝛽)) (𝛼) ∩ cyl
𝑙
𝑂syn (𝛼) (mv

r
𝑂syn (𝛽)→𝑦

(𝛽))).

□

7.3 If V is Finite, Composition is Primitive
The case that remains is when V is finite. We will show that in this case, composition is indeed

primitive by relating bounded-variable LIF to bounded-variable first-order logic.

Assume V = {𝑥1, . . . , 𝑥𝑛}. Since BRVs involve pairs of V-valuations, we introduce a copy V𝑦 =

{𝑦1, . . . , 𝑦𝑛} disjoint from V. For clarity, we also write V𝑥 for V. As usual, by FO[𝑘] we denote the
fragment of first-order logic that uses only 𝑘 distinct variables. We observe the following:

Proposition 7.9. For every LIF expression 𝛼 , there exists an FO[3𝑛] formula 𝜑𝛼 with free variables
in V𝑥 ∪ V𝑦 such that

(a1, a2) ∈ ⟦𝛼⟧𝐷 if and only if 𝐷, (a1 ∪ a ′
2
) |= 𝜑𝛼 ,

where a ′
2
is theV𝑦-valuation such that a ′2 (𝑦𝑖 ) = a2 (𝑥𝑖 ) for each 𝑖 . Furthermore, if 𝛼 is a LIFnc expression,

𝜑𝛼 can be taken to be a FO[2𝑛] formula.
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Proof. The proof is by induction on the structure of 𝛼 (using Lemma 2.1, we omit redundant

operators).

We introduce a third copy V𝑧 = {𝑧1, . . . , 𝑧𝑛} of V. For every 𝑢, 𝑣 ∈ {𝑥,𝑦, 𝑧} we define 𝜌𝑢𝑣 as

follows:

𝜌𝑢𝑣 : V𝑢 → V𝑣 : 𝑢𝑖 ↦→ 𝑣𝑖

Using these functions, we can translate a valuation a on V = V𝑥 to a corresponding valuation on

V𝑢 with 𝑢 ∈ {𝑦, 𝑧}. Clearly, a ◦ 𝜌𝑢𝑥 does this job.

In the proof, we actually show a stronger statement by induction, namely that for each 𝛼 and for

every 𝑢 ≠ 𝑣 ∈ {𝑥,𝑦, 𝑧} there is a formula 𝜑𝑢𝑣
𝛼 with free variables in V𝑢 ∪ V𝑣 in FO[V𝑥 ∪ V𝑦 ∪ V𝑧]

such that for every 𝐷 ,

(a1, a2) ∈ ⟦𝛼⟧𝐷 if and only if 𝐷, (a1 ◦ 𝜌𝑢𝑥 ∪ a2 ◦ 𝜌𝑣𝑥 ) |= 𝜑𝑢𝑣
𝛼 .

Since the notations 𝑥 , 𝑦, 𝑧, 𝑢 and 𝑣 are taken, we use notations 𝑎, 𝑏 and 𝑐 for variables.

• 𝛼 = id. Take 𝜑𝑢𝑣
𝛼 to be

∧𝑛
𝑖=1

𝑢𝑖 = 𝑣𝑖 .

• 𝛼 = 𝑀 (𝑎;𝑏). Take 𝜑𝑢𝑣
𝛼 to be𝑀 (𝜌𝑥𝑢 (𝑎), 𝜌𝑥𝑣 (𝑏)) ∧

∧
𝑐∉𝑏

𝜌𝑥𝑢 (𝑐) = 𝜌𝑥𝑣 (𝑐).
• 𝛼 = 𝛼1 ∪ 𝛼2. Take 𝜑

𝑢𝑣
𝛼 to be 𝜑𝑢𝑣

𝛼1

∨ 𝜑𝑢𝑣
𝛼2

.

• 𝛼 = 𝛼1 − 𝛼2. Take 𝜑
𝑢𝑣
𝛼 to be 𝜑𝑢𝑣

𝛼1

∧ ¬𝜑𝑢𝑣
𝛼2

.

• 𝛼 = 𝛼1 ; 𝛼2. Let𝑤 ∈ {𝑥,𝑦, 𝑧} − {𝑢, 𝑣}. Take 𝜑𝑢𝑣
𝛼 to be ∃𝑤1 . . . ∃𝑤𝑛 (𝜑𝑢𝑤

𝛼1

∧ 𝜑𝑤𝑣
𝛼2

).
• 𝛼 = 𝛼⌣

1
. By induction, 𝜑𝑣𝑢

𝛼1

exists. This formula can serve as 𝜑𝑢𝑣
𝛼 .

• 𝛼 = 𝜎 lr
𝑎=𝑏

(𝛼1). Take 𝜑𝑢𝑣
𝛼 to be 𝜑𝑢𝑣

𝛼1

∧ 𝜌𝑥𝑢 (𝑎) = 𝜌𝑥𝑣 (𝑏).
• 𝛼 = cyl

𝑙
𝑎 (𝛼1). Take 𝜑𝑢𝑣

𝛼 to be ∃𝜌𝑥𝑢 (𝑎) 𝜑𝑢𝑣
𝛼1

. □

Now that we have established that LIFnc can be translated into FO[2𝑛], all that is left to do is
find a Boolean query that can be expressed in LIF with 𝑛 variables, but not in FO[2𝑛]. We find such

a query in the existence of a 3𝑛-clique. We will first show that we can construct a LIFnc expression

𝛼2𝑛 such that, given an interpretation 𝐷 interpreting a binary relation 𝑅, ⟦𝛼2𝑛⟧𝐷 consists of all

2𝑛-cliques of 𝑅. Next, we show how 𝛼2𝑛 can be used (with composition) to construct an expression

𝛼∃3𝑛 such that ⟦𝛼∃3𝑛⟧𝐷 is non-empty if and only if 𝑅 has a 3𝑛-clique. Since this property cannot be

expressed in FO[2𝑛], we can conclude that composition must be primitive.

To avoid confusion, we recall that a set 𝐿 of 𝑘 data elements is a 𝑘-clique in a binary relation 𝑅,

if any two distinct 𝑎 and 𝑏 in 𝐿, we have (𝑎, 𝑏) ∈ 𝑅 (and also (𝑏, 𝑎) ∈ 𝑅).

Proposition 7.10. Suppose that |V| = 𝑛 with 𝑛 ≥ 2 and let S = {𝑅} with ar (𝑅) = iar (𝑅) = 2.
There exists a LIF expression 𝛼2𝑛 such that

⟦𝛼2𝑛⟧𝐷 = {(a1, a2) | a1 (V) ∪ a2 (V) is a 2𝑛-clique in 𝐷 (𝑅)}.

Proof. Throughout this proof, we identify a pair (a1, a2) of two valuations with the 2𝑛 tuple of

data elements

a1 (𝑥1, . . . , 𝑥𝑛) · a2 (𝑥1, . . . , 𝑥𝑛).
Before coming to the actual expression for 𝛼2𝑛 , we introduce some auxiliary concepts. First, we

define

all := cyl
𝑙
V cyl

𝑟
V (id).

It is clear that

⟦all⟧𝐷 = {(a1, a2) ∈ V ×V}.
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A first condition for being a 2𝑛-clique is that all data elements are different. It is clear that the

expression

𝛼= :=
⋃

𝑥≠𝑦∈V

(
𝜎 l
𝑥=𝑦 (all) ∪ 𝜎 r

𝑥=𝑦 (all)
)
∪

⋃
𝑥,𝑦∈V

𝜎 lr
𝑥=𝑦 (all)

has the property that ⟦𝛼=⟧𝐷 consists of all 2𝑛-tuples where at least one data element is repeated.

Hence, ⟦𝛼≠⟧𝐷 consists of all 2𝑛-tuples of distinct data elements, where

𝛼≠ := all − 𝛼= .

The second condition for being a 2𝑛-clique is that each two distinct elements are connected by 𝑅.

In order to check this, we define the following expressions for each two variables 𝑥 and 𝑦:

𝑅𝑙𝑥,𝑦 := cyl
𝑙
V−{𝑥,𝑦 }cyl

𝑟
V (𝑅(𝑥,𝑦; ) ∩ 𝑅(𝑦, 𝑥 ; ))

𝑅𝑟𝑥,𝑦 := cyl
𝑙
Vcyl

𝑟
V−{𝑥,𝑦 } (𝑅(𝑥,𝑦; ) ∩ 𝑅(𝑦, 𝑥 ; ))

𝑅𝑙𝑟𝑥,𝑦 := cyl
𝑙
V−{𝑥 }cyl

𝑟
V−{𝑦 } (𝑅(𝑥,𝑦; ) ∩ 𝑅(𝑦, 𝑥 ; ))

With these definitions, for instance ⟦𝑅𝑙𝑟𝑥𝑖 ,𝑥 𝑗
⟧𝐷 consists of all 2𝑛-tuples such that the 𝑖th and the

𝑛 + 𝑗 th element are connected (in two directions) in 𝑅, and similar properties hold for 𝑅𝑙 and 𝑅𝑟 .

From this, it follows that the expression

𝛼2𝑛 = 𝛼≠ ∩
⋂

𝑥≠𝑦∈V

(
𝑅𝑙𝑥,𝑦 ∩ 𝑅𝑟𝑥,𝑦

)
∩

⋂
𝑥,𝑦∈V

𝑅𝑙𝑟𝑥,𝑦

satisfies the proposition; it intersects 𝛼≠ with all the expressions stating that each two data elements

must be (bidirectionally) connected by 𝑅. □

Notice that 𝛼2𝑛 can be used to compute all the 2𝑛-cliques of the input interpretation. We now

use 𝛼2𝑛 to check for existence of 3𝑛-cliques.

Proposition 7.11. Suppose that |V| = 𝑛 with 𝑛 ≥ 2 and let S = {𝑅} with ar (𝑅) = iar (𝑅) = 2.
Define

𝛼∃3𝑛 := (𝛼2𝑛 ; 𝛼2𝑛) ∩ 𝛼2𝑛 .

Then, for every interpretation 𝐷 , ⟦𝛼∃3𝑛⟧𝐷 is non-empty if and only if 𝐷 (𝑅) has a 3𝑛-clique.

It is well known that existence of a 3𝑛-clique is not expressible in FO[2𝑛] [7]. The above proposi-
tion thus immediately implies primitivity of composition.

Theorem 7.12. Suppose that |V| = 𝑛 ≥ 2. Then, composition is primitive in LIF. Specifically, no
LIFnc expression is equivalent to the LIF expression 𝛼∃3𝑛 .

8 RELATEDWORK
LIF grew out of theAlgebra ofModular Systems [25], whichwas developed to provide foundations
for programming from available components. That paper mentions information flows, in connection

with input–output behavior in classical logic, for the first time. The paper also surveys earlier work

from the author’s group, as well as other closely related work.

In a companion paper [1], we report on an application of LIF to querying under limited access
patterns, as for instance offered by web services [21]. That work also involves inputs and outputs,

but only of a syntactic nature, and for a restricted variant of LIF (called “forward” LIF) only. The

property of io-disjointness turned also to be important in that work, albeit for a quite different

purpose.

Our results also relate to the evaluation problem for LIF, which takes as input a LIF expression
𝛼 , an interpretation 𝐷 , and a valuation a1, and where the task is to find all a2 such that (a1, a2) ∈
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⟦𝛼⟧𝐷 . From our results, it follows that only the value of a1 on the input variables is important, and

similarly we are only interested in the values of each a2 on the output variables. A subtle point,

however, is that 𝐷 may be infinite, and moreover, even if 𝐷 itself is not infinite, the output of the

evaluation problem may still be. In many cases, it is still possible to obtain a finite representation,

for instance by using quantifier elimination techniques as done in Constraint Databases [17].

We have defined the semantics of LIF algebraically, in the style of cylindric set algebra [15, 16].
An important difference is the dynamic nature of BRVs which are sets of pairs of valuations, as
opposed to sets of valuations which are the basic objects in cylindric set algebra.

Our optimality theorem was inspired by work on controlled FO [9], which had as aim to infer

boundedness properties of the outputs of first-order queries, given boundedness properties of the

input relations. Since this inference task is undecidable, the authors defined syntactic inferences

similar in spirit to our syntactic definition of inputs and outputs. They show (their Proposition

4.3) that their definitions are, in a sense, sharp. Note that our optimality theorem is stronger in

that it shows that no other compositional and sound definition can be better than ours. Of course,

the comparison between the two results is only superficial as the inference tasks at hand are very

different.

The Logic of Information Flows is similar to dynamic predicate logic (DPL) [12], in the sense

that formulas are also evaluated with respect to pairs of valuations. There is, however a key

difference in philosophy between the two logics. LIF starts from the idea that well-known operators

from first-order logic can be used to describe combinations and manipulations of dynamic systems,

and as such provides a means for procedural knowledge in a declarative language. The dynamics

in LIF are dynamics of the described system. Dynamic predicate logic, on the other hand starts

from the observation that, in natural language, operators such as conjunction and existential

quantification are dynamic, where the dynamics are in the process of parsing a sentence, often

related to coreference analysis. To the best of our knowledge, inputs and outputs of expressions

have not been studied in DPL.

Since we developed a large part of our work in the general setting of BRVs, and thus of transition
systems, we expect several of our results to be applicable in the context of other formalisms where

specifying inputs and outputs is important, such as API-based programming [5] and synthesis

[3, 6], privacy and security, business process modeling [4], and model combinators in Constraint

Programming [11].

9 CONCLUSION AND FUTUREWORK
Declarative modeling is of central importance in the area of Knowledge Representation and Reason-

ing. The Logic of Information Flows provides a framework to investigate how, and to what degree,

dynamic or imperative features can be modeled declaratively. In this paper we have focused on

inputs, outputs, and sequential composition, as these three concepts are fundamental to modeling

dynamic systems. There are many directions for further research.

Inputs and outputs are not just relevant from a theoretic perspective, but can also have ramifica-

tions on computation. Indeed, they form a first handle to parallelize computation of complex LIF

expressions, or to decompose problems.

In this paper, we have worked with a basic set of operations motivated by the classical logic

connectives. In order to provide a fine control of computational complexity, or to increase expres-

siveness, it makes sense to consider other operations.

The semantic notions developed in this paper (inputs, outputs, soundness) apply to global

BRVs in general, and hence are robust under varying the set of operations. Moreover, our work

delineates and demonstrates a methodology for adapting syntactic input–output definitions to

other operations.
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A specific operation that is natural to investigate its primitivity is converse. The converse of a BRV
𝐴 is defined to be {(a2, a1) | (a1, a2) ∈ 𝐴}. In the context of LIF [27] it can model constraint solving

by searching for an input to a module that produces a desired outcome. When we add converse to

LIF with only a single variable (|V| = 1), and the vocabulary has only binary relations of input arity

one, then we obtain the classical calculus of relations [24]. There, converse is known to be primitive

[10]. When the number of variables is strictly more than half of the maximum arity of relations in

the vocabulary, converse is redundant in LIF, as can be shown using similar techniques as used in

this paper to show redundancy of composition. Investigating the exact number of variables needed

for non-primitivity is an interesting question for further research.

Another direction for further research is to examine fragments of LIF for which the semantic

input or output problem may be decidable, or even for which the syntactic definitions coincide

with the semantic definitions.

Finally, an operation that often occurs in dynamic systems is the fixed point construct used by

[27]. It remains to be seen how our work, and the further research directions mentioned above, can

be extended to include the fixpoint operation.

ACKNOWLEDGMENTS
This research received funding from the Flemish Government under the “Onderzoeksprogramma

Artificiële Intelligentie (AI) Vlaanderen” programme, from FWO Flanders project G0D9616N, and

from Natural Sciences and Engineering Research Council of Canada (NSERC). Jan Van den Bussche

is partially supported by the National Natural Science Foundation of China (61972455). Heba Aamer

is supported by the Special Research Fund (BOF) (BOF19OWB16).

REFERENCES
[1] Heba Aamer, Bart Bogaerts, Dimitri Surinx, Eugenia Ternovska, and Jan Van den Bussche. 2020. Executable first-order

queries in the logic of information flows. In Proceedings 23rd International Conference on Database Theory (Leibniz
International Proceedings in Informatics, Vol. 155). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 4:1–4:14.

[2] Heba Aamer, Bart Bogaerts, Dimitri Surinx, Eugenia Ternovska, and Jan Van den Bussche. 2020. Inputs, Outputs, and

Composition in the Logic of Information Flows. In Proceedings of the 17th International Conference on Principles of
Knowledge Representation and Reasoning. 2–11. https://doi.org/10.24963/kr.2020/1

[3] Natasha Alechina, Tomás Brázdil, Giuseppe De Giacomo, Paolo Felli, Brian Logan, andMoshe Y. Vardi. 2019. Unbounded

Orchestrations of Transducers for Manufacturing. In AAAI. AAAI Press, 2646–2653.
[4] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, and Fabio Patrizi. 2008. Automatic

Service Composition and Synthesis: the Roman Model. IEEE Data Eng. Bull. 31, 3 (2008), 18–22.
[5] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2016. Regular Open APIs. In Principles

of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town,
South Africa, April 25-29, 2016. AAAI Press, 329–338.

[6] Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardiña. 2013. Automatic behavior composition synthesis. Artif.
Intell. 196 (2013), 106–142.

[7] Heinz-Dieter Ebbinghaus and Jörg Flum. 1999. Finite Model Theory (second ed.). Springer.

[8] Herbert B. Enderton. 1972. A Mathematical Introduction To Logic. Academic Press.

[9] Wenfei Fan, Floris Geerts, and Leonid Libkin. 2014. On scale independence for querying big data. In Proceedings 33th
ACM Symposium on Principles of Database Systems. ACM, 51–62.

[10] George H. L. Fletcher, Marc Gyssens, Dirk Leinders, Dimitri Surinx, Jan Van den Bussche, Dirk Van Gucht, Stijn

Vansummeren, and Yuqing Wu. 2015. Relative expressive power of navigational querying on graphs. Information
Sciences 298 (2015), 390–406.

[11] Daniel Fontaine, Laurent Michel, and Pascal Van Hentenryck. 2013. Model Combinators for Hybrid Optimization. In

Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013. Proceedings. Springer, 299–314.

[12] Jeroen Groenendijk and Martin Stokhof. 1991. Dynamic predicate logic. Linguistics and Philosophy 14 (1991), 39–100.

[13] Yuri Gurevich. 1983. Algebras of feasible functions. In Proceedings 24th Symposium on Foundations of Computer Science.
IEEE Computer Society, 210–214.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: February 2018.

https://doi.org/10.24963/kr.2020/1


Inputs, Outputs, and Composition in the Logic of Information Flows 43

[14] Yuri Gurevich. 1988. Logic and the challenge of computer science. In Current Trends in Theoretical Computer Science,
E. Börger (Ed.). Computer Science Press, 1–57.

[15] Leon Henkin, J. Donald Monk, and Alfred Tarski. 1971. Cylindric Algebras. Part I. North-Holland.
[16] Tomasz Imieliński and Witold Lipski. 1984. The relational model of data and cylindric algebras. J. Comput. System Sci.

28 (1984), 80–102.

[17] Gabriel M. Kuper, Leonid Libkin, and Jan Paredaens (Eds.). 2000. Constraint Databases. Springer.
[18] David Lewis. 1973. Causation. Journal of Philosophy 70 (1973), 556–567.

[19] Vladimir Lifschitz. 1987. Formal Theories of Action (Preliminary Report). In Proceedings of the 10th International
Joint Conference on Artificial Intelligence. Milan, Italy, August 23-28, 1987, John P. McDermott (Ed.). Morgan Kaufmann,

966–972. http://ijcai.org/Proceedings/87-2/Papers/081.pdf

[20] John McCarthy and Patrick J. Hayes. 1969. Some Philosophical Problems from the Standpoint of Artificial Intelligence.

In Machine Intelligence 4, B. Meltzer and D. Michie (Eds.). Edinburgh University Press, 463–502.

[21] Sheila Mcilraith, Tran Son, and Honglei Zeng. 2001. Semantic Web Services. Intelligent Systems, IEEE 16 (04 2001), 46 –

53.

[22] David G. Mitchell and Eugenia Ternovska. 2005. A framework for representing and solving NP search problems. In

Proc. AAAI. AAAI Press / The MIT Press, 430–435.

[23] J.L. Reutter and D. Srivastava (Eds.). 2017. Proceedings 11th Alberto Mendelzon International Workshop on Foundations
of Data Management. CEUR Workshop Proceedings, Vol. 1912.

[24] Alfred Tarski. 1941. On the calculus of relations. Journal of Symbolic Logic 6 (1941), 73–89.
[25] Eugenia Ternovska. 2015. An Algebra of Combined Constraint Solving. In Global Conference on Artificial Intelligence,

GCAI 2015, Tbilisi, Georgia, October 16-19, 2015. EasyChair, 275–295.
[26] Eugenia Ternovska. 2017. Recent progress on the algebra of modular systems, See [23].

[27] Eugenia Ternovska. 2019. An algebra of modular systems: static and dynamic perspectives. In Frontiers of Combining
Systems: Proceedings 12th FroCos (Lecture Notes in Artificial Intelligence, Vol. 11715), A. Herzig and A. Popescu (Eds.).

Springer, 94–111.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: February 2018.

http://ijcai.org/Proceedings/87-2/Papers/081.pdf

