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Abstract

We developed a tool that scrapes and interprets statistical values
(DORIS) to analyze reporting errors, which occur if the eye-catcher
depicting the level of statistical significance is inconsistent with the
reported statistical values. Using 578,132 tests from the top 50 eco-
nomics journals, we find that 14.88 % of the articles have at least
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We currently work on providing DORIS at betterpapers.org as a service for au-
thors, reviewers, and editors to easily check their papers for reporting errors.
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one strong error in the main tests. Our pre-registered analysis sug-
gests that mandatory data and code availability policies reduce the
prevalence of strong errors, while suggestive indication of a reversed
effect is found for top 5 journals. Integrating DORIS into the review
process can help improving article quality.

Keywords: Reporting errors; Replications; Reproducibility; Data and
code policies; Questionable research practices
JEL codes: A19, C18, C40, C87

Main Contributions

• First large-scale assessment of reporting errors in economics based on
578,132 statistical tests from the top 50 economics journals.

• We developed a tool that automatically scrapes and interprets statis-
tical values from tables in economics journals (DORIS - Diagnosis Of
Reporting errors In Scraped tables), potentially useful for improving
the review process and future meta-research.

• We substantially improve accuracy of flagging reporting errors by
estimating the degrees of freedom.

• We show that reporting errors are prevalent in economics and exhibit
a systematic bias in favor of significant results.

• Suggestive evidence is found that mandatory data and code availabil-
ity policies reduce the prevalence of strong reporting errors.

• Our results also provide suggestive indication that the top 5 journals
have a larger probability of strong reporting errors.
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1 Introduction

Statistical reporting errors received scant attention in economics compared
with other disciplines such as psychology (e.g., Nuijten et al. 2016; Wicherts
et al. 2011; Caperos and Pardo 2013; Veldkamp et al. 2014) and medicine
(García-Berthou and Alcaraz 2004; Berle and Starcevic 2007). A typical
and important type of reporting error in economics occurs if a regression
coefficient is highlighted to be statistically significant by means of an eye-
catcher (mostly stars or asterisks), but actually the reported coefficient and
standard error do not imply the presence of such a level of statistical sig-
nificance. Such an inconsistency might invalidate conclusions made in an
article and mislead the reader. We define reporting errors as an inconsis-
tency between reported levels of statistical significance using eye-catchers
and calculated p-values implied by reported statistical values, such as co-
efficients and standard errors. We focus our analysis on strong reporting
errors for which either the reported level of statistical significance or the
calculated p-value signals statistical significance at the chosen level of the
authors but the respective other one of these two does not. This is opposed
to weak reporting errors which occur if the inference on whether a statis-
tical test is statistically significant or not remains unchanged (cf. Section
2.2.1).1

In psychology, Nuijten et al. (2016) developed an automated procedure
to scrape statistical tests that are reported in the text according to the
American Psychological Association (APA) guidelines (statcheck, see Ep-
skamp and Nuijten 2018), allowing the analysis of reporting errors in more
than 250,000 tests. Such an automated analysis of reporting errors is more
challenging in economics as statistical tests are reported heterogeneously
and predominantly in tables. In this article, we use recent big data tools
like web scraping and text mining and develop an automated procedure to
reliably scrape and interpret statistical values from economic articles. Our
algorithm is called DORIS (Diagnosis Of Reporting errors In Scraped ta-
bles). DORIS is able to download published articles in HTML and extract
statistical tests from tables as well as additional information from the text.

1Some authors would define p-values below 0.05 as significant while few authors even
suggest p-values below 0.2 as significant. The usual threshold in economics is 0.1.
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DORIS collected data from 31 journals between 1998 and 2016.2 In total,
our sample comprises 3,746 articles with 578,132 statistical tests extracted
from tables. We use these data to assess the prevalence of reporting errors
in economics on a large scale and to analyze potential determinants.

There is little research on statistical reporting errors in economics.
While Bruns et al. (2019) found for a sample of about 6,000 tests from
Research Policy (RP) that 1.4 % of the tests contain a strong reporting
error and 25 % of the articles are afflicted by at least one strong report-
ing error, Pütz and Bruns (2021) found a prevalence of 0.5 % at the test
level and 21.6 % at the article level in a study of about 30,000 tests from
American Economic Review (AER), Journal of Political Economy (JPE)
and Quarterly Journal of Economics (QJE) which all belong to the top
5 economic journals. Both studies rely on manually collected statistical
tests and are thus limited in the range of considered journals, time spans,
and the number of analyzed articles and tests. Error rates found in other
disciplines tend to be similar, but reporting styles of statistical tests differ
substantially, e.g., key statistical findings in psychology are generally re-
ported in the text following specific reporting guidelines by the APA. For
psychology, Nuijten et al. (2016) found a prevalence of 1.4 % strong report-
ing errors at the test level and 12.9 % at the article level. Other studies
in psychology found strong reporting error rates between 0.8 % and 2.3 %
at the test level and between 6.3 % and 20.5 % at the article level. In
medicine, García-Berthou and Alcaraz (2004) found a strong reporting er-
ror rate of 0.4 % at the test level. In psychiatry, Berle and Starcevic (2007)
found a strong reporting error rate of 9.4 % at the article level. Lastly, in
experimental philosophy, Colombo et al. (2018) found a prevalence of 0.5 %
strong reporting errors at the test level and 6.4 % at the article level. Table
B.3 in the Online Appendix provides an overview and further details.

The source of these reporting errors might be questionable research
practices (QRP) like rounding down a p-value such that it appears statis-
tically significant (e.g., Wicherts et al. 2011; John et al. 2011) or it might
just be an honest mistake, introduced by manually transferring the output
of statistical software to word processing software or at the journal typeset-

2Due to the dispute between Elsevier and German universities, we stop at 2016 as
our sample drastically decreases to only 19 journals from 2017 and beyond.
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ting stage (Pütz and Bruns 2021; Bakker and Wicherts 2011). Indication
was also found that the prevalence of reporting errors might be negatively
associated with the availability of software code (Pütz and Bruns 2021) and
the unwillingness to share data (Wicherts et al. 2011), while data sharing
among co-authors (Veldkamp et al. 2014) or outlier removal (Bakker and
Wicherts 2014) does not appear to have an effect. Although we do not ex-
pect conscious fraud to explain most reporting errors, our sample includes
articles whose primary conclusions are affected once reporting errors are
taken into account.

We can distinguish between overstated and understated reporting er-
rors. An overstated reporting error occurs if a statistical test is marked by
an eye-catcher implying that the reported significance level is overstated
compared to the p-value calculated based on the reported statistical val-
ues. Alternatively, the eye-catcher may imply that the reported significance
level is understated compared to the calculated p-value. Various studies,
as e.g., Colombo et al. (2018), Nuijten et al. (2016), Bakker and Wicherts
(2011) and Pütz and Bruns (2021), find a higher prevalence of overstated
reporting errors in comparison to understated reporting errors, indicating
a bias towards significant findings. This bias might be due to the fact that
the significant findings are more in line with the authors’ expectations and
therefore are not double checked, or due to publication bias towards sig-
nificant findings (Nuijten et al. 2016). However, not all studies have found
such a bias in favor of overstated errors (Weinerová et al. 2022).

Moreover, we shed light on potential covariates of reporting errors us-
ing a pre-analysis plan that we uploaded to the Open Science Frame-
work (OSF)3 to clearly distinguish between hypothesis-testing and ex-
ploratory research (e.g., Olken 2015; Christensen and Miguel 2018). With
the first set of pre-registered hypotheses, we try to fill a gap revealed by
Christensen and Miguel (2018) who mention that open data and code are
assumed to improve research quality. Recent examples show how data and
code availability policies help reveal already published mistakes (Bach et al.
2023; Matray and Boissel 2023), but quantitative meta-analytical evidence
is missing. We hypothesize that mandatory data and code availability

3Bruns et al. (2021, January 11). Statistical reporting errors in economics. Open
Science Framework (OSF), https://osf.io/tqmuj, last retrieved on 25.08.2023.
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policies are associated with the probability of a test being afflicted with
a strong overstated or a strong understated reporting error. Recently, an
increasing number of journals require or at least encourage authors to pub-
lish their data and code, and such policies might be an effective instrument
to reduce the prevalence of reporting errors. Based on previous findings
that the prestige and impact of journals might be associated with report-
ing error rates (Bakker and Wicherts 2011), the second set of pre-registered
hypotheses states that being a test published in a top 5 economics journal
affects the probability to be afflicted with a strong overstated or a strong
understated reporting error. Such an association could be interpreted as
indication that the rigor of peer review could affect the prevalence of report-
ing errors, since the top 5 journals play a special role in economics (Ductor
et al. 2020; Card and DellaVigna 2013; Heckman and Moktan 2020) and
generally have longer peer review processes (Ellison 2002).

We find a prevalence of strong reporting errors of 0.46 % at the test
level and 30.89 % of the articles contain at least one strong reporting error.
When considering only tests that are likely to address the main hypotheses
of the respective article, we find a prevalence of strong reporting errors of
0.51 % at the test level and of 14.88 % at the article level. 1.37 % (2.04 %) of
all tables in our sample have more than 10 % of the tests exhibiting strong
reporting errors when considering all tests (only the main tests). This em-
phasizes the relevance of reporting errors as readers might be misled. Our
results also indicate a systematic bias towards statistically significant re-
porting errors. Pre-registered and exploratory research indicates that open
data and code policies reduce the prevalence of strong overstated reporting
errors at the test level. The effect of these policies on strong understated
reporting errors is ambiguous. We find no evidence that belonging to the
top 5 journals changes the probability of strong understated reporting er-
rors, but some indication that the probability of strong overstated reporting
errors might be increased.

Our findings suggest that statistical reporting errors are non-negligible
in economics, as is the case in other disciplines. Using DORIS in the review
process may help authors, reviewers, and editors identify reporting errors
before publication and can help to improve article quality. Data and code
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availability policies may be decisive in ensuring replicability and are likely
to be effective in reducing reporting error rates.

In the next section, we will provide an overview of the development and
application of DORIS and our data. In Section 3 we present results on the
prevalence and relevance of reporting errors in economics. Then, we present
our hypothesis testing analysis in Section 4 including our pre-registered
regression analysis as well as an exploratory difference-in-difference design.
Sections 5 and 6 discuss and conclude, respectively. For a more detailed
description of DORIS and additional analyses, we refer to a comprehensive
Online Appendix in the next sections.

2 Diagnosis of reporting errors in scraped ta-

bles (DORIS)

2.1 Web scraping and rule-based interpretation

We consider the top 50 economic journals4 for the web scraping and the
rule-based interpretation of statistical values. From these journals, 32 jour-
nals offered their articles as HTML files and allowed us to web scrape them
(cf. Table B.2).5 We focus on articles available in HTML, as this ensures
a more reliable scraping process compared to PDF documents.6 We down-
loaded all articles published between 1998 and 2016. From these 32 journals
that are available in HTML, we extracted the HTML tables and then devel-
oped a rule-based program to identify and interpret statistical values from
these tables. Only three journals provide their articles in HTML before

4The top journals are based on the IDEAS/RePEc Ranking Simple Impact Factors
(Last 10 Years) as of December 2018: https://ideas.repec.org/top/old/1812/top.journ
als.simple10.html, last retrieved on 04.11.2022.

5Although articles from journals with Springer as a publisher (Journal of Economic
Growth, IMF Economic Review and Experimental Economics) were also available in
HTML, we deemed Springer ’s conditions to scrape these journals to be not acceptable
for a scientific project. We are grateful to the publishers Oxford University Press, The
University of Chicago Press, Wiley, Elsevier, Annual Reviews and Taylor & Francis who
generously allowed us to scrape their articles for this project.

6In HTML documents a table is explicitly embedded in a table environment marked
by "<table>" and "</table>", while current PDF extractors like Tabula only work
with computer vision techniques and positioning of characters, resulting in unreliable
extractions especially for complicated types of tables.
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1998 (see Table B.2 in the Online Appendix) and in 2016, the number of
accessible journals drops substantially to 19 journals due to the dispute be-
tween the publisher Elsevier and the German universities.7 As the p-value
interval of one-sided tests is different from the one of two-sided tests and we
cannot automatically detect one-sided tests at the test level, we focus on
two-sided regression tests and removed all tests from articles that mention
the term "one-sided" or a similar expression which excluded 5.8 % from
the sample.8

For the development of the rule-based approach, a large sample of ta-
bles with manually interpreted statistical tests and the corresponding sig-
nificance levels is needed. We used 360 tables of the data gathered by
Brodeur et al. (2016), 258 tables of the data gathered by Bruns et al.
(2019), and we have additionally drawn a random sample of 500 tables
from the top 5 general-interest journals (from which QJE, JPE and Review
of Economic Studies (RESTUD) are part of our sample due to their avail-
ability in HTML) and seven additional top field journals (i.e. based on the
list in Table B.2: Journal of Finance (JOF), Economic Policy (EP), Jour-
nal of Monetary Economics (JME), Journal of Labor Economics (JOLE),
Journal of Development Economics (JODE), Journal of Applied Econo-
metrics (JOAE) and Journal of Public Economy (JPUE)). The rule-based
interpretation is based on the following major principles: First, tables with
eye-catchers are identified mostly by comparing cell contents with a list of
possible eye-catchers; second, different table styles are identified, such as
standard errors below coefficients or standard errors next to coefficients;
third, the table notes are used to link eye-catchers to significance levels. A
detailed summary of the rule-based interpretation is given in Section A.1 of
the Online Appendix. The rule-based approach is able to find 99.9 % of all
statistical tests and their respective significance levels reported in the 360
tables obtained from Brodeur et al. (2016) and in the 258 tables obtained
from Bruns et al. (2019). For the random sample of 500 tables from the top
5 general-interest and top field journals 92.7 % of all statistical tests are

7For more information consult e.g., https://www.science.org/news/2016/12/thous
ands-german-researchers-set-lose-access-elsevier-journals, last retrieved on 26.09.2021.

8The exact search term as well as additional regular expressions can be found in
Table B.7 in the Online Appendix.
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found by DORIS.9 Finally, we applied DORIS to the top 5 journals and the
seven additional top field journals and then randomly selected 100 identi-
fied statistical tests per journal stratified at the article level. We further
improved the rule-based interpretation based on the mistakes that DORIS
made in this last part of the development.

We evaluated the performance by applying DORIS to all 32 journals
in the sample and randomly selected 100 identified statistical tests per
journal stratified by volumes and with the condition of not selecting two
tests from the same article. We evaluated how often DORIS made a mistake
in interpreting the statistical tests and the corresponding significance levels.
The False Discovery Rate (FDR) of identifying statistical tests was very
small with 1.2 % over all journals. In these cases, DORIS misinterpreted
the values of a statistical tests (e.g., a t-value was interpreted as a standard
error), or it identified a test that is actually not a test at all (e.g., mean
and standard deviation in a descriptive table are interpreted as a statistical
test). The FDR broken down by journals can be found in Table B.4 in the
Online Appendix. A graphical overview of how DORIS was developed
and how its performance in interpreting statistical values from tables was
evaluated can be found in Figure C.4 in the Online Appendix.

Before manual control and removal of further implausibilities10 DORIS
extracted and interpreted 729,930 tests from 4,613 articles out of 25,583
downloaded articles in HTML format. A large fraction of the articles do
not provide statistical tests that can be analyzed by DORIS. First, around
21 % of the articles do not contain any tables (e.g., theoretical articles).
Second, there is an increasing tendency to use confidence intervals in recent
years. DORIS has not yet been developed to interpret confidence intervals.
Third, some authors opt against using eye-catchers. Note that the AER,
which is not in our sample as they do not provide articles in HTML, even

9We also implemented one version of DORIS with additional rules to reach 100 %
but some of these rules were based on inferring missing information for very specific
tables (e.g., deriving missing information about the numbers in parentheses by looking
at other tables in the same article instead of assuming the default case with standard
errors) or allowed more than one test type in a table which was prone to more errors in
the interpretation.

10Further details can be found in Section 2.2.2.
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forbid the usage of eye-catchers in their guidelines.11 Finally, note that
we only focused on tests for which DORIS could extract the amount of
observations and for which DORIS estimated the degrees of freedom to be
positive.12.

2.2 Diagnosis of statistical reporting errors

2.2.1 Definition of statistical reporting errors

We consider two distinct dimensions in the diagnosis of statistical reporting
errors (e.g., Pütz and Bruns 2021). First, we distinguish between overstated
and understated reporting errors. Overstated reporting errors refer to errors
where the eye-catcher implies a smaller p-value than the reported statistical
values, and vice versa for understated reporting errors. In these cases, we
implicitly assume that the reported statistical values are correct and the
eye-catcher are incorrect. An illustrative example is given in Table 1. In
the first column, an understated reporting error is shown as the t-value of
the variable primary schooling is 3.78 with degrees of freedom of 3,000 but
the coefficient is only labeled significant at the 0.05 level. In the second
column, an overstated reporting error is illustrated as the t-value is 1.98

with degrees of freedom of 3,000 but the coefficient is labeled significant at
the 0.01 level.

Second, we define a reporting error to be strong if either the reported
significance level or the calculated p-value signals statistical significance at
the chosen level of the respective authors but the respective other does
not. The variable primary schooling in the third column of Table 1 de-
picts such a strong reporting error, as the level of significance reported
suggests statistical significance but the reported t-value of 0.77 with de-
grees of freedom of 3,000 does not. We refer to weak reporting errors if
the inference on whether a statistical test is statistically significant or not
remains unchanged. An example is given in the second column of Table 1
as the t-value is 1.98, which is significant at the 0.05 level but not at the
0.01 level as the eye-catcher would suggest.

11Cf. https://www.aeaweb.org/journals/aer/submissions/accepted-articles/stylegui
de, last retrieved on 26.09.2021.

12Details on the extraction of the number of observations and on the estimation of
the degrees of freedom can be found in Section 2.2.2
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Table 1: Illustrative table with hypothetical values for primary schooling
in growth regressions

(1) (2) (3) (4) (5)

Primary schooling 0.13∗∗ 0.13∗∗∗ 0.13∗∗ 0.13∗ 0.13
(3.78) (1.98) (0.77) (1.70) (1.65)

(...)

Degrees of freedom 3, 000 3, 000 3, 000 20 20

Notes: t-values in parentheses and t-tests are two-sided. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

We also consider the category any error comprising any type of error
regardless of whether it is a weak or strong reporting error or an understated
or overstated reporting error.

2.2.2 Identifying statistical reporting errors

Diagnosing statistical reporting errors proceeds in two steps. First, statis-
tical tests are flagged by DORIS as potential reporting errors. The second
step comprises a manual check of these flagged errors. Regarding the flag-
ging of potential reporting errors, Bruns et al. (2019) and Pütz and Bruns
(2021) assumed t-values to be normally distributed due to missing infor-
mation regarding degrees of freedom. This procedure led to an underes-
timation of overstated errors and an overestimation of understated errors.
The underestimation can be seen in the fourth column of Table 1. If the
t-value of 1.70 is assumed to be normally distributed, the reported signifi-
cance level of 0.1 is correct. Actually, the degrees of freedom for this t-test
are only 20 and the corresponding critical t-value is 1.725, resulting in a
strong overstated reporting error. The overestimation is exemplified in the
fifth column. If the t-value of 1.65 is assumed to be normally distributed,
the reported non-significance with regard to the 0.1 level is incorrect, re-
sulting in a strong understated reporting error. But actually the degrees of
freedom for this t-test are again 20 with the corresponding critical t-value
of 1.725, resulting in a test without any reporting error.

DORIS substantially improves the flagging procedure by estimating the
degrees of freedom. DORIS extracts the highest number of observations
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reported in a given table and uses the maximal number of either table rows
or table columns as the number of estimated parameters. This results in an
interval Ir(df) = [r1(df); r2(df)] of possible p-values based on the reported
statistical values (e.g., coefficient with standard error), the estimated de-
grees of freedom and the rounding uncertainty.13 This interval has to be
compared with the interval of possible p-values Ie = [e1; e2] indicated by
the eye-catcher. A reporting error occurs if Ir(df) and Ie do not intersect.
Bruns et al. (2019) and Pütz and Bruns (2021) used the normal distribution
instead of the t-distribution and therefore assumed the degrees of freedom
as infinity in Ir(df). This is of no concern if the reported information is
either a p- or a z-value. In other cases, and as we only are able to roughly
estimate the exact degrees of freedom, we calculate two critical thresholds
for the degrees of freedom. The first critical threshold refers to understated
reporting errors:

dfunder
crit = min{df ∈ N|r2(df) ≤ e1}. (1)

Here, N does not contain zero. We flag a test as being afflicted with
an understated reporting error if dfunder

crit is defined14 and if the estimated
degrees of freedom are greater than dfunder

crit as t-values need to be greater
to show significance if the degrees of freedom are small. Analogously, we
define the critical threshold for overstated reporting errors:

df over
crit = sup{df ∈ N|e2 ≤ r1(df)}. (2)

We choose the supremum instead of the maximum in order to guaran-
tee that df over

crit can also take the value of infinity which is the degree of
freedom in a normal distribution. We flag a test as being afflicted with an
overstated reporting error if the estimated degrees of freedom are less than

13With regard to rounding uncertainty, take e.g., a reported coefficient estimate of
1.2 with a standard error 0.6. Naively calculated, this results in a t-value of 2, but
when controlling for rounding uncertainties, an interval from 1.769230 to 2.27 should
be considered as a rounded 2 could be a value between 1.95 and 2.05 and a rounded
0.6 could be a value between 0.55 and 0.65. We declare a test only as afflicted with a
reporting error if such an interval does not intersect with the respective interval that
belongs to the reported significance level given by the eye-catcher.

14dfunder
crit is not defined if {df ∈ N|r2(df) ≤ e1} is the empty set.
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df over
crit .15 This procedure leads to a smaller overestimation of understated

reporting errors and a smaller underestimation of overstated reporting er-
rors in comparison to Bruns et al. (2019) and Pütz and Bruns (2021). A
visualization for better understanding can be found in Section A.2. How-
ever, the approach of estimating the degrees of freedom does not account
for control variables, constants, or fixed-effects that are part of the model
but that are not reported explicitly in the table. Hence, a manual control
is still needed.

The second step in diagnosing reporting errors is manually checking
the flagged tests. As introduced in Section 2.1, the FDR of statistical tests
is small with 1.2 %. However, falsely interpreted statistical values could
result in an erroneously flagged statistical test. For example, a t-value that
is interpreted as a standard error could yield an erroneously flagged test.
Hence, a manual inspection of the flagged tests is necessary, as otherwise
we might report inflated error rates.

Before the manuaĺ control, DORIS flags 13,969 tests in 1,893 articles as
afflicted with a strong reporting error. Every flag was manually checked.
The checked data set might slightly underestimate the real prevalence of
reporting errors as DORIS might oversee some statistical tests due to un-
common reporting styles.16 Comparing with Brodeur et al. (2016) yields
that we find 28 % to 70 % more tests per article, which is plausible as we
consider every test while Brodeur et al. (2016) focused on main tests.

During the manual control, we focus on the core data of a test, as e.g.,
the eye-catcher, coefficient and standard error. Additionally, we correct the
meta-data, such as mentions of robustness checks in the table or the usage
of clustered standard errors, and calculate the exact degrees of freedom. As
our approach of calculating the degrees of freedom merely using the number
of observations and the number of parameters might not be justified in the
case of clustered standard errors, we manually collect the number of clus-
ters. We recalculate the degrees of freedom using the number of clusters
instead of the number of observations. If this explains the reported signif-

15If sup{df ∈ N|e2 ≤ r1(df)} is the empty set, dfover
crit equals −∞.

16Comparing the median of tests per table in the development data and the median
of tests per table in all_data (cf. Figure C.8 in the Online Appendix) yields an average
difference of -2.75 tests. Hence, the power/coverage of DORIS at the table level is
satisfactory.
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icance, we remove the flag in order to give the authors the benefit of the
doubt. A detailed explanation of the steps during the manual control can
be found in Section A.3 in the Online Appendix. After manually checking
the flagged reporting errors, we identified 5,316 strong reporting errors out
of 1,296 articles. Similarly to the evaluation phase, most commonly DORIS
misinterpreted the redundant information or labeled a summary statistic
as a statistical test. We decided to exclude additional 139 articles that we
deem as outliers. These are mostly articles that contain a large number of
reporting errors due to a misreporting of the numbers in brackets or paren-
theses by the authors. Holmes (2004) coined this as Reporting Imprecision.
This means that the second number of a test, next to the coefficient, is not
specified correctly or specified at all, e.g., standard errors are marked as
t-values. In order to separate this error, which can usually be easily spotted
and corrected by the reader from real reporting errors, we excluded these
and further outliers from our sample. A detailed explanation of the outlier
removal can be found in Section A.5 in the Online Appendix. After remov-
ing outlier articles, we identified 2,675 strong reporting errors out of 1,157
articles. This is our primary sample for the subsequent analyzes. Figure
C.8 in the Online Appendix gives an overview of the data sets used and
how they are compiled.

We distinguish between main tests that analyze the hypothesis of an
article and non-main tests using a heuristic approach. We identify main
tests in two steps. First, we exclude tables in the appendix and tables
that contain robustness checks.17 Second, we focus on the first three rows
as discontinuity tests suggest that selective reporting is most prevalent
in the first three rows of a table (cf. Figure C.3 in Section A.6 in the
Online Appendix). We also report results exclusively for the first row as a
robustness check. As a complementary data set, we define non-main tests
as tests that either appear in tables in the appendix or that are robustness
checks or tests that appear in regular tables but not in the first three rows.
An overview of the different data sets broken down by the types of tests

17Check Table B.7 in the Online Appendix for the regular expressions used to identify
these tables.
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is given in Table 2. Most of the tests collected by DORIS are tests with
coefficients and standard errors.18

Table 2: Types of tests per data set

All tests Main tests Non-main tests First row

Amount [%] Amount [%] Amount [%] Amount [%]

Coefficient and standard error 413,543 71.53 129,496 75.27 284,047 69.95 50,165 76.23
t- or z-value 138,807 24.01 37,502 21.80 101,305 24.95 13,840 21.03
p-value 25,782 4.46 5,042 2.93 20,740 5.11 1,805 2.74

Notes: Sometimes tests provide various values, i.e. p-values alongside coefficients and standard errors. Hence,
test types presented are in aggregated order, meaning that a test of the type "p-value" might also contain t- or
z-values or even standard errors and a test of type "t- or z-value" might contain standard errors, as well.

3 Descriptive analysis

3.1 Prevalence of statistical reporting errors

Error rates for the different types of statistical reporting errors broken down
at the levels of journals, articles, tables, and tests are shown in Table 3.
DORIS collects all statistical tests from tables, whereas previous literature
often focuses on the main tests of a respective article. We report error
rates for all tests, as well as for the subsets shown in Table 2.19 Almost
every journal is afflicted by at least one reporting error. Focusing on strong
reporting errors, we find an error rate of 30.89 % for all tests at the article
level. Other studies focus mainly on the main tests of the respective article.
For these, we find an error rate of 14.88 % which is in the same ballpark
found by other studies.20 If we consider only the first row for defining main

18In order to determine the type of the redundant information DORIS text-mines
the table notes. If no information is given or can be extracted from the table notes,
DORIS chooses the major case based on Pütz and Bruns (2021), which is "coefficient
with standard error". If the default case results in an error rate of more than 40 % at
the test level of the respective table and if the assumption of either a t- or a p-value
results in fewer reporting errors, the respective case is chosen.

19Robustness checks for the first two, four and five rows can be found in Table B.8 in
the Online Appendix. The error rate at the table, article, and journal level rises the more
rows we include as more tests are considered. The error rate at the test level decreases
marginally as more rows are considered, leading to the suspicion that reporting errors
occur more often in the upper rows.

20For economics, 21.6 % in Pütz and Bruns (2021) and 25.0 % in Bruns et al. (2019)
while including other fields, the ballpark grows to an interval from 6.4 to 25.0 % (cf.
Table B.3 in the Online Appendix).
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tests, we find a lower prevalence at the article level of 7.21 %. For non-main
tests we find a prevalence of 23.95 % at the article level, which is intuitive,
since we consider more non-main tests to be part of the article than main
tests. While our error rates are at a similar ballpark as found in other
disciplines at the article level, our study finds the prevalence at the test
level to be one of the lowest for strong reporting errors with 0.46 % for all
tests and 0.51 % for the main tests. It should be noted that these error
rates constitute lower bounds, as DORIS was programmed in a conservative
way that gives authors the benefit of the doubt.

Table 3: Prevalence of statistical reporting errors

All tests Main tests Non-main tests First row

Level Type Over-
stated

Under-
stated Any Over-

stated
Under-
stated Any Over-

stated
Under-
stated Any Over-

stated
Under-
stated Any

Any 90.32 93.55 93.55 93.33 93.33 93.33 83.87 90.32 90.32 83.33 86.67 90.00Journal Strong 83.87 87.10 87.10 86.67 90.00 90.00 74.19 83.87 83.87 60.00 76.67 76.67

Any 30.35 42.66 55.21 16.56 25.75 36.12 22.74 34.28 44.70 8.68 14.99 21.51Article Strong 17.70 19.54 30.89 8.43 7.51 14.88 12.88 15.40 23.95 3.78 3.62 7.21

Any 11.33 18.77 26.70 6.16 10.53 15.81 8.83 15.58 21.73 2.91 5.27 7.95Table Strong 5.67 6.28 11.11 2.79 2.47 5.13 4.41 5.40 9.09 1.10 1.07 2.16

Any 0.54 1.14 1.67 0.67 1.38 2.05 0.48 1.03 1.51 0.74 1.42 2.16Test Strong 0.21 0.25 0.46 0.26 0.24 0.51 0.19 0.26 0.44 0.27 0.26 0.53

No. of tests (articles) 578,132 (3,746) 172,040 (3,677) 406,092 (3,611) 65,810 (3,677)
No. of tests (articles) afflicted
with a strong reporting error 2,675 (1,157) 874 (547) 1,801 (865) 348 (265)

The error rates as well as the total number of identified tests vary be-
tween journals (cf. Figure C.9 and Figure C.10 in the Online Appendix).
The overall error rate seems to be declining over time for most journals,
which is in line with Nuijten et al. (2016) who find that error rates in psy-
chology have been stable or even declining over time. The overall number
of tests increases over time (cf. Figure C.6 in the Online Appendix) as well
as the number of tests per article (cf. Figure C.7 in the Online Appendix),
indicating a trend in economics toward more analyses per article or more
variables included per regression.

3.2 Relevance of statistical reporting errors

Figure 1 shows the distribution of the share of reporting errors among
individual articles and tables. This gives indication that reporting errors
are not exclusively single appearances in an article or table, but that there
are accumulations as well. 215 of 1,747 tables with at least one strong
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Figure 1: Share of strong reporting errors per table among tables with at
least one strong reporting error among all tests

reporting error have an error rate considering all tests larger than 10 %,i.e.
1.37 % of all tables. When we reduce this analysis to main tests, we find
that 275 of 692 tables with at least one strong reporting error have an
error-rate higher than 10 % in the first three rows, i.e. 2.04 % of all tables
that are neither robustness checks nor appear in the appendix.

We further emphasize the relevance of reporting errors by providing
anonymized examples in which statements in the article are no longer sup-
ported once the reporting error is corrected (Section A.7 of the Online
Appendix). Reporting errors in main tests can easily mislead readers and
multiple articles have been retracted due to such errors.21

3.3 Overstated vs understated reporting errors

Overstated reporting errors are more in line with the incentives in academic
publishing, whereas it is generally not desirable to present non-significant
findings (e.g., Bruns et al. 2019). There are of course exceptions, e.g., if a
previously as significant published finding is contested (Ioannidis 2023). In
most circumstances, understated reporting errors may be considered to be
more random errors. Therefore, we use understated errors as a baseline to
compare with overstated errors to assess whether a bias towards statistically
significant findings is present.

Nuijten et al. (2016) compare the number of strong overstated report-
ing errors in tests labeled significant to the number of strong understated
reporting errors in tests that are not labeled significant. These error rates
are informative to assess the probability of an overstated reporting error

21https://tinyurl.com/mrbv72s4, last retrieved on 02.12.2022.
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when looking at the tests that were published as statistically significant
and vice versa for understated reporting errors.

In contrast, Pütz and Bruns (2021) base their analysis on the rate of
overstated reporting errors in truly non-significant findings and the rate of
understated reporting errors in truly significant tests. These error rates
put more emphasis on how the reporting error occurred. As indicated by
the survey in Bruns et al. (2019), reporting errors occur mainly due to
misreported eye-catchers. Hence, the probability of a strong overstated
reporting error is given by the probability that a truly non-significant test
is misreported as being statistically significant. The number of truly non-
significant tests can be calculated as follows:

#truly non-significant tests = #tests without any eye-catcher + Eo − Eu,

(3)
where Eo is the number of tests with a strong overstated reporting error
(they are actually non-significant) and Eu is the number of tests with a
strong understated reporting error (they are actually statistically signifi-
cant). Analogously, the number of truly significant tests can be calculated
as follows:

#truly significant tests = #tests with an eye-catcher − Eo + Eu. (4)

In total, 0.49 % of the truly non-significant tests are strong overstated
reporting errors and 0.44 % of the truly significant tests are strong under-
stated reporting errors. Hence, when assuming that all strong reporting
errors are due to misreported eye-catchers and in contrast to the numbers
in Table 3, there is no suggestive difference between over- and understated
reporting errors when we look at all tests. A visualization over the whole
time span is depicted in the top left chart of Figure 2. The outliers at the
beginning of each of the eight time series can be explained by some specific
articles that comprise many reporting errors as can be seen by the size of
the small circle which represents the number of tests that are either truly
significant or truly non-significant per year. Based on the top left chart, vi-
sual inspection does not suggest a systematic bias towards significant tests.
If we focus on the main tests as outlined in Section 2.2.2 and shown in
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Figure 2: Rate of strong overstated reporting errors among truly
non-significant tests and rate of strong understated reporting error errors

among truly significant tests

the top right chart of Figure 2, the rate of strong overstated reporting er-
rors exceeds the rate of strong understated reporting errors in most years
except early years with a limited number of observations. In total, 0.72 %
of the truly non-significant tests are strong overstated reporting errors and
0.39 % of the truly significant tests are strong understated reporting errors.
Considering only the first row of tables that are neither robustness checks
nor appear in the appendix, 0.87 % of the truly non-significant tests are
strong overstated reporting errors and 0.38 % of the truly significant tests
are strong understated reporting errors, widening the gap even further up
to 0.49 percentage points (cf. bottom right chart of Figure 2). These num-
bers even exceed the number of Pütz and Bruns (2021) who find an excess
of 0.26 percentage points for strong overstated reporting errors. In sum,
this analysis suggests that there is a tendency for a systematic bias towards
statistically significant reporting errors, especially if we focus on our two
definitions of main tests.
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4 Hypothesis-testing analysis

4.1 Hypotheses

Concerning the prevalence of strong statistical reporting errors, we for-
mulated four hypotheses in total that we registered at the OSF using a
pre-analyis plan:22

1. Journal policies regarding the availability of data and software code
are associated with the probability that a test is afflicted by (a) a
strong overstated reporting error; (b) a strong understated reporting
error.

2. Belonging to the ‘top 5’ journals is associated with the probability
that a test is afflicted by (a) a strong overstated reporting error; (b)
a strong understated reporting error.

Regarding the effect of data and code availability policies, Pütz and
Bruns (2021) provide exploratory evidence that the availability of data
and/or code might reduce the prevalence of reporting errors at the article
level in economics. Note that Pütz and Bruns (2021) focused on the actual
availability of data and/or code per published article while we focus on
journal policies.23 Note that, following the definition of Vlaeminck (2021),
we focus on mandatory data availability policies which require authors to
upload their replication files to a third party prior publication, while we
neglect policies that only encourage authors to upload their files or author
responsibility policies which leave the responsibility to share data to the
authors. While Nuijten et al. (2017) do not find any association between
reporting errors and data availability policies in psychology, Wicherts et
al. (2011) show that the unwillingness to share data is associated with the
prevalence of reporting errors. Nosek et al. (2021) suggests that open data
sharing can reduce or expose reporting errors in the field of psychology.
These previous findings indicate that journal policies might be effective in
reducing the rate of reporting errors in economics.

22Bruns et al. (2021, January 11). Statistical reporting errors in economics. Open
Science Framework (OSF), https://osf.io/tqmuj, last retrieved 25.08.2023.

23Authors may provide data and code without a journal policy imposing this, and
some authors may not provide data and code even if a policy requires them to do so
(Christensen et al. 2019, e.g., ).
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We created a dummy variable to indicate whether the respective test
was published in a journal that had an active open data and software code
policy in the year of the publication. We deem it necessary that the policy
includes both, data and code, as a full replication is difficult if a researcher
lacks one of it. Regarding our data set, a total of 120,519 tests belong to
this category. Table B.5 in the Online Appendix provides a journal-specific
overview.

Regarding the second hypothesis, Bakker and Wicherts (2011) show
that the prevalence of reporting errors in high impact psychology journals
is less than the prevalence in lower impact psychology journals. The error
rates found by Pütz and Bruns (2021) in the QJE, the AER and the JPE,
which belong to the top 5 economic journals, are smaller than the error
rates found by Bruns et al. (2019) for RP which does not belong to the
IDEAS/RePEc list of top 50 economic journals, although it has a similar
journal rank based on the 2019 Journal Citation Report (Clarivate Ana-
lytics 2020). These prior findings indicate that the journal’s prestige might
be associated with the rate of reporting errors.

We coded a dummy variable to indicate whether the respective test was
published in a journal that belongs to the ‘Top 5’.24 A total of 31,104 tests
belong to this category.

The rates of strong reporting errors over time broken down by the two
hypotheses and distinguished by our four data sets are given in Figure 3
and Figure 4. Articles published in top 5 journals tend to be less frequently
afflicted by reporting errors from 2012 and beyond, especially for the main
tests, while visual inspection of the difference between articles with and
without data and code availability policy is ambiguous. In general, report-
ing errors tend to decrease over time.

24These are JPE, RESTUD, QJE, AER and Econometrica. The latter two do not
offer their articles in HTML and, therefore, are not part of our analysis.
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Figure 3: Rates of strong reporting errors for all data sets distinguished
by top 5
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Figure 4: Rates of strong reporting errors for all data sets distinguished
by presence of a data and code policy
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4.2 Pre-registered analysis

Table 4 shows our main results using a logistic regression at the test level.
We pick two different dependent variables. First, we choose a dummy
variable that indicates if a test is afflicted by a strong overstated reporting
error; second, we choose a dummy variable that indicates if a test is afflicted
by a strong understated reporting error. Each regression is executed with
and without controls for all four of our data sets, resulting in a total of 16
regressions. The second column reflects our pre-registered hypotheses. The
other columns function as exploratory analyses. We cluster the standard
errors at the article level.

As outlined in the pre-analysis plan, we used a double lasso approach
to select control variables (Urminsky et al. 2016). The results are given as
odds-ratios where a coefficient that is greater than one indicates a positive
influence, and a value that is less than one indicates a negative influence.
We report the unadjusted p-values in parentheses and the FDR-adjusted
p-values in brackets in order to control for multiple hypotheses testing.25

With regards to hypotheses 1a and 1b, the point estimates for the effect
of data and code journal policies on the prevalence of reporting errors are
all negative except for strong understated reporting errors in the data set
containing only the first row in tables that are neither robustness checks nor
part of the appendix. This gives indication that such journal policies might
reduce the prevalence of strong reporting errors. Looking at the second
column, we find that there is a suggestive difference from zero at the 10 %
level for strong overstated reporting errors, but not for strong understated
reporting errors when considering the unadjusted p-values. The effect size
indicates that the chance of a strong overstated reporting error is reduced
by 18.1 % when a test is published in a journal with an active open data
and code policy. The exploratory regressions in the other columns yield a
suggestive difference from zero for the uncontrolled version of the model in
the first column and for the uncontrolled versions of the models for non-
main tests. We interpret these findings as support for hypothesis 1a while
hypothesis 1b is not supported, but it should be emphasized that none

25As we have two main variables (Data and code required and Top 5 ) and also two de-
pendent variables (strong overstated and strong understated reporting error), we adjust
the p-values for four hypotheses.
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of the effects is statistically significant once multiple hypothesis testing is
taken into account.

With regard to hypotheses 2a and 2b, we find mixed results concerning
the direction of the effect. In only 5 out of 16 regressions, publishing a
test in the top 5 economic journals could reduce the chance of a strong
reporting error. Throughout all models, we find no evidence for statistical
significance. These models control for journal rank using the Scimago Jour-
nal Rank and this might capture a potential effect of the top 5 journals.
When excluding journal rank from the regression suggestive evidence for a
positive association between top 5 and strong overstated reporting errors
considering all tests is found (cf. Table B.11 in the Online Appendix). This
regression is exploratory as we pre-registered journal rank to be a control
variable. We conclude that there is no evidence in our data to support
hypothesis 2b but some suggestive indication in support of 2a is found.

The coefficients for the control variables can be found in Table B.9 and
Table B.10 in the Online Appendix for the strong overstated and the strong
understated reporting errors, respectively. An explanation of the control
variables can be found in Table B.6 in the Online Appendix. The usage
of clustered standard errors reduces the chance of a test being afflicted
with a strong overstated reporting error while increasing the chance of a
test being afflicted with a strong understated reporting error. Interestingly,
the individual chance per test of being afflicted with both types of strong
reporting errors is negatively correlated to the number of tests per article.
Time appears to have an ambiguous influence on the prevalence of reporting
errors. While the effect seems to be negative for overstated reporting errors
in non-main tests and for understated reporting errors in the first row of a
table, the effect is positive for overstated reporting errors in the first row.
Reporting coefficients along with p-, t- or z-values is negatively correlated
with overstated reporting errors. The latter also holds for tests in tables
with standard significance levels.26 Results for the number of authors are
not statistically significant.

Additionally, we performed the same regressions, but at the article level
(cf. Table B.12 in the Online Appendix) as outlined in our pre-analysis

26We define standard significance levels as 0.1, 0.05 and 0.01 as around 85 % of all
tests in our data measure statistical significance using these levels.
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Table 4: Logistic regression at the test level

All Main tests Non-main tests First row
Strong overstated
Data and code required 0.7401 0.8190 0.7815 0.8468 0.7111 0.8106 0.9532 0.9625

(0.0109) (0.0786) (0.1179) (0.3057) (0.0214) (0.1434) (0.8431) (0.8674)
[0.0436] [0.3144] [0.3034] [0.4527] [0.0856] [0.5736] [0.9940] [0.8674]

Top 5 1.1044 1.2441 0.8460 1.3668 1.2704 1.1785 1.0680 2.1725
(0.6049) (0.2914) (0.5737) (0.3812) (0.3116) (0.5173) (0.8793) (0.2039)
[0.8059] [0.3885] [0.7649] [0.4527] [0.6232] [0.6969] [0.9940] [0.5778]

Controls No Yes No Yes No Yes No Yes
McFadden’s Pseudo R2 0.0009 0.1208 0.0009 0.1229 0.0011 0.1210 0.0000 0.1231

Strong understated
Data and code required 0.8953 0.8794 0.7842 0.7810 0.9437 0.9200 0.9983 1.1322

(0.3489) (0.2195) (0.1517) (0.1442) (0.6874) (0.5227) (0.9940) (0.6211)
[0.6978] [0.3885] [0.3034] [0.4527] [0.8050] [0.6969] [0.9940] [0.8281]

Top 5 0.9507 1.1697 0.9917 1.3043 0.9393 1.1041 0.8394 1.7956
(0.8059) (0.4480) (0.9787) (0.4527) (0.8050) (0.7052) (0.6992) (0.2889)
[0.8059] [0.4480] [0.9787] [0.4527] [0.8050] [0.7052] [0.9940] [0.5778]

Controls No Yes No Yes No Yes No Yes
McFadden’s Pseudo R2 0.0001 0.1114 0.0002 0.0970 0.0001 0.1206 0.0006 0.0939
Observations 578, 132 578, 132 172, 040 172, 040 406, 092 406, 092 65, 810 65, 810

Notes: Logistic regression with double lasso approach for variable selection of controls at the test level. Standard errors
are clustered at the article level and based on 5,000 bootstrap replicates. Odds ratios are given with p-values in paren-
theses and FDR-adjusted p-values in brackets. Intercept not reported. Information on the control variables is given in
Table B.6 in the Online Appendix. Main tests refers to a subset of tests that appear in the first three rows of tables
that are neither robustness checks nor appear in the appendix. First row refers to a subset of tests that appear in the
first row of tables that are neither robustness checks nor appear in the appendix.

plan. In this robustness check, the dependent variable is one if an article
contains at least one strong overstated or strong understated reporting er-
ror, respectively. We find similar significance levels and point estimates for
the uncontrolled models regarding hypothesis 1a. Hypothesis 1b remains
unconfirmed. Regarding hypothesis 2b we find a suggestive indication for
a negative association for the uncontrolled model for the non-main test.

4.3 Exploratory difference-in-differences

The pre-registered analysis indicates that data and code policies may reduce
the risk of strong reporting errors. At the same time, we noticed a negative
time trend in the rates of reporting errors while there is an uptake of
journals that introduce such policies over time. We perform an exploratory
quasi-experimental difference-in-differences design to shed further light on
causality. We interpret an open data and code policy as a treatment at the
journal level resulting in the following two-way fixed effects model:

yijt = β0djt + β1xijt + ui + vt + ϵijt, (5)
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where yijt is the dependent variable that is one if a test i in journal j in
time period t is afflicted with a strong overstated or understated reporting
error. The binary variable djt depicts whether a journal j was treated
in time period t. xijt is a set of control variables that include dummy
variables for the number of authors, the number of tests per article, dummy
variables for the type of test, for the usage of standard significance levels, as
well as for the prevalence of clustered standard errors in the corresponding
table and the occurrence of another strong reporting error within the same
article. The variable selection is mostly based on the significant control
variables found in the main regression. ui and vt are journal and time fixed
effects, respectively.

Figure 5 depicts that there is heterogeneity in the treatment timing.
This results in a bias when applying the traditional two-way difference-
in-differences design (e.g., Borusyak et al. 2021; Sun and Abraham 2021).
Hence, we follow Askarov et al. (2022) who analyze the effect of open data
policies on publication bias using the imputation estimator of Borusyak
et al. (2021) (BJS).
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Figure 5: Number of journals with open data and code policies

We consider biannual periods and a minimum of ten articles per journal
per year to increase power. This new data set starts in 2003 and comprises
the journals European Economic Review (EER), Economic Journal (EJ),
JODE, JOF, Journal of Financial Economics (JOFE), Journal of Interna-
tional Economics (JOIE), JOLE and JPUE. This results in four treated
journals and four non-treated journals while the not yet treated journals
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also function as part of the control group. Table B.13 in the Online Ap-
pendix gives an explanation of the journal selection.

Table 5 shows the result of our exploratory analysis. We report the
coefficient of the policy variable as well as its p-value. Additionally, we
report the p-value of the pre-trend test which tests the necessary parallel
trends assumption of the imputation estimation of Borusyak et al. (2021).
The assumption holds if the pre-trend time coefficients are jointly insignif-
icant. In total, we see that all point estimates are negative. In comparison
to Table 4 the effect size is smaller. This might have two reasons. First,
while we depict odds-ratios in our main regression, the imputation estima-
tor returns total probabilities.27 Additionally, by having a specific control
group that controls for unspecified differences, we might diminish the effect
size. The results are suggestively different from zero at the 10 percent level
when considering all tests, and when considering main or non-main tests
for the model with journal and year fixed effects as well as with controls.
The respective pre-trend tests confirm the findings. The results for the first
row remain insignificant. This is in line with the results of Table 4. We
also see suggestive indication for a negative effect for the non-main tests in
the context of strong understated reporting errors. Overall, we see causal
evidence for hypothesis 1a.

As a first robustness check we allow an anticipation effect of one time
period. Askarov et al. (2022) show that up to two years prior to the im-
plementation of a data-sharing policy, authors begin to share their data.
This suggests that authors change their workflow in anticipation of a data-
sharing policy, e.g. when policies are discussed at conferences beforehand,
or that at least the implementation in one journal leads to spillover effects
to other journals.28 The results of this robustness check can be observed
in the second half of Table 5. The overall picture remains the same for
strong overstated reporting errors with p-values that are a little larger on
average. This also holds for the negative coefficient for the non-main tests

27The imputation estimator of Borusyak et al. (2021) uses the ordinary least squares
technique, even though we have a binary dependent variable. This results in a linear
probability model. The coefficient is still interpretable, but predictions may be outside
the interval [0, 1] (Norton 2007; Askarov et al. 2022).

28All journals of the American Economic Association started to implement data-
sharing policies in 2005. As these journals do not provide HTML documents, they
are not part of our sample.
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Table 5: BJS imputation estimator at the test level

All Main tests Non-main tests First row
No anticipation
Strong overstated
Data and code required -0.0011 -0.0013 -0.0014 -0.0018 -0.0009 -0.001 -0.0015 -0.0018
p-value (0.0663) (0.0191) (0.1287) (0.0481) (0.1708) (0.0996) (0.3059) (0.2191)
Pre-trend test [0.6242] [0.9396] [0.6439] [0.7143] [0.6035] [0.8166] [0.7362] [0.6912]
Strong understated
Data and code required -0.0007 -0.0008 0.0007 0.0005 -0.0014 -0.0013 0.0008 0.0007
p-value (0.2134) (0.1190) (0.3283) (0.5122) (0.0578) (0.0370) (0.5508) (0.6152)
Pre-trend test [0.0563] [0.3088] [0.1341] [0.2002] [0.1541] [0.6674] [0.0429] [0.0320]

One time period anticipation (robustness check)
Strong overstated
Data and code required -0.0013 -0.0012 -0.0020 -0.0021 -0.0011 -0.0008 -0.0017 -0.0018
p-value (0.0671) (0.0684) (0.0800) (0.0556) (0.1855) (0.2674) (0.2961) (0.2807)
Pre-trend test [0.2860] [0.6120] [0.9374] [0.9662] [0.1799] [0.2876] [0.6407] [0.4661]
Strong understated
Data and code required -0.0013 -0.0008 0.0006 0.0006 -0.0020 -0.0014 0.0006 0.0007
p-value (0.0798) (0.1902) (0.5640) (0.5170) (0.0213) (0.0714) (0.7494) (0.6984)
Pre-trend test [0.0716] [0.3458] [0.0064] [0.0970] [0.2630] [0.7055] [0.1223] [0.1355]
Journal and year effects Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes
Observations 340,035 340,035 101,764 101,764 238,271 238,271 39,109 39,109

Notes: BJS imputation estimator at the test level showing the average treatment effect on the treated as probabilities. The dependent variable in
the first and third quarter of the table is a dummy that is one if a test is afflicted with a strong overstated reporting error. The dependent variable
in the second and fourth quarter of the table is a dummy that is one if a test is afflicted with a strong understated reporting error. Coefficients
are probabilities. Standard errors are clustered at the article level. p-values of the coefficients in parentheses and p-values of pre-trend tests with
three periods in brackets depicted. Controls include dummy variables for the number of authors, the number of tests per article, dummies for
the test type, for the usage of standard significance levels, as well as for the prevalence of clustered standard errors in the corresponding table
and the occurrence of another strong reporting error within the same article. The data set comprises the journals EER, EJ, JODE, JOF, JOFE,
JOIE, JOLE and JPUE from 2003 to 2016 and defines every two years as one time period, i.e. one year. Main tests refers to a subset of tests
that appear in the first three rows of tables that are neither robustness checks nor appear in the appendix. First row refers to a subset of tests
that appear in the first row of tables that are neither robustness checks nor appear in the appendix.

in the context of strong understated reporting errors. Hence, our find-
ings are robust with regard to anticipation effects. As a second robustness
check, we calculated falsification tests in the same manner as Askarov et
al. (2022). These falsification tests shall prove that our findings are not
based on chance. The first falsification test is depicted in Table B.14. We
rerun our analysis but removed all treated observations and moved the
treatment to two time-periods earlier, i.e. four years. In the end, no result
was statistically significant, supporting the robustness of our findings. For
the second falsification test we permute the treatment variable 1,000 times.
Figure C.11 and Figure C.12 show the resulting density plots that confirm
that our findings regarding hypothesis 1a continue to be robust.

5 Discussion

When considering all tests, the rate of strong statistical reporting errors
is comparably large with 30.89 % at the article level. However, previous
literature focuses on the main tests of the respective articles and we find
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the rate of strong reporting errors with 14.88 % to be in the same ballpark
as previous studies. At the test level, the rate of strong reporting errors
is small with 0.51 % and at the lower end of what was found for other
fields. Economics articles document substantially more tests per article
compared to articles in psychology.29 Therefore, the low error rate at the
test level translates into a larger error rate at the article level due to more
possibilities of having a reporting error within a respective article. This
suggests that reporting errors are at least not more common in economics
than in other disciplines. The study that is most comparable to our study
is Pütz and Bruns (2021) and uses a manually coded sample. They find
with 21.6 % at the article level and 0.5 % at the test level very similar rates
to what we found with DORIS on a large scale. Bruns et al. (2019) find
larger error rates with 25 % at the article level and 1.4 % at the test level
for Research Policy which publishes economics articles but also to a large
extent articles from management and other disciplines.

The rate of strong reporting errors is at first sight small with only
0.51 % for the main tests. However, reporting errors may mislead readers.
For example, many regression models are usually presented in one table to
convince the reader about the robustness of a certain finding. Reporting
errors may convey the impression that a specific variable has a statistically
significant effect across all models. Specifically, 39.74 % of the tables that
are neither robustness checks nor part of the appendix with at least one
reporting error in the first three rows have at least 10 % of the main tests
being afflicted with a strong reporting error. This corresponds to 2.04 %
of all tables. Such reporting errors may pose a challenge to cumulative
knowledge production and a threat to evidence-based policy making (cf.
Section A.7 in the Online Appendix). In the end, reporting errors are
avoidable mistakes. Therefore, we can support Askarov et al. (2022) and
Pütz and Bruns (2021) who conclude that reducing reporting errors alone
is an important contribution.

We find an excess of overstated reporting errors when focusing on the
main tests. This finding is in line with previous literature (e.g., Nuijten et

29Based on Nuijten et al. (2016) psychology publishes 15.46 main tests in articles with
at least one null-hypothesis significance testing result. We estimate this amount at least
46.79 based on Table 3.
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al. 2016; Pütz and Bruns 2021). There might be several reasons for a bias
in favor of overstated reporting errors as Nuijten et al. (2016) and Pütz and
Bruns (2021) pointed out. First, authors’ prior beliefs are usually in favor
of the alternative hypothesis, and behavioral biases make it easier to accept
a statistically significant finding rather than a non-significant one (Kunda
1990; Bastardi et al. 2011). Second, the overall publication process is biased
in favor of statistically significant results (e.g., Ioannidis 2005) with some
exceptions (Ioannidis 2023). Third, QRP can be another potential source,
as, e.g., John et al. (2011) found in psychology that authors frequently
round down p-values in order to let them appear statistically significant.
In economics, a pendant would be to add eye-catchers to the results to let
them appear statistically significant. As the rate of understated reporting
errors is relatively large as well, many errors are likely to be honest mistakes
that could be easily found during the review process. An alternative to
tackle honest mistakes is to prohibit the use of eye-catchers as was done
by the AER. While such a policy tackles reporting errors as a byproduct,
it mainly addresses the ubiquitous dichotomization of statistical findings
using arbitrary thresholds (Cumming 2014).

Our regression results give a slight indication that the top 5 economics
journals might have a higher probability of strong overstated reporting er-
rors. This result is surprising as the review process tends to be longer
(Ellison 2002) and, therefore, can be assumed to be more rigorous. Addi-
tionally, authors may more carefully check manuscripts sent to top journals.
In contrast, the reward of publishing in the top 5 is high (Heckman and
Moktan 2020; Ductor et al. 2020) which may increase the prevalence of
reporting errors. Apparently, the current review process is not sufficient
to clear out these mistakes. One way to improve the review process for all
journals would be the automatic check for reporting errors, using tools like
DORIS or statcheck.30 Note, that Brodeur et al. (2020) find that tests in
the top 5 are not more or less likely to be statistically significant.

The probability of a strong overstated reporting error is reduced for
journals with open data and code policies, although evidence for under-

30In psychology, statcheck is already in use at Psychological Science and the Journal
of Experimental Social Psychology to assist in the peer review process (Nuijten et al.
2017).
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stated reporting errors is ambiguous. Data and code availability policies
are a key instrument to foster replicability (Munafò et al. 2017) and re-
search credibility (Askarov et al. 2022). These policies tackle reporting
errors as a byproduct, most likely by incentivizing authors to double check
their results for consistency with the replication package before publication.
Our finding that these policies are more prone to reduce overstated than
understated reporting errors could be due to significant findings being more
in line with authors’ expectations and hence are not double checked (Nui-
jten et al. 2016; Pütz and Bruns 2021). Mandatory data and code policies
are also heterogeneous31 and several studies suggest that even though such
policies are in place, some authors do not publish neither data nor code
(e.g., Müller-Langer et al. 2017; Vlaeminck and Herrmann 2015; Chris-
tensen and Miguel 2018; Askarov et al. 2022; Christensen et al. 2019).32

In the end, open data and code policies are necessary but not sufficient to
avoid mistakes and QRP. We suggest enforcing these policies when enacted
and also verifying the published data and code before publication. The ef-
fort to publish data and code is beneficial to authors, as publicly available
data sets may increase citations (Christensen et al. 2019). Nonetheless, we
advise to secure confidentiality and privacy. This seems trivial, but Chris-
tensen and Miguel (2018) report several cases in which researchers violated
the right of privacy by publishing their data.

We might underestimate the effect size of data and code policies as
authors might have published their data and code and submitted to journals
with open data and code policies in the first place but were finally published
in journals without these policies. We have no reason to believe in an
overestimation of the effect, as this would mean that authors consciously
submit studies containing reporting errors to journals without open data
and code policies.

The overall error rate seems to decline slowly over time as can be seen
in Figure 3 and Figure 4 and in the regressions, at least for overstated

31Vlaeminck and Herrmann (2015) shows that some policies require authors to hand
in data before the first submission, while some policies give more leeway. We do not
distinguish between these policies.

32Reasons for exemptions could be the usage of confidential data but also the non-
willingness to share data in order to avoid that someone else uses the data to publish
new findings first.
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reporting errors for the non-main tests and understated for the first row in
a table, which is in line with Nuijten et al. (2016) who find that error rates
in psychology have been stable or even declining over time.

In general, DORIS is a powerful tool that automates the data collec-
tion and flagging process despite the heterogeneous publication style in
economics. It automatically detects different significance levels, collects
meta-data about the article and the respective table, and also removes
tests where the null hypothesis is not a null effect. DORIS facilitates meta-
research in economics33 and can be used in the review process.

Although we collected a relatively large sample, our study has limita-
tions. DORIS is technically limited and does not recognize every statistical
test in every article, e.g., DORIS does not collect tests in tables with fewer
than three tests or if significance levels are only marked by bold characters
(cf. Section A.4 of the Online Appendix for a comprehensive list). Nev-
ertheless, like written in Section 2.2.2 comparing our data with the data
of Brodeur et al. (2016) yields that we find 28 % to 70 % more tests per
article, which is plausible, as we consider every test and not only main
tests. For comparison, statcheck detects 67.5 % of all tests (Nuijten et al.
2016). Second, the FDR of DORIS for detecting tests is 1.2 %. While this
FDR requires manually checking flagged tests for the analysis of reporting
errors, other meta-research (e.g., analysis of biases) may consider an FDR
of 1.2% to be fairly acceptable. The in-depth work of manually reviewing
more than 13,900 tests ensures that we minimized the risk of erroneously
accusing authors of reporting errors. We suggest that authors always state
if they use standard errors or t- or p-values instead, or if they use one-sided
or two-sided tests, especially if they diverge from the norm of reporting
two-sided tests with standard errors.

6 Conclusion

We analyze the prevalence of statistical reporting errors in more than
578,000 tests from the top 50 economics journals available in HTML (31
journals) using an automated procedure called DORIS (Diagnosis Of Reporting

33DORIS could also be extended to other disciplines.
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errors In Scraped tables). This procedure automatically scrapes the arti-
cles from the journal web page, extracts its tables, and interprets the values
based on text-mining techniques. We find that 0.46 % of all tests are af-
flicted with a strong reporting error where either the eye-catcher or the
calculated p-values signals statistical significance, but the respective other
does not. 30.89 % of all articles have at least one strong reporting er-
ror. Focusing on the main tests of the respective articles, these error rates
become 0.51 % and 14.88 % at the test and article level, respectively.

We find indications of a systematic bias towards statistically significant
reporting errors, reflecting a preference for statistically significant find-
ings in the research and publication process. Reporting errors can mislead
readers and 1.37 % of all tables in our sample have more than 10 % of the
tests being afflicted with strong reporting errors. This number increases to
2.04 % when considering only main tests.

We find suggestive indication that the top 5 economics journals have a
higher probability of strong overstated reporting errors even though they
have a longer, and hence presumably more rigorous review process. The
review process could be improved for all journals by using automated pro-
cedures such as statcheck and DORIS as an automated tool to flag potential
errors before publication. This tool could be used by reviewers immediately
after submission as a first check or by authors themselves before submis-
sion.34

Moreover, there is evidence that mandatory open data and code poli-
cies reduce the probability of a test being afflicted with a strong overstated
reporting error causally, but evidence on strong understated reporting er-
rors is ambiguous. This finding places even more emphasis on the need
for such policies in addition to their benefits in terms of replicability. Al-
though these policies have markedly increased over time to nearly 20 % of
all empirically-oriented economics journals having a mandatory data avail-
ability policy (Vlaeminck 2021), we suggest that all journals implement not
only data availability policies but also code availability policies.

In summary, the publication process could play a key role in detecting
statistical reporting errors. Due to open data and code policies, authors

34As a HTML document is only produced at the very end of the publication process,
we are currently working to adapt DORIS to be applicable to LaTeX files as well.
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might check their results more carefully while giving reviewers and other
scientists the possibility to verify their research. Stodden et al. (2016) and
Artner et al. (2020) suggest a citation system that lists data sets used,
code packages, software, and algorithms used in the reference section. This
could increase incentives to share data and code. As research becomes more
open, the prevalence of reporting errors is likely to diminish.

Another promising and sustainable solution to reduce the prevalence
of reporting errors may be to invest more effort in statistical education.
The more statistical background the researchers and reviewers have, the
fewer errors may be produced. Learning statistical tools that facilitate
or automate the transition from statistics to typesetting software (e.g., R
packages stargazer and texreg or R Markdown in general) reduces the most
common reason for reporting errors based on the survey carried out by Pütz
and Bruns (2021).

Future research could address how the actual availability of data and
code is associated with the presence of statistical reporting errors. DORIS
could be extended to also cover confidence intervals that are increasingly
used in economics, and the data compiled by DORIS is likely to be valuable
for future meta-research in economics.
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A DORIS

A.1 Summary of DORIS

The scraping part of DORIS is implemented in R (Version 3.6.3) and results
in HTML files of the articles, CSV files of the tables, and text files of the
respective table notes. These data are the basis for the interpreter part of
DORIS that is implemented in Python (Version 3.8.2).

The rule-based interpreter is based on the following main principles:
First, tables with eye-catchers are identified mainly by comparing cell con-
tents with a list of possible eye-catchers. This list includes the following
signs: *+†‡abc §$^#. Second, different table styles are identified, such as
standard errors below the coefficients or standard errors next to the coef-
ficients. In total, we distinguish between 14 different table styles. Third,
table notes are used to link eye-catchers to significance levels using a huge
set of regular expressions. Fourth, we gather the meta-data for each test,
e.g., the usage of clustered standard errors in the table or the usage of non-
linear models in the article using the regular expressions given in Table B.7
in the Online Appendix. Where possible, we tried to exclude footnotes and
references from the text-mining procedure. Some meta-data were merged
using data from the Web of Science, e.g. the number of references or a
dummy for open access articles. Finally, we perform plausibility checks,
e.g., we check if DORIS finds p-values that are not between 0 and 1 or if
the position of some tests in a single table intersects. If a test in a table is
marked as not plausible, we remove the entire table from the sample. For
the final extraction of the data, we relied on multiprocessing on a server
with 128 cores, which resulted in an extraction duration of around 24 hours.

Note that we manually removed three articles from the sample as DORIS
misinterpreted some very complicated tables in it. Additionally, we manu-
ally removed 44 articles because we found that they were not real HTML
files, but HTML files with an embedded PDF file or only a PDF file avail-
able for download.
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A.2 Flagging based on degrees of freedom

First, in Figure C.1 we depict an example of an overstated reporting error
with a test labeled incorrectly significant at the 0.1 level. The red inter-
val represents the range of p-values that are consistent with the reported
eye-catcher (0.1 level but not 0.05 level of significance). The possible sig-
nificance values based on the redundant information (e.g., coefficients with
standard errors) are represented by the green interval. Note that the re-
ported statistical information results in an interval due to rounding uncer-
tainty. The position of the green interval further depends on the degrees
of freedom. It moves from right to left as the degrees of freedom increase.

0 0.05 0.10 0.15 0.20 0.25

Interval eye-catcher Interval statistical values

Figure C.1: Overstated reporting error: Intervals of p-values

We search for the maximum number of degrees of freedom (including
infinity) df over

crit that still ensures that the green and red intervals are disjoint.
A strong overstated reporting error occurs when df over

crit is defined and when
the estimated degrees of freedom are smaller than df over

crit .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Interval statistical values Interval eye-catcher

Figure C.2: Understated reporting error: Intervals of p-values

Next, in Figure C.2 we depict an example of an understated reporting
error with a test labeled as non-significant, i.e. the significance value is
incorrectly labeled between 0.1. and 1. The green interval moves from
left to right as the degrees of freedom decrease. We look for the minimum
number of degrees of freedom dfunder

crit that just ensures that the green and
red intervals are disjoint. A strong understated reporting error occurs when
dfunder

crit is defined and when the estimated degrees of freedom are greater
than dfunder

crit .
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A.3 Manual control

DORIS has a very small FDR for recognizing tests of 1.2 %. Errors were
mostly driven by assuming that standard errors are given in parentheses if
neither t- or z-values are mentioned in the table notes. Additionally, some
tables that reported summary statistics or a t-test for differences of means
were erroneously interpreted by DORIS as regression tables. 15 tests (or
around 40 %) of the pairs of numbers that were mistakenly interpreted
as a test in the evaluation phase of DORIS described in Section 2.1 were
diagnosed as a reporting error. Six out of this 15 wrongly flagged tests
were marked as overstated reporting errors, while nine were marked as
understated reporting errors.

While the FDR is very small, the rate of reporting errors is too. This is
why even a very small FDR constitutes a relevant concern for diagnosing
reporting errors. Therefore, we use DORIS as a flagging tool that needs
manual supervision rather than a fully automated tool for diagnosing re-
porting errors.

The following steps describe our procedure for manually controlling the
output of DORIS. The control was carried out by one co-author and a re-
search assistant who double-checked each other for difficult cases and for
some random observations. Another co-author was consulted for compli-
cated cases. The order of the manual control was randomized at the article
level. For every strong reporting error, we checked the following variables
(additional information that was not collected by DORIS was also gathered
to control for potential flagging mistakes as is explained below):

• core data

– test-type

– statistical values

– eye-catcher

– significance levels given in the table notes

– over- or understated reporting error?

• meta-data

– mentions of first-stage regression in table
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– mentions of one-sided tests in article

– mentions of clustered standard errors in table notes

– mentions of certain non-linear models in article

– mentions of usage of significance levels of the underlying model rather than
the presented marginal effects in case of certain non-linear models (not
collected by DORIS):
Set it to TRUE, if the table notes mention such a usage, set it to FALSE if
it is not mentioned or if it is only mentioned in the text.

– mentions of multiple hypotheses-testing in article

– mentions of robustness checks in table

– mentions of fixed-effects in article

– number of pages of article

– number of authors

– year of publication

• flagging

– highest number of observations in table or highest integer

– highest number of observations in text

– exact number of observations (not collected by DORIS):
Check if the observations are given in the table, either numerically or as a
formula (e.g., quarterly data from 1991Q1 to 1995Q4). Leave it empty if
there are no numbers of observations given or if it is only stated in the text.

– maximum number of rows or columns with parameters

– exact number of parameters (not collected by DORIS):
Count the reported parameters per regression. If the table mentions con-
trols or fixed-effects, collect the exact amount by looking into the text,
primarily in the data section, and mark the collected number with a com-
ment in the document.

– number of clusters (not collected by DORIS):

If the table notes state the usage of clustered standard errors, collect the

exact number of clusters by looking first at the table and then at the text,

primarily in the data section, and mark the collected number with a com-

ment in the document.

For the regular expressions used to obtain the meta-data, see Table B.7
in the Online Appendix. A mistake in the core data lead to the removal
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of the whole article from the data set. A mistake in the meta-data was
manually corrected.

Mistakes in variables concerning the flagging were treated three-fold: If
no number of observations is given in the table but DORIS mistakenly col-
lected a number, the whole table was removed from the data set, as flagging
cannot be performed without an estimation of the degrees of freedom. If
DORIS collected a wrong number and the mistake leads to an excession of
the threshold of critical degrees of freedom (cf. Section A.2, the entire ar-
ticle was removed to rule out other potential mistakes. If the mistake does
not exceed the threshold of degrees of freedom, the mistake was manually
corrected in the data set and the article was kept in the sample. Note that
for tables with clustered standard errors and understated reporting errors,
the number of clusters instead of the number of observations was used to
calculate the exact number of degrees of freedom, as Stata sometimes uses
the number of clusters as degrees of freedom (Pütz and Bruns 2021). As
the number of clusters is usually far lower than the number of observations,
this gives the authors the benefit of the doubt as we flag fewer understated
reporting errors when assuming lower degrees of freedom.

Additionally, if possible, we determined the reason for a reporting error,
e.g., wrong HTML formatting, wrong information about values in paren-
theses, etc. These data can be obtained from the authors on request.
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A.4 Limitations of DORIS

• Small tables are not recognized (minimum three tests).

• DORIS does not interpret tables with bold eye-catchers.

• DORIS cannot recognize image data (e.g., tables or significance levels
that are pasted as images).

• In case of multiple standard errors reported with multiple parenthe-
ses, one below the other, DORIS only recognizes the first parentheses.

• Sometimes, the significance level is not given per test individually, but
rather for a whole table row. In these cases, DORIS only recognizes
the last column.

• For Wiley-published journals, DORIS is not able to distinguish the
usual text from footnotes, as they are spread in the text and not
bundled at the end of the document.

• DORIS has problems extracting the number of observations if they
are given in a complicated format, e.g., "255× 4 observations".
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A.5 Removing outliers

Table B.1: Derivation of outliers

Quantile 0 0.5 1 1.5 2 2.5 3 4 5
Threshold total errors (above) 103.00 36.76 20.76 14.00 12.00 10.00 8.00 6.00 5.00
...affected articles 0 21 41 59 72 93 117 154 192
Threshold share errors (above) [%] 85.71 25.71 18.92 14.29 11.63 8.97 7.86 6.18 4.84
...affected articles 0 21 41 59 81 101 121 161 202
Total affected articles (above) 0 33 63 88 112 139 173 227 277
Threshold total tests (below) 2 4 6 6 7 8 9 12 13
...affected articles 0 8 31 31 61 77 103 141 178
Threshold share tables with tests (below) [%] 3.12 7.69 8.33 9.09 9.09 10.00 10.00 11.11 11.91
...affected articles 0 12 24 41 41 71 71 109 170
Total affected articles (below) 0 19 54 69 97 140 164 232 308
Remaining errors 5316 3889 3415 3078 2913 2675 2420 2121 1889
Remaining articles 4025 3973 3908 3868 3816 3746 3688 3566 3440
...ratio [%] 100.00 98.71 97.09 96.10 94.81 93.07 91.63 88.60 85.47
Remaining articles that contain at least one error 1296 1263 1233 1208 1184 1157 1123 1069 1019
...ratio [%] 32.20 31.79 31.55 31.23 31.03 30.89 30.45 29.98 29.62

Notes: Only strong reporting errors are considered. Articles that would have been cut from below and that were controlled
during the correction of the flagged strong reporting errors were kept in the sample.

Many reporting errors stem from misreporting the numbers in paren-
theses or in brackets. Holmes (2004) coined this as Reporting Imprecision.
This means that the second number of a test, next to the coefficient, is not
specified correctly or specified at all, e.g., standard errors are marked as t-
values. This reporting error differs substantially from reporting errors that
stem from accidentally inserted eye-catchers as the reporting error share in
a table increases tremendously when having reporting imprecisions. This
high prevalence overshadows the rather low prevalence of other reporting
errors in subsequent analyzes. In order to separate this error, which is
usually easily distinguished by the reader from real reporting errors, we
try to exclude them from our sample. Table B.1 shows how many articles
would be removed if we cut the top x percent from our manually corrected
sample (cf. Figure C.8 based on either the number of total reporting er-
rors or the share of reporting errors. On the range of all reporting errors,
this resembles a cut from above. Furthermore, since many analyses are
calculated at the article level or clustered at the article level, we want to
exclude articles for which we might assume that DORIS had a low power
in detecting statistical tests, i.e. found only a small portion of all tests and
almost likely no reporting errors. Therefore, we look at the number of tests
found and the share of tables with tests as can be seen in Table B.1. On
the range of all reporting errors, this resembles a cut from below.
In order to keep the removal to a minimum while removing most of the
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problematic cases mentioned above, we chose the 2.5 % quantile as the
threshold for the definition of outliers. Theoretically, this means that we
would cut 10 % from our sample. Effectively, we remove only around 8 %
of our sample as we keep articles that would have been cut from below
but which were already checked in the manual control and as sometimes
the same article is removed by different cuts. In total, this means that we
remove articles with more than 10 strong reporting errors or 8.97 % share
of strong reporting errors and articles with less than 8 tests or less than
10 % of the tables containing tests.
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A.6 Definition of main tests
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Figure C.3: Density of z-values using different table rows

For the definition of main tests, we assume that in economics regression
models are usually reported columnwise and that main tests appears in the
top rows of a table. To define the amount of table rows that belong to the
main tests on average, we built 13 data sets from our principal data set
without outliers (cf. Figure C.8, z-values greater than 10 are cut), each
consisting only of tests belonging to the i-th row of tables that are neither
robustness checks nor appear in the appendix, where i ∈ 1, .., 13. We chose
13 as the maximum as 80 % of all tables have 13 or fewer rows. Figure C.3
shows the density functions based on z-values for these data sets. The
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first red dashed line from the left depicts a z-value of 1.645, i.e. the 10 %
significance level, the second depicts 1.96, i.e. the 5 % significance level and
the third depicts 2.576, i.e. the 1 % significance level. For the first, second,
and third rows we see a clear excess of significant values. The other rows
converge to one common line. Gorajek and Malin (2021) find that main
tests show, among others, a discontinuity at 1.96, while non-main test do
not. Hence, we choose our definition of main tests to include the first three
rows of a table to be in line with these findings. As a robustness data set
we choose only the first row because we might overestimate the number of
main tests using the definition that includes the first three rows.
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A.7 Change of statement due to statistical reporting

errors

In the following section, we present four examples of articles whose state-
ments might change due to statistical reporting errors. We first quote the
text from the respective article, give an explanation about the reporting
errors, and the statements that might not hold when considering the re-
porting errors, and show the respective table afterwards. References are
removed for reasons of anonymization.

Example 1

Text
Using a linear probability model (OLS), we regress indicators of future
default on ratings and control variables. In Column 1, default in three
years is regressed on a dummy for investment-grade rating, Fitch’s market
share, and an interaction of these. All three variables are highly signif-
icant. The coefficient on the investment-grade dummy is negative and
significant at the 1% level, implying that firms rated investment grade are
less likely to default than those rated noninvestment grade. The interac-
tion is positive, meaning that the difference between investment-grade and
speculative-grade default rates falls with competition. The magnitude of
this effect is large. [...] In Column 2, we replace the investment-grade
dummy with the numerical rating value (using the Hand, Holthausen, and
Leftwich, 1992, scale), with similar results. The scale uses finer variation,
but at the expense of imposing a particular numerical scale, which could be
inappropriate. As it turns out, the fit is slightly better, and the magnitude
of the interaction remains large and significant at the 1% level.

Explanation
There is a strong overstated reporting error in the first column, second
row, as well as two strong overstated reporting errors in the second col-
umn, third, and fifth row. Hence, the statement that "firms rated invest-
ment grade are less likely to default than those rated noninvestment grade"
might not hold. Additionally, the authors argue that the second column
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shows similar results. This might not be true in the face of the reported
errors mentioned.

Table
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Example 2

Text
The estimated treatment effect of VC experience, estimated using the Heck-
man two-step method, is displayed in the second column of Table 8. The
significant negative relation between downside protections and VC experi-
ence continues to hold.

Explanation
There is a strong overstated reporting error in the first column, first row.
Hence, the statement that the "significant negative relation between down-
side protections and VC experience continues to hold" might not be true.

Table
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Example 3

Text
Contrary to the results of the non-parametric statistical test, the regres-
sion picks up a weakly significant difference between participant types, with
sellers being about 12 percentage points more likely than buyers to opt for
tax evasion, ceteris paribus.

Explanation
There is a strong overstated reporting error in the first column, first row.
Hence, the statement that "sellers being about 12 percentage points more
likely than buyers to opt for tax evasion" might not be true.

Table
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Example 4

Text
These results are reported in Table 6, Panel A.20 In this specification,
we find conflicting evidence on the effect of equity capital on credit con-
straints (columns (1) and (2)) [...] Finally, this time we find that gains
(losses) on financial assets are associated with lower (higher) credit con-
straints (columns (8) and (9)), implying that over the credit cycle, firms’
access to credit was higher if they were borrowing from banks whose finan-
cial assets were appreciating rather than depreciating in value.

Explanation
There is a strong overstated reporting error in the first row, second col-
umn. Hence, the statement of "conflicting evidence on the effect of equity
capital on credit constraints" might not be true. Additionally, there are
two strong overstated reporting errors in the first row, eighth, and ninth
columns. Hence, the statement that "over the credit cycle, firms’ access to
credit was higher if they were borrowing from banks whose financial assets
were appreciating rather than depreciating in value" might not be true.

Table (Panel B is excluded)
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Example 5

Text
We report the results in Table 3. If our previous findings were mainly the
result of a simultaneity bias, we should find a significantly positive coeffi-
cient on our distance variable in one sample, and possibly an insignificant
coefficient in the other. This is not what we find. The distance coefficients
remain significant across spread (using the median as cutoff value) and se-
curitization (no, yes) categories. Specifically, the coefficient is 0.1230 (p <
0.01) for the low-spread loans (i.e., all-in spread drawn ≤ 4.60) and 0.0922
(p < 0.05) for the high-spread loans. (...) Overall, except for this small
short-maturity loans category, these results suggest that simultaneity bias
is not a primary explanation for our findings.

Explanation
There is a strong overstated reporting error in the first and second columns,
first row. Hence, the statement that "simultaneity bias is not a primary
explanation for their findings" might not be true.

Table
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Example 6

Text
When we turn our attention to families at or above the 75th percentile in
terms of household size (column 3 of Table 6), we see that health improve-
ments lead to substantial increases in the percent of acreage fallowed by
these larger households. While smaller households have a 0.54 percentage
point decrease in the percent of land that is fallowed at 100 days on treat-
ment, these larger households have a 0.45 percentage point increase in the
percent of land that is fallowed after 100 days of ART. (...) In addition,
Column 6 indicates that households with more children under the age of six
have a greater increase in their land fallowing as they get healthier, relative
to households with less young children (this final result is significant only
at the 10% level.)

Explanation
There is a strong overstated reporting error in the third column, first row.
Hence, the statement that "smaller households have a 0.54 percentage point
decrease in the percent of land that is fallowed at 100 days on treatment"
might not be true. Additionally, there is a strong overstated reporting er-
ror in the sixth column, first row. Hence, the statement that "households
with more children under the age of six have a greater increase in their
land fallowing as they get healthier, relative to households with less young
children" might not be true.
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20



B Tables

Table B.2: Journal overview ordered by IDEAS/RePEc Ranking 12/2018a

Journal
Availability
of articles
in HTMLb

First
volume/issue
(year) in data

set

Main JEL codec

Quarterly Journal of Economics yes 126/1
(2011)

General

Journal of Economic Literature no
American Economic Journal:
Macroeconomics

no

Econometrica no
Journal of Political Economy yes 108/4

(2000)
General

Review of Economic Studies yes 70/3 (2003) General
American Economic Journal: Ap-
plied Economics

no

Journal of Finance yes 53/1 (1998) Finance
Economic Policy yes 17/34

(2002)
International

Journal of Economic Perspectives no
Journal of the European Economic
Association

yes 9/1 (2011) General

American Economic Review no
The Review of Economics and Statis-
tics

no

Brookings Papers on Economic Ac-
tivity

no

Journal of Economic Growth yes -d Development/Growth
Journal of Monetary Economics yes 41/2 (1998) Macro/Monetary
Journal of Financial Economics yes 47/2 (1998) Finance
Annual Review of Economics yes 1 (2009) Not included but

given "General"
Journal of International Economics yes 44/1 (1998) International
American Economic Journal: Eco-
nomic Policy

no

IMF Economic Review yes 43/2 (2002) International
Journal of Labor Economics yes 19/2 (2001) Labour
Journal of Human Resources no 53/1 (2006)

Continued on next page
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Table B.2 – Continued from previous page

Journal
Availability
of articles
in HTMLb

First
volume/issue
(year) in data

set

Main JEL codec

Journal of Development Economics yes 55/1 (1998) Development/Growth
Economic Journal yes 112/476

(2002)
General

Review of Financial Studies yes 11/1 (1998) Finance
Annals of Economics and Finance no
Journal of Financial Intermediation yes 12/1 (2003) Finance
Review of Economic Dynamics yes 17/2 (2014) Macro/Monetary
BIS Quarterly Review no Finance
Journal of Applied Econometrics yes 16/1 (2001) Econometrics
Journal of Money, Credit and Bank-
ing

yes 39/1 (2007) Macro/Monetary

Journal of Public Economics yes 67/1 (1998) Public/Political
Science

Journal of Business & Economic
Statistics

yes 30/1 (2012) Econometrics

International Journal of Central
Banking

no

Journal of Urban Economics yes 66/1 (2009) Urban/Regional
International Economic Review yes 43/2 (2002) General
Experimental Economics yes -d Micro/Game

Theory
Journal of Economic Surveys yes 20/4 (2006) General
RAND Journal of Economics yes 38/3 (2007) Industrial

Organization
Quantitative Economics no
Annual Review of Financial Eco-
nomics

yes 1 (2009) Not included but
given "Finance"

European Economic Review yes 42/3-5
(1998)

General

Journal of Environmental Economics
and Management

yes 45/1 (2003) Environmental

World Bank Research Observer yes 20/2 (2005) Development/Growth
Journal of Econometrics yes 86/1 (1998) Econometrics
Journal of International Money and
Finance

yes 17/1 (1998) International

Continued on next page
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Table B.2 – Continued from previous page

Journal
Availability
of articles
in HTMLb

First
volume/issue
(year) in data

set

Main JEL codec

Review of Environmental Economics
and Policy

yes 1/1 (2007) Environmental

Oxford Bulletin of Economics and
Statistics

yes 64/1 (2002) General

Experimental Economics yes -d Demography

a IDEAS/RePEc Ranking Simple Impact Factors (Last 10 Years) as of December 2018.
https://ideas.repec.org/top/old/1812/top.journals.simple10.html, last retrieved on
04.11.2022.
b As of January 2019.
c Based on Combes and Linnemer (2010). Only for journals with HTML documents.
d No scraping due to Springer’s conditions.
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Table B.3: Previous studies (sample)

Article Field Data col-
lection

Strong
error

rate at
article

level [%]

Strong
error

rate at
test level

[%]

Number
of

articles

Number
of

tests

Current study Economics DORIS 14.9 0.5 3,677 172,040
Bakker and
Wicherts
(2014)

Psychology statcheck
and
manu-
ally

15.0 1.1 153 2,667

Berle and
Starcevic
(2007)

Psychiatry Manually 9.4 - 96 546

Bruns et al.
(2019)

Innovation
Economics

Manually 25.0 1.4 101 5,667

Caperos and
Pardo (2013)

Psychology Manually 17.6 2.3 102 1,212

Colombo
et al. (2018)

Experimental
Philosophy

statcheck 6.4 0.5 173 2,573

Ercan et al.
(2017)

Veterinary
Sciences

Manually 8.8 204 -

García-
Berthou and
Alcaraz
(2004)

Nature and
British
Medical
Journal

Manually - 0.4 44 244

Karadeniz
et al. (2019)

Radiology Manually 17.8 - 157 -

Nuijten et al.
(2016)

Psychology statcheck 12.9 1.4 16,695 258,105

Pütz and
Bruns (2021)

Economics Manually 21.6 0.5 370 30,993

Veldkamp
et al. (2014)

Psychology statcheck 20.5 0.8 430 8,105

Source: Own table, partly adapted from Pütz and Bruns (2021).
Notes: For the sake of comparability, the analyzed population is the set of main
tests. We and Pütz and Bruns (2021) diagnose strong reporting errors based on the
significance levels given in the notes of the respective table (the lowest significance level
is mostly p = 0.1). All other studies consider a fixed p-value threshold to define strong
errors. Bruns et al. (2019) and base their calculations of strong errors on p = 0.1 and
in the other studies p = 0.05 is considered.
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Table B.4: Mistakes during the evaluation process of DORIS

Journal
# mistakes

in core
data

# mistakes
in

meta-data
# tests

Annual Review of Economics 0 0 100
Annual Review of Financial Economics 0 0 100
European Economic Review 3 5 100
Economic Journal 1 2 100
Economic Policy 3 4 100
International Economic Review 1 8 100
Journal of Business & Economic Statistics 0 0 0
Journal of the European Economic Associa-
tion

0 3 100

Journal of Money, Credit and Banking 2 7 100
Journal of Monetary Economics 1 2 100
Journal of Applied Econometrics 1 3 100
Journal of Development Economics 2 5 100
Journal of Econometrics 1 3 100
Journal of Environmental Economics and
Management

0 6 100

Journal of Economic Surveys 3 2 100
Journal of Finance 4 9 100
Journal of Financial Economics 1 5 100
Journal of Financial Intermediation 6 3 100
Journal of International Economics 2 4 100
Journal of International Money and Finance 0 4 100
Journal of Labor Economics 0 6 100
Journal of Urban Economics 0 6 100
Journal of Political Economy 1 5 100
Journal of Public Economics 1 0 100
Oxford Bulletin of Economics and Statistics 1 12 100
Quarterly Journal of Economics 0 4 100
RAND Journal of Economics 1 11 100
Review of Economic Dynamics 0 0 100
Review of Environmental Economics and
Policy

0 0 68

Review of Economic Studies 2 9 100
Review of Financial Studies 1 4 100
World Bank Research Observer 0 13 100
Overall 38 138 3,068
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Table B.5: Journal policies and implementation date

Journal
Data re-
quired?

Data
required
since?

Code
re-

quired?

Code
required
since?

Annual Review of Economics (ARE) no no
Annual Review of Financial Economics (ARFE) no no
European Economic Review (EER) yes 2012 yes 2012
Economic Journal (EJ) yes 2012 yes 2012
Economic Policy (EP) no no
International Economic Review (IER) yes 2009 yes 2009
Journal of Business & Economic Statistics
(JBES)

yes 2011 yes 1993

Journal of the European Economic Association
(JEEA)

yes 2011 yes 2011

Journal of Money, Credit and Bankinga (JMCB) yes 1996 yes 1996
Journal of Monetary Economics (JME) no no
Journal of Applied Econometrics (JOAE) yes 1995 no
Journal of Development Economicsb (JODE) yes 2014 yes 2014
Journal of Econometrics (JOE) no no
Journal of Environmental Economics and Man-
agement (JOEEM)

no no

Journal of Economic Surveys (JOES) no no
Journal of Finance (JOF) no yes 2016
Journal of Financial Economics (JOFE) no no
Journal of Financial Intermediation (JOFI) no no
Journal of International Economics (JOIE) no no
Journal of International Money and Finance
(JOIMF)

no no

Journal of Labor Economics (JOLE) yes 2009 yes 2009
Journal of Urban Economics (JOUE) no no
Journal of Political Economy (JPE) yes 2006 yes 2006
Journal of Public Economics (JPUE) no no
Oxford Bulletin of Economics and Statistics
(OBES)

no no

Quarterly Journal of Economics (QJE) yes 2016 yes 2016
RAND Journal of Economics (RAND) no no
Review of Economic Dynamics (RED) no no
Review of Environmental Economics and Policy
(REEP)

no no

Review of Economic Studies (RESTUD) yes 2006 yes 2006
Review of Financial Studies (RFS) yes 2020 yes 2020
World Bank Research Observer (WBRO) no no

a Based on Christensen and Miguel (2018) the Journal of Money, Credit and Banking already imple-
mented the policy in 1982 but discontinued the policy between 1993 and 1996.
b Based on the journal’s website the starting month is August 2013. However, Askarov et al. (2022)
state 2014 and we deem August late enough to count for 2014.
Source: Information obtained from journal websites and instructions for authors, as well as by
email to journal staff through 2021 to 2022 and Askarov et al. (2022), Christensen and Miguel
(2018), Müller-Langer et al. (2017), Vlaeminck and Herrmann (2015) and the Wayback Machine (cf.
http://web.archive.org/, last retrieved on 20.03.2023).
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Table B.6: Overview of all control variables

Variable name Explanation Characteristics
avg_len_table_notes Average number of characters of table

notes in whole article
positive float

contains_fixed_effects Dummy if article contains regular expres-
sion of fixed effects

0 or 1

data_or_code_req Dummy if test appears in a journal which
either in this year or before implemented
either a open data or open code policy

0 or 1

data_and_code_req Dummy if test appears in a journal which
either in this year or before implemented
either a open data and open code policy

0 or 1

is_annex Dummy if table is part of the an-
nex/appendix

0 or 1

is_clustered Dummy for usage of clustered standard
errors in table

0 or 1

is_mult_testing Dummy for usage multiple hypotheses
testing in article

0 or 1

is_non-linear Dummy for usage of certain non-linear
models in article that may use the signif-
icance value of the underlying model in-
stead

0 or 1

is_robustness Dummy if table is robustness check 0 or 1
is_table_first_stage Dummy for usage of first-stage regressions

in table
0 or 1

no_authors Number of authors of article positive integer
no_authorsXY Dummy if article has XY authors 0 or 1
no_tables_in_article Number of tables in respective article positive integer
no_tests_in_article Number of tests in respective article positive integer
no_tests_in_table Number of tests in respective table positive integer
number_strong_error_in_
article

Number of any strong reporting error in
respective article

positive integer

open_access Dummy if article is open access 0 or 1
other_strong_error_in_
article

Dummy if any other strong reporting er-
ror appears in respective article

0 or 1

pages_count Number of pages of article positive integer
ref_count Number of references used in article positive integer

Continued on next page
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Table B.6 – Continued from previous page

Variable name Explanation Characteristics
sjr Scimago Journal Rank of respective jour-

nal in respective year. 1998 imputed with
1999 for all journals available in 1999 and
2010 imputed with 2011 for Annual Re-
view of Economics (ARE)

positive float

std_sig_levels Dummy if standard significance levels
(0.1, 0.05 and 0.01) were used in table

0 or 1

publisher_xy Dummy if test is published
in journal of publisher xy (xy
∈ {Chicago, Elsevier, Oxford, Wiley},
Annual = default)

0 or 1

top5 Dummy if tests appears in one of the top
5

0 or 1

top_three_rows Dummy if test is part of the top three rows
in a table where tests appear

0 or 1

type_agg_p_value Dummy if test type is of type p-value 0 or 1
type_agg_t_or_z_value Dummy if test type is of type t-or z-value 0 or 1
type_no_se Dummy if test type is not of type coeffi-

cient and standard error
0 or 1

volyear Year of respective volume, normalized to
0 = 1998

positive integer
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Table B.7: Overview of most important Regular Expressions

Topic
(capture
level)

Regular Expression Comment

one-
sided
(article)

r’(?<=[\s\(>a])((?:left|right|one|1).(?:side
d|tailed)|directional|side\stest)(?!ness)(?!\
s(derivate|impact|aspect|violence|flow|trade
r|compound|limited\scommitment|selection
|mass|inefficiency|repression|moving|gross\s
transfer|imbalance))[^\w]’

Capture left-, right-, one-
sided or -tailed as well
as directional without cap-
turing terms without a
test context, e.g., one-
sided commitment.

clustered
stan-
dard
errors
(table)

r’(clustered|clustering|clusters?\s(over|at|b
y)|cluster\sstandard|allowing\s(for\s)?cor
relation\sat(?:\sthe)?\s[\w-]*?\slevel|stand
ard\serrors(?:\sin\sparentheses,)?\scorrect
ed\s(for|by)(?!\sheterosk)(?!\sautocorre)|s
tandard\serrors(?:\sin\sparentheses,)?\sa
djusted\sfor\s([\w-]*?\s)?cluster|cluster.r
obust|cluster\serrors\sby|intra\-cluster\sc
orrelation|cluster.correct|obs\w+\sper\scl
uster|cluster\s(\([^()]*?\))?\sand\shetero
scedasticity\-corrected\sstandard\serrors)’

Capture nouns describing
clustered standard errors,
but prevent capturing cor-
rection for heteroskedas-
ticity and autocorrelation.

multiple
testing
(article)

r’(multiple\s(?:testing|comparison|p.val
ue)|adjusted\saccording\sto\sbonferroni
|bonferroni.s(correction|adjusted)|\sfwer\
s|(?:family|experiment)wise\serror\srate|h
olm.bonferroni.method|[Šs]id[aá]k.correctio
n|closed.testing.procedure|boole.bonferron
i.bound|duncan(?:.s)?\snew\smultiple\sra
nge\stest|harmonic\smean\sp.value\sproc
edure|tukey(?:.s)?\srange\stest|hochberg(?:
.s)?\sstep.up\sprocedure|dunnett(?:.s)?\st
est|scheff[eé](?:.s)?\smethod|\sfdr\s|false\s
discovery\srate|huynh[\s-]feld)’

Capture the most impor-
tant methods of adjust-
ing for multiple hypothe-
ses testing as well as indi-
cators, e.g., FDR.

robustness
(table)

r’^table\s?[abcdef]?\.?[\div]{1,2}\.?\s?(?:
robustness|extension|sensitivity|[\w\s(-\T1
\textemdash]*?(?:robustness|sensitivity))’

Capture specific words
in table heading (Note:
\T1\textemdash is the
character ’—’).

fixed-
effects
(article)

r’(fixed.effect|dumm(?:y|ies))’ Capture fixed-effects or
dummies.

Continued on next page
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r'(?<=[\s \(>a])((?:left|right|one|1).(?:sided|tailed)|directional|side\stest)(?!ness)(?!\s (derivate|impact|aspect|violence|flow|trader|compound|limited\scommitment|selection|mass|inefficiency|repression|moving|gross\stransfer|imbalance))[^\w]'
r'(?<=[\s \(>a])((?:left|right|one|1).(?:sided|tailed)|directional|side\stest)(?!ness)(?!\s (derivate|impact|aspect|violence|flow|trader|compound|limited\scommitment|selection|mass|inefficiency|repression|moving|gross\stransfer|imbalance))[^\w]'
r'(?<=[\s \(>a])((?:left|right|one|1).(?:sided|tailed)|directional|side\stest)(?!ness)(?!\s (derivate|impact|aspect|violence|flow|trader|compound|limited\scommitment|selection|mass|inefficiency|repression|moving|gross\stransfer|imbalance))[^\w]'
r'(?<=[\s \(>a])((?:left|right|one|1).(?:sided|tailed)|directional|side\stest)(?!ness)(?!\s (derivate|impact|aspect|violence|flow|trader|compound|limited\scommitment|selection|mass|inefficiency|repression|moving|gross\stransfer|imbalance))[^\w]'
r'(?<=[\s \(>a])((?:left|right|one|1).(?:sided|tailed)|directional|side\stest)(?!ness)(?!\s (derivate|impact|aspect|violence|flow|trader|compound|limited\scommitment|selection|mass|inefficiency|repression|moving|gross\stransfer|imbalance))[^\w]'
r'(?<=[\s \(>a])((?:left|right|one|1).(?:sided|tailed)|directional|side\stest)(?!ness)(?!\s (derivate|impact|aspect|violence|flow|trader|compound|limited\scommitment|selection|mass|inefficiency|repression|moving|gross\stransfer|imbalance))[^\w]'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(clustered|clustering|clusters?\s (over|at|by)|cluster\sstandard|allowing\s (for\s )?correlation\sat(?:\sthe)?\s [\w-]*?\slevel|standard\serrors(?:\sin\sparentheses,)?\scorrected\s (for|by)(?!\sheterosk)(?!\sautocorre)|standard\serrors(?:\sin\sparentheses,)?\sadjusted\sfor\s([\w-]*?\s )?cluster|cluster.robust|cluster\serrors\sby|intra\-cluster\scorrelation|cluster.correct|obs\w+\sper\scluster|cluster\s(\([^()]*?\))?\sand\sheteroscedasticity\-corrected\sstandard\serrors)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'(multiple\s (?:testing|comparison|p.value)|adjusted\saccording\sto\sbonferroni|bonferroni.s(correction|adjusted)|\sfwer\s |(?:family|experiment)wise\serror\srate|holm.bonferroni.method|[�s]id[a�]k.correction|closed.testing.procedure|boole.bonferroni.bound|duncan(?:.s)?\snew\smultiple\srange\stest|harmonic\smean\sp.value\sprocedure|tukey(?:.s)?\srange\stest|hochberg(?:.s)?\sstep.up\sprocedure|dunnett(?:.s)?\stest|scheff[e�](?:.s)?\smethod|\sfdr\s |false\sdiscovery\srate|huynh[\s -]feld)'
r'^table\s?[abcdef]?\.?[\div]{1,2}\.?\s?(?:robustness|extension|sensitivity|[\w\s(-\T1\textemdash ]*?(?:robustness|sensitivity))'
r'^table\s?[abcdef]?\.?[\div]{1,2}\.?\s?(?:robustness|extension|sensitivity|[\w\s(-\T1\textemdash ]*?(?:robustness|sensitivity))'
r'^table\s?[abcdef]?\.?[\div]{1,2}\.?\s?(?:robustness|extension|sensitivity|[\w\s(-\T1\textemdash ]*?(?:robustness|sensitivity))'
r'(fixed.effect|dumm(?:y|ies))'


Table B.7 – Continued from previous page
Topic

(capture
level)

Regular Expression Comment

non-
linear
models
(article)

r’ (probit(?!y)|(?<!\=)logit|logistic(?!s|a
l)(?!\serror)|tobit|hazard\s(?:ratio|mod
el)|poisson(?!\sshock)(?!\sprocess)(?!\sjum
p)|neg(?:ative)?\sbinomial)’

Capture non-linear mod-
els prone to report
marginal effects but sig-
nificance of underlying
model.

appendix
(table)

r’^(table\s?[abcdef]\.?\d|annex|appendix)’ Capture appendix and an-
nex or special numbering
in table headings but ad-
ditionally, we check for po-
sition in article.

30

r'(probit(?!y)|(?<!\=)logit|logistic(?!s|al)(?!\serror)|tobit|hazard\s (?:ratio|model)|poisson(?!\sshock)(?!\sprocess)(?!\sjump)|neg(?:ative)?\sbinomial)'
r'(probit(?!y)|(?<!\=)logit|logistic(?!s|al)(?!\serror)|tobit|hazard\s (?:ratio|model)|poisson(?!\sshock)(?!\sprocess)(?!\sjump)|neg(?:ative)?\sbinomial)'
r'(probit(?!y)|(?<!\=)logit|logistic(?!s|al)(?!\serror)|tobit|hazard\s (?:ratio|model)|poisson(?!\sshock)(?!\sprocess)(?!\sjump)|neg(?:ative)?\sbinomial)'
r'(probit(?!y)|(?<!\=)logit|logistic(?!s|al)(?!\serror)|tobit|hazard\s (?:ratio|model)|poisson(?!\sshock)(?!\sprocess)(?!\sjump)|neg(?:ative)?\sbinomial)'
r'^(table\s?[abcdef]\.?\d|annex|appendix)'


Ta
bl

e
B

.8
:

P
re

va
le

nc
e

of
st

at
is

ti
ca

lr
ep

or
ti

ng
er

ro
rs

in
m

ai
n

te
st

s
us

in
g

di
ffe

re
nt

sp
ec

ifi
ca

ti
on

s

O
ne

ro
w

Tw
o

ro
w

s
T

hr
ee

ro
w

s
Fo

ur
ro

w
s

F
iv

e
ro

w
s

Le
ve

l
T

yp
e

O
.

U
.

A
.

O
.

U
.

A
.

O
.

U
.

A
.

O
.

U
.

A
.

O
.

U
.

A
.

A
ny

83
.3

3
86

.6
7

90
.0

0
90

.0
0

93
.3

3
93

.3
3

93
.3

3
93

.3
3

93
.3

3
93

.3
3

93
.3

3
93

.3
3

93
.3

3
93

.3
3

93
.3

3
Jo

ur
na

l
St

ro
ng

60
.0

0
76

.6
7

76
.6

7
70

.0
0

86
.6

7
86

.6
7

86
.6

7
90

.0
0

90
.0

0
86

.6
7

90
.0

0
90

.0
0

86
.6

7
90

.0
0

90
.0

0

A
ny

8.
68

14
.9

9
21

.5
1

13
.3

8
21

.2
4

30
.2

7
16

.5
6

25
.7

5
36

.1
2

19
.1

5
28

.8
0

39
.8

4
20

.4
0

30
.9

2
42

.0
2

A
rt

ic
le

St
ro

ng
3.

78
3.

62
7.

21
6.

58
5.

49
11

.4
5

8.
43

7.
51

14
.8

8
9.

95
9.

11
17

.5
7

10
.8

0
10

.6
1

19
.3

4

A
ny

2.
91

5.
27

7.
95

4.
78

8.
30

12
.5

4
6.

16
10

.5
3

15
.8

1
7.

19
12

.0
4

18
.0

4
7.

91
13

.3
1

19
.7

1
Ta

bl
e

St
ro

ng
1.

10
1.

07
2.

16
2.

07
1.

72
3.

72
2.

79
2.

47
5.

13
3.

35
2.

99
6.

10
3.

67
3.

53
6.

86

A
ny

0.
74

1.
42

2.
16

0.
71

1.
42

2.
13

0.
67

1.
38

2.
05

0.
65

1.
33

1.
98

0.
62

1.
31

1.
93

Te
st

St
ro

ng
0.

27
0.

26
0.

53
0.

28
0.

23
0.

51
0.

26
0.

24
0.

51
0.

26
0.

24
0.

50
0.

24
0.

25
0.

49

N
o.

of
te

st
s

(a
rt

ic
le

s)
65

,8
10

(3
,6

77
)

12
2,

00
5

(3
,6

77
)

17
2,

04
0

(3
,6

77
)

21
6,

42
1

(3
,6

77
)

25
5,

40
5

(3
,6

77
)

N
o.

of
te

st
s

(a
rt

ic
le

s)
affl

ic
te

d
w

it
h

a
st

ro
ng

re
po

rt
in

g
er

ro
r

34
8

(2
65

)
62

2
(4

21
)

87
4

(5
47

)
1,

08
6

(6
46

)
1,

25
3

(7
11

)

M
ai

n
te

st
s

ar
e

al
lt

es
ts

th
at

ap
pe

ar
in

th
e

fir
st

x
ro

w
s

of
a

ta
bl

e
bu

t
ne

it
he

r
in

a
ta

bl
e

la
be

lle
d

as
ro

bu
st

ne
ss

ch
ec

k
no

r
a

ta
bl

e
in

th
e

ap
pe

nd
ix

.
O

.=
O

ve
rs

ta
te

d,
U

.=
U

nd
er

st
at

ed
,A

.=
A

ny
.

31



Table B.9: Logistic regression at the test level with controls for strong
overstated reporting errors

All Main tests Non-main tests First row
Strong overstated
(Intercept) 0.0022 0.0028 0.0028 0.0025 0.0020 0.0029 0.0027 0.0018

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
top5 1.1044 1.2441 0.8460 1.3668 1.2704 1.1785 1.0680 2.1725

(0.6049) (0.2914) (0.5737) (0.3812) (0.3116) (0.5173) (0.8793) (0.2039)
data_and_code_req 0.7401 0.8190 0.7815 0.8468 0.7111 0.8106 0.9532 0.9625

(0.0109) (0.0786) (0.1179) (0.3057) (0.0214) (0.1434) (0.8431) (0.8674)
sjr 1.0089 0.9982 1.0169 1.0008

(0.4269) (0.9114) (0.2396) (0.9752)
no_tests_in_article 0.9958 0.9960 0.9959 0.9966

(0.0000) (0.0000) (0.0000) (0.0044)
no_tables_in_article 1.0095 0.9859 1.0179 0.9822

(0.4012) (0.4575) (0.1701) (0.5713)
volyear 0.9821 1.0107 0.9634 1.0492

(0.1258) (0.5253) (0.0117) (0.0922)
no_authors2 1.0429 0.9323 1.1119 0.9514

(0.6657) (0.6508) (0.3639) (0.8359)
no_authors3 1.1002 0.9142 1.2318 1.1213

(0.4077) (0.5853) (0.1531) (0.6551)
no_authors4ormore 0.8942 0.6887 1.0625 0.7680

(0.4976) (0.1421) (0.7586) (0.4982)
avg_len_table_notes 1.0000 1.0004 0.9998 1.0005

(0.6543) (0.0024) (0.1252) (0.0178)
is_non_linear 1.1641 1.1889 1.1644 1.2431

(0.0498) (0.1456) (0.1175) (0.2492)
is_clustered 0.7718 0.7597 0.7715 0.7620

(0.0049) (0.0354) (0.0189) (0.1892)
is_annex 1.0652 1.1259

(0.6306) (0.3943)
is_robustness 0.7376 0.8060

(0.1040) (0.2471)
is_table_first_stage 1.3113 1.6467 1.0890 1.0169

(0.0840) (0.0162) (0.6515) (0.9753)
type_no_se 0.7530 0.8421 0.7291 0.8287

(0.0174) (0.3502) (0.0129) (0.4625)
other_strong_error_in_article 11.8205 13.2410 11.1677 13.5052

(0.0000) (0.0000) (0.0000) (0.0000)
pages_count 0.9936 0.9926 0.9932 0.9867

(0.1488) (0.2813) (0.2119) (0.2564)
ref_count 1.0007 0.9975 1.0027 0.9909

(0.7798) (0.5165) (0.3964) (0.1558)
std_sig_levels 0.7626 0.6909 0.8275 0.6067

(0.0056) (0.0127) (0.1256) (0.0499)
open_access 0.9107 0.9477 0.8960 0.9547

(0.3463) (0.7145) (0.3528) (0.8389)
McFadden Pseudo R2 0.0009 0.1208 0.0009 0.1229 0.0011 0.1210 0.0000 0.1231
Num. obs. 578132 578132 172040 172040 406092 406092 65810 65810

Notes: Logistic regression with double lasso approach for variable selection of controls at the test level. Standard errors are clus-
tered at the article level and based on 5,000 bootstrap replicates. Odds ratios with p-values in parentheses. Main tests refers to
a subset of tests that appear in the first three rows of tables that are neither robustness checks nor appear in the appendix. First
row refers to a subset of tests that appear in the first row of tables that are neither robustness checks nor appear in the appendix.
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Table B.10: Logistic regression at the test level with controls for strong
understated reporting errors

All Main tests Non-main tests First row
Strong understated
(Intercept) 0.0026 0.0014 0.0026 0.0009 0.0026 0.0016 0.0026 0.0024

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
top5 0.9507 1.1697 0.9917 1.3043 0.9393 1.1041 0.8394 1.7956

(0.8059) (0.4480) (0.9787) (0.4527) (0.8050) (0.7052) (0.6992) (0.2889)
data_and_code_req 0.8953 0.8794 0.7842 0.7810 0.9437 0.9200 0.9983 1.1322

(0.3489) (0.2195) (0.1517) (0.1442) (0.6874) (0.5227) (0.9940) (0.6211)
sjr 0.9876 0.9788 0.9917 0.9464

(0.2707) (0.2158) (0.5699) (0.1201)
no_tests_in_article 0.9975 0.9980 0.9973 0.9982

(0.0000) (0.0049) (0.0000) (0.0391)
no_tables_in_article 0.9859 0.9927 0.9863 1.0148

(0.2456) (0.7541) (0.3529) (0.6184)
volyear 1.0032 0.9792 1.0144 0.9383

(0.7724) (0.3285) (0.2973) (0.0635)
no_authors2 0.9472 0.9722 0.9431 1.1090

(0.5680) (0.8650) (0.6043) (0.6952)
no_authors3 0.9567 0.8658 0.9914 0.9199

(0.6668) (0.4619) (0.9430) (0.7559)
no_authors4ormore 0.8767 0.8485 0.9015 0.9205

(0.3085) (0.4889) (0.5197) (0.8078)
avg_len_table_notes 1.0000 0.9999 1.0000 1.0000

(0.8335) (0.3849) (0.8113) (0.9947)
is_non_linear 1.0840 0.9229 1.1316 0.7582

(0.2616) (0.5523) (0.1417) (0.1703)
is_clustered 1.2822 1.5881 1.1952 1.3063

(0.0047) (0.0010) (0.0971) (0.1670)
is_annex 1.1344 1.0476

(0.3280) (0.7332)
is_robustness 0.9437 0.8943

(0.7046) (0.4768)
is_table_first_stage 1.2591 1.2392 1.2882 1.1850

(0.1368) (0.4943) (0.1378) (0.6107)
type_no_se 0.9890 1.1756 0.9078 1.3078

(0.9014) (0.3588) (0.3458) (0.3732)
other_strong_error_in_article 15.8915 13.1352 17.1642 11.1965

(0.0000) (0.0000) (0.0000) (0.0000)
pages_count 1.0069 1.0129 1.0042 1.0072

(0.1276) (0.0537) (0.4577) (0.4823)
ref_count 0.9958 1.0003 0.9939 0.9943

(0.1069) (0.9413) (0.0476) (0.4315)
std_sig_levels 0.9062 1.4196 0.7573 1.4143

(0.3321) (0.0521) (0.0211) (0.2311)
open_access 0.9357 0.8589 0.9693 0.8804

(0.4169) (0.2792) (0.7644) (0.5697)
McFadden Pseudo R2 0.0002 0.1229 0.0007 0.1094 0.0001 0.1322 0.0001 0.1127
Num. obs. 578132 578132 172040 172040 406092 406092 65810 65810

Notes: Logistic regression with double lasso approach for variable selection of controls at the test level. Standard errors are clus-
tered at the article level and based on 5,000 bootstrap replicates. Odds ratios with p-values in parentheses. Main tests refers to
a subset of tests that appear in the first three rows of tables that are neither robustness checks nor appear in the appendix. First
row refers to a subset of tests that appear in the first row of tables that are neither robustness checks nor appear in the appendix.
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Table B.11: Logistic regression at the test level without SJR

All Main tests Non-main tests First row
Strong overstated
Data and code required 0.7401 0.8019 0.7815 0.8508 0.7111 0.7814 0.9532 0.9603

(0.0116) (0.0486) (0.1160) (0.3063) (0.0212) (0.0849) (0.8450) (0.8640)
[0.0464] [0.1944] [0.2998] [0.4492] [0.0848] [0.3080] [0.9940] [0.8640]

Top 5 1.1044 1.3448 0.8460 1.3456 1.2704 1.3621 1.0680 2.1870
(0.5990) (0.0987) (0.5740) (0.3369) (0.2960) (0.1540) (0.8778) (0.1018)
[0.7987] [0.1974] [0.7653] [0.4492] [0.5920] [0.3080] [0.9940] [0.4072]

Controls No Yes No Yes No Yes No Yes
McFadden’s Pseudo R2 0.0009 0.1208 0.0009 0.1229 0.0011 0.1208 0.0000 0.1231

Strong understated
Data and code required 0.8953 0.9066 0.7842 0.8261 0.9437 0.9381 0.9983 1.2705

(0.3524) (0.3350) (0.1499) (0.2592) (0.6822) (0.6068) (0.9940) (0.3375)
[0.7048] [0.4467] [0.2998] [0.4492] [0.8031] [0.8091] [0.9940] [0.6750]

Top 5 0.9507 1.0446 0.9917 1.0626 0.9393 1.0268 0.8394 1.0935
(0.8049) (0.8039) (0.9786) (0.8499) (0.8031) (0.9096) (0.6707) (0.8543)
[0.8049] [0.8039] [0.9786] [0.8499] [0.8031] [0.9096] [0.9940] [0.8640]

Controls No Yes No Yes No Yes No Yes
McFadden’s Pseudo R2 0.0002 0.1228 0.0007 0.1090 0.0001 0.1322 0.0001 0.1103
Observations 578, 132 578, 132 172, 040 172, 040 406, 092 406, 092 65, 810 65, 810

Notes: Logistic regression with double lasso approach for variable selection of controls at the test level. Standard er-
rors are clustered at the article level and based on 5,000 bootstrap replicates. Odds ratios with p-values in parentheses
and FDR-adjusted p-values in brackets depicted. Intercept not reported. Information on the control variables is given
in Table B.6 in the Online Appendix. In this regression SJR is not part of the control variables. Main tests refers to
a subset of tests that appear in the first three rows of tables that are neither robustness checks nor appear in the ap-
pendix. First row refers to a subset of tests that appear in the first row of tables that are neither robustness checks nor
appear in the appendix.
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Table B.12: Logistic regression at the article level

All Main tests Non-main tests First row
Strong overstated
Data and code required 0.8026 0.9541 0.8566 1.0890 0.7054 0.8141 0.8669 1.0499

(0.0502) (0.7186) (0.3014) (0.6321) (0.0078) (0.2065) (0.5164) (0.8387)
[0.2008] [0.7186] [0.8082] [0.6639] [0.0312] [0.6012] [0.9335] [0.9412]

Top 5 0.9769 0.9084 0.8896 0.8415 1.0228 0.9448 1.2060 1.2988
(0.8995) (0.6931) (0.6610) (0.6234) (0.9196) (0.8421) (0.5937) (0.6112)
[0.8995] [0.7186] [0.8813] [0.6639] [0.9196] [0.8421] [0.9335] [0.9412]

Controls No Yes No Yes No Yes No Yes
McFadden’s Pseudo R2 0.0012 0.0415 0.0007 0.0398 0.0026 0.0499 0.0005 0.0401

Strong understated
Data and code required 0.8526 0.9081 0.8730 0.8717 0.8395 0.9152 1.0800 1.0684

(0.1346) (0.4534) (0.4041) (0.4754) (0.1500) (0.5491) (0.7250) (0.8024)
[0.2692] [0.7186] [0.8082] [0.6639] [0.2000] [0.7321] [0.9335] [0.9412]

Top 5 0.7849 0.8298 1.0100 0.8546 0.6683 0.7427 1.0337 1.0402
(0.2104) (0.4452) (0.9717) (0.6639) (0.0850) (0.3006) (0.9335) (0.9412)
[0.2805] [0.7186] [0.9717] [0.6639] [0.1700] [0.6012] [0.9335] [0.9412]

Controls No Yes No Yes No Yes No Yes
McFadden’s Pseudo R2 0.0014 0.0517 0.0004 0.0584 0.0023 0.0543 0.0001 0.0642
Observations 3, 746 3, 746 3, 677 3, 677 3, 611 3, 611 3, 677 3, 677

Notes: Logistic regression with double lasso approach for variable selection of controls at the article level. The depen-
dent variable is a dummy variable that equals 1 if the article contains at least one strong overstated reporting error or
one strong understated reporting error respectively. Standard errors are based on 5,000 bootstrap replicates. Odds ra-
tios with p-values in parentheses and FDR-adjusted p-values in brackets depicted. Intercept not reported. Information
on the control variables is given in Table B.6 in the Online Appendix. Main tests refers to a subset of tests that appear
in the first three rows of tables that are neither robustness checks nor appear in the appendix. First row refers to a
subset of tests that appear in the first row of tables that are neither robustness checks nor appear in the appendix.
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Table B.13: Number of articles per biannual period per journal

1999-2000 2001-2002 2003-2004 2005-2006 2007-2008 2009-2010 2011-2012 2013-2014 2015-2016 Sum
ARE 0 0 0 0 0 1 0 1 2 4
ARFE 0 0 0 0 0 0 0 0 1 1
EER 3 6 11 16 19 13 31 44 86 229
EJ 0 0 11 16 28 41 26 37 65 224
EP 0 4 4 5 14 13 14 9 13 76
IER 0 0 0 0 2 3 6 5 9 25
JEEA 0 0 0 0 0 0 8 17 23 48
JMCB 0 0 0 0 14 33 12 20 16 95
JME 1 2 8 8 5 7 3 10 12 56
JOAE 0 3 4 3 4 2 9 6 4 35
JODE 6 13 13 23 38 45 70 102 83 393
JOE 1 0 1 0 6 3 3 4 5 23
JOEEM 0 0 10 5 8 14 22 36 19 114
JOES 0 0 0 0 0 1 4 1 2 8
JOF 17 15 13 30 28 35 40 43 61 282
JOFE 6 12 19 23 47 50 68 78 89 392
JOFI 0 0 2 2 1 7 15 18 25 70
JOIE 2 4 11 18 21 23 44 51 74 248
JOIMF 2 1 4 9 13 26 33 56 61 205
JOLE 0 12 9 12 12 15 13 26 35 134
JOUE 0 0 0 0 0 20 27 37 34 118
JPE 3 7 11 10 10 15 13 12 17 98
JPUE 6 9 16 29 37 47 55 81 75 355
OBES 0 1 6 3 9 8 14 10 17 68
QJE 0 0 0 0 0 0 26 31 29 86
RAND 0 0 0 0 5 3 5 12 7 32
RED 0 0 0 0 0 0 0 2 3 5
REEP 0 0 0 0 0 0 1 0 0 1
RESTUD 0 0 0 0 0 0 13 20 23 56
RFS 6 4 7 4 13 66 47 46 52 245
WBRO 0 0 0 0 0 0 1 0 0 1
Sum 53 93 160 216 334 491 623 815 942 3,727

Notes: The highlighted rows indicate the journals that have at least 100 articles in total, for which DORIS could detect at least 10 articles
biannually (exception JOLE), and that either never implemented an open data and code policy or have at least three time periods since 2003
in which they had no open data and code policy (hence, no JPE). A list of abbreviations for the journals can be found in Table B.5 in the
Online Appendix.
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Table B.14: BJS imputation estimator at the test level: Falsification test

All Main tests Non-main tests First row
No anticipation
Strong overstated
Data and code required -0.0001 -0.0002 -0.0005 -0.0009 0.0000 0.0000 -0.0010 -0.0015
p-value (0.9359) (0.8715) (0.7395) (0.5527) (0.9734) (0.9840) (0.6919) (0.5454)
Pre-trend test [0.1463] [0.3592] [0.9838] [0.9236] [0.0703] [0.1369] [0.4859] [0.3661]
Strong understated
Data and code required 0.0000 0.0002 0.0015 0.0015 -0.0007 -0.0004 0.0029 0.0029
p-value (0.9708) (0.8441) (0.2510) (0.2497) (0.6101) (0.7459) (0.1703) (0.1442)
Pre-trend test [0.1100] [0.2301] [0.0584] [0.2742] [0.1920] [0.4150] [0.9989] [0.4811]
Journal and year effects Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes
Observations 249,126 249,126 74,242 74,242 174,884 174,884 28,438 28,438

Notes: Falsification test of BJS imputation estimator at the test level of Table 5 showing the average treatment effect
on the treated as probabilities. The falsification is carried out by assuming that the respective policy commenced four
years (i.e. two biannuals) earlier. The dependent variable in the first half of the table is a dummy, that is, if a test is
afflicted with a strong overstated reporting error. The dependent variable in the second half of the table is a dummy,
that is, one if a test is afflicted with a strong understated reporting error. Standard errors are clustered at the article
level. p-values of the coefficients in parentheses and p-values of pre-trend tests with three periods in brackets depicted.
Controls include dummy variables for the number of authors, the number of tests per article, dummies for the test
type, for the usage of standard significance levels, as well as for the prevalence of clustered standard errors in the cor-
responding table and the occurrence of another strong reporting error within the same article. The data set comprises
the journals EER, EJ, JODE, JOF, JOFE, JOIE, JOLE and JPUE from 2003 to 2016 and defines every two years as
one time period. Main tests refers to a subset of tests that appear in the first three rows of tables that are neither ro-
bustness checks nor appear in the appendix. First row refers to a subset of tests that appear in the first row of tables
that are neither robustness checks nor appear in the appendix.
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C Figures
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(Diagnosis Of Reporting
errors In Scraped tables)

Development strategy Evaluation strategy
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et al. (2016)
(6,628 tests

in 360 tables)
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(FDR = 1 %)

Figure C.4: Development and evaluation strategy, own illustration
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Figure C.8: Overview of used data sets
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Figure C.9: Tests and strong reporting errors per journal considering all
tests
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Notes: Rate of strong overstated reporting errors among all tests of the respective
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Figure C.10: Reporting error rates for strong over- and understated reporting errors
per journal over time (all tests)
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(a) All tests w/o controls (b) All tests with controls

(c) Main tests w/o controls (d) Main tests with controls

(e) Non-main tests w/o controls (f) Non-main tests with controls
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(g) First row w/o controls (h) First row tests with controls
Notes: Falsification test of BJS imputation estimator of Table 5 for strong overstated reporting errors
as dependent variable at the test level showing the kernel density estimates. The falsification test is
performed by permuting the treatment variable 1,000 times. The red line indicates the ATT of the
main model. An accumulation of the density around zero and a red line close to the margins indicates
a robust finding. No anticipation is assumed. All estimates contain journal and year fixed effects.
Controls include dummy variables for the number of authors, the number of tests per article, dummies
for the test type, for the usage of standard significance levels as well as for the prevalence of clustered
standard errors in the corresponding table and the occurrence of another strong reporting error within
the same article. The data set comprises the journals EER, EJ, JODE, JOF, JOFE, JOIE, JOLE and
JPUE from 2003 to 2016 and defines every two years as one time period, i.e. one year. Main tests refers
to a subset of tests that appear in the first three rows of tables that are neither robustness checks nor
appear in the appendix. First row refers to a subset of tests that appear in the first row of tables that
are neither robustness checks nor appear in the appendix.

Figure C.11: Falsification test for BJS imputation estimator at the test level for strong
overstated reporting errors
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(a) All tests w/o controls (b) All tests with controls

(c) Main tests w/o controls (d) Main tests with controls

(e) Non-main tests w/o controls (f) Non-main tests with controls
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(g) First row w/o controls (h) First row tests with controls
Notes: Falsification test of BJS imputation estimator of Table 5 for strong understated
reporting errors as dependent variable at the test level showing the kernel density es-
timates. The falsification test is performed by permuting the treatment variable 1,000
times. The red line indicates the ATT of the main model. An accumulation of the
density around zero and a red line close to the margins indicates a robust finding. No
anticipation is assumed. All estimates contain journal and year fixed effects. Controls
include dummy variables for the number of authors, the number of tests per article,
dummies for the test type, for the usage of standard significance levels as well as for the
prevalence of clustered standard errors in the corresponding table and the occurrence
of another strong reporting error within the same article. The data set comprises the
journals EER, EJ, JODE, JOF, JOFE, JOIE, JOLE and JPUE from 2003 to 2016 and
defines every two years as one time period, i.e. one year. Main tests refers to a subset
of tests that appear in the first three rows of tables that are neither robustness checks
nor appear in the appendix. First row refers to a subset of tests that appear in the first
row of tables that are neither robustness checks nor appear in the appendix.

Figure C.12: Falsification test for BJS imputation estimator at the test level for strong
understated reporting errors
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