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ABSTRACT
The Hirsch function, denoted as hf , of a given continuous function f is a new function depending 
on a parameter. It exists provided some assumptions are satisfied. If this parameter takes the 
value one, we obtain the well-known h-index. We prove several properties of the Hirsch function 
and characterize the shape of general functions that are Hirsch functions. We, moreover, present 
a formula that enables the calculation of f, given its Hirsch function hf.
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INTRODUCTION

Hirsch[1] introduced the well-known discrete h-index. This 
indicator was later followed by the g-index,[2] and many other 
variants. The idea of considering (discrete) h- and g-indices with 
a variable parameter, originates from van Eck and Waltman.[3] 
Recently, Lathabai[4] introduced the    ψ-index as the indicator 
with the largest offset-ability. These indicators are discrete, which 
makes them easy to apply, but it is well-known that for theoretical 
investigations a continuous version is more feasible. Hence, from 
now on we will work in a continuous context.

Let    f:R+→R+ be a function. Then we define for all θ    ∈R0
+ =    R+ \ {0}:

x = hf(θ)    ⇔  f(x) = θx (1)

We only consider those cases for which (1) has a unique solution. 
If f(0) = 0 then we exclude a possible extra solution of x = hf(θ) = 
0 unless this is a unique solution. Figure 1 illustrates some special 
cases.

Case a). does not lead to a valid solution of (1) as y = θx and f(x) 
intersect in more than one point.

Case b). Here f(0) = f ’(0) = 0. Here we do not consider x =0, so 
that (1) has a unique solution for all θ    ∈R0

+.

Case c). Here f(0) = 0 and f ’(0) = θ0 > 0. We do not consider x = 
0 as a solution of (1) if θ > θ0 and do consider x = 0 as a solution 
if 0 < θ ≤ θ0.

Case d). Here we have x = hf(θ) = 0, for all θ    ∈R0
+.

Although it is possible to solve such special cases differently, 
the main point is that we know unambiguously what we mean 
by the notation hf(θ). As hf(θ) is now clearly defined we obtain a 
well-defined function hf.

Definition: The Hirsch function

The function hf: θ    ∈R0
+    → hf(θ)    ∈R+ is called the Hirsch function.

For θ =1, we obtain the well-known h-index[1] of the continuous 
function f, explaining the naming of this function. We further 
note that hf is not defined in point zero so we can say that for f = 
0 (the null function) hf(θ) = 0.

The Hirsch function has been used implicitly by Egghe and 
Rousseau[5] (without naming it as such) and later by Egghe[6,7] 
while, as mentioned above, the idea of considering h-indices with 
a variable parameter, originates from van Eck and Waltman.[3]

The Hirsch function is not defined as an explicit function but 
implicitly through equation (1). We first provide a characterization 
of such functions.

Theorem 1

Let φ be a function defined on    R+, continuous in 0. Let further f be 
a function, continuous in the point φ(0) then the following two 
statements are equivalent:

(i) hf = φ on    R0
+

(ii)  ∀ θ ∈ R+ : f(φ(θ)) = θ.φ(θ)            (2)

Proof. (i)    ⇒ (ii)

From (i) and (1) we obtain (2)    ∀θ ∈ R0
+. For θ = 0, we find, using 

the assumed continuity:   

f(φ(0)) = f(lim φ (θ))  = lim (f(φ(θ))) = lim(θ. φ(θ)) = 0
                        θ →0                      θ →0                         θ →0
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Where we have used that we already know (2) for θ > 0. Hence, 
f(φ(0)) = 0 = 0.φ(0), which is (2) for θ = 0.

(ii)    ⇒ (i)

From (2), (1), and the assumed uniqueness we have that    ∀θ∈R0
+ : 

hf(θ) = φ(θ), by the definition of hf. Ƴ

Next, we will study the following problems.

(a). Given f, determine hf. This is the formalism shown in (1). We 
give one simple example: let f(x) = C > 0 (C fixed). Then (1) leads 
to the equation C = θx. Hence    ∀θ∈R0

+ hf(θ) = x = C/θ. We come 
to the same result using (2). Indeed,    ∀θ∈ R0

+ hf(θ) = φ(θ) = C/θ.

(b). Given φ, determine f such that φ = hf. This problem already 
places some extra requirements on φ without which φ = hf is 
impossible. Consider e.g., the example above: with    ∀x∈R0

+ φ(x) 
= C/x. Then (2) leads to   . As the range of C/x is    R0

+, 
f(x) = C on    R0

+ and thus also f(x) = C on    R+by the continuity of f.

(c). Neither f nor φ is given, but a general relationship between f 
and φ. Here we consider two subcases.

φ is given via a relation with f

Example 1. φ = f (the simplest possible relation). Using (2) we 
have    ∀θ∈R+: f(f(θ)) = θ.f(θ). If f is continuous then this relation 
can only occur if f = 0 (the null function) or f(x) = xα, where α is 
the golden section,  .[6] Its proof uses the Fibonacci sequence.

Example 2. φ = fof. Using (2) this leads to f(f(f(θ))) = θ.f(f(θ)),    
∀θ∈R+,see Egghe.[8] Again, for f continuous, this requirement 
leads to two possible solutions, namely f = 0 or f(x) = xβ, with β 
≈ 1.4648493 (smaller than the golden section). Its proof uses a 
variant of the Fibonacci sequence.

In the same vein, one can consider the case    φ=f °f °…°f ⏟n times.

f is given via a relationship with φ

Example 1. The function f = φ. Although this is essentially the 
same as the previous example 1, (2) leads to    ∀θ∈R+: φ(φ(θ)) = 
θ.φ(θ), leading to φ (=f) = 0 or φ(x) (=f(x)) = xα.

Example 2. f = φoφ

This example is different. Via (2) we find: φ(φ(φ(θ))) = θ.φ(φ(θ)),    
∀θ∈R+, see Egghe.[6] For φ continuous, this leads to φ = 0 or φ(x) 
= xα, with α ≈ 1.3247178. hence f(x) =    x(α2).

This ends the introduction. Next, we will study the basic properties 
of the Hirsch function.

Properties of the Hirsch function

Theorem 2

The function hf is injective on the set {θ    ∈R0
+|| hf(θ) ≠ 0}.

Notation. We denote {θ    ∈R0
+|| hf(θ) ≠ 0} as {hf ≠ 0}.

Proof. Let x1 = hf(θ1) = hf(θ2) = x2. Then (1) implies that f(x1) = θ1x1 
and f(x2) = θ2x2. As x1 = x2 and f is a function this implies that θ1x1 

= θ2x2, leading to θ1 = θ2 if x1 = x2 ≠ 0. Ƴ

The next theorem provides a new characterization of hf.

Theorem 3

Let m be a function of functions m: f    → m(f), then the following 
statements are equivalent:

(i) m(f) = hf

(ii)     ∀ θ ∈ R0
+ : mθ(f) =    ψf

-1 (θ)  = x, where    ψf  is injective, and 
defined as:   

         (3)

Proof. (i)    ⇒ (ii)

From (i) and (1) it follows that    ∀ θ ∈ R0
+: x = mθ(f)    ⇔ f(x) = θx    

⇔ θ = f(x)/x    ⇔ x =    ψf
-1(θ). Moreover, from the fact that hf is a 

function, it follows that    ψf is injective.

(ii)    ⇒ (i)

It follows similarly from (ii) and (1) that m(f) = hf.

Remark

As    hf
-1=ψf, with    ψf defined in (3) it follows that    hf

-1 is a function on    
R0

+. This immediately leads to (see also Theorem 2):

the function f is continuous ⇔    hf
-1  is continuous      (4)

The two implications in (4) do not hold for hf (see further). To 
study this, we recall two results (stated as lemmas) from real 
analysis.

Figure 1: Some special cases.
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Lemma 1

If f is continuous on an interval (possibly infinitely long) and 
injective then f is strictly monotonous.

Lemma 2

If f is injective, then the following two statements are equivalent:

(i) f is continuous on [a,b]

(ii) The function f-1 is continuous on [f(a), f(b)] (or [f(b), f(a)])

The proof can be found using Lemma 1 and,[9] Theorem 2.27.

Notation. The domain of a function f is denoted as D(f).

Theorem 4

If D(f) is an interval, then f is continuous implies that hf is 
continuous.

Proof. D(   ψf) = D(f) \ {0}, hence an interval. If f is continuous 
then also    ψf is continuous and    ψf is an injection (by Theorem 
3). Applying now Lemma 2 on    ψf shows that    ψf

-1is a continuous 
function. It then follows from Theorem 3 that hf =    ψf

-1is also 
continuous. Ƴ

Theorem 4 does not hold if one removes the requirement that 
D(f) is an interval. This is illustrated in Figure 2.

We know that f is continuous if and only if    hf
-1 is continuous. Yet, 

we will show that the implication hf continuous    ⇒ f continuous 
does not always hold. For this, we need some preliminary results.

Lemma 3. If    f:R+→R+ is continuous and injective on {f≠0}, then 
one of the following three statements hold:

(i) f is injective

(ii)    ∃y0>0 such that  =0 and f (> 0) is injective, hence strictly 
increasing, on] y0, +∞,

(iii)    ∃x0≥0 such that  =0 and f (> 0) is injective, hence 
strictly decreasing, on [0, x0 [. Note that if x0 = 0, this includes the 
case f = 0.

Proof. Assume (i) is not the case, i.e., f is not injective. Yet, we 
know that f is injective on {f ≠ 0}. Hence, there exist x, y, 0 ≤ x < y 
such that f(x) = f(y) = 0.

We then show that f|[x,y] = 0.           (*)

Indeed, otherwise, there would exist z    ∈ ]x,y[ such that f(z) ≠ 0. 
Because f is continuous it assumes all values between f(x) = 0 and 
f(z) > 0 on ]x,z[ and similarly on the interval ]z,y[. Consequently, 
there exist points x’ and y‘, x’   ∈ ]x,z[ and y’    ∈ ]z,y[, (hence x’ ≠ y’) 
such that f(x’) = f(y’) = f(z)/2 ≠ 0, which contradicts the fact that 
f is injective on {f ≠ 0}.

Next, we show that

      (**)

Assume this is not the case. Then there exists u    ∈ [0,x[ such that 
f(u) > 0 and v    ∈ ]y, +∞[ such that f(v) > 0. As f is continuous it 
takes all values between f(x) = 0 en f(u) > 0 on ]u,x[ and between 
f(y) = 0 and f(v) > 0 on ]y,v[. Put a = min(f(u), f(v)) > 0. Then 
there exist x’ in ]u,x[ and y’ in ]y,v[ such that f(y’) = f(x’) = a 
≠ 0 (and x’ ≠ y’). This is in contradiction with the fact that f is 
injective on {f ≠ 0}.

From (*) and (**) it follows that f|[0,y] = 0 or f|[x, +∞[ = 0, with 0 ≤ x 
< y. In the first case we set y0 = sup {y > 0 such that f|[0,y] = 0}. Then 
we know that  = 0 and not equal to zero (hence strictly 
positive) on the complement of [0,y0]. From this, it follows that 
f is injective. Then f is strictly increasing on] y0, +∞ [and (ii) has 
been proved.

In the second case we set x0 = inf {x ≥ 0 such that f|[x,+∞[ = 0}. 
Then  = 0 and on the complement of [x0, +∞ [f ≠ 0 and 
hence injective. In this case, f decreases strictly on [0,x0[ and (ii) 
is proved. Ƴ

Corollary

A continuous Hirsch function hf on    R0
+ is of one of the following 

three types:

(i) hf is injective on    R0
+;

(ii) hf = 0 on an interval [0,y0], y0 > 0 and strictly increasing on 
the compliment;

(iii) hf = 0 on an interval [x0, + ∞ [, x0 > 0 and strictly decreasing 
on the complement; including the case hf = 0.

Proof. This follows from Lemma 3 and Theorem 2, with f (in 
Lemma 3) replaced by hf, defined on    R0

+.ƳFigure 2:  A function f, continuous on its domain D(f ) = [0, a[    ∪[b, +∞[ 
and a function hf(θ) which is not continuous.
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We show that these three types occur.

(i) This class is best known as it includes the functions f(x) = xc, 
c > 1. Then,    ∀θ∈R0

+ : hf(θ) =    θ , which is a strictly increasing 
injection. Note that for 1/(c-1) = c we find c = α and hence f = hf 
on    R0

+.

(ii). See Figure 3a. The function f is strictly convex, θ0 = f ’(0) 
> 0. By definition, hf is zero on [0,θ0] and strictly increasing on  
[   θ0,+∞].

The consequence of Lemma 3 also provides conditions for an 
equation such as (2), Theorem 1, to have or not to have a solution,

These cases are discussed in the next theorem.

Theorem 5

If φ is a continuous function    R+→R+ which is not of the form (i), 
(ii), or (iii) of the above corollary then a function f such that hf = φ 
does not exist. If φ is of the form (i), (ii), or (iii) then the solution 
of (2), namely hf = φ is given by

   ∀ x ∈ R0
+:f(x) = x φ-1(x)            (5)

with φ-1 the inverse function of the injective part of φ (abuse of 
notation). This function φ-1 always exists, except when x0 = 0 in 
(iii), in which case φ = 0 and φ = hf with f = 0. We further note that 
in cases (ii) and (iii) f(0) = 0.

Proof

Case (i). In this case, φ is injective and (2) gives:   

∀ θ ∈ R0
+:  f(φ(θ)) = θ φ(θ)

Denoting φ(θ) by x we find that φ-1(x) = θ, which yields (5).

Case (ii). Now we know that there exists y0 > 0 such that  
= 0 and φ is strictly increasing (hence injective) on ]y0, + ∞[. 
Next, we set f(x) =    xφ-1(x) on    φ([y0,+∞[). As φ is continuous and 

 = 0,    R0
+⊂ φ]y0,+∞[. In this way, f is defined on    R0

+ with 
(2) holding on [y0, + ∞]. Now define f(0) = 0, then we have,    ∀ θ
∈[0,y0]:

f(φ(θ)) = f(0) = 0 = θ φ(θ)

showing that (2) holds on    R+ and thus, by Theorem 1, hf = φ on    
R0

+.

Case (iii) Now we know that there exists x0 ≥ 0 such that   
= 0 with φ strictly decreasing (and hence injective) on [0,x0]. For 
x0 = 0, φ = 0 on    R+and we take f = 0 on    R+, leading to hf = φ on    
R0

+ (by (1)).

Assume now that x0 > 0. Define f(x) = x φ-1(x) on    φ([0,x0[)≠∅. 
As φ is continuous and  = 0,    R0

+⊂ φ ([0,x0[). So far, we 
defined f on    R0

+, with (2) holding on [0, x0[. Now, put f(0) = 0, 
then we have    ∀θ∈[x0,+∞[:

f(φ(θ)) = f(0) = 0 = θ φ(θ)

showing again that (2) holds on R   + and thus, by Theorem 1, hf = 
φ on    R0

+. Ƴ

Practical conclusion

Leaving x = 0 aside we see that the solution of hf = φ is given by 
equation (5) with φ-1 the inverse of φ on the injective part of φ 
(and f = 0 for φ = 0).

Figure 3: Illustration of the Corrolary.

Figure 4: The parabola y=x2, with shifted origin.

Figure 5: Example of a case for which f is not continnous but hf. is
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Examples

(i) For φ(x) = C/x, C>0 constant, we see that φ is injective and φ-1 
= φ. Then (5) yields: f(x) = x.C/x = C and hf = φ.

For φ(x) = xc, φ-1 (x) =    x1/c and, by (5), f(x) =  ; hf = φ.

(ii) and (iii). These cases are similar so we give just one example. 
For

          φ(x)={ax-b-1(a>1,b>0), x ≥ b  
                          0                    0 ≤ x <b

we see that φ is strictly increasing on [b, + ∞], and hence injective. 
On this set the function φ-1 (x) = b + loga(x+1) and hence, using 
(5) we have:

   ∀x>0; f(x) = x (b + loga(x+1)) and f(0) = 0, showing that hf = φ. 
Note that f ’(0) = b and that hf is zero on [0, b].

Finally, we come to the case “hf continuous implies f continuous”, 
the inverse statement of Theorem 4.

Theorem 6

If the range of f, denoted as R(f) is an interval, then hf continuous 
implies f continuous on D(f)    ∩ R0

+.

Proof

As hf is continuous everywhere, it is also continuous on {hf ≠ 0}, 
which is an interval inside D(hf) = D(   ψf

-1), by the corollary to 
Lemma 3. By Theorem 3 D(   ψf

-1) = R(   ψf), which too is an interval 
because R(f) is an interval. By Theorem 2 we know that hf is 
injective on {hf ≠ 0}. Then it follows from Lemma 2 that hf 

-1 =    
ψf (by Theorem 3) is continuous on    ψf

-1 ({ψf
-1≠0}) = D(f)    ∩ R0

+. 
Finally, as f(x) = x    ψf(x) on    R0

+ (by Theorem 3), this shows that f is 
continuous on D(f)    ∩ R0

+.Ƴ

The next example shows that f is not necessarily continuous in 
zero. Take   

f(x) = {x2 for x>0 
             1 for x=0 

Then R(f) =    R0
+, which is an interval, hf is continuous on    R0

+ but f 
is not continuous in 0, see Figure 4.

We finish this article by remarking that the condition “R(f) is 
an interval” is necessary for Theorem 6. Figure 5 provides an 
example of a function f which is not continuous on    R0

+, but hf is 
continuous because D(hf) is not an interval, (because R(f) is not 
an interval).

CONCLUSION

This article illustrates how a very practical tool, here the 
h-index, can inspire further developments, enriching theoretical 
informetric. The originality of this contribution lies in the finding 
that - essentially - the h-function is injective and that the original 
function can be recovered from the h-function by multiplying 
the inverse of this function with the independent variable x. Our 
results show the simplicity of the h-index tool.

Returning to the introduction, it seems natural to try to construct 
a similar theory based on the g-index or the    ψ – index. Yet we have 
not been able to realize this, mainly because sums (or integrals) 
occur in these indices, while this is not the case for the h-index. 
This makes studying inverses (which we need), not a sinecure. 
It can be stated though that a theory like we developed for the 
h-index is possible for other indices, such as Kosmulski’s.[10] We 
did not include this because it brings nothing new and is just 
more difficult.

The author hopes that his theoretical study will inspire colleagues 
to further useful developments or interesting applications.
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