

Organic Solvent Nanofiltration and Data-Driven Approaches

Pieter-Jan Piccard, ^{1,2,3} Pedro Borges,³ Bart Cleuren,¹ Anita Buekenhoudt,³ and Jef Hooyberghs ^{1,2}

¹UHasselt, Theory Lab ²UHasselt, Data Science Institute ³Flemish Institute for Technological Research (VITO)

Problem Statement

Membranes are powerful, versatile separation tools, offering an energy-lean alternative for traditional thermal separation methods.

However, due to the complexity of this membrane process, influenced by all mutual solute-solvent-membrane interactions and properties, the transport mechanism is not well understood. This leads to a slow, trial-and-error based development process.

The Database

Data structure is complex:

- Highly dimensional (over 30 features)
- Still small amount of data available (500 points) •

Creating data-driven models is challenging

Unique database:

- Ceramics
- Cross-flow focused \bullet
- Unprocessed data to be added (~10 000 points)

Data science

Currently, exploratory data-analysis is ongoing. Among exploration of data, techniques include correlations (e.g. PCA).

To speed up the development process, and to try and understand the separation mechanism, we resort to data science.

Physical models

Physical transport models exist but were originally developed for water filtration. Since they **link physics to membrane** performance, these models can be used to investigate the underlying physics. A review was published on physical models and data-driven modelling in the field [1].

Thereafter will follow the creation of **data-driven models** to predict the separation performance from the physical properties.

Techniques for data-driven modelling include:

- Linear regression
- Gradient boost
- Neural networks

A future step is to model via physical models to gain physical **insight** by linking physical properties to model parameters.

Physical properties

Organic Solvent Nanofiltration and Data-Driven Approaches

Pieter-Jan Piccard ^{1,2,3}, Pedro Borges ³, Bart Cleuren ¹, Jef Hooyberghs ^{1,2,*} and Anita Buekenhoudt ³

References & Acknowledgement

	CONTACT US	<u>pieterjan.piccard@uhasselt.be</u> PI: jef.hooyberghs@uhasselt.be
	(9 +32 11 26 82 98	anita.buekenhoudt@vito.be
	dsi@uhasselt.be	
DISCOVER DSI	Agoralaan gebouw D 3590 Diepenbeek Belgium	[1] PJ. Piccard et al., Separations 2023, doi: 10.3390/separations10090516
	Deigioni	