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Abstract: This paper provides for the first time correct third-order homoclinic predictors in n-
dimensional ODEs near a generic Bogdanov-Takens bifurcation point. To achieve this, higher-order
time approximations to the nonlinear time transformation in the Lindstedt-Poincaré method are
essential. Moreover, a correct transform between approximations to solutions in the normal form
and approximations to solutions on the parameter-dependent center manifold is needed. A detailed
comparison is done between applying different normal forms (smooth and orbital), different phase
conditions, and different perturbation methods (regular and Lindstedt-Poincaré) to approximate
the homoclinic solution near Bogdanov-Takens points. Examples demonstrating the correctness
of the predictors are given. The new homoclinic predictors are implemented in the open-source
MATLAB/GNU Octave continuation package MatCont.
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1 Introduction
Let f : Rn × R2 → Rn with n ≥ 2, be smooth and suppose that the autonomous ordinary differential
equation (ODE)

ẋ(t) = f(x(t), α) (1)

has equilibrium x0 = 0 that undergoes a codimension two local bifurcation at the critical parameter
value α0 = 0. Here the dot means the derivative with respect to the independent variable t ∈ R. To
understand the dynamics near the bifurcation point for nearby parameter values, one typically first
restricts the ODE to the center manifold. By projecting the solutions on the center manifold onto the
center subspace, one then obtains a nc-dimensional ODE that locally governs the restricted dynamics.
Using the normal form theory, one further tries to transform the restricted ODE into a simpler form,
called the critical normal form.

If the canonical unfolding of the critical normal form is known and only qualitative behavior near
the equilibrium is of interest, one can stop here. However, if one is interested in relating solutions
of the unfolding to those of the original system (1) near the bifurcation point, one needs a relation
between the parameter-dependent normal form and the restricted ODE, and also a relation between
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this restricted ODE on the parameter-dependent center manifold and the original system (1). These
two relations can be found simultaneously utilizing the homological equation approach, see [5].

The solutions of interest here are the codimension one bifurcation curves emanating from a codi-
mension two point and the corresponding orbits in phase space. In general, the bifurcation curves in
the parameter-dependent normal form are not known exactly, but only by an approximation up to a
certain order. Similarly, the transformation between of the normal form to the (parameter-dependent)
center manifold is generally also only known up to a certain order. Then, by combining these two
transformations, an approximation to the codimension one bifurcation curve and the corresponding
phase orbits is obtained for the original system (1).

These approximations are particularly useful in numerical continuation software to start the con-
tinuation of the codimension one bifurcation curves emanating from the codimension two bifurcation
points, where the defining systems for the orbits of interest become degenerate. A codimension two
bifurcation that has attracted much attention is the Bogdanov-Takens bifurcation at which the cri-
tical equilibrium has a double zero eigenvalue. It is well known that under certain non-degeneracy
and transversality conditions, three codimension one bifurcation curves emanate from the Bogdanov-
Takens point: a saddle-node, an (Andronov-)Hopf, and a saddle-homoclinic bifurcation curve. Since
the standard defining systems for the equilibrium bifurcations are non-degenerate at the Bogdanov-
Takens point, one does not need an approximation to start continuation there. On the contrary, the
standard defining system for the homoclinic solution does become degenerate, which is easily seen since
the homoclinic orbit shrinks to the equilibrium point at the Bogdanov-Takens bifurcation.

Starting continuation of the homoclinic orbits from a Bogdanov-Takens point in ODEs attracted
much attention. In planar systems, Melnikov’s method was first applied to solve this problem in [43].
A first attempt to provide asymptotic approximations to the homoclinic bifurcation curve near a
generic codimension two Bogdanov-Takens bifurcation point in general n-dimensional systems was
made in [4]. By applying a singular rescaling to the (one of the equivalent) parameter-dependent normal
form on the center manifold, a perturbed planar Hamiltonian system is obtained. The unperturbed
Hamiltonian system contains an explicit homoclinic solution. A first-order correction in parameter-
space can subsequently be obtained by setting up the problem as a branching problem in a suitable
Banach space, see [4]. Then, by using the regular perturbation method, higher-order approximations to
the homoclinic bifurcation curve can be obtained. Unfortunately in [4], even the first-order correction
in the phase-space was not derived. Nonetheless, it was proven that the obtained homoclinic predictor
converges to the true solution under the Newton iterations in the perturbed Hamiltonian systems.

In [40] the work continued by obtaining a second-order correction in parameter and phase-space
to the homoclinic bifurcation curve for the perturbed Hamiltonian system. However, a new problem
was overlooked. The normal form used in [40] is a normal form for C∞-equivalence (also called smooth
orbital equivalence), i.e., besides a C∞-coordinate change, also a time reparametrization must be taken
into account, which was not the case in [40]. In the subsequent paper [41], this problem was resolved
by considering a smooth normal form for the Bogdanov-Takens bifurcation point, which is a normal
form for C∞-conjugacy (smooth equivalence).

In the follow-up paper [1], progress was made in obtaining a uniform approximation in the time
along the homoclinic solution, using a generalization of the Lindstedt-Poincaré method. This removes
the so-called parasitic turns near the saddle point, as observed in [40]. Although, as pointed out
by [2], there were mistakes in the third-order approximation with the Lindstedt-Poincaré method, the
homoclinic predictor from [40] for the smooth normal form improved significantly in the phase space.

Nonetheless, the problem of correctly lifting the asymptotics in the normal form to the parameter-
dependent center manifold remained unnoticed and unsolved. Effectively, only the zeroth-order ap-
proximation to the homoclinic solutions in the phase space, i.e., a transformed homoclinic solution of
the unperturbed Hamiltonian system, was available for a general n-dimensional system.

In this paper, we will provide for the first time the third-order homoclinic predictor for the homo-
clinic solutions emanating from a generic Bogdanov-Takens point for a general n-dimensional system.
For this, we need to consider several additional systems to be solved in the homological equation
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method that were previously not taken into account. During the derivation of the coefficients of the
normal form and the transformations, we will show that there is no need to solve certain systems
simultaneously, see the so-called ‘big’ system in [40, 41, 1]. Furthermore, by allowing a transformation
of time between the normal form and the original system, we can use the parameter-dependent smooth
orbital normal form of the codimension two Bogdanov-Takens bifurcation point when approximating
the homoclinic solution up to order three. This normal form is considerably simpler than previously
employed smooth normal forms. The derivation of the coefficients will be the subject of Section 2.

Having derived the parameter-dependent center manifold transformation suitable for lifting the
third-order homoclinic asymptotics present in different generic Bogdanov-Takens normal forms, we
turn our attention to obtain the asymptotics in Section 3. We will revisit both regular perturbation
method and the generalized Lindstedt-Poincaré method considered previously.

The non-uniqueness of the homoclinic solution due to a time shift results in the non-uniqueness
for the systems to be solved in the regular perturbation method. To obtain uniqueness, a so-called
phase condition needs to be satisfied. The phase condition used in [40] originates from a theoretical
setting in [4]. In Section 3.1 we use a geometrically motivated phase condition which slightly improves
the regular perturbation solution. Furthermore, by modifying [4, Proposition 4.3], we use symmetry
arguments to simplify the calculations.

In Section 3.2 the generalized Lindstedt-Poincaré method for the approximation of homoclinic orbits
is improved by introducing an additional transformation of time after applying the usual nonlinear time
transformation. The resulting algorithm solitary relies on polynomial division and does not involve any
hyperbolic or trigonometric functions as in [2, 1]. We show that for the quadratic Bogdanov-Takens
normal form, we can represent the homoclinic solution in phase-space with only one single parameter.

In Section 3.2.2 we provide an explicit third-order homoclinic approximation in the perturbed
Hamiltonian system using the algorithm described in Section 3.2.1. Here we also provide a third-order
approximation to the reparametrization of time. The profiles of the homoclinic solution will only
then be approximated accurately, resulting in a robust initial predictor for starting continuation of the
branch of homoclinic orbits. In [1] the importance of the time-reparametrization was not recognized,
and the zeroth-order approximation was used. We will demonstrate in detail that it is essential to
use the higher time reparametrization by comparing the Lindstedt-Poincaré method with and without
the higher-order time-reparametrization. Effectively, using the Lindstedt-Poincaré method without the
higher-order time-reparametrization is equivalent to the zeroth-order regular perturbation method.

The algorithm given in Section 3.2.1 is implemented in Appendix D in the programming language
Julia [6] for the quadratic normal form for the Bogdanov-Takens codimension two bifurcation. Here
we gain some insight about the finite convergence radius of the homoclinic asymptotics and the speed
of the algorithm.

By combining the homoclinic asymptotics derived in Section 3 with the parameter-dependent center
manifold transformation obtained in Section 2, we get the correct homoclinic predictor for a general
n-dimensional system. It will be shown in Section 4 how to incorporate the time translation into the
homoclinic predictor.

Then we compare the homoclinic predictor for the smooth normal form and the smooth orbital
normal form. In Section 4.3, it will be shown that these two predictors are asymptotically equivalent,
up to a phase shift. Then, by choosing the constants of integration in the time translation in a specific
manner, we show equivalence between the predictors.

All the above methods are implemented in the open-source bifurcation and continuation software
MatCont [18]. In Section 4.4 we describe the new implementation of the homoclinic predictor in
the latest version of MatCont. We show how to use the obtained predictors to construct an initial
prediction for the defining system of the homoclinic solutions. Besides an initial prediction also an
initial tangent vector is necessary to start continuation. Our implementation resolves the issue of
possible continuation in the wrong direction, i.e., towards the Bogdanov-Takens point.

The effectiveness of the new predictors is demonstrated on the topological normal form and on two
four-dimensional models from Neuroscience and Quantum Field Theory in Section 5. A comparison

3



between the new homoclinic predictor near a generic codimension 2 Bogdanov-Takens bifurcation and
the predictor from [1] is given. It will be shown that the order of the higher-order approximations
to the homoclinic solutions in the normal form is preserved under the parameter-dependent center
manifold transformation. Complementary to Section 5 an online Jupyter Notebook is provided in
which ten different models are considered using the new homoclinic predictor and comparing different
approximation methods in detail.

2 Center manifold reduction combined with normalization and
time reparametrization

Consider system (1), which has a codimension two bifurcation at α = 0 of equilibrium x ≡ 0. Let the
normal form on the nc-dimensional center manifold be given by

d

dη
w(η) = G(w(η), β), G : Rnc × R2 → Rnc , (2)

where G is assumed to be one of the (known) equivalent normal forms. Suppose that a parameter-
dependent approximation to an emanating codimension one bifurcation curve in (2) is given by

ε 7→ (wε(η), βε). (3)

By the Shoshitaishvili reduction principle the solutions on the parameter-dependent center manifold
can be parametrized by

x(t(η)) = H(w(η), α), H : Rnc × R2 → Rn, (4)

α = K(β), K : R2 → R2. (5)

Now let the time η be defined through the time rescaling

dt

dη
= θ(w, β), θ : Rnc × R2 → Rn. (6)

Then the invariance of the center manifold implies the homological equation

f(H(w, β),K(β))θ(w, β) = Hw(w, β)G(w, β). (7)

The unknowns in (7) are H, K, θ, and the normal form coefficients in (9). By expanding the
functions H,K, θ, and f and collecting terms of equal power in (w, β), we obtain linear systems which
can be solved at each order, potentially depending on non-uniqueness present in lower order systems.

To determine which coefficients are needed to include in the expansions of H,K, and θ, we need
to consider which terms in the expansion of the reduced system on the center manifold of (1) affect
the approximation (3). It is important here to not only take into account the terms that affect the
approximation that are present in the normal form G but also terms that are not in the normal form,
as long as the approximation (3) is affected by the terms. This has not been understood correctly and
will be made explicit for the approximation of the homoclinic bifurcation curve emanating from the
generic codimension two Bogdanov-Takens bifurcation point in the next section.

2.1 Parameter-dependent normal form
Suppose that the ODE (1) undergoes a generic codimension two Bogdanov-Takens bifurcation at
(x, α) ≡ (x0, α0). That is the linearization of (1) has a double, but not semisimple, zero eigenvalue,
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while all other eigenvalues are away from the imaginary axis. The critical smooth normal form on the
two-dimensional center manifold is given by [3, 23]{

ẇ0 = w1,

ẇ1 = aw2
0 + bw0w1 +O(‖w‖3),

where
ab 6= 0,

wi is a shorthand notion for wi(η) for i = 0, 1, and the dot is the derivative with respect to η.
Under these non-degeneracy and certain transversality conditions, the topological normal form for

the codimension two Bogdanov-Takens bifurcation is given by{
ẇ0 = w1,

ẇ1 = β1 + β2w1 + aw2
0 + bw0w1,

(8)

see [7, 8, 44, 23, 38]. It is well known that in system (8) three codimension one bifurcation curves
emanate from (β1, β2) = (0, 0): a saddle-node, a Hopf, and a saddle-homoclinic bifurcation curve.

By using either the regular perturbation or the Lindstedt-Poincaré method, an approximation to
the homoclinic bifurcation curve and the corresponding solution can, theoretically, be obtained up to
any order in the singular-rescaling parameter ε, see [40, 41, 1, 2].

To obtain the second-order homoclinic approximation to the homoclinic solutions on the center
manifold in (1), it is, in general, insufficient to only consider the topological normal form (8), see [10].
One way to deal with this problem is to consider the smooth parameter-dependent normal form{

ẇ0 =w1,

ẇ1 =β1 + β2w1 + (a+ a1β2)w2
0 + (b+ b1β2)w0w1 + ew2

0w1 + dw3
0 + g(w, β),

(9)

with
g(w, β) = O(|β1|‖w‖2 + |β2|w2

1 + ‖β‖2‖w‖2 + ‖β‖‖w‖3 + ‖w‖4)

as in [41, 1]. Here wi = wi(t)(i = 0, 1) now depends explicitly on t as in the original ODE (1).
However, in this paper, we will allow for a time-reparametrization and use the C∞-equivalent

normal form {
ẇ0 = w1,

ẇ1 = β1 + β2w1 + aw2
0 + bw0w1 + w2

0w1h(w0, β) + w2
1Q(w0, w1, β),

(10)

where h is C∞ and Q is N -flat, see [10]. Here the dot represents the derivative with respect to the
new time η of wi(η)(i = 0, 1). Furthermore, we will show that we can assume h(0, 0) = 0. Note that
we do not impose the coefficients to be a = 1 and b = ±1 as in [10]. This simplifies the systems to be
solved in the next section without complicating the solutions for the homoclinic corrections. Indeed,
we can scale-out the coefficients a and b in the singular-rescaling. Also note that the normal form
(10) was used in [10] to study degenerate (codimension 3) Bogdanov-Takens bifurcations, while we
found it to be essential for constructing homoclinic predictors in the case of generic codimension two
Bogdanov-Takens bifurcations.

To approximate the homoclinic solutions emanating from the Bogdanov-Takens point we apply the
singular rescaling

w0 =
a

b2
uε2, w1 =

a2

b3
vε3, β1 = −4

a3

b4
ε4, β2 =

a

b
τε2, s =

a

b
εη, (ε 6= 0), (11)

to (10) with h(0, 0) = 0 to obtain the second order nonlinear oscillator

ü = −4 + u2 + u̇ (u+ τ) ε+O(ε4). (12)

Here the dot represents the derivative with respect to s.
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order terms
ε−2 u0, α2

ε−1 u1
ε0 u20, u0α2, α

2
2, α1

ε1 u0u1, u1α2

ε2 u21, u
3
0, u

2
0α2, u0α

2
2, α

3
2, u0α1, α1α2

ε3 u20u1, u0u1α2, u1α
2
2, u1α1

Table 1: Terms in the reduced system on the center manifold that affect the third-order predictor.

2.2 Center manifold reduction for smooth orbital normal form
We want to relate the third-order homoclinic approximation in the smooth orbital normal form (10)
to the homoclinic solutions of (1) near (x0, α0). The third-order approximation depends, by definition,
on the coefficients in ε up to order three in the perturbed Hamiltonian system (12), see Section 3.2.
By inspecting the blowup transformation (11) we can determine exactly which coefficients in (1) must
be included in the expansion of H,K and which multilinear forms to include in the expansion of f .
Indeed, we search for those terms in the expansion of the reduced system on the center manifold of (1)
that affect the coefficients in ε up to order three in (12). These are determined by solving the linear
Diophantine equation

4i+ 2j + 2k + 3l − 4 = n, n ∈ {−2,−1, 0, 1, 2, 3}, (13)

for i, j, k, l ∈ N0. In Table 1 the solutions to (13) are listed. To transform away these terms (into higher
order terms), one needs exactly the corresponding coefficients in the expansions of H and K. To be
concrete, suppose the term α1α2 is present in the reduced system on the center manifold. Applying
the blowup transformation (11), the term α1α2 will show up in the coefficient of ε2 in (12). Since we
will derive a third-order approximation for (12) in which the corresponding term β1β2 is not present,
this term needs to be transformed away. It is not too difficult to show that the coefficients needed to
perform this operation in phase and parameter-space are precisely H0011 and K11. In Appendix A an
explicit example is given to show that the transformation in [1] leads to an incorrect predictor for the
parameters.

Thus, we expand the mappings H, K, and θ, including precisely those coefficients needed to transfer
the homoclinic predictor in the normal form to the center manifold maintaining the accuracy. Using
Table 1 we write:
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q0, q1, p1, p0

θ1000, γ1, γ2, H2000, H1100, H0200, H3000, H2100

γ3, δ1, γ4, δ2, H0010, H0001,K10,K01

H1010, H0110 (γ5, θ0001), H1001, H0101, H2001, H1101

K11, H0011 γ6, δ3,K02, H0002, H1002, H0102

K03, H0003

Figure 1: Schematic overview is which order the coefficients in the expansion of H, K and θ are derived.

f(x, α) = Ax+ J1α+
1

2
B(x, x) +A1(x, α) +

1

2
J2(α, α) +

1

6
C(x, x, x) (14)

+
1

2
B1(x, x, α) +

1

2
A2(x, α, α) +

1

6
J3(α, α, α) +O

(
‖x‖4 + ‖α‖3

)
,

H(w, β) = q0w0 + q1w1 +H0010β1 +H0001β2 +
1

2
H2000w

2
0 +H1100w0w1 +

1

2
H0200w

2
1 (15)

+H1010w0β1 +H1001w0β2 +H0110w1β1 +H0101w1β2 +
1

2
H0002β

2
2

+H0011β1β2 +
1

6
H3000w

3
0 +

1

2
H2100w

2
0w1 +H1101w0w1β2 +

1

2
H2001w

2
0β2

+
1

6
H0003β

3
2 +

1

2
H1002w0β

2
2 +

1

2
H0102w1β

2
2

+O(|w1|3 + |w0w
2
1|+ |β2w2

1|+ |β1|‖w‖2 + |β2
1 |‖w‖+ |β2

1 |+ ‖(w, β)‖4),

K(β) = K10β1 +K01β2 +
1

2
K02β

2
2 +K11β1β2 +K03

1

6
β3
2 (16)

+O(|β1|2 + |β1||β2|2 + |β1|2|β2|+ |‖β‖4),

θ(w, β) = 1 + θ1000w0 + θ0001β2 +O
(
|w|+ |β2|+ ‖(w, β)‖2

)
. (17)

where A = fx(x0, α0), J1 = fα(x0, α0), and B, J2, J3, C,A1, A2 and B1 are the standard multilinear
forms, introduced for readability.
Remark 1. Notice that compared with [1] there are four additional terms in the expansion of H, i.e.
with coefficients H0011, H1002, H0102, and H0003, and two additional terms in the expansion of K, with
coefficients K11 and K03.

2.2.1 (Generalized) eigenvectors

We assume that the equilibrium (x0, α0) has a double (but not semisimple) zero eigenvalue, while all
other eigenvalues are away from the imaginary axis. Thus, there exist two real linearly independent
(generalized) eigenvectors, q0, q1 ∈ Rn, of A, such that

Aq0 = 0, Aq1 = q0, (18)
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and two left (generalized) eigenvectors pT1 , pT0 ∈ Rn, of A, such that

p1A = 0, p0A = p1.

These vectors can be normalized to satisfy

piqj = δij , i = 0, 1, j = 0, 1.

As in [39], we impose the condition

qT0 q0 = 1, qT1 q0 = 0, (19)

to uniquely define the vectors {q0, q1, p1, p0} up to a plus or minus sign.
Note that collecting the coefficients of the linear terms in w in the homological equation are precisely

the systems defining the (generalized) eigenvectors (18).

2.2.2 Critical normal form coefficients

Collecting the quadratic coefficients in w from the homological (7) yields the systems

−AH2000 = B(q0,q0)− 2aq1, (20)
−AH1100 = B(q0, q1)− bq1 + θ1000q0 −H2000, (21)
−AH0200 = B(q1, q1)− 2H1100. (22)

The Fredholm solvability condition for the first two systems yields the well known expressions

a =
1

2
p1B(q0, q0),

b = p1B(q0, q1) + p0B(q0, q0),

for the critical coefficients, see for example [37]. By the non-degeneracy conditions, we have that ab 6= 0.
Remark 2. Since we assume that p1B(q0, q0) 6= 0 we can use the freedom in the eigenvectors,

(q0, q1)→ c1(q0, q1), (p1, p0)→ 1

c1
(p1, p0),

to normalize the critical coefficient
a = p1B(q0, q0),

to one. Solving for c1 then gives

c1 =
1

p1B(q0, q0)
.

Alternatively, the freedom could have been used to set b = 1. To have the situation a = 1 and b = ±1,
as in [10], the coefficient in front of the constant term in the expansion of θ, i.e., θ0000, should be used.
For convenience, we fixed this constant to 1.

Now that (20) and (21) are solvable, we can define

Ĥ2000 = −AINV (B(q0, q0)− 2aq1) ,

Ĥ1100 = −AINV
(
B(q0, q1)− bq1 − Ĥ2000

)
.

The expression x = AINV y is defined by solving the non-singular bordered system(
A pT1
qT0 0

)(
x
s

)
=

(
y
0

)
,

8



for the unknown (x, s) ∈ Rn+1 that necessarily satisfies s = 0. The properties of bordered linear
systems and their role in numerical bifurcation analysis are discussed in [36] and [22, Chapter 3].

It follows that the general solutions to the coefficients H2000 and H1100 are given by

H2000 = Ĥ2000 + γ1q0,

H1100 = Ĥ1100 + γ1q1 − θ1000q1 + γ2q0.

The constant γ1 is determined by the solvability condition from (22), which gives

γ1 = p0

(
B(q0, q1)− Ĥ2000

)
+

1

2
p1B(q1, q1) + θ1000.

To determine the constant γ2 and the coefficient θ1000 we consider the w3
0 and w2

0w1 terms in the
homological equation. After some simplification, we obtain

−AH3000 = 3B(H2000, q0) + C(q0, q0, q0) + 6aθ1000q1 − 6aH1100, (23)
−AH2100 = − 2aH0200 − 2bH1100 −H3000 + 2B(H1100, q0) +B(H2000, q1) (24)

+ 2θ1000(bq1 − θ1000q0 +H2000) + C(q0, q0, q1).

The solvability condition of the first equation determines θ1000 as

θ1000 = − 1

12a
p1

{
3B(Ĥ2000, q0) + C(q0, q0, q0)

}
+

1

2
p1Ĥ1100. (25)

After a rather lengthy calculation, we obtain that γ2 is determined by

γ2 =
1

6a

[
p1

{
2B(Ĥ1100, q0) +B(Ĥ2000, q1) + C(q0, q0, q1)

}
(26)

+ 2ap0B(q1, q1) + 2bp0

(
B(q0, q1)− Ĥ2000

)
+ p0

(
3B(Ĥ2000, q0) + C(q0, q0, q0)

)
+ γ1b− 10ap0Ĥ1100 + 2bθ1000

]
.

Since the systems in (22)–(24) are now all consistent, we are allowed to take the bordered inverses to
obtain

H0200 = −AINV [B(q1, q1)− 2H1100] ,

H3000 = −AINV [3B(H2000, q0) + C(q0, q0, q0) + 6aθ1000q1 − 6aH1100] , (27)

H2100 = −AINV [−2aH0200 − 2bH1100 −H3000 + 2B(H1100, q0), (28)
+B(H2000, q1) + 2θ1000(bq1 − θ1000q0 +H2000) + C(q0, q0, q1)] .

2.2.3 Parameter-dependent linear terms

The coefficients of the linear terms in β give the systems

−AH0001 = J1K01,

−AH0010 = J1K10 − q1.
(29)

Since p1 and J1 are known, we can calculate

ν =

(
τ1
τ2

)
:= (p1J1)T .
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By the transversality condition, the vector ν is nonzero. It then follows from the Fredholm alternative
that

K01 = δ1K̂01,

H0001 = δ1

(
Ĥ0001 + γ3q0

)
,

K10 = K̂10 + δ2K01,

H0010 = Ĥ0010 + δ2H0001 + γ4q0.

where
K̂10 =

1

‖τ‖2 ν,

Ĥ0010 = AINV
(
q1 − J1K̂10

)
,

K̂01 =

(
0 −1
1 0

)
K̂10,

Ĥ0001 = −AINV J1K̂01.

and δ1,2, γ3,4 are real constants determined by the solvability condition of the wβ terms in the homo-
logical equation. Collecting the corresponding systems in the homological equation yields

−AH1001 = B(H0001, q0) +A1(q0,K01),

−AH0101 = B(H0001, q1) +A1(q1,K01)−H1001 − q1 + θ0001q0,

−AH1010 = B(H0010, q0) +A1(q0,K10)−H1100 + θ1000q1,

−AH0110 = B(H0010, q1) +A1(q1,K10)−H0200 −H1010.

The solvability condition for the first two systems yields

γ3 = −
p1

(
B(Ĥ0001, q0) +A1(q0, K̂01)

)
2a

,

δ1 =
1

p1

(
B(Ĥ0001, q1) +A1(q1, K̂01)

)
+ p0

(
B(Ĥ0001, q0) +A1(q0, K̂01)

)
+ γ3b

,

while the solvability condition for the latter two systems yields

γ4 =
p1H1100 − θ1000 − p1

(
B(Ĥ0010, q0) +A1(q0, K̂10)

)
2a

,

δ2 = −p1
(
B(Ĥ0010, q1) +A1(q1, K̂10)

)
− γ4b+ p1H0200

− p0
(
B(Ĥ0010, q0) +A1(q0, K̂10)−H1100

)
.

Note that the denominator in δ1 is nonzero by the transversality condition.

2.2.4 Coefficients H1010 and H0110

H1010 = −AINV [B(H0010, q0) +A1(q0,K10)−H1100 + θ1000q1] ,

H0110 = −AINV [B(H0010, q1) +A1(q1,K10)−H0200 −H1010] .

10



2.2.5 Coefficients (θ0001, γ5), H1001, H0101, H2001, H1101

Define
Ĥ1001 = −AINV [B(H0001, q0) +A1(q0,K01)] ,

Ĥ0101 = −AINV [B(H0001, q1) +A1(q1,K01)−H1001 − q1] ,

so that
H1001 = Ĥ1001 + γ5q0,

H0101 = Ĥ0101 + γ5q1 − θ0001q1.
In order to determine γ5 and θ0001, we consider the systems corresponding to the w2

0β2 and w0w1β2
terms in the homological equation. These are given by

−AH2001 = −2aH0101 +A1(H2000,K01) +B(H0001, H2000) + 2B(H1001, q0)

+ 2aθ0001q1 +B1(q0, q0,K01) + C(H0001, q0, q0),

−AH1101 = −bH0101 −H1100 −H2001 +A1(H1100,K01)+

θ1000(H1001 + q1 − θ0001q0) +B(H0001, H1100) +B(H0101, q0)+

B(H1001, q1) + θ0001(H2000 + bq1 − θ1000q0) +B1(q0, q1,K01)

+ C(H0001, q0, q1).

(30)

The Fredholm solvability condition leads to the following system to be solved(
−2a −4a
−b −b

)(
γ5
θ0001

)
=

(
ζ1
ζ2

)
, (31)

where
ζ1 = p1

[
−2aĤ0101 +A1(H2000,K01) +B(H0001, H2000)

+2B(Ĥ1001, q0) +B1(q0, q0,K01) + C(H0001, q0, q0)
]
,

ζ2 = p1

[
−bĤ0101 −H1100 +A1(H1100,K01)+

θ1000(Ĥ1001 + q1) +B(H0001, H1100) +B(Ĥ0101, q0)+

B(Ĥ1001, q1) +B1(q0, q1,K01) + C(H0001, q0, q1)
]

+ p0

[
−2aĤ0101 +A1(H2000,K01) +B(H0001, H2000)

+ 2B(Ĥ1001, q0) +B1(q0, q0,K01) + C(H0001, q0, q0)
]
.

(32)

Notice that the matrix has a non-vanishing determinant by the non-degeneracy condition. Now that
the systems in (30) are solvable we obtain

H2001 = −AINV [−2aH0101 +A1(H2000,K01) +B(H0001, H2000)

+2B(H1001, q0) + 2aθ0001q1 +B1(q0, q0,K01) + C(H0001, q0, q0)] ,

H1101 = −AINV [−bH0101 −H1100 −H2001 +A1(H1100,K01)+

θ1000(H1001 + q1 − θ0001q0) +B(H0001, H1100) +B(H0101, q0)+

B(H1001, q1) + θ0001(H2000 + bq1 − θ1000q0) +B1(q0, q1,K01)

+C(H0001, q0, q1)] .

(33)

11



2.2.6 Coefficients K11 and H0011

Collecting the systems corresponding to the β1β2 term in the homological equation yields

−AH0011 = J1K11 +A1(H0001,K10) +A1(H0010,K01)

+B(H0001, H0010) + J2(K01,K10) + θ0001q1 −H0101.
(34)

Using the identity
p1J1K10 = 1

from the second system in (29) combined with the solvability condition yields

K11 = − p1 [A1(H0001,K10) +A1(H0010,K01)

+B(H0010, H0001) + J2(K10,K01) + θ0001q1 −H0101]K10.

It follows that
H0011 = −AINV [J1K11 +A1(H0001,K10) +A1(H0010,K01)

+B(H0001, H0010) + J2(K01,K10) + θ0001q1 −H0101] .
(35)

2.2.7 Coefficients K02, H0002, H1002, H0102

The systems corresponding to the β2
2 , w0β

2
2 and w1β

2
2 , terms in the homological equation yields

−AH0002 = J1K02 + 2A1(H0001,K01) +B(H0001, H0001) + J2(K01,K01),

−AH1002 = 2A1(H1001,K01) +A1(q0,K02) +A2(q0,K01,K01)

+B(q0, H0002) + 2B(H0001, H1001) + 2B1(q0, H0001,K01)

+ C(q0, H0001, H0001),

−AH0102 = 2A1(H0101,K01) +A1(q1,K02) +A2(q1,K01,K01)

+B(q1, H0002) + 2B(H0001, H0101) + 2B1(q1, H0001,K01)

+ C(q1, H0001, H0001) + 2θ0001(H1001 + q1 − θ0001q0)

− 2H0101 −H1002.

(36)

The first system is solved similarly as (34). However, here we need to use hypernormalization in order
to make the second and third systems consistent. Thus, we define

K̂02 = − p1 [2A1(H0001,K01) +B(H0001, H0001) + J2(K01,K01)]K10,

Ĥ0002 = −AINV
[
J1K̂02 + 2A1(H0001,K01) +B(H0001, H0001) + J2(K01,K01)

]
.

Then the general solutions can be written as

K02 = K̂02 + δ3K01,

H0002 = Ĥ0002 + δ3H0001 + γ6q0.

12



Substituting these two expressions into (36) and using the solvability condition yields

γ6 = − 1

2a
p1

[
2A1(H1001,K01) +A1(q0, K̂02) +A2(q0,K01,K01)

+B(q0, Ĥ0002) + 2B(H0001, H1001) + 2B1(q0, H0001,K01)

+C(q0, H0001, H0001)] ,

δ3 = − p1
[
2A1(H0101,K01) +A1(q1, K̂02) +A2(q1,K01,K01)

+B(q1, Ĥ0002) + 2B(H0001, H0101) + 2B1(q1, H0001,K01)

+C(q1, H0001, H0001) + 2θ0001(H1001 + q1)− 2H0101]

− p0
[
2A1(H1001,K01) +A1(q0, K̂02) +A2(q0,K01,K01)

+B(q0, Ĥ0002) + 2B(H0001, H1001) + 2B1(q0, H0001,K01)

+C(q0, H0001, H0001)]− γ6b.
Now that the last two systems in (36) are consistent, we obtain

H1002 = −AINV [2A1(H1001,K01) +A1(q0,K02) +A2(q0,K01,K01)

+B(q0, H0002) + 2B(H0001, H1001) + 2B1(q0, H0001,K01)

+ C(q0, H0001, H0001)] ,

H0102 = −AINV [2A1(H0101,K01) +A1(q1,K02) +A2(q1,K01,K01)

+B(q1, H0002) + 2B(H0001, H0101) + 2B1(q1, H0001,K01)

+ C(q1, H0001, H0001) + 2θ0001(H1001 + q1 − θ0001q0)

−2H0101 −H1002] .

2.2.8 Coefficients K03 and H0003

Collecting the systems corresponding to the β3
2 term in the homological equation yields

−AH0003 = J1K03 +A1(H0001,K02) +A1(H0002,K01) + 2(A1(H0001,K02)

+A1(H0002,K01) + 3B(H0001, H0002) + 3J2(K01,K02)

+ 3A2(H0001,K01,K01) + 3B1(H0001, H0001,K01)

+ C(H0001, H0001, H0001) + J3(K01,K01,K01).

This equation is solved similarly as equation (34). We obtain

K03 = − p1 [A1(H0001,K02) +A1(H0002,K01) + 2A1(H0001,K02)

+ 2A1(H0002,K01) + 3B(H0001, H0002) + 3J2(K01,K02)

+ 3A2(H0001,K01,K01) + 3B1(H0001, H0001,K01)

+C(H0001, H0001, H0001) + J3(K01,K01,K01)]K10,

H0003 = −AINV [J1K03 +A1(H0001,K02) +A1(H0002,K01) + 2A1(H0001,K02)

+ 2A1(H0002,K01) + 3B(H0001, H0002) + 3J2(K01,K02)

+ 3A2(H0001,K01,K01) + 3B1(H0001, H0001,K01)

+C(H0001, H0001, H0001) + J3(K01,K01,K01)] .

2.3 Center manifold reduction for smooth normal form
If we do not allow for a reparametrization of time, we can no longer consider the normal form (10).
Instead, we need to use the smooth normal form as introduced in [41], i.e., equation (9). Applying the
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blowup transformation

β1 = −4

a
ε4, β2 =

b

a
τε2, w0 =

1

a
uε2, w1 =

1

a
vε3, s = εt, (ε 6= 0), (37)

to the smooth normal form, we obtain the second-order nonlinear differential equation

ü = −4 + u2 +
b

a
u̇ (u+ τ) ε+

1

a2
u2 (τba1 + du) ε2 +

1

a2
uu̇ (τbb1 + eu) ε3 +O(ε4). (38)

Here the dot represents the derivative with respect to s.
Note that, by using hypernormalization, we can still simplify the smooth normal form. Indeed, as

already remarked in [39] the coefficient e can be set to zero. Furthermore, it can be seen from the
system in (31) that either the coefficient a1 or b1 can also be removed. The natural choice here is
for the coefficient b1 to be set to zero in the normal form. The parameter-dependent center manifold
transformation in this situation is obtained by first setting the coefficients θ1000 and θ0001 to zero in
Section 2.2. Equation (23) becomes

−AH3000 = 3B(H2000, q0) + C(q0, q0, q0)− 6dq1 − 6aH1100, (39)

and equation (25) is removed. After γ2 in (26) has been calculated, the Fredholm solvability condition
yields that

d =
1

6
p1

[
3B(H2000, q0) + C(q0, q0, q0)− 6aĤ1100

]
.

Now that (39) is consistent, we can replace (27) with

H3000 = −AINV [3B(H2000, q0) + C(q0, q0, q0)− 6dq1 − 6aH1100] .

Next, we replace the first equation in (30) with

−AH2001 = − 2a1q1 − 2aH0101 +A1(H2000,K01) +B(H0001, H2000)

+ 2B(H1001, q0) +B1(q0, q0,K01) + C(H0001, q0, q0)
(40)

and the system in (31) becomes the single equation

γ5 = −ζ2
b
.

Here ζ2 is still given by the second equation in (32) (with θ1000 still set to zero), while ζ1 is no longer
needed. Applying the Fredholm solvability condition to (40) yields

a1 =
1

2
[−2aH0101 +A1(H2000,K01) +B(H0001, H2000) + 2B(H1001, q0)

+B1(q0, q0,K01) + C(H0001, q0, q0)] .

Since (40) is now consistent, we can replace the first equation in (33) with

H2001 = −AINV [−2aH0101 +A1(H2000,K01) +B(H0001, H2000)

+2B(H1001, q0)− 2a1q1 +B1(q0, q0,K01) + C(H0001, q0, q0)] .

The remaining systems and equations are unchanged.
To compare the homoclinic predictors under different transformations, we also provide the parameter-

dependent center manifold transformation for the smooth normal form (9) without transforming away
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the coefficients e and b1. In this case, in addition to the modification given above, we also set γ2 and
γ5 to zero. Then the system in (24) becomes

−AH2100 = − 2eq1 − 2aH0200 − 2bH1100 −H3000 + 2B(H1100, q0)

+B(H2000, q1) + C(q0, q0, q1),
(41)

while the second systems in (30) should be replaced with

−AH1101 = − b1q1 − bH0101 −H1100 −H2001 +A1(H1100,K01)+

+B(H0001, H1100) +B(H0101, q0) +B(H1001, q1)

+B1(q0, q1,K01) + C(H0001, q0, q1).

(42)

Applying the Fredholm solvability condition to these equations gives

e =
1

2
p1 [−2aH0200 − 2bH1100 −H3000 + 2B(H1100, q0)

+B(H2000, q1) + C(q0, q0, q1)] ,

b1 = p1 [−bH0101 −H1100 −H2001 +A1(H1100,K01) +B(H0001, H1100)

+B(H0101, q0) +B(H1001, q1) +B1(q0, q1,K01) + C(H0001, q0, q1)] .

Now that (41) and (42) are consistent, we can replace (28) and the second system in (33) with

H2100 = −AINV [−2eq1 − 2aH0200 − 2bH1100 −H3000 + 2B(H1100, q0)

+B(H2000, q1) + C(q0, q0, q1)] .

and
H1101 = −AINV [−b1q1 − bH0101 −H1100 −H2001 +A1(H1100,K01)+

+B(H0001, H1100) +B(H0101, q0) +B(H1001, q1)

+B1(q0, q1,K01) + C(H0001, q0, q1)] ,

respectively. The remaining systems and equations are unchanged.
Remark 3. The derivation in [1, 40] leads to a ‘big’ system in which equations need to be solved
simultaneously. The derivation presented here does not involve a ‘big’ system, making the expressions
more suitable to implement for infinitely-dimensional ODEs generated by partial and delay differential
equations, to which the (parameter-dependent) center manifold theorem applies.

3 Homoclinic asymptotics
In this section, we derive third-order asymptotics to the homoclinic solution near the generic Bogdanov-
Takens point. We revisited the standard regular perturbation method, but with a different phase
condition. In Section 5 we will show that this improves the accuracy of the homoclinic approximation
in the normal form. Then, in Section 3.2 we revisited the Lindstedt-Poincaré method. By an additional
non-linear time transformation, we obtain a very simple algorithm to approximate the homoclinic
solution.

3.1 The Regular Perturbation Method with norm minimizing phase con-
dition

For ε = 0, (12) is a Hamiltonian system with the first integral

H(u, u̇) =
1

2
u̇2 + 4u− 1

3
u3.
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The Hamiltonian system has the well-known explicit homoclinic solution (u0(s), u̇0(s)) given by

u0(s) = 6 tanh2(s)− 4.

Thus, for (u, ε, τ) = (u0, 0, τ) there exists a trivial branch of homoclinic orbits in (12). In [4] it is shown
that there exists a bifurcation point at τ = 10

7 from which a smooth non-trivial branch emanates
transversally. Parametrizing this branch by ε, we formally have

u(s, ε) =
∑
i≥0

ui(s)ε
i, τ(ε) =

∑
i≥0

τiε
i. (43)

Substituting (43) into (12) and collecting equal terms in ε yields the following differential equations to
be solved:

ü0 − u20 + 4 = 0, (44)
üi − 2u0ui = zi, (45)
u̇i(±∞) = üi(±∞) = 0, i ∈ N.

Here zi dependents on the sums and products of uj , u̇j and τj−1 for 0 ≤ j < i. Multiplying equation
(45) by u̇ and integrating from s0 to s yields,∫ s

s0

u̇0üi − 2u̇0u0ui dx =

∫ s

s0

u̇0zi dx.

Using integration by parts twice then gives

(u̇0u̇i − uiü0)|ss0 =

∫ s

s0

u̇0zi dx. (46)

Notice that solutions (u̇i(s), üi(s)) must vanish at plus and minus infinity. We obtain that τi−1 is given
by the condition

0 =

∫ ∞
−∞

u̇0zi dx.

To simplify the equations that follow below we would like to use [4, Proposition 4.2].
However, we noticed that the proposition is not precise enough for the conclusion to hold. Indeed,

the proof relies on the uniqueness of the non-trivial branch of homoclinic orbits. However, we see that
the left-hand side (45) is invariant under the transformation

ui → ui + γu̇0, γ ∈ R, i ∈ N.

We, therefore, slightly modify the proposition with an additional assumption.

Proposition 4. Assume that the perturbed Hamiltonian system (12) is obtained from the normal form
(10) by the singular rescaling (11). Then the non-trivial branch of homoclinic solutions

(u(s, ε), u̇(s, ε), ε, τ(ε)), ε < |ε0|,

for some ε0 > 0 satisfies
τ(ε) = τ(−ε). (47)

Furthermore, if the solutions ui are even functions for i even, then the solution u contains the additional
symmetry

u(s,−ε) = u(−s, ε).
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Proof. The proof follows almost entirely [4, Proposition 4.2]. Thus, it can be shown that the transfor-
mation (11) induces the symmetry

ϕ(s,D0(u0, u̇0)T ,−ε, τ) = D0ϕ(−s, (u0, u̇0)T , ε, τ)

on the flow ϕ of (12), where

D0 =

(
1 0
0 −1

)
.

From this relation one can then conclude that if (u(s, ε), u̇(s, ε), ε, τ(ε)) is a homoclinic solution to (12)
then so is (ũ(−s, ε),− ˙̃u(−s, ε),−ε, τ(ε)). The proof in [4] then finishes with the remark that these
two homoclinic solutions must be equal by the uniqueness of the non-trivial branch. However, by the
non-uniqueness of the non-trivial branch, we obtain the relation

(u(s, ε), ε, τ(ε)) = (u(−s,−ε), ε, τ(−ε)) + (γ(ε)u̇0(s), ε, 0),

where
γ(ε) =

∑
i≥1

γiε
i, γi ∈ R. (48)

Thus, τ is indeed an even function of ε. Using the expansion for u from (43) we see that by inspecting
the coefficients of equal powers in ε we only need to impose that γi = 0 for i even and then the assertion
follows.

It, therefore, follows from Proposition 4 together with equality (46) that the condition for solving
τi−1 in (49) simplifies to

0 =

∫ ∞
0

u̇0zi dx. (49)

for i even, whereas τi = 0 for i odd.
From (46) we obtain the solution

ui = u̇0

∫
1

u̇20

∫
u̇0zi dx dx, i ∈ N, (50)

or
ui =

(
u̇0

∫
1

u̇20
dx

)∫
u̇0zi(u, u̇, τ) dx− u̇0

∫ (∫
1

u̇20
dx

)
u̇0zi(u, u̇, τ) dx.

From (50) we see that there are two integration constants involved. The first integration constant,
originating from the inner integral, is needed to ensure the boundedness of the solution. The second
integration constant introduces precisely the freedom

ui → ui + γiu̇0, i ∈ N,

with γi ∈ R constants. In [40] the condition

u̇i(0) = 0 (51)

is imposed to ensure the uniqueness of the solution. This phase condition is also used in [4] a theoretical
setting. However, a more natural phase condition would be to minimize the L2-distance between the
current and previous solution obtained from the regular perturbation method. This phase condition is
also used in [20, 11, 46, 21] for numerical continuation of heteroclinic and homoclinic orbits. Using the
L2 phase condition yields∫ ∞

−∞
〈(u̇0(s), ü0(s))(ui(s) + γiu̇0(s), u̇i(s) + γiü0(s))〉 ds = 0, i ∈ N.
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By Proposition 4 this phase condition is equivalent to the condition that∫ ∞
0

〈(u̇0(s), ü0(s))(ui(s) + γiu̇0(s), u̇i(s) + γiü0(s))〉 ds = 0, i ∈ N, (52)

for i odd and γi = 0, for i even, if we ensure that ui is even for i even. By using integration by parts
together with (44) and subsequently solving (52) for γi we obtain

γi = − 35

2592

∫ ∞
0

u̇0(1− 2u0)ui(s) ds, i ∈ N. (53)

In [40], the phase condition ∫ ∞
−∞

(u(s)− u0(s)) u̇0(s) ds = 0, i ∈ N, (54)

was also tested. This phase condition only minimizes the L2-distance of the u-component between the
current and the zeroth-order solution obtained from the regular perturbation method. It is reported
in [40] that for (54) no substantial superiority over using phase condition (51) was found. Our findings
show that, at least for (52), this is only partially true. Indeed, the numerical simulations in Section 5.1
show that, as one would expect, using the phase condition (52) does indeed improve the approximation
to the homoclinic orbit. However, when the homoclinic approximations are lifted from the normal form
to the center manifold, the phase conditions are, in general, not preserved, and the improvements are
no longer observed.

As we will see below, the L2 phase condition (52) is more difficult to solve. It is, therefore, more
efficient to use the orbital normal form (8) instead of the smooth normal form (9).

3.1.1 Third-order homoclinic approximation

For i = 1 we obtain the equation
z1(s) = (u0(s) + τ0)u̇0(s).

Condition (49) yields

τ0 =
10

7
.

Then from (50) we obtain the solution

u1(s) = −6

7
u̇0(s) log(cosh(s)).

The L2 phase condition then yields that

γ1 = − 3

245
(70 log(2)− 59).

Note that the integral to be evaluated in (53) is labor-intensive and prone to error. Therefore, we
used the (freely available) Wolfram Engine [28] (although not open source). Correcting the previous
solution u1 leads to the solution

u1(s) =
3

245
(59− 70 log(2 cosh(s)))u̇0(s).

Continuing with the second-order system we have the equation

z2 = (u0 + τ0)u̇1 + u1u̇0 + u21.
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Here we directly used that τ1 = 0 by the symmetry as explained above. From (50) we obtain

u2(s) =
1

60025
36 sech2 s

[
3 sech2 s {70 log(2 cosh s)(105 log(2 cosh s)− 247)

+6289} − 2(3675s tanh s+ 210 log(2 cosh s)(35 log(2 cosh s)− 94) + 7129)] .

Notice that, since u2 is an even function, we automatically have that γ2 vanishes.
For i = 3 we have

z3 = (u2 + τ2)u̇0 + (u0 + τ0)u̇2 + u1 (u̇1 + 2u2) .

Condition (49) yields

τ2 =
288

2401
.

Then from (50) we obtain the solution

u3(s) =
216 sech2 s

14706125

[
sech2 s {3675s(210 log(2 cosh s)− 247)

+ tanh s
(
−171500(cosh(2s)− 5) log3(2 cosh s) + 7350(129 cosh(2s)− 470)

log2(2 cosh s) + 4456830 log(2 cosh s)− 966242
)}

−70{210s(35 log(2 cosh s)− 47) + 30673 tanh s log(cosh s)}] .

Trying to solve the integral in (53) with the Wolfram Engine yields∫ ∞
0

u̇0(1− 2u0)u3(s) ds =
16
(
−5234558923 + 331676100π2 + 6260972760 log(2)

)
514714375

(55)

− 155520

343

∫ ∞
0

log3(2 cosh s) sech6 s tanh2 s ds

31104

343

∫ ∞
0

log3(2 cosh s) sech6 s tanh2 s cosh(2s) ds

622080

343

∫ ∞
0

log3(2 cosh s) sech8 s tanh2 s ds

− 124416

343

∫ ∞
0

log3(2 cosh s) sech8 s tanh2 s cosh(2s) ds,

i.e., the Wolfram Engine was unable to solve the integral. We observe that, in order to solve (55), it is
sufficient to solve integrals of the form

In :=

∫ ∞
0

log3(2 cosh s) sechn s ds, (56)

with n = 4, 6, 8 and n = 10. After a lengthy calculation, see Appendix B, we obtain the closed form
expression

In = 2n−33

n
2−1∑
k=0

(n
2 − 1

k

)
(−1)k 1

(n2 + k)4
+

8

2k + n

 Hn
2 +k

(2k + n)2
+
H

(2)
n
2 +k − ζ(2)

2(2k + n)
+
H

(3)
n
2 +k − ζ(3)

4

 .
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where ζ is the Riemann zeta function and H(m)
n is the nth generalized harmonic number of order m.

Explicitly we obtain

I4 =
82

27
− 5π2

36
− ζ(3),

I6 =
38342

16875
− 47π2

450
− 4ζ(3)

5
,

I8 =
25545482

13505625
− 319π2

3675
− 24ζ(3)

35
,

I10 =
5428830032

3281866875
− 7516π2

99225
− 64ζ(3)

105
.

From the above integrals, we deduce that

γ3 =
264ζ(3)

343
− 884895199

7147176750
− 100π2

3087
− 1104228 log 2

420175
.

Since, by the symmetry, τ3 = 0, we obtain the third-order predictor

w0(η) =
a

b2

(
3∑
i=0

ui(
a

b
εη)εi +O(ε4)

)
ε2,

w1(η) =
a2

b3

(
3∑
i=0

u̇i(
a

b
εη)εi +O(ε4)

)
ε3,

β1 = −4
a3

b4
ε4,

β2 =
a

b
ε2
(

10

7
+

288

2401
ε2 +O(ε4)

)
,

(57)

for the smooth orbital normal form (10).
Remark 5. In [40] there is the remark that the author [4] was unable to find a tangent predictor due
to the (normalized) form. The system in [4, Equation (4.5)] to be solved is given by ẋ− y =

1

2
a1x̂

2 + a2τ0x̂+ a3τ
2
0 ,

ẏ − 2x̂x = b1x̂ŷ + b2τ0ŷ,
(58)

here (x̂, ŷ) is the zeroth-order solution (u0, u̇0). The coefficients a1, a2, b1, b2 are different normal form
coefficients then used in this paper, but τ0 is identical to the τ0 used in this paper. Using the same
technique as above it is easy to derive that

x(s) =

(
a− 1

16
a3sτ

2
0 −

1

96
a3τ

2
0 sinh(2s)− 1

48
a2τ0 sinh(2s) +

1

24
a3τ

2
0 coth(s)

− 1

24
a2τ0 coth(s) +

a1s

8
− 1

48
a1 sinh(2s) +

1

12
a1 coth(s) +

1

15
b2τ0 cosh(2s)

+
1

240
b2τ0 cosh(4s)− 2

21
b1 cosh(2s)− 1

168
b1 cosh(4s)

−6

7
b1 log(cosh(s))

)
ŷ(s)

is a solution to (58). Therefore, by [35, 31] the convergence of the homoclinic solution in the perturbed
Hamiltonian system follows. Although the author in [4] was unable to provide a tangent approximation
in phase-space, they did prove, by refining the convergence cones from [32], the convergence of the
zeroth-order approximation in phase-space in the perturbed Hamiltonian system.
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3.2 A polynomial Lindstedt-Poincaré method
The Lindstedt-Poincaré method considers a nonlinear time transformation defined implicitly through
the relation

dξ

ds
= ω(ξ), (59)

which can be used to remove the so-called secular terms, i.e., terms growing without bound, appear-
ing in the process of approximating periodic orbits in weakly nonlinear oscillators using the regular
perturbation approach.

The Lindstedt-Poincaré method is also used to approximate homoclinic solutions in nonlinear oscil-
lators, referred to as the generalized Lindstedt-Poincaré method, see [12, 14, 15, 13, 16]. In this case,
there are no terms growing without bound when applying the regular perturbation approach. Instead,
there are so-called parasitic turns, see [40, Figure 1]. The nonlinear transformation (59) can then be
used to remove the parasitic turns. In fact, using the nonlinear transformation, one can obtain a very
simple form for the solution of the homoclinic orbit in phase-space, see [12, Equation 35] and [2].

In both cases, i.e., when approximating periodic orbits or homoclinic orbits, we do the same: a
nonlinear time transformation is used to obtain a uniform approximation of the orbit in time.

3.2.1 General method

Substituting the parameterization of time ω (59) into (12) yields

ω
d

dξ
(ωû′)− û2 + 4 = εωû′(û+ τ) +O(ε4). (60)

were û(ξ(s)) = u(s).
We now perform one additional transformation of time

dζ

dξ
= 1− ζ2 (61)

to simplify the solutions obtained below. Note that this transformation implies that ζ = tanh(ξ + c1),
where c1 is some constant. Without loss of generality, we can assume that c1 = 0 since c1 just shifts
the homoclinic solution in time. Substituting (61) into (60) yields

(1− ζ2)ω̃
d

dζ

(
(1− ζ2)ω̃ũ′

)
− ũ2 + 4 = εω̃(1− ζ2)ũ′(ũ+ τ) +O(ε4), (62)

where the prime ′ now represents the derivative with respect to the variable ζ, ũ(ζ(ξ(s))) = u(s), and
ω̃(ζ) = ω(ξ(ζ)).

Expanding ũ and τ in ε
ũ(ζ) =

∑
i=0

ũi(ζ)εi, τ =
∑
i=0

τiε
i, (63)

substituting into (60), and collecting terms of equal power in ε, we obtain the following systems to be
solved:

(1− ζ2)ω̃0

(
(1− ζ2)ω̃0ũ

′
0

)′ − ũ20 + 4 = 0, (64)

(1− ζ2)
(
(1− ζ2)ũ′i

)′ − 2ũ0ũi + 2(1− ζ2)ω̃i
(
(1− ζ2)ũ′0

)′
+ (1− ζ2)2ũ′0ω̃

′
i (65)

= τi−1
(
1− ζ2

)
ũ′0 + zi, i ∈ N.

Here zi contains the sums and products of terms in ũj , ω̃j and τj−1 with 0 ≤ j ≤ i − 1, with τ−1 is
defined to be zero.
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Theorem 6. Equations (64) and (65) are solvable for every i ∈ N0, with

ũi(ζ) = σiζ
2 + δi, (66)

where σi and δi are constants to be determined.

Proof. It is easy to see that equation (64) is solvable with σ0 = 6, δ0 = −4, and ω̃0(ζ) = 1.
Assume that for i = 1, . . . , n−1, the systems given by (65) are solvable for ω̃i and ũi. Furthermore,

also assume that for i = 1, . . . , n, ũi is of the form (66). We will show that the system (65) with i = n
is solvable for ω̃n.

First notice that (65) is just a first order ordinary differential equation in ω̃i:

ω̃′i +
2
(
(1− ζ2)ũ′0

)′
(1− ζ2)ũ′0

ω̃i =
2ũ0ũi − (1− ζ2)

(
(1− ζ2)ũ′i

)′
+ τi−1

(
1− ζ2

)
ũ′0 + zi

(1− ζ2)2ũ′0
. (67)

Multiplying by the integrating factor
(1− ζ2)2 (ũ′0)

2 (68)

and subsequently integrating with respect to ζ yields the identity

ω̃i =
(1− ζ2)

(
(1− ζ2)ũ′0

)′
ũi − (1− ζ2)2ũ′0ũ

′
i + (gi(ζ)− gi(1))

((1− ζ2) ũ′0)
2

= −σi
12
− (1− ζ2)

(
(1− ζ2)ũ′0

)′
ũi + (gi(ζ)− gi(1))

((1− ζ2) ũ′0)
2 (69)

where

gi(ζ) = τi−1

∫ (
1− ζ2

)
(ũ′0)

2
dζ +

∫
ũ′0zi dζ.

Here we used identity (
(1− ζ2)

(
(1− ζ2)ũ′0

)′)′
= 2ũ0ũ

′
0,

obtained from differentiating equation (64) and then using integrating by parts. Furthermore, we have
chosen the integration constant gi(1) such that numerator in (69) vanishes for ζ = 1. Indeed, for ω̃i
to be well-defined, the numerator in (69) must have roots of at least multiplicity two at ζ = 0 and
ζ = ±1. By setting ζ = −1, 0 in the numerator of (69), we obtain the equations

0 = gi(−1)− gi(1), (70)
0 = 12δi − (gi(0)− gi(1)), (71)

respectively. The first equation can be solved explicitly for τi. Since gi(0) = 0, it follows that δi = gi(1)
12 .

To show that the roots ζ = 0 and ζ = ±1 have multiplicity two, we notice that differentiation of the
numerator in (69) with respect to ζ is equal to multiplying the right-hand side of (67) with the
integrating factor (68), i.e.,

ũ′0

(
2ũ0ũi − (1− ζ2)

(
(1− ζ2)ũ′i

)′
+ τi−1

(
1− ζ2

)
ũ′0 − zi

)
. (72)

Since ũ′0 = 12ζ, we can factor out ζ = 0. Then substituting ζ = ±1 into (72), the following equation
needs to be satisfied

2ũ0(±1)ũi(±1) + zi(±1) = 0.
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Notice that this condition is equivalent to the condition obtained by substituting ζ = ±1 into (65).
Therefore, by solving the above equation for either ±1, yields

σi = −δi −
zi(1)

4
. (73)

Lastly, notice that for i = 1 we have the solution

τ0 =
10

7
, σ1 = 0, δ1 = 0, ω̃1(ζ) =

6

7
ζ.

Corollary 7. For i ∈ N0 the polynomials ω̃i (69) have rational coefficients. Also, the τi, σi and δi are
rational.

Proof. The proof follows from a simple induction argument taking into account to structure of zi,
i ∈ N, in (65).

Corollary 8. The following relation holds

σi = δi = τi = 0, for i odd.

Proof. From Proposition 4 we have that the branch of non-trivial homoclinic orbits has the following
symmetry

u(−s, ε) = u(s,−ε) + γu̇0(s), τ(ε) = τ(−ε),
for s ∈ R and some open neighborhood of ε = 0. Since u(s, ε) = ũ(ζ(ξ(s))), ε) and

ũ(ζ(ξ(s)), ε) = σ(ε)ζ2(ξ(s)) + δ(ε),

where σ(ε) =
∑
i σiε

i and δ(ε) =
∑
i δiε

i, it follows that

σ(ε)ζ2(ξ(−s)) + δ(ε) = u(−s, ε) = u(s,−ε) + γu̇0(s)

= σ(−ε)ζ2(ξ(s)) + δ(−ε) + γ(ε)
[
1− ζ2(ξ(s))

]
12ζ(ξ(s)).

Therefore, σ, δ, and τ are even functions in ε, from which the assertion follows.

Corollary 9. For the quadratic Bogdanov-Takens normal form (8) we have the relation that

σi = −δi, for i ≥ 1. (74)

Proof. Applying the singular rescaling (11) to the normal form (8), and consecutive applying the
nonlinear time transformations (59) and (61), we obtain (62) without the higher-order terms in ε.
After some calculations we obtain the explicit expression for zi with i ≥ 1 in (65), namely

zi(ζ) =

i−1∑
k=1

ukui−k + (1− ζ2)

{
i−1∑
l=1

u′lτi−1−l +

i−1∑
k=1

i−1−k∑
l=0

ωku
′
lτi−1−l−k+

i−1∑
k=0

i−1−k∑
l=0

ωku
′
lui−1−l−k −

i−1∑
l=1

ωl
(
(1− ζ2)u′i−l

)′ − i−1∑
k=1

i−k∑
l=0

ωl
(
(1− ζ2)ωku

′
i−l−k

)′}
.

From Corollary 8, we have that z1(1) = 0. By assuming that the relation (74) holds for i = 1, 2, . . . , n−
1, n ∈ N, we see directly that zi(1) = 0. The assertion now follows by (73), with i = n.
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Remark 10. From Corollary 8 it follows that the solution ũ for the quadratic Bogdanov-Takens normal
form (8) can be represented by the single parameter σ

ũ(ζ) = 2− (1− ζ2)
∑
i≥0

σiε
i.

Consequently, û becomes
û(ξ) = 2− sech2(ξ)

∑
i≥0

σiε
i.

3.2.2 Third-order orbital homoclinic approximation

For the third-order homoclinic predictor we obtain

σ = 6 +
18

49
ε2 +O(ε4),

δ = −4− 18

49
ε2 +O(ε4),

τ =
10

7
+

288

2401
ε2 +O(ε4), (75)

ω̃(ζ) = 1− 6

7
ζε+

(
9

98
+

27

98
ζ2
)
ε2 +

(
− 198

2401
ζ +

18

343
ζ3
)
ε3 +O(ε4).

From which it follows that

ũ(ζ) = 2−
(
1− ζ2

)(
6 +

18

49
ε2
)

+O(ε4), (76)

ṽ(ζ) = − 2ω̃(ζ)σ(1− ζ2)ζ = −
[
−12 +

72

7
ζε−

(
90

49
+

162

49
ζ2
)
ε2 (77)

+

(
3888

2401
ζ − 216

343
ζ3
)
ε3
]

(1− ζ2)ζ +O(ε4).

The relation ξ(s) is obtained by solving the ODE

dξ

ds
(s) = ω̃(tanh(ξ(s))). (78)

Thus, we substitute
ξ(s) = s+ ξ1(s)ε+ ξ2(s)ε2 + ξ3(s)ε3 +O(ε4),

into (78) and expand the resulting equation in ε to obtain

dξ1
ds

(s) = −6 tanh(s)

7
, (79)

dξ2
ds

(s) =
18 + 54 tanh2(s)− 168ξ1(s) + 168 tanh2(s)ξ1(s)

196
, (80)

dξ3
ds

(s) = −198 tanh(s)

2401
+

18 tanh3(s)

343
− 27

49
(− tanh(s)ξ1(s) + tanh3(s)ξ1(s))

− 6

7
(− tanh(s)ξ21(s) + tanh3(s)ξ21(s) + ξ2(s)− tanh2(s)ξ2(s)).
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Here we directly used that ξ0(s) = s. By solving these equations recursively we obtain

ξ1(s) = c1 −
6

7
log(cosh(s)),

ξ2(s) = c2 −
18s

49
+

45 tanh(s)

98
− 6

7
c1 tanh(s) +

36

49
tanh(s) log(cosh(s)),

ξ3(s) = c3 +
1

4802

(
3 sech2(s)

(
−504 log2(cosh(s))− 276 cosh(2s) log(cosh(s))

+ 102 log(cosh(s)) + 14(18s− 49c2) sinh(2s) + 1176c1 log(cosh(s))

+546− 686c1
2 − 441c1

))
.

The constants ci(i = 1, 2, 3) lead to different phase conditions. A computationally simple phase condi-
tion is given by

ξi(0) = 0, for i = 1, 2, 3. (81)

These results in the constraint v(0) = 0, i.e., the phase condition used in [40]. Solving (81) leads to
the solution

c1 = 0, c2 = 0, c3 = −117

343
. (82)

Substituting the above expression for ξ into (11) we obtain the third-order predictor

w0(η) =
a

b2
ũ
(

tanh
(
ξ
(a
b
εη
)))

ε2,

w1(η) =
a2

b3
ṽ
(

tanh
(
ξ
(a
b
εη
)))

ε3,

β1 = −4
a3

b4
ε4,

β2 =
a

b
ε2τ,

(83)

where τ, ũ and ṽ are given by (75)–(77), respectively.
Remark 11. By expanding ũ (tanh (ξ(s))) in ε up to third-order we obtain

u(s) = u0(s) + u1(s)ε+ u2(s)ε2 + u3(s)ε3,

where

u0(s) = 6 tanh2(s)− 4, u1(s) = −72b tanh(s) sech2(s) log(cosh(s))

7a
,

u2(s) =
18

49
sech2(s) (−12s tanh(s)− 24(log(cosh(s))− 1) log(cosh(s))

+3 sech2(s)(32 log(sech(s)) + 12 log(cosh(s))(log(cosh(s)) + 2)− 5) + 14
)
,

u3(s) = − 27 sech5(s)

2401
(−273 sinh(s) + 91 sinh(3s) + 84s cosh(3s)(2 log(cosh(s))− 1)

− 84s cosh(s)(6 log(cosh(s))− 1)− 1232 sinh(s) log3(cosh(s))

+ 112 sinh(3s) log3(cosh(s)) + 2016 sinh(s) log2(cosh(s))

− 336 sinh(3s) log2(cosh(s)) + 904 sinh(s) log(cosh(s))

−104 sinh(3s) log(cosh(s))) .

(84)

Together with (75), this is precisely the solution obtained by using the regular perturbation method
to (12) with phase condition u̇(0) = 0.

Note that for the conjecture in [1, Section 7] to hold, the phase condition (82) must be satisfied.
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3.2.3 Non-uniqueness homoclinic solution

Note that in Theorem 6 we could have assumed the solutions of (65) to be of the form

ũ(ζ) =
∑
i≥0

(
σiζ

2 + δi + γi(1− ζ2)ũ′0(ζ)
)
εi, (85)

where γ0 = 0 and γi ∈ R are constants to be determined by some phase condition. Thus, we have
freedom in (81) and in (85) both originating from the non-uniqueness of the homoclinic orbit. The
solutions (79) and (80) together with

ξ3(s) =
1

4802
(18 [49γ1(7γ1 + 4) + 84s tanh(s) + 92 log(sech(s))− 105]

− 7 sech2(s) [−7γ1(7γ1 − 3)(35γ1 + 9) + 18(7γ1 (7γ1 + 4) + 9) log(sech(s))

+216 log2(cosh(s))− 234
])

and

γ1 =
1

35

(
−4− 59

3
√

836 + 15
√

4019
+

3

√
836 + 15

√
4019

)
also leads to the phase condition ξi(0) = 0 for i = 1, 2, 3. However, v3(0) = 0 no longer holds. The
solutions ũ and ṽ are now given by

ũ(ζ) = 2 +
(
1− ζ2

)(
−6 + 12γ1ζε+

(
6γ21 −

18

49

)
ε2 +O(ε4)

)
,

ṽ(ζ) = (1− ζ2)ω̃(ζ)u′(ζ) = (1− ζ2)ω̃(ζ)
∑
i=0

(
σiζ + 12γi

(
1− 3ζ2

))
εi

= (1− ζ2)

[
12ζ +

(
12γ1 − 36

2 + 7γ1ζ
2

7

)
ε+

6ζ
15− 168γ1 − 245γ21 + 3(9 + 7γ1(16 + 7γ1))ζ2

49
ε2+(

216ζ2
−18 + 7ζ2

2401
+ 6γ31(−3 + 2ζ2 + ζ4)− 72γ21

1− 6ζ2 + 4ζ4

7

−54γ1
−1− 6ζ2 + 15ζ4

49

)
ε3 +O(ε4)

]
.

The numerical simulations in Section 5.1 show that for the normal form (8) these asymptotics are more
accurate than the asymptotics derived in Section 3.2.2.

3.2.4 Comparison with the nonlinear periodic time-reparametrization

In [2] a different approach is used to approximate the homoclinic solution near the quadratic normal
form of a generic codimension 2 Bogdanov-Takens bifurcation. The approach there is an applica-
tion of the so-called Perturbation-Incremental Method described in [47]. Consider strongly nonlinear
oscillators of the form

ẍ+ g(x) = λf(x, ẋ, µ)ẋ, (86)

where g and f are arbitrary nonlinear functions, and λ and µ are parameters.
The authors in [47] perform a nonlinear periodic time reparametrization of the form

dφ

dt
= Φ(φ), Φ(φ+ 2π) = Φ(φ) (87)
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to the system (86). Then it is assumed that there is a homoclinic orbit present which can be approxi-
mated by the solution

u(φ) = p cos(2φ) + q,

where p and q are constants to be approximated. In [2, Theorem 1] it is shown that the solutions u(φ)
and u(s) are related to each other through

Φ(φ) =

√
2

2
ω(ξ) sinφ.

It follows that one should be able to factor out the term sinφ in (87). This is indeed precisely what
we see in the transformation Φ in [2, (41)]. Thus, although the nonlinear periodic time reparametriza-
tion is analytically equivalent to the polynomial generalized Lindstedt-Poincaré method, it is geomet-
rically less intuitive than using hyperbolic functions and computationally more expensive than using
polynomials.

We also would like to point out that the singular rescaling

w0 = uε2, w1 = vε3, β1 = −ε4, β2 = τε2, s = εη, (ε 6= 0),

used in [2] applied to the quadratic Bogdanov-Takens normal form with coefficient a = 1 and b = 1
results in the

√
2 turning up in the calculations of homoclinic approximation. From a computational

point of view, this is less ideal to work with.

Remark 12. Note that the polynomial generalized Lindstedt-Poincaré method described above only
depends on the existence of the zeroth-order solution. Therefore, this method can be applied in similar
situations where homoclinic orbits emanate from codimension two Bogdanov-Takens bifurcation points.
For example, the transcritical codimension two bifurcation treated in [25], see also [9, Appendix C.2].
Furthermore, under certain symmetry present in the ODE heteroclinic solutions can also emanate from
codimension two Bogdanov-Takens points which can be approximated using the polynomial Lindstedt-
Poincaré method as described above.

4 Homoclinic asymptotic expansion in n-dimensional systems
In this section, we will provide third-order approximations to the homoclinic solution for (1) emanating
from a generic codimension two Bogdanov-Takens bifurcation assumed to be at x0 ≡ 0 and α0 = 0.
A distinction between asymptotics derived with the smooth orbital and the smooth normal form is
necessary. In case of the smooth orbital normal form, a further subdivision is made between the
perturbation method used. This is a price we have to pay for using this simpler normal form. Using
the obtained transformations for lifting the homoclinic orbits from the normal form to the parameter-
dependent center manifold in n-dimensional systems, we show the homoclinic asymptotics arising from
the smooth orbital and smooth normal form are (asymptotically) equivalent in Section 4.3. We finish
this section with our implementation in MatCont.

4.1 Homoclinic approximation using the smooth orbital normal form
First, we consider the situation where we have obtained a homoclinic predictor for the smooth orbital
normal form (10). Depending on the used method to approximate the homoclinic solution, i.e., the
regular perturbation or the Lindstedt-Poincaré method, we substitute either (57) or (83), into the
parameter-dependent center manifold transformation H and K defined in (15) and (16). By truncating
the higher-order terms in w and β we obtain the following approximation (x̄o, ᾱo) to the homoclinic

27



solution

x̄o(η, ε) = q0w0(η) + q1w1(η) +H0010β1 +H0001β2 +
1

2
H2000w

2
0(η) +H1100w0w1(η) (88)

+
1

2
H0200w

2
1(η) +H1010w0(η)β1 +H1001w0(η)β2 +H0110w1(η)β1

+H0101w1(η)β2 +
1

2
H0002β

2
2 +H0011β1β2 +

1

6
H3000w

3
0(η)

+
1

2
H2100w

2
0(η)w1(η) +H1101w0(η)w1(η)β2 +

1

2
H2001w

2
0(η)β2

+
1

6
H0003β

3
2 +

1

2
H1002w0(η)β2

2 +
1

2
H0102w1(η)β2

2 ,

ᾱo(ε) = K10β1 +K01β2 +
1

2
K02β

2
2 +K11β1β2 +K03

1

6
β3
2 . (89)

Next, we use (17) to approximate η(t) from the relation

dt

dη
= 1 + θ1000w0(η) + θ0001β2, (90)

where w0 and β2 are defined in (57) when using the predictor obtained by the regular perturbation
method and defined in (83) when using the predictor obtained by the Lindstedt-Poincaré method. We
will consider these two cases separately below.

Regular perturbation method
Integrating (90) with respect to η yields

t(η) =

∫
1 + θ1000

a

b2
u
(a
b
εη
)
ε2 + θ0001

a

b
ε2
(

10

7
+

288

2401
ε2 +O(ε4)

)
dη

= η

(
1 + θ0001

a

b
ε2
(

10

7
+

288

2401
ε2 +O(ε4)

))
+ θ1000

a

b2
ε2
∫
u
(a
b
ηε
)
dη,

(91)

where u is the third-order approximation given in (57). To approximate the integral in the equation
above uniformly in η, we make the substitution s = a

b ηε. Then∫
u
(a
b
ηε
)
dη =

b

a

1

ε

∫
u(s) ds,

where the integral on the right-hand side can be calculated to be∫
u(s) ds = 2(s− 3 tanh s)− 9

7
sech2 s(cosh(2s)− 4 log(cosh s)− 1)ε

− 9

49
sech3 s

[
2 sinh s

(
cosh(2s)− 12 log2(cosh s) + 6

)
− 12s cosh s

]
ε2

− 27 sech4 s

2401

[
cosh(4s) + cosh(2s)

(
−112 log3(cosh s) + 168 log2(cosh s)

+ 188 log(cosh s) + 7) + 8
(
28 log3(cosh s)− 21 log2(cosh s)

−29 log(cosh s)− 21s sinh(2s) log(cosh s)− 1)] ε3 +O(ε4).

(92)

Here the constants of integration are calculated such that t(0) = 0. Thus, we obtain a third-order
approximation for t(η).
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Lindstedt-Poincaré
The method is similar as for the regular perturbation method. We first integrate (90) with respect to
η, so that

t(η) = η

(
1 + θ0001

a

b
ε2
(

10

7
+

288

2401
ε2 +O(ε4)

))
+ θ1000

a

b2
ε2
∫
û
(
ξ
(a
b
ηε
))

dη, (93)

To approximate the integral in the above equation uniformly in η, we make the substitution ξ̃(η) =
ξ
(
a
b εη
)
. Then ∫

û
(
ξ
(a
b
ηε
))

dη =
b

a

1

ε

∫
û(ξ̃)/ω(ξ̃) dξ̃.

Expanding the integrand û(ξ̃)/ω(ξ̃), up to order three in ε and integrating with respect to ξ̃ yields∫
1

ω(ξ̃)
û
(
ξ̃
)
dξ̃ = 2ξ̃ − 6 tanh(ξ̃) +

(
18 sech2(ξ̃)

7
+

12

7
log(cosh(ξ̃))

)
ε

+
9

49

(
4ξ̃ − 9 tanh(ξ̃) + 5 tanh(ξ̃) sech2(ξ̃)

)
ε2

+
18
(
−21 sech4(ξ̃) + 47 sech2(ξ̃) + 8 log(cosh(ξ̃))

)
2401

ε3 +O(ε4).

(94)

Substituting ξ̃ with ξ(ab ηε) gives the relation t(η) up to order three in ε.
Since we are interested in the inverse relation, i.e., η(t), we numerically solve the equation

t(η)− t = 0,

for η. This can easily be done within machine precision.

4.2 Homoclinic approximation using the smooth normal form
To lift the homoclinic approximation obtained for the smooth normal form to the parameter-dependent
center manifold, we simply substitute either (118) and (120) into H and K. Thus, we obtain (88) and
(89), where η is replaced by t, i.e.,

x̄s(t, ε) = q0w0(t) + q1w1(t) +H0010β1 +H0001β2 +
1

2
H2000w

2
0(t) +H1100w0w1(t)

+
1

2
H0200w

2
1(t) +H1010w0(t)β1 +H1001w0(t)β2 +H0110w1(t)β1

+H0101w1(t)β2 +
1

2
H0002β

2
2 +H0011β1β2 +

1

6
H3000w

3
0(t)

+
1

2
H2100w

2
0(t)w1(t) +H1101w0(t)w1(t)β2 +

1

2
H2001w

2
0(t)β2

+
1

6
H0003β

3
2 +

1

2
H1002w0(t)β2

2 +
1

2
H0102w1(t)β2

2 ,

ᾱs(ε) = K10β1 +K01β2 +
1

2
K02β

2
2 +K11β1β2 +K03

1

6
β3
2 .

Note however that the coefficients of the mappings H and K are calculated as outlined in Section 2.3.
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4.3 Comparison between smooth and orbital homoclinic predictors
Using the above transformations, we show that the homoclinic predictor for the smooth normal form
(9), see Appendix C, is asymptotically equivalent to the orbital predictor derived in Section 3.2.2.
Thus, we assume that (1) is given by

f(x1(t), x2(t), α1, α2) :=

(
x1(t),
α1 + α2x1(t) + ax20(t) + bx0(t)x1(t)

)
, (95)

where
g(x1(t), x2(t), α1, α2) = a1α2x

2
0(t) + b1α2x0(t)x1(t) + ex20(t)x1(t) + dx30(t).

First we will focus on the predictors for the parameters. Using the procedure outlined in Section 2.2,
we obtain that the coefficients for the parameter transformation K are given by

K10 =

(
1

ae−bd
a2

)
, K01 =

(
0
1

)
, K11 =

3a1b− 4ab1 + 2d

ab

(
1

(ae−bd)
a2

)
,

K02 =

(
0

2a1b−2ab1+d
ab

)
, K03 =

(
0
0

)
.

From equation (89) we obtain the following approximation(
ᾱo1

ᾱo2

)
=

(
− 4a3

b4 ε
4 + 40a3(−3a1b+4ab1−2d)

7b6 ε6 + 1152a3(−3a1b+4ab1−2d)
2401b6 ε8 +O(ε10)

10a
7b ε

2 +
(

288b
2401a + 50a(2a1b−2ab1+d)

49b3 + 4a(bd−ae)
b4

)
ε4 +O(ε6)

)
. (96)

Since the equation (95) is the smooth normal form, we can directly use (118) to obtain the approxi-
mation (

ᾱs1

ᾱs2

)
=

( − 4
aε

4

10b
7a ε

2 + 98b(50ab1+73d)−9604ae−2450a1b2+288b3

2401a2b ε4 +O(ε6)

)
. (97)

To compare these two predictors, we eliminate the parameter ε from both equations. It would be
tempting to first make a substitution for ε2 in the equations. However, since for the orbits we need odd
powers in ε, we will continue without this substitution. We assume α1 to be positive, which implies
that the coefficient a is negative. The case that α1 is negative is treated similarly and has been verified
as well.

To eliminate ε from (96), we expand ε as a function of 4
√
α1. Solving the resulting equation for real

positive ε we obtain

εo(α1) =
4
√−ab√

2a
4
√
α1 −

5b(−4ab1 + 3a1b+ 2d)

28
√

2a2 4
√−a

4
√
α1

3
+O( 4

√
α1

5
). (98)

Obviously, for the smooth predictor we obtain

εs(α1) =
4
√−a√

2
4
√
α1.

Here we added superscripts o and s to distinguish the different ε’s in the orbital and smooth homoclinic
predictors, respectively.

Substituting ε = εo(α1) into the second equation of (96) yields

α2(α1) =
5b

7
√−a

√
α1 +

−49b(50ab1 + 73d) + 4802ae+ 1225a1b
2 − 144b3

4802a2
α1

+O(α
3/2
1 ).
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It can readably be seen that by eliminating ε from (97) using that a < 0 we obtain the same expression,
i.e., the predictors agree up to the desired order.

Next, we turn our attention to the approximation of the homoclinic orbits. Due to the various time
transformations involved in the predictors, we compare the asymptotic expansions of the orbital with
the smooth homoclinic predictor. Therefore, we can directly use the asymptotic obtained from the
regular perturbation method for both predictors. Thus, for the orbital predictor, we will use

w0(η) =
a

b2

(
3∑
i=0

ui(
a

b
εη)εi +O(ε4)

)
ε2,

w1(η) =
a2

b3

(
3∑
i=0

u̇i(
a

b
εη)εi +O(ε4)

)
ε3,

(99)

with ui(i = 1, 2, 3) is given by (84), while for the smooth predictor we will use (120) instead.
Following the procedure as outlined in Section 2.2, we obtain that the coefficients of the transfor-

mations H and θ for the smooth orbital normal form (10) are given by

q0 =

(
1
0

)
, q1 =

(
0
1

)
, H2000 =

(
− d

2a
0

)
, H1100 =

(−3bd+4ae
12a2

0

)
,

H0200 =

(
0

−3bd+4ae
6a2

)
, H3000 =

(
0

−3bd
2a + 2e

)
, H2100 =

(
0

b(−3bd+4ae)
6a2

)
,

H0010 =

(
d

4a2

0

)
, H1001 =

(−2ab1+a1b+d
ab
0

)
, H0101 =

(
0

−6ab1+4a1b+3d
2ab

)
,

H1101 =

(
0

−3(6ab1−4a1b+b2−3d)d+4abe
12a2b

)
, H0102 =

(
0

(6ab1−4a1b−3d)(2ab1−2a1b−d)
2a2b2

)
,

H1010 =

(
0

−3bd+4ae
12a2

)
, θ1000 = − d

2a
, θ0001 = −−2ab1 + 2a1b+ d

2ab
,

while

H0001 = H2001 = H0002 = H1002 = H0003 = H0011 = H0110 =

(
0
0

)
.

Thus, the third-order homoclinic predictor using the smooth orbital normal form in η is given by

x̄oε(η) =

(
1
0

)
w0(η) +

(
0
1

)
w1(η) +

(
− d

2a
0

)
w2

0(η) +

(−3bd+4ae
12a2

0

)
w0(η)w1(η)+(

0
−3bd+4ae

6a2

)
w2

1(η) +

(
0

−3bd
2a + 2e

)
w3

0(η) +

(
0

b(−3bd+4ae)
6a2

)
w2

0(η)w1(η)+(
d

4a2

0

)
β1 +

(−2ab1+a1b+d
ab
0

)
w0(η)β2 +

(
0

−6ab1+4a1b+3d
2ab

)
w1(η)β2+(

0
−3(6ab1−4a1b+b2−3d)d+4abe

12a2b

)
w0(η)w1(η)β2+(

0
(6ab1−4a1b−3d)(2ab1−2a1b−d)

2a2b2

)
w1(η)β2

2 +

(
0

−3bd+4ae
12a2

)
w0(η)β1,

where w0,1 are given by (99) and β1,2 by (57). Since (95) is the smooth normal form (9) we obtain
from (120) the third-order homoclinic approximation in t

x̄sε(t) =
1

a

3∑
i=0

((
ui(εt)ε

i +O(ε4)
)
ε2(

u̇i(εt)ε
i +O(ε4)

)
ε3

)
.
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To relate the smooth orbital predictor x̄oε(η) with the smooth predictor x̄sε(t), we need to consider the
time transformation

tε(η) = η
(

1 + θ0001
a

b
ε2
(
τ0 + τ2ε

2
))

+ θ1000
1

b
ε

∫
u(s) ds,

where
θ1000 = − d

2a
, θ0001 = −−2ab1 + 2a1b+ d

2ab
, s =

a

b
ηε

and the integral is given by (94). We eliminate ε from tε(η) by substituting ε by εo(α1) defined in
(98). Subsequently, we substitute tεo(α1)(η) into x̄sεs(α1)

(t). Thus, we now have two approximations,
both parametrized by τ . To compare these approximations, we first rescale η by b

a
η
ε , otherwise the

expansions in α1 become polynomial. We thus arrive at the following equation which should be satisfied

x̄sεs(α1)

(
tεo(α1)

(
b

a

η

ε

))
= x̄oεo(α1)

(
b

a

η

ε

)
+

(
O(α

3/2
1 )

O(α
7/4
1 )

)
.

Expanding and simplifying the first component of x̄oεo(α1)
( baη/ε) in α1 gives(

x̄oεo(α1)

(
b

a

η

ε

))
1

=
3 sech2 η − 1√−a

√
α1 +

18
√

2b tanh η sech2 η log(cosh η)

7(−a)5/4
α
3/4
1

1

196a2
[
−6 sech2 η

(
7
(
5a1b+ 6b2 + 7d

)
− 72b2(log(cosh η)− 1) log(cosh η)

−36b2η tanh η
)

+ 70a1b+ 9 sech4 η
(
24b2(2− 3 log(cosh η)) log(cosh η)

+30b2 + 49d
)

+ 98d
]
α1 + [tanh η {−18b log(cosh η) (−980ab1 + 1225a1b

−336b2(log(cosh η)− 3) log(cosh η) + 312b2 + 1176d
)
− 21 sech2 η (−1372ae

+ 36b log(cosh η)
(
6b2 log(cosh η)(4 log(cosh η)− 7)− 18b2 − 49d

)
+ 234b3

+1029bd)− 9604ae+ 4914b3 + 7203bd
}
− 4536b3η (−2 log(cosh η)

+ sech2 η(3 log(cosh η)− 1) + 1
)] sech2 η

4802
√

2(−a)11/4
α
5/4
1 +O(α

3/2
1 ).

Similarly, for the second component of x̄oεo(α1)
(η/ε) we obtain(

x̄oεo(α1)

(
b

a

η

ε

))
2

=
3
√

2 tanh η sech2 η
4
√−a α

3/4
1 +

9b sech4 η

7a
(cosh(2η)− 2(cosh(2η)− 2)

log(cosh η)− 1)α1 +− 3b sech4 η

196
√

2(−a)7/4
(sinh(2η)(35a1 − 144b(log(cosh η)− 2)

log(cosh η) + 48b) + 72b(2η − η cosh(2η) + tanh η(2 log(cosh η)(6 log(cosh η)− 7)

− 3)))α
5/4
1 +

(
2
(
36b log(cosh η)

(
490ab1 − 490a1b+ 84b2 log(cosh η)(2 log(

cosh η)− 9) + 222b2 − 245d
)

+ 90b
(
−98ab1 + 98a1b+ 111b2

)
− 9604ae

+11613bd) + 3 sech2 η
(
36b log(cosh η)

(
245(d− 2ab1) + 490a1b+ 168b2(14

−5 log(cosh η)) log(cosh η)− 138b2
)
− 3b

(
−1960ab1 + 1960a1b+ 6462b2

+12985d) + 7 sech2 η
(
−6860ae+ 216b3 log(cosh η)(log(cosh η)(20 log(cosh η)

−47)− 1) + 1818b3 + 5145bd
)

+ 48020ae
)
− 4536b3η tanh η (−4 log(cosh η)

+ sech2 η(12 log(cosh η)− 7) + 4
)) sech2 η

9604(−a)5/2
α
3/2
1 +O(α

7/4
1 ).
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By expanding x̄sεs(α1)

(
tεo(α1)

(
b
a
η
ε

))
and simplifying we obtain

x̄sεs(α1)

(
tεo(α1)

(
b

a

η

ε

))
= x̄oεo(α1)

(
b

a

η

ε

)
+

 (3bd−4ae) sech2(η) tanh(η)√
2(−a)11/4 α

5/4
1

(3bd−4ae)(cosh(2η)−2) sech4(η)
2(−a)5/2 α

3/2
1


= x̄oεo(α1)

(
b

a

η

ε

)
+

 (3bd−4ae)u′
0(η)

24
√
2(−a)11/4 α

5/4
1

(3bd−4ae)u′′
0 (η)

24(−a)5/2 α
3/2
1

 ,

i.e., the predictors differ by a phase shift. In fact, by using the freedom in the constants of integration
in (92), we can let

t(η)→ t(η) + θ1000
1

b

2

3

(
4ae

bd
− 3

)
ε2.

In this case, we will have equivalence between the predictors up to the desired order.

Remark 13. It is important to note here the phase condition used in the orbital predictor isn’t preserved
under the transformation H. Therefore, any improvements obtained in the approximation to the
homoclinic solutions in a normal form due to a different phase condition is, in general, not preserved
when lifting the approximations to the center manifold.

4.4 Implementation
In this section, we first briefly review the method used in MatCont to continue homoclinic solutions
in autonomous ordinary differential equations (1) in two parameters as described in [46]. Then we
describe our implementation in MatCont of the algorithm to start the continuation of the homoclinic
solutions emanating from a codimension two Bogdanov-Takens point using the derived above homo-
clinic predictors and parameter-dependent center manifold.

4.4.1 Continuation of homoclinic solutions in MatCont

MatCont uses a correction-prediction continuation method applied to a defining system [17]. The
defining system for the continuation of homoclinic solutions in ordinary differential equations of the
form (1) in two parameters in MatCont are given by

ẋ(t)− 2Tf(x(t), α) = 0,

f (s0, α) = 0,∫ 1

0

x̃(t)[x(t)− x̃(t)]dt = 0,

QU
⊥,T (x(0)− s0) = 0,

QS
⊥,T (x(1)− s0) = 0,

T22UYU − YUT11U + T21U − YUT12UYU = 0,

T22SYS − YST11S + T21S − YST12SYS = 0,

‖x(0)− s0‖ − ε0 = 0,

‖x(1)− s0‖ − ε1 = 0,

(100)

see [46]. Here the infinite time interval ]−∞,∞[ of the homoclinic orbit is truncated to a finite interval
[−T, T ], where T > 0 is called the half-return time. The truncated interval is rescaled to the interval
[0, 1] and divided into ntst mesh-intervals. Each mesh interval is further subdivided by equidistant
fine mesh points where the solution is approximated by a vector polynomial. Each mesh interval
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contains a number of ncol collocation points where the first equation in (100) must be satisfied. The
second equation in (100) locates the saddle point s0 of the homoclinic orbit. The last two equations
in (100) define the distance ε0 and ε1 between the saddle and the homoclinic solution at t = 0 and
t = 1, respectively. The half-return time T , ε0, ε1 are referred to as the homoclinic parameters.
Either one or two of the homoclinic parameters must be allowed to vary. If two homoclinic parameters
are selected to vary, the third equation (the phase condition) in (100) is added. The fourth and
fifth equations in (100) place the solution at the endpoints in the unstable and stable eigenspace of
linearization of the saddle point, respectively. The matrices QU

⊥ ∈ Rn×nS and QS
⊥ ∈ Rn×nU are not

recalculated each continuation step, but constructed from the lower dimensional matrices YU ∈ RnS×nU

and YS ∈ RnU×nS . The fifth and sixth equations in (100), referred to as algebraic Ricatti equations,
keep track of the lower dimensional matrix YU and YS , see [19]. The matrices YU and YS are initially
set to zero.

Thus, in order to start continuation of homoclinic solutions near a codimension two Bogdanov-
Takens point in (1), one needs to provide an initial approximation to

• the discretized orbit on the rescaled and truncated interval [0, 1],

• the parameter values α,

• the saddle point s0,

• the half-return time T ,

• the initial distances ε0 and ε1,

• and an initial tangent vector for the next prediction.

Since the homoclinic predictors depend on the coefficients of the normal form, we first calculate the
parameter-dependent center manifold transformation.

4.4.2 Multilinear forms

Unfortunately, not all multilinear forms in the expansion (14) needed for the derivation of the coeffi-
cients for the transformations H, K, and θ, were previously implemented in MatCont. We, therefore,
developed new scripts which generate the necessary multilinear forms symbolically if the symbolic tool-
box for MATLAB or for GNU Octave is installed. The multilinear forms can be generated with the
graphical user interface of MatCont, or via the command-line interface. Examples are given in the
Supplementary Materials. If the symbolic toolbox is not available, finite differences in combination
with polarization identities are used instead. Note that symbolical derivatives generated with either
GNU Octave or MatCont can be used interchangeably.

4.4.3 Coefficients of the parameter-dependent center manifold

Next, we compute the coefficients in the expansion G,H,K, and θ as derived in Section 2. Since we
allow using finite differences, the results may become inaccurate. We, therefore, provide a warning
message if one or more of the systems are not satisfied with a prescribed accuracy. The code for
calculating the coefficients of the orbital, smooth, and hyper normal form can be found in the scripts
BT_nmfm_orbital.m, BT_nmfm.m, and BT_nmfm_without_e_b1.m, respectively. These scripts can be
called independently once a Bogdanov-Takens point is located.

4.4.4 The perturbation parameter and the half-return time

To provide the data listed at the end of Section 4.4.1, one first needs to select a suitable perturbation
parameter ε in the homoclinic predictors in Section 4. In [1] a geometrically motived approach is
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used to determine the perturbation parameter ε and half-return time T . The user first provides the
amplitude A0 of the homoclinic orbit, which can be approximated by

A0 = ‖x̄(0, ε)− s0‖.

From the amplitude A0 the initial perturbation parameter ε can then be estimated by truncating the
homoclinic predictors in Section 4 up to second order in ε. Then, by using that the norm of the
eigenvector q0 is of unit length, see (19), we obtain

εo = |b|
√

A0

6|a| , and εs =

√
A0|a|

6
,

for the orbital and smooth homoclinic predictor, respectively.
Secondly, the user provides the distance k, also referred to as TTolerance in MatCont, between the

endpoints of the truncated homoclinic orbit and the saddle point

k = ‖x̄(±T, ε)− s0‖. (101)

From this equation the half-return time T is solved by again truncating the homoclinic predictors given
in Section 4 up to second order in ε. We obtain

η(T ) =

∣∣∣∣∣ ba 1

ε
arcsech

(
|b|
ε

√
k

6|a|

)∣∣∣∣∣ , and T =
1

ε
arcsech

(√
k

A0

)
,

for the orbital and smooth homoclinic predictor, respectively. Thus, for the orbital predictor, the half-
return time T has to be computed by numerical inverting η(T ), either using (91) or (93), depending
on the perturbation method used.

Note that by truncating the homoclinic orbit up to second order, only the zeroth-order solution of
u is used. Furthermore, since only the eigenvector q0 is used in the approximation of the amplitude
A0 and the half-return time T , one should not expect to obtain an accurate approximation of the
amplitude in general n-dimensional systems. For the half-return time T , there is an additional problem
in the approximation. Namely, the homoclinic predictors are not even functions in t, i.e., we have the
inequality

‖x̄(T, ε)− s0‖ 6= ‖x̄(−T, ε)− s0‖.
Thus, the more accurate interpretation of the amplitudeA0 and half-return time T is that they represent
approximations for the amplitude and half-return time of u0 on the center subspace and not for the
homoclinic orbit on the center manifold. This, however, does not influence the convergence of the
initial prediction for the homoclinic orbit, as long as the derived perturbation parameter ε is within
the radius of convergence.

Instead of requiring the user to provide the amplitude A0 and distance k, we determine the per-
turbation parameter ε automatically. Motivated by Appendix D an initial good guess for the orbital
homoclinic predictor would be obtained with ε = 0.1. The higher-order terms, not taken into account
for the predictor, would have to behave very badly to not lead to convergence. The distance k we set
to k = ε10−4. In case that Newton does not converge, the perturbation ε is halved and k is updated.
This process is then repeated until convergence is obtained, or by the maximum prescribed number
of tries. In fact, for all buy one model in Section 5 and the Supplementary Materials, setting the
perturbation parameter ε = 0.1 and the distance k = 10−4 while using the orbital predictor with either
the Lindstedt-Poincaré or the regular perturbation method lead to convergence to the true homoclinic
solution.
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4.4.5 Homoclinic solution

After the perturbation parameter ε and the half-return time T have been determined and using the
coefficients of H,K, and possibly θ, the homoclinic approximation is obtained by evaluating one of
the homoclinic approximations given in Section 4 on the fine mesh points fi for i = 0, . . .ntst × ncol
on the rescaled discretized interval [0, 1]. Note that we do need to translate the approximation to the
Bogdanov-Takens phase point x0 under consideration.

4.4.6 Saddle point

To obtain an approximation for the saddle point of the homoclinic orbit, we simply let t go to infinity
in the homoclinic approximation obtained in the previous step. Note that τ goes to infinity as t does.
Thus, using (88) we obtain

s0 = x0 + q0w
∞
0 + H̄0010β1 + H̄0001β2 +

1

2
H̄2000 (w∞0 )

2

+ H̄1010w
∞
0 β1 + H̄1001w

∞
0 β2 +

1

2
H̄0002β

2
2 + H̄0011β1β2

+
1

6
H̄3000 (w∞0 )

3
+

1

2
H̄2001 (w∞0 )

2
β2 +

1

6
H̄0003β

3
2 +

1

2
H̄1002w

∞
0 β

2
2

where
w∞0 = 2

a

b2
ε2,

for the orbital predictor the approximation and

w∞0 =
1

a

(
2− 2

5a1b+ 7d

7a2
ε2
)
ε2,

for the smooth predictor.

4.4.7 Tangent

Once a good initial prediction for the homoclinic solution to (100) has been obtained, a normalized
tangent vector is needed to start the continuation process. The simplest method to obtain the normal-
ized tangent vector is by calculating the one-dimensional null space of the sparse rectangular Jacobian
of the defining system (100). Although this is easy to implement numerically via a QR-decomposition
of the transpose, the drawback is that we do not have any control of the orientation of the tangent
vector. Thus, we do not know in which direction the continuation starts. Obviously, we want to avoid
continuing the homoclinic curve towards the Bogdanov-Takens point. One way to obtain the correct
direction is by obtaining two approximations with close, but different perturbation parameters, from
which the normalized tangent can be approximated. Computationally cheaper and more accurate is to
first compute the null space V of the Jacobian as described above and subsequently inspect the sign of
the α1 component in the vector V . This sign should be equal to the sign of the derivative of the first
component of ᾱ with respect to ε, see (89). A simple calculation yields

ᾱ′(ε) = K10β
′
1(ε) +K01β

′
2(ε) +K02β2β

′
2(ε) +K11(β′1(ε)β2 + β1β

′
2(ε)) +

1

2
K03β

2
2β
′
2(ε),

where β′1(ε) and β′2(ε) are given by 
β′1(ε) = − 16

a3

b4
ε3,

β′2(ε) =
a

b
(2τ0 + 4τ2ε

2)ε,
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with τ0,1 are given in (75) for the orbital predictor, and by
β′1(ε) = − 16

a
ε3,

β′2(ε) =
b

a
(2τ0 + 4τ2ε

2)ε,

where τ0,1 are given in (114) for the smooth homoclinic predictor. Thus, we simply change the sign of
the vector V if the product of the α1 component of V with the first component of ᾱ′(ε) is negative,
otherwise, we leave the vector V unchanged.

5 Examples
In this section, we will compare the different methods at different orders to approximate the homoclinic
solution in (1) near a generic codimension two Bogdanov-Takens bifurcation point. In the first example,
we consider the topological normal form (8). By using convergence plots we will show that by consi-
dering different phase conditions in both the regular perturbation method and the Lindstedt-Poincaré
method influences the accuracy of the approximation, see Figure 2 and Figure 5, respectively. In this
example, we will also compare the regular perturbation method against the Lindstedt-Poincaré method
with a higher-order approximation of the non-linear time transformation as derived in this paper, or
without, as done in [1]. We do this twofold: using convergence plots, see Figure 3, and by inspecting
the predicted homoclinic profiles with the Newton corrected homoclinic profiles, see Figure 4.

Next, we will consider two four-dimensional models in which generic codimension two Bogdanov-
Takens bifurcations are present. Here we will show that the approximation order of the homoclinic
asymptotic lifts correctly to the parameter-dependent center manifold, see Figures 6 and 7. In the
second example, we also compare the predicted with the Newton corrected homoclinic orbits in a
projection onto a three-dimensional slice of the full system. It is shown that with an amplitude of 0.1
the approximation is still very accurate. This should be compared with [1, section 6.2] in which the
amplitude needed to be set to 4× 10−5 to obtain convergence.

Here we will not demonstrate how to actually start the continuation of the homoclinic orbits with
MatCont. For this we refer to the online Jupyter Notebook. In the Jupyter Book, a total of nine
different models are considered demonstrating in detail how to start continuation from either an ex-
plicitly derived, or encountered during continuation, codimension two Bogdanov-Takens bifurcation
point. Each model is treated in a separate Jupyter Notebook, which can be executed to reproduce the
results obtained. We do like to note that in all cases the curve of homoclinic solutions could be started
with the default settings without the need to adjust any parameters, see Section 4.4. This shows that
the asymptotics obtained in this paper are very robust.

5.1 Topological normal form
In this example we compare five different methods to approximate the homoclinic solution present in
the universal unfolding (8):

• the regular perturbation method,

• the regular perturbation method with L2 phase condition,

• the Lindstedt-Poincaré method without a higher-order time approximation as in [1],

• the Lindstedt-Poincaré method with a higher-order time approximation as derived here,

• and the Lindstedt-Poincaré method with a different phase condition.
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Figure 2: Log-log convergence plot comparing the different phase conditions when using the regular
perturbation method (RP) for approximation the homoclinic solutions. The subscript in RPi, 0 ≤ i ≤ 3,
refers to the approximation order. The superscript L2 refers to the phase condition (52).

In Figure 2 a log-log convergence plot is shown comparing the asymptotics derived in [1] using the
regular perturbation method with phase condition u̇ = 0 against the asymptotics derived here with
the phase condition given in (52). On the abscissa is the amplitude A0 and on the ordinate is the
relative error δ between the components w0 and w1 of the predicted solution and the Newton corrected
solution. We see that the L2 phase condition is slightly, but noticeably, more accurate at each order,
confirming the geometric intuition.

Next, we compare the regular perturbation method with the Lindstedt-Poincaré method to ap-
proximate the homoclinic solution in log-log plot in Figure 3. It is seen that the first order regular
perturbation method slightly outperforms the Lindstedt-Poincaré method, while for the second and
third-order the Lindstedt-Poincaré method are clearly better approximations than the regular pertur-
bation method. The third-order approximation by the Lindstedt-Poincaré method without including a
higher-order approximation of the non-linear time transformation results in the same order of accuracy
as the zeroth-order regular perturbation method.

It is thus essential to include a higher-order approximation of the non-linear time transformation. To
make it even more clear we plotted the profiles of the third-order approximations using the Lindstedt-
Poincaré method as in [1], the regular perturbation method, and the Lindstedt-Poincaré, together
with the Newton corrected solutions in Figure 4. We see that the Lindstedt-Poincaré method as
in [1] approximates the solution rather poorly, whereas the approximation derived in Section 3.2.2 is
very accurate. Note that when plotting these homoclinic approximations and corrections in (w0, w1)
phase-space, this difference is not visible at all. This explains why this has been unnoticed in [1].

Lastly, in Figure 5, we compare the two different phase conditions when using the Lindstedt-
Poincaré method in a log-log plot. It is clearly seen that the phase condition used in Section 3.2.3
improves, rather significantly, the accuracy of the third-order predictor. However, in contrast with the
different phase conditions used in the regular perturbation method, we do not have any geometric (or
analytical) explanation for this improvement.

Notice that here we do not compare the homoclinic predictors derived with different normal forms.
Indeed, when considering the universal unfolding (8) the normal forms coincide, resulting in identical
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Figure 3: Log-log convergence plot comparing the relative errors of the computed homoclinic w0 and
w1 component with the predicted solution in the topological normal form using four different meth-
ods: Regular Perturbation (RP , yellow), Lindstedt-Poincaré without higher-order time approximation
(LP 2016

3 , red), and Lindstedt-Poincaré combined with higher-order time approximation (LP , blue).

predictors.

5.2 Hodgking-Huxley equations
The Hodgkin-Huxley equations [27] relate the difference in electric potential across the cell membrane
V and gating variables m,n and h for ion channels to the stimulus intensity I and temperature T , as
follows: 

V̇ = −G(V,m, n, h) + I,

ṁ = Φ(T ) [(1−m)αm(V )−mβm(V )] ,

ṅ = Φ(T ) [(1− n)αn(V )− nβn(V )] ,

ḣ = Φ(T ) [(1− h)αh(V )− hβh(V )] ,

(102)

where

Φ(T ) = 3(T−6.3)/10,

G(V,m, n, h) = ḡNam
3h
(
V − V̄Na

)
+ ḡKn

4
(
V − V̄K

)
+ ḡL

(
V − V̄L

)
.

The equations modeling the variation of membrane permeability are:

αm(V ) =Ψ

(
V + 25

10

)
, βm(V ) = 4eV/18,

αn(V ) =0.1Ψ

(
V + 10

10

)
, βn(V ) = 0.125eV/80,

αh(V ) =0.07eV/20, βh(V ) =
(

1 + e(V+30)/10
)−1

,
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Figure 4: Comparison of the profiles of the predicted and corrected homoclinic orbit for (8) using
different approximation methods, see Section 5.1 for a full description.
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Figure 5: Log-log convergence plot comparing the relative errors of the computed homoclinic w0 and
w1 component with the predicted solution in the topological normal form using Lindstedt-Poincaré
with two different phase-condition, see Section 3.2.3.

with

Ψ(x) =

{
x/ (ex − 1) , if x 6= 0,

1, if x = 0.

The parameters ḡion and V̄ion representing maximum conductance and equilibrium potential for the
ion were obtained from experimental data by Hodgkin and Huxley, with the values given below:

ḡNa = 120mS/cm2, ḡK = 36mS/cm2, ḡL = 0.3mS/cm2,
V̄Na = −115mV, V̄K = 12mV, V̄L = 10.599mV.

The values of V̄Na and V̄K can be controlled experimentally [26, 29]. The temperature is set to T = 6.3◦.
It is easy to see that the equilibria of (102) can be parametrized by V

I(V ) = G(V,m(V ), n(V ), h(V ))

y(V ) = αy(V )/(αy(V ) + βy(V )),

where y ∈ {m,n, h}, see also [24]. By calculating the Jacobian A of (102) at the equilibrium, we can
derive the characteristic polynomial ρA(λ). The equation ρA(0) = 0 can be solved analytically for V̄K .
Using this solution for V̄k and plotting the curve ρ′(0) reveals two potential candidates for Bogdanov-
Takens points. Inspecting the geometric multiplicity of these two points narrows the possibilities down
to the point 

V
m
n
h
V̄k
I

 ≈

−2.835463618170097
0.07351498630356315
0.361877602925177
0.494859128785482
−4.977020454108788
−0.06185214966177632

 . (103)
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Figure 6: Convergence plot for the homoclinic predictors near the Bogdanov-Takens bifurcation (103)
in the Hodgkin-Huxley equations (102).

Inspecting the coefficients of the normal form shows that

a = 2.5515 · 10−5, b = −0.0075.

Thus, provided the transversality conditions are satisfied, we can use MatCont to start continuation of
the homoclinic orbits emanating from this point.

In Figure 6 there are two log-log convergence plots shown. Note that in this and the next example,
we show the relative error δ(X) between the predicted and corrected Newton solution to the defining
system (100). In the left plot (a) we compare the regular perturbation method with the Lindstedt-
Poincaré method. We see that compared with the previous example the Lindstedt-Poincareé method
is slightly less accurate than the regular perturbation method and the second order. Nevertheless,
we clearly see that the order of convergence lifts from the normal form to the two-dimensional center
manifold in R4. In the plot right (b) we compare four different third approximations to the homoclinic
orbit

• the Lindstedt-Poincaré method using the smooth orbital normal form (the blue diamond),

• the Lindstedt-Poincaré method using the smooth normal form (the dashed light gray line),

• the regular perturbation method using the smooth normal form (the pink square),

• the Lindstedt-Poincaré method using the hyper-normal form (the green plus).

We see that both the Lindstedt-Poincaré method and the regular perturbation method using the
smooth orbital normal form are in perfect agreement with the Lindstedt-Poincaré method using the
smooth normal form. Only the homoclinic predictor using the hyper-normal form is slightly less
accurate.
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5.3 Homoclinic RG flows
In [30] an N = 1 supersymmetric model of interacting scalar superfields Φiab that is invariant under
the action of an O(N) × O(M) group in d = 3 − ε dimensions is considered. The coupling constants
gi(i = 1, . . . , 4) satisfy the following differential equations

ġ = −εg + β(2)(g,M,N) +O(g5), g ∈ R4, (104)

where the two-loop contributions β(2)
i (i = 1, . . . , 4) are cubic in the coupling and the parameter ε is

scaled to 1. The exact expression for β(2)
i are quite long can be found in [30, Appendix B] or in the

Supplementary Materials.
In [30] a Bogdanov-Takens point near the parameter values M = 0.2945 and N = 4.036 is located.

Using these parameter values we locate an equilibrium at
g1
g2
g3
g4

 =


0.0701457361241472
−0.06520883770451065
0.001823543197553845
0.22874527306411319

 .

By continuing the equilibrium in the parameter M we detect several limit points and two Hopf points.
We continue the second Hopf point at M ≈ 0.2958 in parameters M and N . Several Bogdanov-Takens
points are detected. The first Bogdanov-Takens point is located at

g1
g2
g3
g4

 =


−0.715157316845187
−0.250968103603174
0.510051114588271
−0.391935453715783

 ,

with parameter values

(M,N) = (0.294477255737036, 4.035536108506390).

In Figure 7 we have created similar log-log convergence plots as in the previous example. The plots
look very alike, only the homoclinic predictor using the hyper-normal form is in this model slightly
more accurate than the other homoclinic approximations.

Lastly, in Figure 8, there are two additional plots. The left plot (a) compares the predicted (dashed,
red) with the corrected (solid, blue) homoclinic orbits using the Lindstedt-Poincaré method with the
smooth orbital normal form for amplitudes A0 = 10−3 to A0 = 0.1. We see that they are in excellent
agreement. In the right plot (b) we compared the computed homoclinic bifurcation curve (solid, blue)
with the predicted values in parameter-space (M,N). Most important to notice here is that the
predictor given in [1] (the yellow crosses) is less accurate than the second order predictor (blue plus
signs) obtained in this paper.

6 Discussion
We have derived third-order predictors for the homoclinic curve emanating from the generic codimen-
sion two Bogdanov-Takens bifurcation in general n-dimensional autonomous ODEs. By considering
the smooth orbital normal form (10) and incorporating the time-reparametrization in the homological
equation (7) we were able to derive the third-order asymptotic of the homoclinic curve independent
of any coefficients. However, for this simplification, there is a price to pay. Firstly, the systems to be
solved to obtain the coefficients for the parameter-dependent center manifold becomes more difficult,
see Section 2.2. Ideally, there should be an automatic algorithm in line with [42]. However, to the best
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Figure 7: Convergence plot for the homoclinic predictors near one of the two Bogdanov-Takens bifur-
cation in the Homoclinic RG flows model (104).

of our knowledge, such algorithms do not exist yet. Secondly, the translation of time in the homological
equation needs to be inverted numerically. This, however, can be done relatively cheap and is very
accurate as shown by the examples.

We have explained how to obtain the correct transformation to the parameter-dependent center
manifold by carefully inspecting which terms are in, and are not in, the normal form that affects
the homoclinic asymptotic up to certain order. The comparison in Section 4.3 and the examples in
Section 5 together with the examples in the supplementary materials show that we indeed have obtained
the correct transformation.

The additional non-linear transformation (12) greatly simplifies the computation of the coefficients
in the Lindstedt-Poincaré method since all calculations become essentially polynomial, which is ideal
for computers to work with. Nonetheless, there the algorithm complexity grows exponentially as the
order increases linearly. Also, the radius of convergence is clearly finite as shown in Appendix D. One
way to increase the convergence radius is by using transformations as in [45]. However, we didn’t
include any results in this direction since it would distract too much from our main objectives.

Using different phase conditions can improve the accuracy of the homoclinic approximation. How-
ever, this only holds true when applied directly to the system considered. Indeed, the phase condition
isn’t invariant under the parameter-dependent center manifold transformation. Thus, its applicability
is very limited. Furthermore, using a different phase condition may, somewhat unexpectedly, result in
difficult integrals to be solved, see Section 3.1.

The higher-order approximation to the non-linear time transformation in the Lindstedt-Poincaré
method turns out to be essential to obtain higher-order approximations to the homoclinic solutions.
This is clearly seen by inspecting the profiles of the homoclinic solution in Figure 4 and in the con-
vergence plot in Figure 3. Without the higher-order approximation the same convergence order as the
unperturbed Hamiltonian solution, i.e., the zeroth-order solution. It should be noted that the higher-
order approximation of the non-linear time transformation is more difficult to obtain. Therefore, we
conclude that there seem to be no benefits of the Lindstedt-Poincaré method over the regular pertur-
bation method for starting continuation of homoclinic orbits. Indeed, the numerical comparisons in
Section 5 show similar accuracy of convergence at each order.

By comparing the convergence order of the regular perturbation method with the Lindstedt-
Poincaré method we see that contrary to what one might expect, the regular perturbation method
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Figure 8: Plot (a) compares the predicted (dashed, red) with the corrected (solid, blue) homoclinic
orbits using the Lindstedt-Poincaré method with the smooth orbital normal form for amplitudes A0 =
10−3 to A0 = 1. Plot (b) compares the computed homoclinic bifurcation curve (solid, blue) with the
predicted values in parameter-space (M,N). The yellow crosses are the second order predictor obtained
with the transformation as given in [1]. The blue plus signs are the second order predictor obtained in
this paper. Lastly, the red boxes are the third-order predictor obtained in this paper.

may result in better accuracy at the same order. A possible explanation for this might be that al-
though the Lindstedt-Poincaré method provides a uniform approximation in time along the homoclinic
orbit of the numerical solution is truncated to a finite interval in which the ‘parasitic turn’ doesn’t give
a significant contribution. After all it then simply depends on the higher-order non-linear terms in the
system which favor one method over the other.

A Explicit example demonstrating incorrect predictor
Although the second-order homoclinic approximation derived in [1] for the smooth normal form (9) is
correct, the parameter and center manifold transformation are incorrect. To see this, we suppose (1)
is given by

ẋ = f(x, α) =

(
x1

α1 + α2x1 + x20 + x0x1 + c1α
3
2

)
, (105)

for some arbitrary nonzero constant c1 ∈ R. We will now compare two different methods for obtaining
a second-order approximation to the homoclinic solution in (105). To keep the exposition as clear
as possible, we focus solely on the parameters. For the first method we directly apply the singular
rescaling

α1 = −4ε4, α2 = ηε2, x0 = ε2, x1 = ε3, s = εt,

to (105). This yields the system{
u̇ = v,

v̇ = − 4 + u2 + v (u+ τ) ε+ c1τ
3ε2,
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where the dot ˙ now represents the derivative with respect to s. Then, using the generalized Lindstedt-
Poincaré method we obtain the approximation

(α1, α2) =

(
−4ε4,

10

7
ε2 +

288− 1250c1
2401

ε4 +O(ε5)

)
(106)

for the parameters. For the second method we use the predictor from [1]. That is, we use the second-
order homoclinic predictor derived for the smooth normal form (9). Then calculate the center manifold
transformation, which for the two-dimensional systems reduces to a near-identity transformation, and
parameter transformation to transfer the predictor the original system. We obtain that the near-
identity and parameter transformation are just the identities. Thus, we obtain the predictor

(α1, α2) =

(
−4ε4,

10

7
ε2 +

288

2401
ε4 +O(ε5)

)
. (107)

Obviously, this result is wrong. To see why the latter second predictor doesn’t contain the term c1 we
consider the near-identity transformation

x = w,

α = β +

(
−c1

0

)
β3
2 .

(108)

Then system (105) becomes {
ẇ0 = w1,
ẇ1 = β1 + β2w1 + w2

0 + w0w1.

Using the second-order predictor from [1] for the smooth normal form we obtain

(β1, β2) =

(
−4ε4,

10

7
ε2 +

288

2401
ε4 +O(ε5)

)
.

Then using the near-identity transformation (108) yields the predictor

(α1, α2) =

(
−4ε4 − c1

(
10

7
ε2 +

288

2401
ε4 +O(ε5)

)3

,
10

7
ε2 +

288

2401
ε4 +O(ε5)

)
.

To compare this predictor with (106) we eliminate ε in both equations. This yields

α2(α1) = −5

7

√−α1 +
288− 1250c1

2401
α1 +O(α

3
2
1 ).

We conclude, as expected, that if the correct transformation is used between the normal form and
the original system we keep the correct order of accuracy for the approximation. In [1] the coefficients
H0003 and K03 (among other coefficients) are not incorporated into the parameter-dependent center
manifold transformation (15) and (16) leading to the incorrect predictor (107).

B Integrals from Section 3.1.1
Making the substitution s = log(u) in (56) yields

In = 2n
∫ ∞
1

log3

(
u2 + 1

u

)
un−1

(u2 + 1)n
du.
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Then, by making the reciprocal substitution u→ 1
u , we can show that

In = 2n−1
∫ ∞
0

log3

(
u2 + 1

u

)
un−1

(u2 + 1)n
du.

The last integral can be separated into the four following integrals

I(1)n =

∫ ∞
0

log3(u2 + 1)
un−1

(u2 + 1)n
du, (109)

I(2)n =

∫ ∞
0

log2(u2 + 1) log u
un−1

(u2 + 1)n
du, (110)

I(3)n =

∫ ∞
0

log(u2 + 1) log2 u
un−1

(u2 + 1)n
du, (111)

I(4)n =

∫ ∞
0

log3 u
un−1

(u2 + 1)n
du. (112)

The integral (109) can easily be solved by first applying the substitutions u → u2 + 1 and u → 1
u

consecutively to obtain

I(1)n = −1

2

∫ 1

0

log3(u) (1− u)
n
2−1 u

n
2−1 du.

Then using the binomial theorem yields

I(1)n = −1

2

n
2−1∑
k=0

(n
2 − 1

k

)
(−1)k

∫ 1

0

log3(u)u
n
2−1+k du =

1

2

n
2−1∑
k=0

(n
2 − 1

k

)
(−1)k3!

(n2 + k)4
,

where in the last equality we used the well-know identity∫ 1

0

um logn(u) du = (−1)n
n!

(m+ 1)n+1
, (113)

for n and m natural numbers.
To solve the integral (110) we make three consecutive substitutions: u→ u2, u→ u−1, and u→ 1

u .
This gives

I(2)n = −1

4

∫ 1

0

(
log3(v)− log2(v) log(1− v)

)
(1− v)

n
2−2v

n
2−1dv.

Then, by using the binomial theorem and expanding the logarithm we obtain

I(2)n =
1

4

n
2−1∑
k=0

(n
2 − 1

k

)
(−1)k

[∫ 1

0

log3(v)(1− v)
n
2−2v

n
2−1dv −

∞∑
l=1

1

l

∫ 1

0

log2(v)v
n
2−1+k+ldv

]
.

Using equality (113) once more yields

I(2)n =
1

4

n
2−1∑
k=1

(n
2 − 1

k

)
(−1)k

[
3!

(n2 + k)4
− 2

∞∑
l=1

1

l(n2 + k + l)3

]
.

Fractional decomposition shows that the innermost summation in the last equation is equal to

∞∑
l=1

1

l(n2 + k + l)3
=

8

2k + n

 Hn
2 +k

(2k + n)2
+
H

(2)
k+n

2
− ζ(2)

2(2k + n)
+
H

(3)
k+n

2
− ζ(3)

4

 .
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Thus, the integral in (110) is equal to

I(2)n =
1

4

n
2−1∑
k=1

(n
2 − 1

k

)
(−1)k

[
3!

(n2 + k)4
− 2

2k + n

(
4

(2k + n)2
Hn

2 +k

+
2

(2k + n)
H

(2)
n
2 +k +H

(3)
n
2 +k −

2ζ(2)

2k + n
− 4ζ(3)

)]
.

Now most work is done, since subtracting two times (110) from (111) is equal to∫ ∞
0

log2(u2 + 1) log(u) log

(
1 +

1

u2

)
un−1

(u2 + 1)n
du.

The reportorial substitution u→ 1
u shows that this integral vanishes. The same substitution also shows

that the integral in (112) vanishes. We thus obtain the closed-form expression

In = 2n−33

n
2−1∑
k=0

(n
2 − 1

k

)
(−1)k 1

(n2 + k)4
+

8

2k + n

 Hn
2 +k

(2k + n)2
+
H

(2)
n
2 +k − ζ(2)

2(2k + n)
+
H

(3)
n
2 +k − ζ(3)

4

 ,
where ζ is the Riemann zeta function and H(m)

n is the n-th generalized harmonic number of order m.

C Asymptotics for homoclinic solution in the smooth normal
form

Following the procedure outlined in Section 3.2 to the second-order nonlinear differential equation (38)
obtained from the smooth normal form (9). For the third-order homoclinic predictor we obtain

σ = 6 +
3
(
−70a1b+ 6b2 + 49d

)
49a2

ε2 +O(ε4),

δ = − 4 +
140a1b− 18b2 − 245d

49a2
ε2 +O(ε4),

τ =
10

7
+

98b(50ab1 + 73d)− 9604ae− 2450a1b
2 + 288b3

2401a2b
ε2 +O(ε4), (114)

ω̃(ζ) = 1− 6b

7a
ζε+

70a1b+ 18b2
(
3ζ2 + 1

)
+ 49d

(
9ζ2 − 5

)
196a2

ε2+

ζ

2401a3
((
−147b

(
20ab1 − 7dζ2 + 11d

)
− 9604ae

(
ζ2 − 1

)
+1470a1b

2 + 18b3
(
7ζ2 − 11

)))
ε3 +O(ε4).

It follows that

ũ(ζ) = 6ζ2 − 4 +
−70a1b

(
3ζ2 − 2

)
+ 18b2

(
ζ2 − 1

)
+ 49d

(
3ζ2 − 5

)
49a2

ε2 +O(ε4), (115)

ṽ(ζ) = − 2ω̃(ζ)σ(1− ζ2)ζ = −
[
−12 +

72b

7a
ζε− 3

49a2
(
70a1b− 6b2

(
9ζ2 + 5

)
(116)

−147d
(
3ζ2 − 1

))
ε2 +

12ζ

2401a3
(
147b

(
20ab1 − 7dζ2 + 18d

)
+9604ae

(
ζ2 − 1

)
− 2940a1b

2 − 18b3
(
7ζ2 − 18

))
ε3
]

(1− ζ2)ζ +O(ε4).
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The relation ξ(s) can be obtained by solving the ODE

dξ

ds
(s) = ω̃(tanh(ξ(s))). (117)

Thus, we substitute
ξ(s) = s+ ξ1(s)ε+ ξ2(s)ε2 + ξ3(s)ε3 +O(ε4),

into (117) and expand the resulting equation in ε to obtain

dξ1
ds

(s) = − 6b tanh(s)

7a
,

dξ2
ds

(s) =
−168ab sech2(s)ξ1(s) + 70a1b+ 9

(
6b2 + 49d

)
tanh2(s) + 18b2 − 245d

196a2
,

dξ3
ds

(s) =
sech3(s)

4802a3
(
4116a2b sinh(s)(ξ1(s))2 − 4116a2b cosh(s)ξ2(s)

+ 441a
(
6b2 + 49d

)
sinh(s)ξ1(s) + 2 sinh(s) (−3b cosh(2s)(

98(5ab1 + d)− 245a1b+ 12b2
)
− 1470abb1 + 9604ae+ 735a1b

2

−162b3 − 1323bd
))
.

Here we directly used that ξ0(s) = s. By solving these equations recursively we obtain

ξ1(s) = − 6b

7a
log(cosh(s)),

ξ2(s) =
2s
(
35a1b− 36b2 + 98d

)
+ 9 tanh(s)

(
16b2 log(cosh(s)) + 10b2 − 49d

)
196a2

,

ξ3(s) =
1

4802a3
(
−7 sech2(s)

(
1372ae− 27b

(
6b2 + 49d

)
log(cosh(s))

+216b3 log2(cosh(s))− 234b3 − 147bd
)
− 5880abb1 log(cosh(s))

+ 9604ae+ 42bs tanh(s)
(
−35a1b+ 36b2 − 98d

)
+ 4410a1b

2 log(cosh(s))

−1656b3 log(cosh(s))− 1638b3 + 2940bd log(cosh(s))− 1029bd
)
.

Here we used the phase condition that ξi(0) = 0, i = 1, 2, 3. This results in the constraint v(0) = 0.
Substituting the above expression for ξ into (37) we obtain the third-order predictor

w0(t) =
1

a
ũ (tanh (ξ(εt))) ε2,

w1(t) =
1

a
ṽ (tanh (ξ(εt))) ε3,

β1 = −4

a
ε4,

β2 =
b

a
τε2,

(118)

where τ, ũ and ṽ are given by (114)–(116), respectively.
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Note that by expanding ũ (tanh (ξ(s))) in (118) up to order three in ε we obtain

u0(s) = 6 tanh2(s)− 4,

u1(s) = −72b tanh(s) sech2(s) log(cosh(s))

7a
,

u2(s) =
(
12s sinh(2s)

(
35a1b− 36b2 + 98d

)
+ 8 cosh(2s)

(
7
(
5a1b+ 9b2 − 56d

)
−108b2 log2(cosh(s)) + 108b2 log(cosh(s))

)
+ 9

(
35a1b+ 192b2 log2(cosh(s))

−96b2 log(cosh(s))− 64b2 + 245d
)
− 7 cosh(4s)(5a1b+ 7d)

) sech4(s)

196a2
,

u3(s) =
(
−2 sinh(s)

(
cosh(2s)

(
−6b log(cosh(s))

(
−980(ab1 + 3d) + 1225a1b+ 312b2

)
+7
(
−1372ae+ 234b3 + 147bd

)
+ 2016b3 log3(cosh(s))− 6048b3 log2(cosh(s))

)
+ 6b log(cosh(s))

(
980ab1 − 1225a1b+ 1200b2 − 9408d

)
+ 7

(
1372ae− 234b3

−147bd)− 10080b3 log3(cosh(s)) + 15120b3 log2(cosh(s))
)

+ 42bs cosh(3s)
(
35a1b− 36b2 + 98d

)
(2 log(cosh(s))− 1)

+42bs cosh(s)
(
−35a1b+ 36b2 − 98d

)
(6 log(cosh(s))− 1)

) 3 sech5(s)

4802a3
.

(119)

Together with (114), this is the solution obtained by using the regular perturbation method to the
second-order nonlinear oscillator (38) obtained from the smooth normal form with phase condition
u̇(0) = 0. This gives us the third order homoclinic predictor

w0(t) =
1

a

(
3∑
i=0

ui(εt)ε
i +O(ε4)

)
ε2,

w1(t) =
1

a

(
3∑
i=0

u̇i(εt)ε
i +O(ε4)

)
ε3,

β1 = −4

a
ε4,

β2 =
b

a
ε2τ,

(120)

where τ is given by (114) and ui(i = 0, . . . , 3) are given by (119).

D Case study of the quadratic codim 2 Bogdanov-Takens nor-
mal form

In this section, we will numerically study the algorithm outlined in Section 3.2 for the quadratic
codimension 2 Bogdanov-Takens normal form (8). Since the algorithm only relies on arithmetic and
calculus on polynomials over the field Q, see Corollary 7 there is no need to use propriety software
for the implementation. We choose the relative new programming language Julia [6]. Julia natively
supports arbitrary precision rational numbers. We use the package Polynomials.jl [34] to handle the
differentiation and integration of polynomials, as well as polynomial division. Since the programming
language Julia starts indexing arrays at 1, we use the package OffsetArrays [33] to lower the index
to 0 to keep the indexing identical. The code is given in the listing below.

module BTQuadraticHomoclinic
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using Polynomials, OffsetArrays

function z(i, τ, σ, ω)
if i == 1

p = 24*Polynomial([0,-2, 0, 3])
else

p = Polynomial([0,2])*sum(σ[l]*τ[i-1-l] for l in 1:i-1)
p += Polynomial([0,2])*sum(σ[l]*ω[k]*τ[i-1-l-k]

for k in 1:i-1 for l in 0:i-1-k)
p -= Polynomial([2,0,-6])*sum(σ[i-l]*ω[l] for l in 1:i-1)
p -= 2*sum(σ[i-l-k]*ω[l]*derivative(

Polynomial([0,1,0,-1])*ω[k]) for k in 1:i-1 for l in 0:i-k)
p += Polynomial([-1,0,1])*Polynomial([0,2])*sum(σ[l]*

σ[i-1-l-k]*ω[k] for k in 0:i-1 for l in 0:i-2-k)
p += Polynomial([-4,0,6])*Polynomial([0,2])*sum(σ[i-1-k]*ω[k]

for k in 0:i-1)
p += Polynomial([1,0,-1])*sum(σ[k]*σ[i-k] for k in 1:i-1)

end
Polynomial([1,0,-1])*p

end

function solve(;order = n)
σ = OffsetArray(zeros(Rational{BigInt}, order), 0:order-2)
τ = OffsetArray(zeros(Rational{BigInt}, order-1), 0:order-1)
ω = OffsetArray(Array{Polynomial}(undef, order), 0:order-1)

σ[0], ω[0] = 6, 1
for i=1:order-1

gi = integrate(Polynomial([0,12//1])*z(i, τ, σ, ω))
if i%2 == 1

τ[i-1] = -10//192*gi(1)
ω[i] = (τ[i-1]*144*Polynomial([2//15, 0, 0, 1//3, 0, -1//5])

+ gi) ÷ (Polynomial([1,0,-1])*Polynomial([0,12]))^2
else

σ[i] = -gi(-1)//12
ω[i] = -σ[i]//6 + (σ[i]*Polynomial([-1,0,1])*

(Polynomial([-4,0,6])^2-4) + gi + 12*σ[i]) ÷
(Polynomial([1,0,-1])*Polynomial([0,12]))^2

end
end
τ, σ, ω

end

end

In [2] the impression is given that one can obtain higher-order approximations very fast using their
algorithm. However, our algorithm, which should be superior, shows that the order of approximation
and the computational cost is not linear related. We performed a benchmark to obtain a 20th-order
approximation to τ , see Table 2. These results were obtained on the mobile CPU Intel i5-6200U (4)
@ 2.800GHz with 11407MiB of memory. The coefficients for τ are shown in Table 3. We see that the
length of the numerator and denominator increases at each (even) order. This also holds true for the
coefficients of σ and the coefficients of the polynomials ω. Performing operations on these rational
numbers become increasingly more difficult for the computer to deal with. In Figure 9 a log-linear plot
is shown, plotting the time in seconds to solve the ith order equation (65). It took nearly 10 hours to
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julia> @benchmark BTQuadraticHomoclinic.solve(order=20)
BenchmarkTools.Trial:

memory estimate: 107.36 MiB
allocs estimate: 5384379
--------------
minimum time: 382.111 ms (21.56% GC)
median time: 414.436 ms (24.41% GC)
mean time: 459.831 ms (26.81% GC)
maximum time: 577.254 ms (32.91% GC)
--------------
samples: 11
evals/sample: 1

Table 2: Benchmark to obtain a 20th-order approximation to τ in the quadratic normal form (8) using
the algorithm outlined in Section 3.2. See in particular Corollary 9 and the algorithm above .

obtain the 200th order approximation of τ . A linear regression on the last 50 data points indicates the
time increases exponentially. Extrapolation yields that it would take more than 17 years to solve the
first 500 terms if memory doesn’t become an issue. Since the algorithm is embarrassingly parallelizable
we could speed up the process. However, exponential growth cannot be escaped.

i τi

0 10
7

2 288
2401

4 - 240192
45294865

6 - 37647386496
11108339166925

7 5154131788676352
2724264638992521625

8 - 1828854022199737517568
1622558397660750917241875

10 4788476595594706542555091968
6764713681983284597882721784375

12 - 333207890299772418358595124320937984
750205319977359363432143692632890996875

14 384324328969886017955349568884165743978164224
1366817906371309055843841557575267655935039046875

16 - 2241496149333347510622026401379280877412634073959456768
12451199287907137102778709466943415347212749443284171484375

18 2640541575683401164949776492089908615592018826498686833538777088
22685152569996135996229496037325376035529199986794205676507927734375

20 - 90999911407271629445902884163495991850622440695336663926865318101431386112
1198588820362905667811216420985132469928184621078674921926335765852723935546875

Table 3: First 20 coefficients of τ

Next, we would like to make some comments on the radius of convergence of the asymptotic ap-
proximation to the homoclinic orbit in the quadratic Bogdanov-Takens bifurcation. In [2] there is the
remark that the higher-order approximation can greatly improve the accuracy of the approximation
for large parameter values. However, this fully depends on the radius of convergence of the series. To
obtain a first impression, we compare the parameters computed from the numerical continued solution
to the homoclinic solution in (8) using MatCont with the predicted parameters. Figure 10 reveals a
typical situation in perturbation series. Increasing the order of the perturbation parameter improves
the approximation for small parameters, but for larger parameters, the approximation becomes much
worse. Reproducing [2, Fig 3c], but increasing the order, shows that this solution is outside the radius
of convergence.
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Figure 9: Log-linear plot of the order i and the time in seconds it took to compute the coefficients.
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Figure 10: Comparison between the numerical obtained continued homoclinic bifurcation curve ema-
nating from the Bogdanov-Takens point in (8) with a = b = 1 and the parameter approximations with
orders ranging from 10 to 200. For β1 . −8 the approximation starts diverging. This indicates that
the radius of convergence in the perturbation parameter ε is less than or equal to 4

√
2. Note that for

β1 > −8 the tenth order is already indistinguishable from the numerical obtained parameters.
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