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Abstract: Sensor networks are used in an increasing number and variety of application areas, like
traffic control or river monitoring. Sensors in these networks measure parameters of interest defined
by domain experts and send these measurements to a central location for storage, viewing and
analysis. Temporal graph data models, whose nodes contain time-series data reported by the sensors,
have been proposed to model and analyze these networks in order to take informed and timely
decisions on their operation. Temporal paths are first-class citizens in this model and some classes
of them have been identified in the literature. Queries aimed at finding these paths are denoted
as (temporal) path queries. In spite of these efforts, many interesting problems remain open and,
in this work, we aim at answering some of them. More concretely, we characterize the classes of
temporal paths that can be defined in a sensor network in terms of the well-known Allen’s temporal
algebra. We also show that, out of the 8192 possible interval relations in this algebra, only 11 satisfy
two desirable properties that we define: transitivity and robustness. We show how these properties
and the paths that satisfy them are relevant in practice by means of a real-world use case consisting
of an analysis of salinity that appears close to the Scheldt river in Flanders, Belgium, during high
tides occurring in the North Sea.

Keywords: river systems; transportation networks; sensor networks; graph databases; spatiotemporal
databases; temporal query languages

1. Introduction

The availability of cost-effective sensor networks, increasing data processing capa-
bilities and the Internet of Things (IoT), among other reasons, are increasingly triggering
the interest in applications that make intensive use of the enormous amount of data being
produced and ingested by those tools to take informed decisions related to the operation
of such systems. Examples of such applications are intelligent transportation systems
(ITSs) [1] and the analysis of water pollution. The latter demands continuous monitoring,
aimed at detecting discharges of heavy metals, nutrients (e.g., nitrogen) and pathogen
elements [2,3], to ensure the safety and integrity of water sources. It is nowadays crucial to
be able to build systems that can make appropriate use of the data provided by sensors
dipped in river and/or sea waters, which collect various parameters such as pH, dissolved
oxygen, turbidity, conductivity and temperature, to name a few.

The situation described above requires data models that can efficiently and effectively
represent the problem and facilitate data storage and processing. A first step to solving this
problem is to be able to represent the interaction between the sensors and the transporta-
tion networks where they operate, leading to the concept of a sensor network. In general, a
sensor network [4] is defined as a collection of sensors that send data to a central location
for storage, viewing and analysis. However, we will use this term in the context of trans-
portation networks equipped with sensors. A precise definition of these concepts is given in
Section 3.
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The work in [5] proposes representing and storing transportation networks using
temporal graph databases and querying them with high-level temporal graph query lan-
guages. The underlying idea is incrementally built as explained next. First, we can naturally
abstract a transportation network as a property graph (a graph whose nodes and edges
are annotated with properties [6]). Then, if the network is ‘equipped’ with sensors that
produce time-series data, we attach time series to the nodes in the graph [7]. Furthermore,
the network can evolve in time. For example, sensors can be added, removed and stop
functioning, new branches in a road network can be added or, as we will see later, the
flow of a river may reverse its direction (due to tidal events). Therefore, a static graph
does not suffice to represent such a situation; therefore, we need a temporal graph. As a
solution to this problem, the model in [5] was defined. In the temporal property graph data
model used in that paper, nodes and edges are labeled with validity intervals that indicate
the period when a node, an edge or a property existed in the graph, thus satisfying the
requirements mentioned above.

The complexity of current data science projects, like, for example, the analysis of
transportation networks, requires that computer science specialists work together with
domain experts. Thus, we need to provide the latter a high-level query language where
queries can be easily expressed. To satisfy this requirement, the temporal property graph
model that we use in this paper comes with an associated SQL-like high-level temporal
query language called T-GQL. Queries in T-GQL are translated into the underlying graph
database language. Since we use the Neo4j graph database (http://neo4j.com, accessed on
1 March 2020), the target language is Cypher. We will explain the main ideas of the model
and query language in Section 6. Details on the system implementation can be found in [8].

Contributions

The temporal graph model that we use to represent sensor networks considers different
notions of temporal paths that account for different situations that may occur in such a
network. These paths have been studied in [5,8,9] and are denoted as continuous, pairwise
continuous, consecutive and flow paths. As an example, a continuous path (CP) is a path in
the network graph that is continuously valid during a certain time interval such that the
water temperature was continuously over ten degrees Celsius between 10 June 2023 and
12 June 2023; that is, these paths are defined in terms of the network topology and certain
conditions over the time-series data.

Although the model and language proposed in the works cited above support some
kinds of path queries based on the four kinds of paths mentioned above, these queries do
not suffice to satisfy a domain expert’s needs. We would like to know the extent of the
universe of temporal paths and the desirable properties that these paths should satisfy.
Thus, we want to answer the following research questions: (a) “What are the possible tem-
poral paths that we can define?”; (b) from the paths in the answer to (a), “how many of
them can represent useful and interesting real-world situations?”; (c) “What are the prop-
erties that we would like those paths to satisfy, and how could we check this?”; (d) “Can
we implement the useful paths in (b) into a query language, in particular, T-GQL?”. We
answer these questions in this paper. For question (a), we first give a precise definition of
the meaning of a temporal path in a sensor network. Then, based on the famous paper
by James F. Allen [10], we give concrete relations on temporal intervals that help us to
characterize the possible temporal paths in a network. Regarding question (b), we find that
there are 8192 possible kinds of temporal paths based on Allen’s relations. Many of them
characterize common and useful real-world situations, but only eleven satisfy two desirable
properties that we explain in the paper: transitivity and temporal and spatial robustness
(question (c)). Finally, to answer question (d), we extended T-GQL with a general function
that can find all of Allen’s-relations-based temporal paths. We also present a real-world
use case, taking a portion of the Scheldt river in Flanders, and show how we can help a
hydrologist to investigate, using the machinery explain in this paper, the influence of salty
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sea water that comes into the river due to the change in direction of the river flow during
high-tide periods.

Paper Organization

The remainder of the paper is organized as follows. In Section 2, we review related
work. Section 3 provides the preliminary definitions and the background on transportation
networks to make the paper self-contained. Section 4 covers the kinds of temporal paths
that can be found in a sensor network temporal graph. Section 5 provides the theoretical
framework that covers all possible paths that could be defined following Allen’s temporal
interval theory. Section 6 reviews the temporal graph model and provides the link between
the path theory and its implementation. A real-world use case is presented in Section 7
using information on the Flanders’ river system. Section 8 concludes the paper.

2. Related Work

In this section, we review some basic concepts on property graphs and, in particular,
existing proposals for extending such a graph to account for the temporal dimension. We
also briefly review works that study how sensor data can help in the tasks of monitoring
and analyzing water quality.

Property graphs [6] extend the well-known mathematical notion of a graph with the
capability of annotating the graph’s nodes and edges with attributes, called properties.
Over this model, most graph databases [11] are built and their graph query languages
are defined [12]. Many commercial and open-source graph databases are offered in the
market. In this paper, we use Neo4j, whose accompanying high-level query language is
Cypher [13,14].

Temporal graphs extend the property graph data model to account for their evolution
across time. Briefly, temporal property graphs typically label the graph’s edges with the
validity interval of the relationship represented by them. Also, nodes are labeled with
a time interval that indicates the period(s) during which they existed. Different data models
for temporal graphs have been proposed in the literature. The temporal graph model used
in the present paper is based on the work by Debrouvier et al. [8]. In this model, nodes
and relationships contain attributes (properties) timestamped with their validity interval.
Graphs in this model can be heterogeneous; that is, relationships may be of different
kinds. The model is equipped with a high-level graph query language, called T-GQL.
The work also introduces the notion of a temporal path. Different semantics for these
paths are studied, raising the notion of continuous, pairwise continuous and consecutive
paths. Kuijpers et al. [9] extended this model, allowing time series to be defined as node
properties. The values in these time series are used to redefine the paths mentioned above.
Further, in [15], the authors introduce methods for indexing temporal graph databases.
Since this model is used in the case study presented in Section 7, we give a comprehensive
overview in Section 6.

There are many scenarios that could be modeled using the tools mentioned above.
This paper addresses the study of river systems. Water quality in a river system is affected
by different situations like industry waste or salinity due to closeness to the sea shore [16].
Keeping water quality under control is a task often performed by government agencies,
where hydrologist analyze different parameters that are measured in different ways. Plac-
ing sensors in the river flow is one of these methods [17]. In this context, the “Internet of
Water” (IoW) is a project carried out by various agencies and institutes in Flanders, Belgium
(https://www.internetofwater.be/partners/, accessed on 1 March 2021), aimed at deploy-
ing 2500 sensors along the Flemish river system. These sensors produce a huge amount of
data that can be analyzed for the tasks mentioned above. A first approach to using graph
databases for analyzing the Flanders river system was introduced in [18]. Since each sensor
produces sequences of measurements for many different parameters, we can consider each
sequence as a time series associated with each sensor. Further, even the sensor network
may change across time; for example, the water direction may change due to the proximity
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to the sea, and sensors may be added, deleted or stop working during a time interval.
This situation can be modeled as a temporal graph with time series attached to the graph
nodes. A first model for this was proposed in [7], and its follow-up work was presented
in [5]. Both works consider time series of categorical data values; therefore, measurements
are categorized before being loaded into the database. The work in [5] applies the model
to a real-world case, namely a portion of the Yser river in the Flanders’ river system in
Belgium. The underlying idea is that temporal paths capture interesting situations in the
river flow, allowing experts to detect situations of interest. Replacing continuous variables
with categorical ones when possible became a common practice due to the increasing data
volumes that must be handled in data analysis tasks [19,20].

3. Definitions and Preliminaries

In this section, we define the notion of a transportation network and propose a model
for representing transportation networks equipped with sensors.

Transportation networks are physical networks through which objects can move. In
our setting, we assume that the sensors in the transportation network gather information
on these moving objects and the environment in which the network is located.

3.1. Transportation Networks and Their Representations

We mentioned that transportation networks are physical networks through which
objects or substances can move. Examples include

• River networks (through which water and other substances can move);
• Road networks (through which cars, bicycles and pedestrians can move);
• Computer networks (through which information can move); and
• Electricity grids (through which electricity can move).

We can think of many more examples, but in this paper, we use river systems and
road networks as our primary examples.

Physical networks like the ones above are typically embedded in a geographical space.
Intuitively, we may assume that physical transportation networks occur in a two-dimensional
space (as is exemplified by river and road systems) or a three-dimensional space (like in
computer and electricity networks). Sometimes, the dimension of the ambient space is not
very clear. For example, in road networks, bridges and tunnels may occur, and they could
be described as 2 1

2 -dimensional. For our purposes, the exact spatial extent of the network
is not of primary interest, but we rather focus on the connectivity in such networks.

As a more detailed example of a physical transportation network, Figure 1 shows a
fragment of a river system together with its collection of directed segments. This river
system contains a river that splits at a certain point and merges further downstream, thus
creating an ‘island’. On the right-hand side of Figure 1, some river segments are modeled as
the edges of a graph, which connect certain geographical locations. This graph has directed
edges, whose direction indicates the direction of the flow of the water in the river.

We can further abstract this graph, as shown on the left side of Figure 2, where
geographical locations are represented as (unnamed) nodes and numbered edges are used
to model the flow between these spatial locations. We remark that this is an abstract graph
(as opposed to the graph of Figure 1) and that, in practice, such a graph can be augmented,
for example, with other geographical attributes (such as an explicit geometric description
or the coordinates of their start and end points), as well as domain-specific attributes (such
as the size or width of river segments or a speed limit for a road segment). The graph
model shown on the left-hand side of Figure 2 is usually referred to as the topological data
model, which basically reflects the connectivity of the physical transportation network [21].
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Figure 1. A fragment of a river system is shown on the left (with arrows that indicate the direction of
the flow of the water at the ends). On the right, a collection of directed segments is superimposed on
this river system.
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Figure 2. The representation of the fragment of the river system of Figure 1 in the topological model
(on the left) and in the Flow model (on the right).

We remark that transportation networks may have alternative graph representations.
An obvious alternative would be to model the river segments as nodes in the graph,
where graph edges express how water flows from one segment to the next (again, in a
directed way). In [18], this representation model is referred to as the Flow model. The
right part of Figure 2 shows the river system of Figure 1 represented using the Flow model.
Here, the node labels correspond to the numbers that we have given in the topological
model representation on the left side of Figure 2. In this graph, we have thirteen nodes
corresponding to the thirteen river segments that are shown in Figure 1 (on the right). The
red directed edges in this graph indicate how water can flow from a river segment to the
next one.
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Which of these two graph models is used is immaterial to our discussion and we
leave the choice to the user, who may prefer one over the other, for example, for ease of
implementation. In what follows, we will be using the Flow model to continue along the
lines of [18].

We are now ready to give the formal definition of a transportation network as an
abstract (directed) graph model of a physical transport network.

Definition 1. A transportation network TN is a directed graph (N,Flow), where N is a finite set
of nodes and Flow ⊆ N × N is a set of directed edges (representing the flow of objects from one node
in the transportation network to another).

As a notational convention, we use the expressions n, n′, n1, n2, . . . for variables that
range over the set of nodes and we use sans-serif letters n, n′, n1, n2, . . . to refer to constant
nodes in a transportation network. For the edge relation, we use the binary predicate
Flow(n1, n2) to express that there is an edge from n1 to n2 (that is, (n1, n2) ∈ Flow). Since we
assume the relation Flow(n1, n2) to be present, we will not require variables and constants
for edges. We call the transitive closure of the Flow-relation the Flow∗-relation.

3.2. Transportation Networks Equipped with Sensors

In this section, we give the definition of a sensor-equipped transportation network.
We assume that, at certain locations in the transportation network, there are sensors that
measure some physical quantity or quantities at that location. Furthermore, we assume that
these measurements are accompanied by a timestamp. Examples of sensor measurements
are the height, the temperature and the salinity of the water in a river system, and the
density and velocity of cars on a road network. Sensor measurements of these types are
often taken at regular moments in time and the frequency may vary from once per minute
to once per hour to once per day. We can view the output of a sensor as a sequence of
timestamped values (or time–value pairs), which in turn can be viewed as a time series.
In the definition of transportation networks equipped with sensors, we need a set T of
(possible) time moments and a set V of (possible) measurement values. We assume that
both T and V are ordered sets and, for most applications, we can work with T and V being
the set of the real or rational numbers.

Definition 2. A sensor-equipped transportation network (or sensor network, for short) SN
is a four-tuple (N,Flow, S, ts) such that

• (N,Flow) is a transportation network;
• S ⊆ N is a set of sensor-equipped nodes (or sensors, for short); and
• ts : S → 2T×V is a (time-series) function that maps sensors to finite functions from T to V.

We denote 2T×V as the powerset of the set of couples T to V. We remark that we
require the result of ts to be a function from T to V, which means that, with some time
moment from T, at most one value from V corresponds. Furthermore, this function is
finite (and therefore possibly partial) since measurements are taken at a finite number of
time moments.

As notational convention, we use t, t′, t1, t2, . . . for variables that range over the time
set T and we use sans-serif letters t, t′, t1, t2, . . . to refer to constant time moments. Similarly,
v, v′, v1, v2, . . . are used for variables that range the value set V and we use sans-serif letters
v, v′, v1, v2, ... to indicate constant measurement or sensor values. Further, later on, we use S
as a predicate on the set N that returns as true on nodes that are sensors.

Figure 3 shows a sensor network (based on the river fragment of Figure 2), where the
sets of sensor nodes are S = {1, 4, 8} and their times series, measuring water temperature
(in degrees Celsius) at regular moments, are

ts(1) = {(1, 12), (2, 10), (3, 8), (4, 10), (5, 12), (6, 9), (7, 8.5), (8, 8), (9, 10)};
ts(4) = {(1, 9), (2, 10), (3, 9), (4, 10), (5, 12), (6, 9), (7, 10), (8, 11), (9, 11)}; and
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ts(8) = {(1, 12), (2, 8), (3, 10), (4, 10), (5, 9), (6, 10), (7, 11), (8, 11), (9, 12)}.
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Figure 3. An example of a sensor network with the time series attached to the sensor nodes 4 and 11
indicated in blue.

Remark 1. In practical applications, we will usually have T = R and V = R, but the sets T and
V can also be finite. For the set T, we assume that it is embedded in the real line; that is, T ⊆ R.
On the other hand, V can be R as well as, for example, a finite set of categories.

We assume that these sets are at least equipped with a (total) order relation (denoted ≤), but
they may also be equipped with functions (such as + and ×). We remark that the order on the set T
induces a natural order on the time series.

Remark 2. Since ts : S → 2T×V is a time series, it is assumed to be a function that maps sensors
to a finite function from T to V. Sensors have readings (or measurements) at only a finite number of
moments in time. Thus, there are different ways to fill the gaps between measurements. Between
two time moments where we have a measurement, we may use linear interpolation to estimate the
values at moments in between the former. However, in this paper, we assume that a measurement
is valid until the next measurement is recorded. We remark that other methods for completion
can be used, but the particular choice is not crucial to our discussion. We denote this completion
of the function ts : S → 2T×V with ts. So, ts, when applied to a sensor node s, determines a
step function on the interval [t0, Now), where t0 is the moment of the first measurement and Now
is the (moving) current time instant. For sensor node s = 4, in the example of Figure 3, with
ts(1) = {(1, 9), (2, 10), (3, 9), (4, 10), (5, 12), (6, 9), (7, 10), (8, 11), (9, 11)}, this step function is
shown in Figure 4. This implies that measurements given by ts are valid in (unions of) closed–open
time intervals.
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Figure 4. The graph of the step function ts for ts(1) = {(1, 12), (2, 10), (3, 8), (4, 10), (5, 12), (6, 9),
(7, 8.5), (8, 8), (9, 10)} of Figure 3.

4. Temporal Paths in Sensor Networks

In this section, we first define the notion of paths in sensor networks. Next, we define
conditions on sensor nodes in such paths and, based on these condition, we arrive at
temporal paths in sensor networks.

4.1. Paths in Sensor Networks

Let SN be a sensor network with underlying transportation network (N,Flow), with
sensor node set S and the function ts, as given in Definition 2.

Definition 3. A path in SN is a directed path (in the ordinary sense) in the graph (N,Flow).

We use Greek letters γ, γ1, γ2, . . . to denote paths and we represent paths by the
sequences of their nodes: γ = (n1, n2, . . . nk). This sequence obviously has no repetition
of nodes (by definition of a path in a graph). The path γ = (n1, n2, . . . nk) is said to be of
length k − 1 (that is, the number of edges connecting the nodes in the path). For example,
γ = (1, 3, 4, 5, 8, 12) is an example of a path of length 5 in the sensor network of Figure 3.

In a path γ = (n1, n2, . . . nk), some of the nodes may be sensor nodes. The subsequence
of (n1, n2, . . . nk) consisting of the sensor nodes is defined next. To emphasize that a node is
a sensor node, we use the character s rather than n.

Definition 4. The subsequence of a path γ in a sensor network SN consisting of all its sensor
nodes is called the full sensor sequence of γ. It is denoted by fss(γ). If fss(γ) = (s1, s2, ..., sk), we
call si and si+1 consecutive sensors on γ (for i = 1, . . . , k − 1).

For example, in the sensor network of Figure 3, for γ = (1, 3, 4, 5, 8, 12), we have
fss(γ) = (s1, s2, s3) = (1, 4, 8).

4.2. Conditions on Sensor Measurements

We use conditions on sensor measurements in a sensor network to define temporal
sets that later on are used in the definition of temporal paths. These conditions are defined
on measured values and they define, for each sensor, a temporal set during which the
condition holds. Examples are high water and low salinity on a river system and high-
density traffic on a road network (all defined in terms of some threshold, for example). We
next define conditions on sensor measurements.
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Definition 5. Let s be a sensor node in a sensor network SN, with time series ts(s). A condition c
is a predicate on the set of measurements V. The set Valc(s) is defined to consist of all time moments
t for which ts(s)(t) is a value that satisfies the predicate c. We call this temporal set the validity
(time) set for condition c at sensor node s.

As an example, we return to the sensor network of Figure 3 and sensor node s1 = 1
therein. When the predicate c expresses that the value temp ≥ 10 (which corresponds to
“high water temperature”), then Valc(s1) equals the temporal set [1, 3) ∪ [4, 6) ∪ [9, Now)
for sensor node s1 = 1.

Figure 5 depicts Valc(s1), Valc(s2) and Valc(s3) for the sensor network of Figure 3. We
remark that the vertical axis in this figure represents the direction of the network or the
path γ on which the sensors are located. The names A1, A2, A3, B1, B2, B3, C1, C2 and C3 in
this figure are for later use.
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Figure 5. The sets Valc(s1) (in blue), Valc(s2) (in green) and Valc(s3) (in red) for the sensor network
of Figure 3, with s1 = 1, s2 = 4 and s3 = 8.

We next consider various types of temporal intervals that belong to Valc(s), defined next.

Definition 6. Let s be a sensor node in a sensor network SN with time series ts(s) and let c be a
condition. We call a temporal interval I

• A c-interval for s, when I ⊆ Valc(s); and
• A maximal c-interval for s when I is a c-interval that is maximal (in the sense that, for any

c-interval I′, we have that I ⊆ I′ implies I = I′).

For the sensor network of Figure 3, the interval [1, 2) is a c-interval for s1 and the
interval A2 = B2 = [4, 6) is a maximal c-interval for both s1 and s2 (where the predicate c
expresses high water temperature).

4.3. Temporal Paths in Sensor Networks

Given a sensor network SN and a condition c on sensor values, we can define the
notion of a temporal path in the sensor network based on a relation between the temporal
intervals associated with consecutive sensors. To denote an arbitrary binary relation be-
tween temporal intervals, we use the Greek characters α, β, β1, β2, . . . (but not α1, α2, . . . , α13,
which have a reserved meaning, as explained further on).

Our first definition concerns temporal paths based on maximal c-intervals for sensors.

Definition 7. Let SN be a sensor network and let c be a condition on sensor values. Let α be a
binary relation on temporal intervals.

A temporal α-path in SN subject to condition c is a structure

(γ, ((s1, I1), (s2, I2), ..., (sk, Ik))),
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where

• γ is a path in SN;
• fss(γ) = (s1, s2, . . . , sk);
• Ij is a maximal c-interval for s, for j = 1, . . . , k; and
• α(Ij, Ij+1) holds for j = 1, . . . , k − 1.

A more relaxed definition is obtained when we consider temporal paths based on an
arbitrary c-interval for sensors.

Definition 8. Let SN be a sensor network and let c be a condition on sensor values. Let α be a
binary relation on temporal intervals.

A temporal sub-α-path in SN subject to condition c is a structure

(γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))),

where

• γ is a path in SN;
• fss(γ) = (s1, s2, ..., sk);
• Ij is a c-interval for s, for j = 1, . . . , k; and
• α(Ij, Ij+1) holds for j = 1, . . . , k − 1.

Furthermore, we call a sub-α-path maximal whenever when Ij ⊆ I ′j (j = 1, . . . , k),
(γ, ((s1, I′1), (s2, I′2), . . . , (sk, I′k))) is also a sub-α-path, we have Ij = I′j for j = 1, ..., k.

We postpone examples of temporal α-paths, sub-α-paths and maximal sub-α-paths to
Section 5, where we have actual relations at our disposal.

5. Temporal Paths in Sensor Networks Based on Allen’s Interval Algebra

In this section, we give concrete relations on temporal intervals that can be used in
combination with the temporal paths given in Definitions 7 and 8. These relations come
from the famous paper by James F. Allen from 1983 [10], in which he describes the possible
relationships between two intervals on the real line (the time line) R.

We start this section with some preliminaries on Allen’s interval algebra and then
discuss how it applies to temporal paths. We conclude by stating a collection of desirable
properties on qualitative relations of Allen’s interval algebra and how they can be combined.
We use these properties to reduce the number of relationships that can be used in real-
world scenarios.

5.1. Preliminaries on Allen’s Interval Algebra

In 1983, James F. Allen described the possible relationships between two intervals
on the real line (the temporal line) R. For our purposes, we consider closed–open intervals.
Let A and B be such intervals. We denote their start and end points by s(A), s(B), e(A)
and e(B), respectively.So, we have A = [s(A), e(A)) and B = [s(B), e(B)). The 13 possible
arrangements of A and B, as given by Allen, are depicted in Figure 6 and we give them the
names α1, . . . , α13, as shown in the figure. We write αi(A, B), for i = 1, ..., 13, whenever the
intervals A and B are in the relationships as depicted. We call α1, . . . , α13 the base relations of
the Allen interval algebra.

Table 1 gives the traditional names (details can be found in [10]) of these relations and
their translation to α1, . . . , α13.

We remark that our names α1, . . . , α13 are ordered in a particular way: when the
interval B = [s(B), e(B)) is seen as the two-letter word s(B)e(B) over R, these words
appear in increasing lexicographical order (with increasing index i in αi), assuming that the
first time interval A remains fixed.
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Figure 6. The 13 possible relations α1(A, B), . . . , α13(A, B) between two intervals A and B in the
Allen’s interval algebra.

Table 1. The traditional names of the Allen relations α1, . . . , α13.

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13

> mi oi f d si = s di fi o m <

Based on these thirteen base relations α1, . . . , α13, Allen defined an algebra with the
operations inverse (denoted .−1); intersection (denoted ∩); and composition (denoted ◦), which
are defined, for two relations α and β, as follows: for any intervals A and B, we have

• Inverse: α−1(A, B) if and only if α(B, A);
• Intersection: α ∩ β(A, B) if and only if α(A, B) and β(A, B); and
• Composition: α ◦ β(A, B) if and only if there exists an interval C such that β(A, C) and

α(C, B).

We denote the Allen interval algebra by A and we remark that the thirteen base relations
α1, . . . , α13 are exhaustive and pairwise disjoint. This means that, for any two given intervals,
exactly one of the thirteen relations holds. This also means that the complement (or
negation) of one of the αi corresponds to the union (or disjunction) of the twelve remaining
αj (j ̸= i).

We note that the inverse α−1
i relation, in our notation, verifies that

α−1
i = α14−i,

for i = 1, 2, . . . , 13.
The compositions of the base relations are given as unions of other base relations (see,

for example, the table in [22] and the overview [23]). In fact, any element of the Allen
algebra A can be written as a union of its base relations (since compositions and negations
can be written as unions and intersections, they can be expressed using negation and union).
Given that there are the thirteen base relations α1, . . . , α13, 213 = 8192 unions are possible
and this is in fact the cardinality of the Allen algebra A.

To denote a union α1 ∪ α2 ∪ α3 ∪ α4 ∪ α5(A, B), for example, we use an abbreviation
with arrows like α1→5(A, B) or with commas like α1,2,3,4,5(A, B)

5.2. Examples of Temporal Paths Based on the Qualitative Relations of Allen’s Interval Algebra

Using the relations of Allen’s interval algebra, we can now give examples of the
various temporal paths in Definitions 7 and 8, namely α-paths, sub-α-paths and maximal
sub-α-paths.

The following examples are based on the sensor network of Figure 3 and the intervals
given in Figure 5 for Valc(s1), Valc(s2) and Valc(s3). The path γ in these examples is always
γ = (1, 3, 4, 5, 8, 12) and the condition c corresponds to high water temperature (as before).
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Example 1. We observe that (γ, ((s1, A1), (s2, B2), (s3, C3))) is an α12 ∪ α13-path, since we have
α13(A1, B2) and α12(B2, C3). Therefore, it is also an α12,13-path.

Example 2. If we set C := B2 = A2, we see that (γ, ((s1, A2), (s2, B2), (s3, C))) is a sub-α7-path
and even a maximal sub-α7-path, but it is not an α7-path.

Example 3. If we set C := B2 = A2, we see that, for any strict subinterval I of C, we have that
(γ, ((s1, I), (s2, I), (s3, I))) is a sub-α7-path that is not maximal. By picking the appropriate intervals
I1, I2 and I3 within C, we can make, for any α ∈ A, a sub-α-path (γ, ((s1, I1), (s2, I2), (s3, I3))).

The last example shows that as soon as the validity sets Valc(s1), Valc(s2) and Valc(s3)
have a non-empty intersection, any type of sub-α-path can be found. Therefore, sub-α-
paths are not of primary interest and thus, in the sequel, we focus on α-paths and maximal
sub-α-paths.

5.3. Desirable Properties on Qualitative Relations of Allen’s Interval Algebra

In principle, we could use all of the 8192 possible combinations of the base relations
α1, . . . , α13 to define temporal paths, as given by Definitions 7 and 8. However, not all of
these cases are interesting in the context of sensor-equipped transportation networks, as
we will argue further on. In this section, we list some desirable properties on elements of
the Allen algebra A and we discuss how these conditions restrict the number of applicable
and relevant combinations.

The conditions that we discuss are the following:

• Backward, co-temporal and forward relations;
• Closure under sensor deletion; and
• Temporal and spatial robustness.

The following subsections deal with each of these properties and combinations of
them. These properties can be used as guidelines to choose the appropriate combinations
for a particular application.

5.3.1. Backward, Co-Temporal and Forward Relations

The basic Allen relations can be divided into three groups, based on when the second
interval in the relation starts, with respect to the first interval. These groups are depicted in
Figure 7. We denote these groups:

• Backward, containing the relations α1, α2, α3, α4 and α5;
• Co-Temporal, containing the relations α6, α7 and α8;
• Forward, containing the relations α9, α10, α11, α12 and α13.
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Figure 7. The classes Backward, Co-Temporal and Forward of basic Allen relations.

When si is a sensor with interval Ii and si+1 is the consecutive sensor with interval Ii+1,
then α1→5(Ii, Ii+1) means that the phenomenon that we are focusing on in the measure-
ments (via the condition c) moves backward in the transportation network, that is, against
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the natural direction of movement in the network (as expressed by the Flow edge relation).
Examples are pollution caused by a boat that travels upstream in a river network and a
traffic jam on a road network. Indeed, when a traffic jam is caused by, for example, a road
accident, then it starts before that accident and, as time progresses, it grows against the
direction of the natural movement of objects in the network. We group these basic relations
in the set Backward.

In the cases of α6→8(Ii, Ii+1), both intervals start co-temporally, independent of the
flow of the network and without any delay that is typical for movement through the
network. Examples include causes that are external to the network, like rainfall, which
starts at the same time at several locations in the network. We group these basic relations
in the set Co-Temporal.

When α9→13(Ii, Ii+1), the interval Ii+1 starts after Ii has started, which is typical for
cases where some phenomenon is propagated through the network, following its natural
flow. Examples are external spills of pollutants in a river system and the density of traffic
on a road network. We group these basic relations in the set Forward.

Depending on the application, it might be desirable not to mix basic Allen relations
coming from different groups. However, sometimes it is in the nature of a phenomenon
that it can be both backward and forward. For example, when a boat spills oil and trav-
els upstream, then this oil spill will move both forward and backward when the river
is observed.

5.3.2. Closure under Sensor Deletion

Our second useful condition concerns the closure of classes of temporal paths under
sensor deletion. We have two reasons to impose this requirement.

Firstly, we want the temporal path classes to reflect some physical phenomenon that
occurs in the world and that is monitored by a set of sensors on a transportation network.
When the data of a sensor are discarded or a sensor has stopped functioning, the physical
reality does not change and the temporal path without this sensor should still belong to the
same class of temporal paths.

Another reason to require this is related to big data. When the number of sensors in
a network is high and therefore the number of their individual measurements is huge, it
might be unfeasible to perform analysis on the complete dataset. We might want to look
for temporal paths belonging to a certain class on a sample of the sensors (for example,
10% of the sensors). If a class of temporal paths is closed under sensor deletion, whenever
we know that a temporal path belongs to that class, if we remove a sensor, the path will
still belong to that class. Also, when a path of a certain type is not found on a subset of
sensors, it is useless to look for it on the complete set of sensors (provided that this path
type is closed under sensor deletion).

Obviously, this does not work the other way around: when temporal paths of some
class are found on a sample set of sensors, this may no longer occur when more sensors are
added. This is natural since the sample does not reflect the physical situation in that case.

For the thirteen basic Allen relations and relations that can be formed as disjunctions
of these relations, we now discuss how closure can be detected. Technically, closure under
sensor deletion means the following. Suppose that we have a temporal (sub)-α-path
(γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))), where α is some union of basic Allen relations. When we
remove one of the sensor nodes sj from the path, the question is whether or not (γ, ((s1, I1),
(s2, I2), ..., (sj−1, Ij−1), (sj+1, Ij+1), . . . , (sk, Ik))) is still a (sub)-α-path. Since all the classes
are defined in terms of relationships between validity intervals of successive sensors, it
suffices to look at any three successive sensors and their validity intervals Ij−1, Ij and Ij+1.

The problem then adds up to answering the following question: If (Ij−1, Ij) and
(Ij, Ij+1) satisfy the relation α, does (Ij−1, Ij+1) also belong to the relation α? In other
words: the relation α is closed under sensor deletion if and only if α is a transitive relation (in the
traditional sense).
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We remark that all classes are closed under removing the first or last sensor from
a temporal path (γ, ((s1, I1), (s2, I2), ..., (sk, Ik))). We only need to look at the deletion of
sensors sj, with 1 < j < k. We also remark that it only makes sense to talk about sensor
deletion when there are at least three sensors.

Table 2 specifies which basic Allen relations are closed under sensor deletion. We can
see, for example, that α12 is not closed because, when we have α12(A, B) and α12(B, C), a
gap between A and C is created. Thus, we are in the α13(A, C) class. In fact, as we will
observe later on, the union α12 ∪ α13 is closed under sensor deletion (as well as α13).

Table 2. Closure under sensor deletion for the individual Allen relations α1, . . . , α13. Green indicates
closed and red not closed.

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13

Now, we discuss some basic properties of the closure under sensor deletion property.
It is easily verified that if relations α and β are closed under sensor deletion, then also their
intersection α ∩ β is closed under sensor deletion. A similar property does not hold for the
union and complement. However, we can give a necessary and sufficient condition for a
union of basic Allen relations to be closed under sensor deletion (or transitive).

First, we define what it means for a set of basic Allen relations to be closed under
composition (of relations).

Definition 9. Let S ⊆ {α1, α2, . . . , α13} be a set of basic Allen relations. We call S closed under
composition when, for any αi, αj ∈ S, their composition αj ◦ αi is a union of elements of S.

The following theorem allows us to easily recognize disjunctions of basic Allen re-
lations that are closed under sensor deletion. The proof of this theorem is presented in
Appendix A.

Theorem 1. Let S ⊆ {α1, α2, . . . , α13} be a set of basic Allen relations. The set S is closed under
composition if and only if the union

⋃
αi∈S αi is closed under sensor deletion (or transitive).

In the context of the above theorem, a useful property concerning the composition of
finite unions (that can be derived directly from the definitions of union and composition) is:(⋃

i
βi

)
◦
(⋃

j
β′

j

)
=

⋃
i

⋃
j

βi ◦ β′
j,

where the βi and β′
j belong to A.

A systematic verification shows that 96 of the 213 = 8192 elements of the Allen interval
algebra are closed under sensor deletion. They are shown in Figure 8. For each row, the
green rectangles indicate the αi’s whose union is closed under sensor deletion. For example,
in row 10, we can see that α1∪2 is closed under sensor deletion.

This figure gives a way to determine (or compute) the transitive closure of an arbitrary
union of basic Allen relations, as given by the following corollary.

Corollary 1. Let αj ◦ αi = αi1 ∪ αi2 ∪ · · · ∪ αik be a finite union of basic Allen relations. The
transitive closure is the smallest extension of this union that appears in the tables of Figure 8.

We remark that the extension mentioned in the above corollary is unique. For example,
the transitive closure of the relation α1 ∪ α3 is α1 ∪ α2 ∪ α3.
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Figure 8. The 96 elements of the Allen interval algebra that are closed under sensor deletion.

5.3.3. Temporal and Spatial Robustness

A third useful condition concerns robustness with respect to the temporal granularity
of the measurements and the spatial location of sensors. We explain these temporal and
spatial properties next, with the following example, illustrated in Figure 9.

First, we address the temporal motivation. Consider the relation α12 and suppose that
we have a (sub)-α12-path (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))). In part (a) of Figure 9, we see
the c-intervals I1 and I2 of the first two sensors for measurements that are made every hour.
Clearly, we have α12(I1, I2). Suppose that we double the measurements and take them
every half hour. Then, it is possible that, at sensor s2, the condition c is satisfied half an
hour earlier (at 2h30) whereas, at s1, it remains unchanged. This case is shown in Figure 9b
and we have α11(I1, I2). An alternative possibility is that the condition c is not satisfied
at 2h30 at sensor s2 while it is satisfied at s1 at that time. This case is shown in Figure 9c
and we have α13(I1, I2). These examples show that α12 can change into α11 or α13 when we
increase the measurements in a temporal sense.

We can use this condition when we want to discover temporal paths of some kind
at a lower temporal granularity of measurement. By working with a robust version of a
relation (in this example, α11 ∪ α12 ∪ α13 instead of just α12), the path would be detected at
the coarser granularity level of hourly measurements, when we would decide to perform
an analysis at the level of hours instead of half hours.

There is also a spatial motivation for the same problem. When we have α12(I1, I2)
and this reflects a forward moving phenomenon in the transportation network, then I2 is
“caused” by I1 and it can be seen as a delayed version of I1, taking into account the delay
needed to travel along the network from sensor s1 to sensor s2. Therefore, if sensor s2 were
placed closer to sensor s1, there still might be an overlap between the intervals I1 and I2
and we would have α11(I1, I2). Also, if sensor s2 were placed further down the network
compared to sensor s1, there might no longer be an overlap between the intervals I1 and I2
and we would have α13(I1, I2). To take these issues concerning the exact location of sensors
into account, it would be wise to include α11 ∪ α13(I1, I2) whenever we have α12(I1, I2).
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Figure 9. The original situation in (a) and two situations after doubling the number of measurements
in (b,c).

The reader may be wondering how the concept of spatial robustness could be used.
Suppose that we are analyzing industrial discharges in a river in a dense industrial zone.
We are studying where we should locate sensors with the goal of reducing the probability
of losing a discharge from any plant. Consider the intervals I1 and I2 above. We place
sensor s1 at a location where a certain pollutant is detected at interval I1, and the next
sensor s2, downstream, where the pollutant is detected at interval I2; then, we have an
α12-path. Further, we assume that both sensors take measurements at the same regular
intervals of time. We also assume that the river flow remains constant. Under this situation,
if s1 and s2 were located at a larger distance from each other, and there is a plant in between
both locations, the discharge of such a plant could remain undetected, since we would be
in an α13 situation. If the network designer suspects that this may happen, they would
think of placing the sensors closer to each other. On the other hand, if we know that the
intermediate plant’s discharge cannot be detected only when the river flow is much slower
than the average value, then we can place the sensors farther from each other, and use
robustness to keep the paths.

The examples above motivate the following robustification algorithm, which is based on
the principle that when we have a relation that involves matching start or end points of
intervals, we also include the αi that corresponds to starting (or ending) a bit before or after
that matching point. The expansion of an Allen algebra relation under this robustification
principle is given in Table 3 in the case where we go to a finer granularity. The rules in this
table need to be applied until a fixed point is reached.
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Table 3. The robustification rules (going to finer granularity).

If Contains Then Add

α2 α1 ∪ α3
α4 α3 ∪ α5
α6 α3 ∪ α9
α7 α6 ∪ α8
α7 α4 ∪ α10
α8 α5 ∪ α11
α10 α9 ∪ α11
α12 α11 ∪ α13

From the example of Figure 9b,c, we could also reason conversely and consider
lowering the frequency of measurement. In that case, we can go from α11 or α13 to α12.
Indeed, by starting from Figure 9b,c and discarding the half-hour measurements, we would
arrive at situation (a). Table 4 shows the robustification rules for this case.

Table 4. The robustification rules (going to coarser granularity).

If Contains Then Add

α1 ∪ α3 α2
α3 ∪ α5 α4
α3 ∪ α9 α6
α6 ∪ α8 α7
α4 ∪ α10 α7
α5 ∪ α11 α8
α9 ∪ α11 α10
α11 ∪ α13 α12

5.4. Combinations of Properties

We now study how the properties above can lead us to reduce the initial 8192 elements
of the Allen interval algebra in order to obtain a manageable number of cases that could
be recognized as real-world situations. For example, we would like to identify how many
elements we have that are simultaneously closed under sensor deletion and robust. We
study this next.

Combining Closure under Sensor Deletion and Robustness

There are eleven elements of the Allen interval algebra A that are both robust and
closed under sensor deletion. They are shown in Table 5. The last combination in the
table represents the union of all basic elements of the Allen interval algebra and it is not
interesting since all paths are of this type. Thus, we discuss the others. In each case, we
assume that we have an α-path (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))).

• The class of α13-paths

Clearly, α13-paths are forward paths and, in (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik)), we have
I1 < I2 < · · · < Ik, where < means “strictly after”. We could also rephrase this as
e(Ii) < s(Ii+1) for i = 1, . . . , k − 1. These paths reflect a phenomenon that moves with the
flow of the network and only starts at the next sensor when it has already ended at the
previous sensor.

This is the class that characterizes the so-called “consecutive paths” that were intro-
duced in [8].
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Table 5. In the horizontal lines, the eleven elements of the Allen interval algebra A that are both
closed under sensor deletion and robust. The presence of αi is indicated by a green box.

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13

• The class of α1-paths

As we showed in Section 5.1, α1-paths are the backward versions of α13-paths. They
can be used in a similar way for a phenomenon that moves against the natural flow of the
network.

• The class of α9-paths

For an α9-path (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))), we have I1 ⊃ I2 ⊃ · · · ⊃ Ik, where
the inclusions are strict. These are forward paths and reflect a phenomenon that moves
forward through the transportation network and diminishes in strength. We will see in the
use case of Section 7 that this is the case where some parameter in a river (e.g., salinity) gets
dissolved as it moves in along the river. For example, at s1, we detect high salinity values
during an interval I1. Then, at s2, this parameter is also detected, but during a shorter
interval I2 ⊂ I1. This phenomenon continues downstream until the parameter vanishes
completely.

• The class of α5-paths

For an α5-path (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))), we have I1 ⊂ I2 ⊂ · · · ⊂ Ik, where
the inclusions are strict. These paths are the backward version of α9-paths.

• The class of (α1 ∪ α2 ∪ α3)-paths

The relations α1, α2 and α3 are exactly those among the basic Allen relations for which
we have s(Ii+1) < s(Ii) for i = 1, . . . , k − 1 in a path (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))).

• The class of (α11 ∪ α12 ∪ α13)-paths

The relations α11, α12 and α13 are exactly those among the basic Allen relations for
which we have s(Ii) < s(Ii+1) for i = 1, . . . , k − 1 in a path (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))).

• The class of (α9 ∪ α10 ∪ α11 ∪ α12 ∪ α13)-paths

This class characterizes the paths that have been introduced in [5] and are called
“flow paths” (more on this in Section 6). Flow paths (γ, ((s1, I1), (s2, I2), ..., (sk, Ik))) are
characterized by s(Ii) < s(Ii+1) for i = 1, . . . , k − 1. They reflect a phenomenon that
moves forward through the transportation network, is detected at a given sensor and
starts to be detected at the next consecutive one with a delay that usually corresponds to a
network-related delay. This case is illustrated in Figure 10.
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Figure 10. The flow path relation between the validity intervals of consecutive sensors for flow paths.

• The class of (α1 ∪ α2 ∪ α3 ∪ α4 ∪ α5)-paths

This class of paths characterizes the backward version of flow paths. Paths in this
class capture the case where a phenomenon propagates against the natural flow of the
transportation network. Examples include a flock of salmon swimming upstream in a river
system and a traffic jam that propagates backward on a road network. When a traffic jam
is caused, for example, by a road accident, it starts before the accident location and then
propagates backward against the direction of the traffic. This case is illustrated in Figure 11.
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Figure 11. The relation tj(A, B) between the validity intervals of consecutive sensors for backward
flow paths.

• The class of (α5 ∪ α8 ∪ α11 ∪ α12 ∪ α13)-paths

The relations α5, α8, α11, α12 and α13 are exactly those among the basic Allen relations
for which we have e(Ii+1) > e(Ii) for i = 1, . . . , k − 1 in a path (γ, ((s1, I1), (s2, I2), . . . ,
(sk, Ik))).

• The class of (α1 ∪ α2 ∪ α3 ∪ α6 ∪ α9)-paths

The relations α1, α2, α3, α6 and α9 are exactly those among the basic Allen relations for
which we have e(Ii+1) < e(Ii) for i = 1, . . . , k − 1 in a path (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))).

6. Temporal Graphs for Transportation Networks

In Section 1, we briefly explained that, in this paper, we represent sensor networks
as a temporal graph whose nodes contain time-series data using the temporal graph data
model introduced in [8] and later extended in [5] to support time series. This model is
called TNGraph, standing for Temporal Graph for Transportation Networks. We also com-
mented that this approach addresses both the sensor network (possibly changing) topology
and the time-series analysis. In this section, we review the temporal graph model and
explain how temporal paths fit into the former. We briefly describe the model and its
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accompanying query language, T-GQL, that was modified to support the paths discussed
in Sections 4 and 5. Details can be found in the bibliography.

Briefly, in our temporal graph model, nodes, relationships and properties are times-
tamped with a validity interval, that is, the intervals during which such nodes, relationships
and properties exist(ed). Note that since the structure of the sensor network may change
(like when the direction of the flow in a river changes or a road network is extended), we
need a temporal graph model to appropriately represent these changes. Of course, in the
case presented here, node properties are naturally temporal since they contain time-series
data. We remark that the model supports heterogeneous graphs, meaning that relationships
may be of different kinds.

A TNGraph is a structure G(Ns, Na, Nv, E) where G is the name of the graph, E a set
of edges and Ns, Na and Nv are sets of nodes, denoted segment, attribute and value nodes,
respectively. Segment nodes represent segments in the network (e.g., river segments, like
the ones on the right-hand side of Figure 2). Nodes are associated with a tuple (title, interval)
but, in segment nodes, this tuple exists only if the segment contains (or ever contained) a
sensor. In this case, title = Sensor, and interval represents the periods when a sensor worked.
They may also have properties that do not change over time (called static properties). Each
attribute node represents a variable measured by the sensors, its title property is the name
of such variable and interval is its lifespan. A value node is associated with an attribute
node, and its title property contains the (categorical) values registered by the sensors (in
the river example, High, Medium or Low) and interval represents the period(s) when the
measure was valid, that is, a temporally ordered sequence of intervals. The title property of
the edges between segment nodes represents the flow between two segments and interval is
the validity period of the edge. All nodes have a static identifier denoted id.

In addition to the above, nodes and edges in a TNGraph satisfy a collection of temporal
constraints. For example, the nodes with the same value associated with the same property
(attribute) node must be coalesced into one, which is the reason why the interval is actually
a temporal element (that is, a set of intervals as explained above) that includes all periods
where the node has such a value. The same applies to edges: all edges with the same
name (that is, representing the same relationship type) between the same pair of nodes
must be coalesced into a single one (note, however, that in the case of the networks studied
in this paper, there is only one type, namely Flow). Nodes must be connected as follows:
(a) a segment node whose property title is not Sensor can only be connected with another
segment node (no matter the content of title); (b) a segment or sensor node can only be
connected to an attribute node or to another segment or sensor node; (c) attribute nodes can
only be connected to sensor or value nodes; and (d) value nodes can only be connected to
attribute nodes. The cardinalities of these connections are such that attribute nodes must be
connected by only one edge to an object node, and value nodes must only be connected to
one attribute node with one edge. Finally, intervals must satisfy the following consistency
properties, which we omit here for the sake of space.

Figure 12 shows a portion of a river network represented using the TNGraph model
using data between 1 April 2022 and 9 April 2022 (data acquisition is detailed in Section 7).
There, sensor nodes are represented as blue circles, with title = Sensor. There are two
kinds of attribute nodes, temperature and pH. Attached to attribute nodes, we can see the
value nodes, one for each possible attribute value, High and Low in this case (variable
categorization will be explained in Section 7.3). Finally, attached to each value node, we
can see series of time intervals corresponding to the times where the parameters registered
measures in these ranges. In this picture, for clarity, the intervals contain just the day
numbers. For example, the interval [1–19] should be read as [1 April 2022–19 April 2022].
Later, in Section 7, we will see how this model is applied to our case study.
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Figure 12. An example of a sensor network represented as a temporal graph.

Over this model, different notions of temporal paths were defined in [8,9], namely
continuous, pairwise continuous, consecutive and flow paths (backward and forward).
These paths have been proposed based on the fact that they represent real-world situations
in different kinds of networks, not just transportation networks. As an example, ref. [8]
studies the use of continuous and pairwise continuous paths in social networks, and the
use of consecutive paths in scheduling networks. These classes of temporal paths are
generalized and characterized in the present paper in terms of Allen’s interval algebra.
Further, in Section 5, we showed that consecutive and flow paths are transitive and robust
(they are characterized as α9- and α9→13-paths, respectively. However, pairwise continuous
paths are actually α3→11-paths and are neither robust nor transitive, although they capture
situations where every pair of consecutive intervals has non-empty intersection, which
can arise in real-world situations, as [8] showed. Further, continuous paths are maximal
sub-α7-paths and also capture interesting situations in transportation networks in which a
particular event occurs simultaneously along a path of sensors (e.g., a continuous path in a
river is a sequence of segments and a time interval during which all sensors along the path
register values in the same category).

The model described above comes with a high-level query language denoted T-GQL.
The language has a slight SQL flavor, although it is also based on Cypher. T-GQL extends
Cypher with a collection of functions that allow for handling different kinds of temporal
paths. For example, the function alphaPath, which computes the α-paths in a transportation
network (see the example below), is included in this library, and immediately available to be
used in a Cypher query. T-GQL queries are translated into Cypher, hiding all the underlying
structures that allow for handling a temporal graph. Details of this implementation can be
found in [8].

As an example, consider the query “Alpha Paths where temperature was High, be-
tween ‘2022-04-04’ and ‘2022-04-20’, starting from the sensor located at Segment 120 (Station
name st1 in Figure 12). The number of sensors in the returned path must be between 3 and
5”. The T-GQL expression for this query can be found in Listing 1:
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Listing 1. T-GQL query example.

SELECT paths
MATCH ( s1 : Sensor ) , ( s2 : Sensor ) ,
paths = alphaPath ( ( s1 ) − [ : Flow *3 . . 5 ] − > ( s2 ) ,

‘2022 −04 −04 ’ , ‘2022 −04 −20 ’ ,
‘ Temperature ’ , ’ = ’ , ‘ High ’ )

WHERE s1 . id = 1 2 0 ;

As mentioned, the T-GQL syntax is built as a combination of SQL and Cypher. In
what follows, we assume that GIS readers are familiar with SQL. For the Cypher part,
intuitively, the MATCH statement defines a pattern that the engine looks for in the graph.
Thus, a Cypher query is also a graph, and the answer to the query is composed of all
the subgraphs that Cypher finds in the graph database that match the pattern. In the
query above, we define two variables s1 and s2 representing the initial and final sensors
in a path. To evaluate the query, the language instantiates these variables to look for the
patterns. The ‘=’ expression in the query tells that paths is a path variable. The expression
(s1)− [: Flow ∗ 3..5]− > (s2) represents the pattern to be matched. It indicates all the paths
between two nodes with a length between three and five sensors along the relationship
Flow. Also, in the query above, the function alphaPath computes all the temporal paths
indicated by the pattern, within the time closed–open window [‘2022-03-10’, ‘2022-03-10’),
such that the value for the Temperature is High starting at node 3 (s1.id = 3). The function
parameters ‘Temperature’ and High indicate, respectively, the variable and the value for
the variable to use in the definition of the alpha paths. The parameter ‘=’ in the function
alphaPath indicates that we require the equality as the condition of the path. This query
will return three lists: the sensor nodes in the found path, the intervals intersecting the
query time window and the alpha relations between every pair of consecutive intervals.
The answer in this case is an α11-path that contains stations st1, st2 and st3, with intervals
[4–8][7–12][10–19].

7. A Real-World Use Case

In this section, we show, by means of a proof of concept implementation, how the
theoretical machinery explained in previous sections can be used on a real-world situation.
We first introduce the use case. Then, the data of this case are mapped into our temporal
graph model, TNGraph. We show that temporal graphs and, in particular, temporal paths,
allow for finding hidden patterns in the data. These patterns are characterized by the
α-paths studied above. We use T-GQL as a high-level query language to discover the
α-paths and the closure under sensor deletion and robustness properties of Section 5.3 to
facilitate the work of the analysts.

We remark, again, that this section is aimed at showing how touse our approach in a
real-world setting and that we do not address performance or optimization issues.

7.1. Problem and Data Description.

The river Scheldt (Figure 13) in northern Belgium crosses the city of Antwerp. It goes
on to flow through the Netherlands, ending in the North Sea. The river is influenced by
the tidal streams occurring at the North Sea. This tidal impact causes the water in the
river to rise and fall twice a day following the tidal rhythm. Therefore, during high tides,
close to the shore, the water flows in the opposite direction with respect to the natural
downstream flow of the Scheldt river. As a consequence, salty sea water merges with the
river’s fresh water, influencing its salinity. This interplay between the two kinds of waters
has a big impact on the water quality, the flora and the fauna of the region. For this reason,
the environmental control agency monitors the river in real time using in situ sensors.
Although many different parameters are measured, we will focus on the conductivity of
the water that can be used to detect the presence of salt in the water since an increase in the
content of salt is related to an increase in the electrical conductivity of the water.
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Figure 13. Overview of the river, Scheldt, containing the sensors, indicated in green circles. The
figure was obtained from waterinfo.be (accessed on 1 March 2021).

Jane is a hydrologist who is investigating the problem described above. She is willing
to understand how far the salty waters coming from the sea due to high tides go into
the river flow before dissolving into fresh water. She also wants to know for how long
this phenomenon affects different areas along the river. Further, she of course knows that
many parameters of interest are registered by sensors located in stations along the course
of the river. However, she needs a tool that not only accounts for spatial and network data
but also for time. Further, she is not a computer expert but she knows SQL quite well.
After she describes the problem, we suggest her to use our approach since we note that
she is basically looking for temporal paths along the network of sensors along the river.
In particular, these paths that she is looking for are such that the salty water starts to be
detected when it arrives at the station closest to the sea. As we move farther from the
sea, salinity arrives at the next station, where it is first detected, and this repeats until it
cannot be detected any longer, since it dissolves at a certain point. However, it may still be
detected at the first sensor at the same time when it vanishes completely at some point in
the river. It follows from this description that every interval is smaller than the previous
one (i.e., at the previous sensor). We explained to her that, in our model, this pattern can
be characterized as an α9-path. We also explained to her that, if an α9-path is not found,
finding a Forward path, that is, one in which every interval starts after the previous one, will
at least show the spread of salinity and will let her know how far it goes.

Since the river level increases and decreases twice a day (following the tides), we
would like to capture these situations to relate them to, for example, the level of salinity
in the water. Therefore, we proposed to use the data provided by sensors and the river
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network in order to model the network as a temporal property graph whose nodes contain
properties (attributes) that are time series provided by each sensor. Jane can then use the
model’s high-level query language, denoted TGQL, to find those paths (and probably some
more ones).

The dataset used in this study comprises temporal sensor data collected from moni-
toring stations along the Scheldt river within the Flanders river system described above.
The dataset is sourced from Waterinfo (https://waterinfo.be, accessed on 1 October 2022),
a repository managed by the Flemish environmental agency (VMM), where sensor data
of “Flanders Hydraulics” (Waterbouwkundig Laboratorium, HIC) are available. The
dataset encompasses measurements of electrical conductivity (EC) and water temperature,
recorded from 1 April 2022 to 9 April 2022 at the stations shown in Figure 13, with a
ten-minute resolution. Other parameters are also measured at the stations, although we do
not consider them. Each data entry includes information regarding station identification,
the timestamp and the value of the parameter. For the electrical conductivity (EC) attribute
(representing the salinity levels), values are given in microsiemens per centimeter (µS/cm).
For temperature, values are provided in Celsius degrees.

In more detail, we consider the nine stations shown in Figure 13, namely: zes01a-SF-
1066, zes07g-SF-B-1066, zes07g-SF-O-1066, zes09x-SF-1066, zes19a-SF-B-1066, zes24a-SF-1066,
zes28a-SF-1066, zes39c-SF-1066 and rup02e-SF-1066. We note that the “B” and “O” versions
of station zes07g-SF-..-1066 represent two sensors on the same location in the river, such
that the “O” sensor is placed deeper in the water than the “B” sensor.

The time-series records described above exhibit temporal dependencies and variability
in salinity levels along the river course. Therefore, preprocessing tasks, which involve
handling missing values and outlier detection methods, are needed to identify and mitigate
potential measurement errors, ensuring the integrity of the dataset for subsequent analysis.
We next comment on these issues and give further details in Section 7.2.

Sensor measurements are validated by an automated process, based on which a
quality code is attached to each data point. In our dataset (and, in general), for almost all
measurements, the quality code indicates that all values are considered as good data, except
for a few cases, flagged as low quality. The number of these cases is irrelevant compared
to the total number of measurements. Further, sensor data are provided by the agencies
as they were measured by the sensor network, normally every five or ten minutes. If a
measurement is missing, it is not added to the dataset. We remark that, since we do not use
the data values as they are, but we categorize them (see Section 7.3), missing values are not
very relevant and our algorithm would just take the reading immediately before or after
the missing one.

Finally, we remark that EC data in the dataset must be normalized to account for the
change in water temperature. To carry out this task, we retrieved (as mentioned above)
the water temperature value corresponding to the same period and, at the same time,
the stations used for the electrical conductivity. All EC values were normalized to values
corresponding to water at 25 degrees Celsius. This normalized electrical conductivity is
called EC25.

7.2. Data Exploration

Once the dataset was downloaded, we carried out data exploration tasks in order
to get acquainted with the data. This exploration was performed in two parts: we first
analyzed the data globally and then we computed the statistical parameters locally for each
station.

We started computing the values of the classic statistical functions for the whole
dataset. The results are shown in Table 6. The total number of readings is 23,040, with
a minimum value of 0 µS/cm and a maximum value of 20,927 µS/cm. The mean is
7546.45 µS/cm and the median (quartile 0.5) 6687.50 µS/cm. Other interesting values for
future use are the quartiles 0.25 and 0.75, which are 1241.99 µS/cm and 13,398.63 µS/cm,
respectively.

https://waterinfo.be
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Table 6. EC25 variable: basic statistics. All values in µS/cm, except for the count.

Count Mean Std Min 25% 50% 75% Max

23,040.00 7546.45 6094.66 0.00 1241.99 6687.50 13,398.63 20,927.82

A boxplot for the EC25 parameter is shown in Figure 14a and the data distribution
over time is depicted in Figure 14b. In the latter figure, we can note a daily pattern: two
peaks are produced each day, and the height of these peaks increases from days 1 through
7, and decreases from day 8 onward.

(a) EC25 data boxplot (b) EC25 data distribution over time
Figure 14. EC25 data distribution.

We also computed the statistics locally at each station, and the results are shown in
Table 7. In this table, stations are ordered from bottom to top according to their closeness to
the sea, the bottom ones being closer to the sea than the top ones. As expected, we can see
that the values for the station closer to the sea (the bottom ones) are higher than the other
ones. Also, note that the medians of the four stations starting from the bottom are higher
than the global median shown in Table 6. This is consistent with the tidal influence over
the salinity as we move away from the sea. Figure 15 shows the boxplots for each station,
where the medians are plotted in orange. In the figure, we can also see the global 25% and
75% quartiles in red dashed and dotted lines, respectively. We can also note that the local
outliers (depicted by the circles outside the boxes) have not been removed because they are
not global outliers. Note that we do not see outliers when we look at the global boxplot
in Figure 14a. The notions of global and local outliers in data exploration are explained
in [24].

Table 7. EC25 variable: data description per station (values in µS/cm).

Station Count Mean Std Min 25% 50% 75% Max

rup02e-SF 2877 1032.87 193.57 736.78 900.89 983.70 1144.00 1584.71
zes39c-SF 2881 900.58 66.19 0.00 860.52 874.10 920.28 1200.97
zes28a-SF 1441 1763.52 763.86 935.04 1226.06 1499.86 2017.72 5065.56
zes24a-SF 2881 2395.72 1195.10 72.48 1566.20 1940.65 2828.31 7131.11
zes19a-SF 2881 6603.10 3244.00 1770.38 3316.37 6684.05 9581.82 15129.36
zes09x-SF 2881 12761.96 1644.52 8797.00 11555.18 12864.50 14044.24 16198.29
zes07g-SF-O 2881 14068.21 1806.03 8117.48 12640.51 13920.28 15569.23 17895.11
zes07g-SF-B 2881 13795.87 1645.01 10387.20 12388.06 13613.61 15147.64 17590.14
zes01a-SF 1436 15872.93 2035.35 2.81 14469.30 15733.44 17181.65 20927.82
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Figure 15. EC25 data distribution for each station (outliers have not been removed).

7.3. Categorization of the Parameters

We explained in previous sections that our approach to temporal graphs and temporal
paths is based on categorical values for the variables. The process of transforming a
continuous variable into a categorical or discrete one is called discretization, and it is very
usual in the field of data analytics [24]. Therefore, in our problem, we must transform the
values registered by the sensors into categorical values that, in turn, will be associated with
the validity intervals. To create these categories, the user must define the category based on
the application requirements. To explain how this process is carried out, consider that the
table below is produced by sensor si that measures a variable X.

Time 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15
Value 6 8 12 15 20 11 8 4 5 6

In this example, the user wants to define three categories, High, Medium and Low.
Thus, they define two thresholds, 8 and 14, which implies that every measurement above
or equal to 14 will fall into the High category, below 8 will belong to the Low category and
otherwise will be classified as Medium. This procedure will result in the following (category,
intervals) pairs:

• (Low, [[10:00–10:15),[11:45–12:30)]);
• (Medium, [[10:15–10:45),[11:15–11:45)]);
• (High, [[10:45–11:15)]).

In the previous example, the time granularity was set to 15 min (i.e., the value is
reported every 15 min). If the granularity were set to 60 min, the resulting intervals
would be:

• (Low, [[10:00–11:00),[12:00–13:00)]);
• (High, [[11:00–12:00)]).

We can see that, in this case, no value would fall into the validity intervals for the
Medium category.
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There are different ways to obtain the categories based on how the thresholds are
chosen and how the interval limits are defined. An elaborated discussion on this problem
can be found in the study by Bollen et al. [5]. Further, the user may choose a unique
threshold for all the sensors or an individual one for each of them. Following the usual
terminology [24], we denote these thresholds as global and local, respectively.

To build an appropriate temporal graph representing the sensor network, a key issue
is how to choose the right thresholds to be used to compute the temporal paths. This choice
impacts not only the storage space but also the computation time of the paths and the
usefulness in the results that are obtained. Thus, the user’s involvement in this definition is
crucial. We next discuss different thresholds choices based on the results obtained from the
analysis of the data. We will perform two different categorizations: based on global and
local thresholds.

7.3.1. Categorization with Global Thresholds

To define the global thresholds, we will use the quartiles 0.25 and 0.75 (1241.99 and
13, 398.63, respectively) shown in Table 6 and depicted in the red dashed and dotted lines of
Figure 15. Using those quartiles as thresholds, we will categorize the data as Low, Medium or
High. This decision is based on the following analysis, which uses the mentioned quartiles.

For each station, we plot the variable EC25 over time, and we show the results in
Figure 16. Again, the stations are ordered from bottom to top according to their closeness
to the sea. Stations zes07g-SF-B-1066 and zes07g-SF-O-1066 are physically located at exactly
the same location (same latitude and longitude), but the latter is located deeper in the water
than the former. This means that changes in salinity values are first detected at zes07g-SF-
O-1066, and thus we plot it at the bottom in the figure. As usual in visual analysis, the
EC25 variable values have been normalized between 0 and 1. We also indicate the global
quartiles 0.25 and 0.75 in dashed and dotted lines, respectively. When all of the values at a
station are below the global quartile 0.25, we do not draw the dashed line. This can be seen,
for example, in station zes39-SF-1066 (the second from the top), where no quartile line is
drawn.

It is clear that the four stations at the top were never associated with High category
values, but only with Medium and Low ones. This is reasonable, since they are farther from
the sea than the other ones.

Station zes19a-SF-B-1066 (fifth from the top) only presents a short High category period
on 9 April. It is also important to notice, regarding the definition of the graph intervals
that we will explain later, that, for station zes09x-SF-1066 (sixth from top), the quartile 0.75
threshold, which determines the categories High and Medium, would be problematic during
10 April. We can see that, during this day, measurements oscillate most of the time around
the 0.75 quartile, and the value of the peaks are very similar to each other. Using this value
as the threshold would produce many small intervals for the High category. Regardless, for
the rest of the days, the values present a clear peak. Thus, depending on the study case, the
experts can determine whether or not this threshold can be useful. Since, in our use case,
we are aimed at finding paths of High value, we will focus on the data for the first eight
days of April.
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Figure 16. EC25 data distribution for each station over time.

7.3.2. Categorization with Local Thresholds

We now study what would happen if, instead of using the same thresholds to catego-
rize the whole dataset, we define a threshold for each station. The quartiles 0.25 and 0.75
for each station shown in Table 7 were used. The decision of using local thresholds would
be appropriate in scenarios where the range of values varies significantly between stations
due to the influence of the salty water, which quickly decreases in the upstream direction.
Also, it may happen that, due to the particularities of the setting, a high conductivity at one
location may not be necessarily high at another one. For our case, we chose the upper and
lower limits of the rectangles depicted in Figure 15 as thresholds. We remark that all the
values that were measured by the sensors were considered since no global outliers were
detected (as can be seen in Figure 14a); therefore, all values are valid. This means that, if a
value appears as a local outlier (considering the boxplot for a station), it is not discarded
and instead categorized according to the local quartiles.

7.4. Building the Sensor Temporal Graph

We are now almost ready to build the sensor network graph. However, we still need
to define the intervals (Definition 6) that will determine the periods when the conductivity
measured in the water was associated to a certain category, namely High, Medium or Low.
For this, we must define the granularity that we will consider to define the limits of the
intervals. In the dataset, readings are provided every 10 min, and thus this will be the
granularity of the graph intervals, although a larger granularity could be chosen; again,
this must be defined with the expert user.
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We know that Jane is interested in determining the extent of the salinity spread
upstream the river flow. To achieve this goal, using global thresholds to create the graph
intervals would be a better choice since it allows one to detect the salinity influence and
its dissolution along the way. Further, using a granularity of 60 min will produce fewer
intervals and result in a simpler graph. Thus, for our study, we will initially use a temporal
sensor graph with global thresholds and a 60 min granularity. We denote this graph as G60.
We will also define graphs with other granularities, and also local thresholds, to compare
against this choice. More concretely, we carried out experiments with four different graphs,
which are labeled as follows:

• G10: Global thresholds, granularity 10 min.
• G60: Global thresholds, granularity 60 min.
• L10: Local thresholds, Granularity 10 min.
• L60: Local thresholds, granularity 60 min.

We are ready now to build the temporal sensor graphs defined above. The structure of
these graphs is very similar: there is a “base” graph that contains one node for every river
segment, obtained from the Flemish Hydrological Atlas (https://www.vlaanderen.be/
datavindplaats/catalogus/vlaamse-hydrografische-atlas-waterlopen-6-juni-2023, accessed
on 6 June 2023). The segments that contain sensors are labeled as sensor nodes. In the
segment nodes, a property identifies the river segment (this is called vhas in the source
dataset). This identifier is used to associate the stations with their location in the river.
When more than one station is associated with the same segment, they will have the same
vhas value. However, the temporal graph model that we use (denoted TNGraph) requires
every node (segment or sensor) to contain a property that uniquely identifies the node, and
it is denoted as id. We explain the construction of the graph next.

We explained in Section 6 that, in the TNGraph model, there is an attribute node
for each temporal property. Thus, in this use case, for every station that measures the ec
variable (representing the EC25 parameter), we create an attribute node and connect it to its
corresponding sensor node. Further, for every category associated with that station (in this
case 0,1,2 stand for low, medium and high, respectively), there is a value node connected to
the attribute node. The difference between the four graphs (G10, G60, L10, L60) lies in the
intervals of their value nodes, i.e., the intervals where the condition over Valc(si) is valid,
where c corresponds to ec. Each value node labeled 0, 1 and 2 will thus contain a sequence
of time intervals indicating when the parameter falls in the category.

Figure 17 shows a portion of the resulting G60 graph for some of the stations in
Figure 13. The graphs are physically created using the Neo4j graph database. Blue nodes
are sensor nodes. Yellow nodes are attribute nodes and red nodes are value nodes. The
number printed on the value nodes corresponds to their category. We do not show the
intervals in Figure 17 because the lists are usually very long. A flattened representation of
the intervals for the G60 graph can be seen in Figure 18a. Here, we can see the intervals
for categories High, Medium and Low that are mapped to values 2, 1 and 0, respectively
(as mentioned, the intervals are contained in the graph’s value nodes). Colors express
categories: red for High, yellow for Medium and green for Low. We can see that, the farther
the stations from the sea, the fewer red intervals that appear, which is consistent with
the decrease in salt concentration as we move into the land. We also notice that the daily
pattern observed in Figure 16 is repeated after the categorization. Figure 18b shows the
intervals for G10 and we observe that, due to the finer granularity, there are more intervals
for each station than in G60.

Finally, the resulting base graph contains 74 segment nodes, 18 attribute nodes,
26 value nodes and 122 edges, where 78 are labeled as f lowsTo. The size of the Neo4j
database is approximately 300 KB.

https://www.vlaanderen.be/datavindplaats/catalogus/vlaamse-hydrografische-atlas-waterlopen-6-juni-2023
https://www.vlaanderen.be/datavindplaats/catalogus/vlaamse-hydrografische-atlas-waterlopen-6-juni-2023
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Figure 17. Neo4j G60 Graph.

(a) G60 (b) G10
Figure 18. EC25 data categorized as 0, 1 and 2 using q25 and q75.

7.5. Experiments

Now that we have the sensor network implemented as graphs (built with a variety
of parameters), Jane can query them and look for the paths that provide the information
she needs, for instance, to know how far salinity goes before being dissolved in fresh
water. We start with G60 and look for an α9-path, which would show the dissolution
effect along the stations; if we do not find such a path, we look for a Forward path, which
would show how salinity spreads along the river. However, since some stations such as
zes07g-SF-O-1066 and zes07g-SF-B-1066 are placed in the same location, we should look for
a Co-Temporal Forward path (Section 5.3.1), that is, an α6−13-path. Since we know that water
rises and falls twice a day, to capture one of these situations, we must select a time window
of about twelve hours and try to find an α9-path there. Further, if the path is found in G60
during that period, we will verify that the path is also present in a finer granularity graph,
namely G10, making use of the properties defined in Sections 5.3.2 and 5.3.3. Finally, we
will check if it is possible to find the path in L60, a graph with the same granularity but
where the intervals were created particularly for each station.

7.5.1. Finding Paths in G60

We know that Jane, our hydrologist, is looking for an α9-path in one of the rise and
fall events produced by the tidal movement. We chose a time window that goes between
1 April 22 at 22:00 and 2 April 2022 at 11:00. At this point, we remark that we could
have chosen any other twelve-hour time window on any other day in the dataset, but we
postpone this discussion to Section 7.6. Then, we computed the α-paths for ec = 2 in the
globally classified 60-minute granularity graph G60.

The procedure of finding a path requires a simple algorithm that takes advantage of
the fact that α9-paths are closed under sensor deletion (row 7 of Figure 8). This algorithm
works as follows: we first pick two stations. If the relation between the intervals is not α9,
we know that an α9-path will not be found. Otherwise, we keep on adding stations and
repeating this procedure until we find a relation different from α9 or until there are no more
stations with ec = 2. In our example, we start querying the G60 graph, just considering, for
example, stations zes07g-SF-O-1066 and zes09x-SF-1066. We have told Jane that she could
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use a simple query expressed in an SQL-like query language (T-GQL) to help her in the
task of computing the paths. T-GQL Listing 2 is used to find the α9-paths if they exist:

Listing 2. T-GQL query to obtain α-paths of length 2.

SELECT paths
MATCH ( s1 : Sensor ) , ( s2 : Sensor ) ,
paths = alphaPath ( ( s1 ) < −[ : flowsTo *2] − ( s2 ) ,

‘2022 −04 −01 0 2 : 0 0 ’ , ‘2022 −04 −02 1 1 : 0 0 ’ ,
‘ ec ’ , ’ = ’ , ‘ 2 ’ )

WHERE s1 .Name = ’ zes07g −SF−O−1066 ’ ;

In this case, we obtain the following α9-path, expressed in the format of the output of
the query:

{
" path " : [ {
"name " : " zes07g −SF−O−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes09x −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " }

] ,
" i n t e r v a l s " : [

"2022 −04 −02 02 :00 − 2022−04−02 0 8 : 0 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 7 : 0 0 "
] ,

" alphas " : [ " alpha9 " ]
}

This α9-path is illustrated in Figure 19. We must now keep on adding stations. We add
station zes07g-SF-B-1066 and query the graph again, obtaining the path:

{
" path " : [ {
"name " : " zes07g −SF−O−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes07g −SF−B−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes09x −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " }

] ,
" i n t e r v a l s " : [

"2022 −04 −02 02 :00 − 2022−04−02 0 8 : 0 0 " ,
"2022 −04 −02 02 :00 − 2022−04−02 0 8 : 0 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 7 : 0 0 "
] ,

" alphas " : [ " alpha7 " , " alpha9 " ]
}
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We can see that, when we include the three stations, we obtain an α7,9-path, so we
can stop looking for an α9-path here. We can also see that the physical locations of the
stations that produced the α7 relation are the same (see Figure 13); therefore, it was very
likely that the High value of salinity was measured during the same interval. The result of
this iteration is illustrated in Figure 20.

Although, in the second iteration, we did not find an α9-path, we must continue
querying the graph with the rest of the stations to find all possible paths, in particular, a
Forward path (which is of interest for the analyst). The following path is obtained:

{
" path " : [ {
"name " : " zes01a −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes07g −SF−O−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes07g −SF−B−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes09x −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " }

] ,
" i n t e r v a l s " : [

"2022 −04 −01 23 :00 − 2022−04−02 1 0 : 0 0 " ,
"2022 −04 −02 02 :00 − 2022−04−02 0 8 : 0 0 " ,
"2022 −04 −02 02 :00 − 2022−04−02 0 8 : 0 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 7 : 0 0 "
] ,

" alphas " : [ " alpha9 " , " alpha7 " , " alpha9 " ]
}

Figure 19. Intervals for EC = 2 on 2 April 2022 on G60: two stations included.
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Figure 20. Intervals for EC = 2 on 2 April 2022 on G60: three stations included.

The search stops here because there is no other station such that ec = 2. We conclude
that the path is an α7,9-path containing stations zes01a-SF-1066, zes07g-SF-O-1066, zes07g-
SF-B-1066 and zes09x-SF-1066, which is clearly seen in Figure 21.

Figure 21. Intervals for EC = 2 on 2 April 2022 on G60: four stations included.

We remark that we did not find an α9-path due to the existence of α7, a Co-Temporal re-
lation (Section 5.3.1), between stations zes07g-SF-O-1066 and zes07g-SF-B-1066. Although
this is actually a Co-Temporal Forward path, we can still say that salinity is reaching station
zes09x-SF-1066 and is being dissolved along the way. This information is relevant for our
hydrologist.

7.5.2. Finding Paths in G10

In the previous section, we have found an α7,9-path in G60. We now want to study
the paths that would have been obtained with a graph of finer granularity. In this case, we
define ten-minute intervals (i.e., a G10 graph).

We query the graph as in Section 7.5.1. However, since we have already computed the
paths using a coarser granularity graph, we may compute the relations that could exist in
the same time window by applying the temporal robustification from coarser to finer granularity
algorithm (Section 5.3.3) to the set α7,9, i.e., the one obtained with G60. We explain this
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procedure next. We start by looking for α7 in the left column of Table 3 to obtain its robust
version. We can see that there are two rows for α7; thus, we add the relationships on the
right column, α4,6,8,10, to the set α7,9, obtaining α4,6,7,8,9,10. We now consider α9, but we can
see that this relation is not in the left column of the table, so nothing is added. Now, we
start a new iteration with the set obtained in the previous one. We continue adding the
robustified version of these α’s until converging to the fixed point: robustifying α4 yields
α3 and α5 and, for α6, we obtain α3 and α9. We continue in this way, and the result of the
temporal robustification of α7,9 is the relation α3,4,5,6,7,8,9,10,11, which turns out to be a pairwise
continuous path.

Our goal for this experiment was to find an α9-path that is included in the result set
but, in theory, any of the α’s in the union α3,4,5,6,7,8,9,10,11 can exist in G10. To check the
actual path, we run the same query as in Section 7.5.1 on G10 to find the α-paths between 1
April 2022 at 22:00 and 2 April 2022 at 11:00. We obtain:

{
" path " : [ {
"name " : " zes01a −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes07g −SF−O−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes07g −SF−B−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes09x −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " }

] ,
" i n t e r v a l s " : [

"2022 −04 −01 23 :00 − 2022−04−02 0 9 : 2 0 " ,
"2022 −04 −02 01 :30 − 2022−04−02 0 7 : 3 0 " ,
"2022 −04 −02 01 :40 − 2022−04−02 0 7 : 2 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 6 : 3 0 "
] ,

" alphas " : [ " alpha9 " , " alpha9 " , " alpha9 " ]
}

Figure 22 shows the intervals for G10 for this result. Now, we can see that an α9-path
is returned, which is a Forward path and allows us to see the salinity dissolution like in G60.
We can therefore conclude that the use of any of these graphs will produce the desired
result. We can also clearly see the closure under deletion property holding here: once we
discover an α9-path, deleting any of the sensors in Figure 22, we would still obtain an
α9-path.
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Figure 22. Intervals for G10 (10 min granularity) on 2 April 2022.

7.5.3. Finding Paths in L60

In the previous experiments, we have found useful paths in graphs where the intervals
were defined using global thresholds. Now, we want to find out the kind of paths that appear
when we query graphs in which the intervals are created locally for each station. We thus
compute the α-paths of ec = 2 between 1 April 2022 at 22:00 and 2 April 2022 at 11:00 for
L60. Since the intervals of this graph were created with thresholds relative to the values
of each station, we suspect that we will not find an α9-path in this case. Nevertheless, as
explained before, a Forward path might be useful for Jane. We ran the same query as in
Section 7.5.1 over the TNGraph L60 and we obtained the following paths:

{
" path " : [ {
"name " : " zes01a −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes07g −SF−O−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes07g −SF−B−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes09x −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes19a −SF−B−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes24a −SF −106" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
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"name " : " zes28a −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes39c −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " }

] ,
" i n t e r v a l s " : [

"2022 −04 −02 03 :00 − 2022−04−02 0 4 : 0 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 6 : 0 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 5 : 0 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 6 : 0 0 " ,
"2022 −04 −02 04 :00 − 2022−04−02 0 7 : 0 0 " ,
"2022 −04 −02 04 :00 − 2022−04−02 0 7 : 0 0 " ,
"2022 −04 −02 04 :00 − 2022−04−02 0 7 : 0 0 " ,
"2022 −04 −02 04 :00 − 2022−04−02 0 7 : 0 0 "
] ,

" alphas " : [ " alpha8 " , " alpha6 " , " alpha8 " , " alpha11 " , " alpha7 " , " alpha7
" , " alpha7 " ]

}
{

" path " : [ {
"name " : " zes01a −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zez07g −SF−O−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes07g −SF−B−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes09x −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes19a −SF−B−1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes24a −SF −106" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " zes28a −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " } ,

{
"name " : " rup02e −SF −1066" ,
" value " : " 2 " ,
" a t t r i b u t e " : " ec " }
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] ,
" i n t e r v a l s " : [

"2022 −04 −02 03 :00 − 2022−04−02 0 4 : 0 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 6 : 0 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 5 : 0 0 " ,
"2022 −04 −02 03 :00 − 2022−04−02 0 6 : 0 0 " ,
"2022 −04 −02 04 :00 − 2022−04−02 0 7 : 0 0 " ,
"2022 −04 −02 04 :00 − 2022−04−02 0 7 : 0 0 " ,
"2022 −04 −02 04 :00 − 2022−04−02 0 7 : 0 0 " ,
"2022 −04 −02 04 :00 − 2022−04−02 0 8 : 0 0 "
] ,

" alphas " : [ " alpha8 " , " alpha6 " , " alpha8 " , " alpha11 " , " alpha7 " , "
alpha7 " , " alpha8 " ]

}

We can see that the T-GQL query returned two paths because stations zes39c-SF-1066
and rup02e-SF-1066 are located at different branches of the river. Both paths are α6,7,8,11-
paths. These are Forward and Co-Temporal relations, and the intervals’ lengths are between
one and four hours. This is shown in Figure 23. These results express the conductivity
levels relative to each particular station. However, these paths do not capture the salinity
dissolution that the previous results, obtained using global thresholds, did.

Figure 23. Intervals for EC = 2 on 2 April 2022 in L60.

7.5.4. Finding Paths in L10

The change in time granularity has already been illustrated in the context of the global
threshold setting, and we skip details for the local threshold setting to avoid repetition
of concepts.

7.6. Discussion of the Results

The experiments above aimed at showing that, leveraging time-series data from
sensors, Jane may determine the extent in space and time of the salinity resulting from high
tides in the Scheldt river. This is achieved through the analysis of specific paths discussed
in detail within this paper.

When using global measures and one-hour granularity, i.e., a G60 graph (Section 7.5.1),
a high salinity level could be first detected at the station closest to the sea (zez01a-SF-1066),
where it remained for approximately eleven hours before being dissolved in fresh water.
Four hours later than when it was first detected, this high salinity level could be measured
at the fourth station (zez09x-SF-1066) for four hours. From that time on, this high content
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of salt was no longer detected upstream in the river. The setting above did not allow us
to find an α9-path but an α7,9-path instead, which we consider a proper outcome because
the α7 relation was produced between the second and third stations (zez07g-SF-O-1066 and
zez07g-SF-B-1066), which happen to be located at the same physical place; therefore, the
start and duration of salinity is expected to be very similar.

We then performed the same experiment with a ten-minute granularity and global
thresholds, i.e., we built a G10 graph. The results confirm our hypothesis: in the period
under study, any of the graphs created with global thresholds would allow us to find the
desired path due to the robustness property. Thus, once the analyst knows this, they would
not need to process measurements every 10 min, since one-hour intervals should suffice,
reducing the data size by a factor of six.

On the other hand, local thresholds proved to be useful, although not to the extent of
the ones obtained with global thresholds. Experiments did not show the relation between
the height of the tide and the salinity level, nor the salinity dissolution. This can be
explained by comparing Figures 21 and 23. We can see that the duration of a (local) High
value (that is, in L60) at the first station is shorter than the duration of a (global) High
value (that is, in G60) at the same station. It is clear that, due to its geographical location,
that the impact of high values has a limited impact with respect to the usual values of
the parameter at this station. We can see that, after one hour, compared against the usual
salinity values at the first station, measures are at the Medium level, which means that the
dissolution effect would not be captured. Opposite to the above, for G60, the thresholds
used to decide which values are High are related to the whole dataset, which means that a
High value will normally last longer, allowing one to perceive the dissolution effect. We can
also see that the duration of High salinity values for the first station in L60 is shorter than
the duration for the second station, which makes it difficult to see the salinity dissolution
in this graph. This is also explained by Figure 15, where we can see a strong decay of
the salinity thresholds after the fourth station, which correlates with the duration of High
values of these stations in Figure 23, where, after the fifth station, a forward movement
(that is, to the right) of the High salinity values can be noted. In summary, if the impact of a
phenomenon is strongly local, global thresholds will most likely perform better when we
want to capture the development of this phenomenon.

Another result of the experiments refer to the relevance of the data exploration tasks.
As an example of this, we remark that the thresholds used in the reported experiments are
not appropriate for the whole dates in the dataset, but rather, in this case, for the first eight
days of the period under study. In Figure 16, we can see that the measurements for the last
two days are oscillating within a very small range around the threshold. This causes the
measurements to cross the threshold several times in a short period due the noise in the
data. As a result, using the same thresholds for the ten days under study and combining
them with a fine granularity such as 10 min would result in many very small intervals for
days 9 and 10. Thus, a lower threshold would be a better choice.

To illustrate the above, Figure 24 shows the intervals for 10 April, using G10. We
can see that the High category is valid during four short intervals for the fourth station
(zes09x-SF-1066). If we try to compute paths during this day, we would obtain many
of them (produced by all the possible combinations of intervals), which would make
it difficult to compare against the paths produced in an equivalent graph created with
coarser granularity.
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Figure 24. Intervals for EC = 2 for G10 (10 min granularity) on 10 April 2022 from 03:00 to 16:00.

8. Conclusions and Future Work

In previous work, we proposed a model based on temporal graphs to represent sensor
networks and identified certain kinds of paths, which we denoted as temporal paths, that
capture the behavioral pattern of certain events of interest in such networks. The paths
above were defined as a combination of the relationships between their intervals when
certain conditions hold. For example, we identified a consecutive path as one where each
pair of consecutive intervals is such that the second one starts strictly after the first ends.

In the present work, we have generalized and characterized the notion of a temporal
path using the well-known Allen’s algebra, which defines thirteen possible relationships
between any pair of given intervals, whose combination yields 8192 possible relationships.
Fortunately, it turns out that not all of them are interesting in the transportation network
domain. We showed in this work that only ten combinations satisfy two desirable proper-
ties, namely closure under sensor deletion (or transitivity) and robustness. Some of the paths
identified in previous work (specifically, consecutive and flow paths) are among these
ten combinations. Other ones, like continuous and pairwise continuous paths, are still
interesting in certain settings although they do not come with the former ‘warranties’.
We implemented the proposal above, extending the libraries implemented for TNGraph,
our previously defined temporal graph model. In this way, we can easily check, using an
SQL-like temporal graph query language, the temporal paths that exist in a transportation
network. We applied our proposal to a real-world use case to study the effect of salinity
caused by tidal changes along a river of the Flanders river system. Our experiments showed
that, applying the transitivity property for temporal paths presented in this work, we can
reduce the data size (by a factor of six, in our case) and obtain the same result, which is a
relevant achievement considering the size of the datasets.

Future work includes the development of user-oriented applications, based on the
findings of this work, that would help to automate and simplify the work or the data
scientists and domain experts. The application of our theory to other kinds of networks is
also an open research field.
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Appendix A. Proof of Theorem A1

In this appendix, we present the proof of Theorem A1.

Theorem A1. Let S ⊆ {α1, α2, . . . , α13} be a set of basic Allen relations. The set S is closed under
composition if and only if the union

⋃
αi∈S αi is closed under sensor deletion (or transitive).

Proof. First, we prove the only-if-direction. Let S ⊆ {α1, α2, . . . , α13} be closed under
composition and let αS :=

⋃
αi∈S αi be the union of all the elements of S. We need to show

that when αS(A, B) and αS(B, C) hold, also αS(A, C) holds. From αS(A, B) and αS(B, C),
it follows that there exist (unique) αi, αj ∈ S such that αi(A, B) and αj(B, C) are true. But,
(αj ◦ αi)(A, C) then holds. Since S is closed under composition, αj ◦ αi is a union α of some
elements of S. Thus, we have that α(A, C) holds and this implies that αS(A, C) is certainly
true. This completes the proof of the only-if-direction.

For the if-direction, we assume that the union of the elements of S, αS (as above),
is closed under sensor deletion (or transitive). We need to show that S is closed under
composition. For αi, αj ∈ S, we need to show that αj ◦ αi is a union of elements of S. From
the composition table of the Allen relations (see, for example, the tables in [22] and in [23]),
we know that αj ◦ αi = αi1 ∪ αi2 ∪ · · · ∪ αik for some subset {i1, i2, . . . , ik} of {1, 2, . . . , 13}.
This means that, for reach im ∈ {i1, i2, . . . , ik}, there are intervals Am, Bm and Cm such
that αi(Am, Bm), αj(Bm, Cm) and αim(Am, Cm). From αi(Am, Bm), αj(Bm, Cm), it follows that
αS(Am, Bm), αS(Bm, Cm) and thus, by the assumption that the union of the elements of S is
closed under sensor deletion, we obtain αS(Bm, Cm). Since the thirteen basic Allen relations
are mutually exclusive, αim must belong to S. Since this is true for any im ∈ {i1, i2, . . . , ik},
and αj ◦ αi = αi1 ∪ αi2 ∪ · · · ∪ αik , we see that αj ◦ αi is a union of elements of S. This
completes the proof of the second implication and the proof of the theorem.
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