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Post-hoc comparison procedures are commonly used to determine which group means differ after 
a significant analysis of variance (ANOVA). Several post-hoc tests have been proposed, but their 
use requires certain assumptions to be met, such as normality, equality of variance, and balanced 
group size. This review examined the statistical literature on post-hoc tests and their use in the 
environmental and biological sciences. Through this review, we found that post-hoc tests are 
effective but often inadequately used in these sciences. We conducted a search of reputed search 
engines to identify articles in which post-hoc tests were used and found ten post-hoc tests used in 
the environmental and biological literature. Tukey HSD (30.04%), Duncan’s (25.41%) and Fisher’s 
LSD (18.15%) were the most commonly used post-hoc tests over the past 20 years, whereas 
the Games-Howell (1.13%), Holm-Bonferroni (1.25%), and Scheffe’s tests (2.25%) were the least 
used. The choice of post-hoc test depended on the statistical method used prior. In addition, the 
assumptions of applying post-hoc tests were not always verified. In fact, the normality condition 
was mostly only checked in the cases of Tukey HSD, Duncan’s, and Fischer’s LSD tests, and 
equality of variance was often met for the Tukey HSD, Duncan’s, Fischer’s LSD, and Bonferroni 
tests. This review opens a new avenue for comparing post-hoc test performance in ANOVA using 
linear or generalised mixed effect models.

0. Introduction

Experimentation is a scientific tool that is widely used to explain phenomena based on the principle of causality under defined 
and controlled conditions. The analysis of experimental data often includes a comparison of trends in measurements across groups 
[1]. If the number of groups to be compared is equal to two, a Student’s t-test is appropriate when the model residuals follow 
a normal distribution; otherwise, its non-parametric equivalent is used. However, when the number of groups to be compared is 
greater than two and the required conditions hold, an analysis of variance (ANOVA) is adopted. In the case of significant differences 
(null hypothesis rejected), further analysis (post-hoc test) is necessary to identify subgroups that are significantly different from each 
other [1]. Post-hoc tests, or multiple mean comparison tests, are also used after several other statistical methods, such as the linear 
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mixed effect model (LMEM), generalised linear model (GLM), and generalised least squares model (GLS). Several post-hoc tests that 
compare more than two groups are found in the behavioural science literature [1], as well as in the applied and biological sciences. 
The application of these tests requires compliance with certain conditions. For instance, the choice of a post-hoc test is conditioned 
on certain assumptions [2]. Normality, equality of variance, parity in the number of groups compared, and whether observations 
are planned or unplanned from one group to another [2] are common conditions. Similarly, there are special post-hoc tests for 
non-parametric methods.

In practice, these tests are often arbitrarily applied in biological science [1]. However, the examination of these methods (the-

oretical framework and foundations) including their optimal use has been the subject of many scientific studies [2,3] in several 
fields, including agronomy [4,5]; animal production and veterinary science [6–8]; medicine [9,10]; entomology [11,12]; plant and 
pathology [13]; and psychology [14]. Day and Quinn [2] revealed that the Student-Newman-Keuls (SNK) and Duncan’s tests are the 
most widely used post-hoc tests, although [15–18] have criticized the use of these tests. Indeed, Einot and Gabriel [18] introduced a 
modified Newman-Keuls multiple comparison procedure that reduces the chance of a rejection region and prevents the probability 
of false rejection due to exceeding the level 𝛼 using the original test.

Most of these authors concluded that post-hoc tests are designed for different purposes and that there is a more appropriate 
method for a given type of experimental setup. They barely touched upon which method works in case of non-compliance with 
application conditions, such as normality of a residual model and equality of residual variance. Also, these studies did not explain 
which method would be more appropriate in cases of equality or inequality in the number of groups and the performance of methods 
regarding groups size. However, equality or inequality in the number of groups and heteroscedasticity in terms of parametric [19]

and non-parametric tests [20] have been worked on in the literature. Day and Quinn [2] addressed these aspects in the field of 
ecology. The objective of this article is to present a statistical literature (systematic) review of tests to compare groups after ANOVA 
and their use in environmental and biological sciences.

1. Methods

1.1. Data sources and search strategy

Research in which post-hoc tests were used, was identified using 4 electronic databases: Science Direct (www.sciencedirect.com), 
Google Scholar (www.scholar.google.fr), African Journals Online (www.ajol.info), MDPI (https://www .mdpi .com/), and Taylor and 
Francis (https://www .tandfonline .com/). ScienceDirect, Google Scholar, MDPI, and Taylor and Francis are international databases, 
while African Journals Online is an Africa-wide database. The search terms included post-hoc tests, multiple comparisons, structuring 
of means, and differences between means.

1.2. Eligibility criteria and study selection

During our research, we thoroughly examined various search engines that deal with biological or environmental concepts, such as 
soil sciences and plant nutrition, psychology, criminology, electricity, sport, genetics, agriculture, demography, economics, ecology, 
epidemiology, breeding (animal and plant), health, nutrition, and food security. We focused on articles published between 2000 and 
2020 and saved those that mentioned the use of post-hoc tests. Once uploaded, articles were saved if they mentioned the use of 
post-hoc tests.

1.3. Data extraction process

We recorded several details from the downloaded papers, such as the name of the journal, title of the paper, authors, continent, 
country, years, domain, type of review, impact factor, statistical methods, normality, variance equality, types of post-hoc test, number 
of groups, equal or unequal group size, and software used. We then identified the most-represented domains based on the relative 
frequency of citations and retained the domains with a frequency of at least 5%. The remaining domains were grouped as other 
domains.

1.4. Data analysis

The statistical analyses were performed using R (Team, 2020), with a significance level of 5%. The frequency of citations was 
calculated, and figures were generated using the ggplot2 package [21]. These figures were used to describe the use of post-hoc tests 
across different domains, as well as in general. We used the Chi-square test to explore the relationship between the use of post-

hoc tests and group size (equal or unequal). Additionally, we used a correspondence analysis in the FactoMineR package [22] to 
understand which post-hoc tests were used after specific statistical methods and which tests were predominant in specific domains. 
To assess the relationship between post-hoc tests and the normality and homogeneity of variance checking, we used binomial logistic 
regression. Additionally, bar plots were generated to display the percentage of studies where the required assumptions of ANOVA 
2

were checked before using specific post-hoc tests.
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Fig. 1. Study identification.

2. Results

2.1. Search results and included studies

A systematic literature search was conducted, yielding 13,742 records initially. After removing duplicates, 9,616 records were 
retained and screened for eligibility based on title, abstract, and keywords. A total of 7,627 records were excluded because they 
did not meet the review eligibility criteria, and 1,076 records were not related to biology or environmental sciences. The screening 
process resulted in 913 eligible studies (Fig. 1) across various areas such as genetics, agriculture, biotechnology, breeding and 
animal health, ecology, medicine, dentistry, nutrition and food security, soil science, plant nutrition, and sports. A range of post-hoc 
tests were used in the selected studies, including Fisher’s Least Significant Difference (LSD) test, Student-Newman-Keuls (SNK) test, 
Tukey’s HSD, Scheffe’s test, Duncan’s test, Dunnett test, Bonferroni method, Dunn’s test, Sidak method, Games-Howell test, and 
Holm-Bonferroni method. The following section presents a complete description of some of these post-hoc tests.

2.2. Post-hoc comparison methods

In multiple comparison tests, controlling the 𝛼 level of significance is insufficient to limit the type I error rate when testing the 
overall null hypothesis at that level. This is due to the problem of multiplicity, which requires a familywise error rate (FWER) or 
a per-comparison significance level. When the final conclusion relies on only one p-value, conventional p-values can be compared 
with the nominal significance level 𝛼 as a threshold. However, when dealing with multiple testing, it is necessary to use procedures 
that determine the appropriate rejection regions, per-comparison significance levels, or p-value adjustments. The objective of these 
procedures is to ensure that the familywise error rate is controlled at 𝛼. In this section, we describe some of these procedures, 
including their formulas and reference sources, as well as their limitations and advantages.

Fisher’s Least Significant Difference (LSD) test: Fisher’s LSD test, introduced in [23], was one of the first multiple comparison 
procedures. It is essentially a series of multiple t-tests that use a pooled standard deviation across all groups. The test sets the Type I 
error rate at a per-comparison level of 𝛼, which provides high power, as noted in [2]. The statistical tables for the test were computed 
by Fisher and Yates, as described in [24].

LSD allows for a direct comparison of two means from two different groups by calculating the smallest significance as if a test 
had been run on those two means. Any difference greater than the LSD is considered statistically significant. To compute the LSD 
3

statistic for comparing group 𝐴 vs 𝐵 means, one can use the following formula [25] for a given significance level 𝛼 (1):
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𝑡𝛼∕2,𝐷𝐹𝑊

√
𝑀𝑆𝐸

(
1
𝑛𝐴

+ 1
𝑛𝐵

)
(1)

where 𝑡 = is the critical value from the 𝑡-distribution table, 𝑀𝑆𝐸 = is the mean square error obtained from the results of the ANOVA 
test, and 𝑛 = is the number of scores used to calculate the means.

LSD is usually performed after the significance of the omnibus ANOVA test and under the condition of equal or unequal group 
sizes and homogeneity of variance. As a multiple 𝑡-test (𝑘 tests) on the same data, LSD does not control for family-wise type I error, 
which is 1 − (1 − 𝛼)𝑘.

Student-Newman-Keuls (SNK): Wrong conclusions due to multiple uses of the t-test led the authors to attempt to abolish the t-
test. In this way, [26] presented a new approach using an approximation of the F-test into a range test with the Fisher tables. This 
test name is derived from the three authors: [27], [28], and [26], who used the first known Studentized Range test, which is a 
sequential (step-down) procedure for comparison. The Student-Newman-Keuls procedure uses different critical values to compare 
pairs of means. Therefore, significant differences are more likely to be found. The q-value is computed using the following formula 
(2) [26]:

𝑞 =
(�̄�𝐴 − �̄�𝐵)

𝑆𝐴𝐵

(2)

where 𝑆𝐴𝐵 =
√

𝑀𝑆𝐸

𝑛
if sample sizes are equal, and 𝑆𝐴𝐵 =

√
𝑀𝑆𝐸

2 ( 1
𝑛𝐴

+ 1
𝑛𝐵

) if sample sizes are not equal.

The SNK test does not control the type I error, even when the requirements are satisfied. Einot and Gabriel [29] showed an excep-

tion when dealing specifically with three groups. In addition, this test is affected by unequal group sizes and variance heterogeneity 
when these assumptions are not met [17].

Tukey’s HSD: Addressing the issue of controlling the family-wise error, [30] proposed the famous honestly significant difference 
(HSD) test, also known as the T method, Tukey’s A, or Tukey’s 𝑤 method, using the Studentized range with the number of groups 
instead of number of comparisons, as done in SNK. The Tukey’s HSD is appropriate when the researcher wants to perform all pairwise 
comparisons [31]. The modified procedure for unequal sample sizes was published by [32], although Tukey had also proposed the 
same modification (for different configurations and not published), which provides acceptable power. Similar to each of the tests 
above, the critical value for each comparison is the same; therefore, each comparison has the same probability of a type I error. 
These are called “simultaneous tests”. The HSD test statistic for each pair of means is computed using the following formula (3) [33]:

𝐻𝑆𝐷 =
𝑀𝑖 −𝑀𝑗√

𝑀𝑆𝐸

𝑛

(3)

where 𝑀𝑖 −𝑀𝑗 is the difference between the pair of means used to calculate this, such that 𝑀𝑖 ≥ 𝑀𝑗 ; 𝑀𝑆𝐸 is the mean square 
error; and 𝑛 is the number of observations in each group or treatment. This test is widely used in science, and [31] described it as 
“the most frequently cited unpublished paper in the history of statistics”. It is designed for equal variance and group size. Researchers 
have used it because of its ability to produce the fewest type I errors and to be the least sensitive to assumption violations [17]. In 
fact, after controlling for type I error, Tukey’s HSD provides an average power.

Scheffé test: This method is a simultaneous procedure developed by Scheffé [34] for all contrasts (a linear combination of means). 
Thus, it considers not only pairwise comparisons as [30] does, but also non-pairwise, orthogonal comparisons. This method is 
used for all possible comparisons, including pairwise comparisons and contrasts. There is a very large number of ways to compare 
combinations of means, whereas the number of pairwise comparisons is limited to 𝑟 = 𝑚(𝑚 − 1)∕2, where 𝑟 = the number of possible 
comparisons to be made and 𝑚 = the number of treatments (or means) in the experiment. Therefore, Scheffé’s method adjusts the 
type I error rate per comparison to a very low level to maintain the FWER at the chosen level (𝛼 = 5%), and it lies below 𝛼 when 
there is only a limited number of possible comparisons. The Scheffé test is the most flexible, but it also has the lowest statistical 
power compared with Fisher’s LSD and Tukey’s HSD tests. Scheffé [16] uses the following test statistic (4):√

(𝑘− 1)𝑓𝑣𝑎𝑙𝑢𝑒𝑀𝑆𝐸

(
1
𝑛𝑖

+ 1
𝑛𝑗

)
(4)

where (𝑘 − 1) is the between-sample degrees of freedom, 𝑓𝑣𝑎𝑙𝑢𝑒 is the 𝑓 statistic value from ANOVA, and 𝑀𝑆𝐸 is the mean square 
error from ANOVA. Similar to Tukey’s HSD test, Scheffé’s test is less sensitive when the requirements are not met. Its critical value 
depends on the number of means in the comparison, and the test is too conservative compared to methods like Tukey’s HSD [31].

Duncan’s test: While pointing out the basic differences between several procedures (Fisher’s LSD, SNK, Scheffé, etc.), [35] proposed a 
new multiple range test considering the features revealed. The new test is a modification of the SNK procedure, combining the power 
advantages found in previous studies (Duncan 1951, 1952). The test is a multiple-range test, except that it uses protection levels 
4

related to the number of means between the means in comparison. Duncan’s Multiple Range test (DMRT) was originally designed as 
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a higher-power alternative to Newman–Keuls. It is more useful than LSD when larger pairs of means are compared, especially when 
those values are in a table that guards against type I errors. The DMRT statistic is computed using the same algorithm as for Fisher’s 
LSD (5). However, instead of looking up the critical value in a 𝑡-table, the 𝑞-table is used for each comparison.

𝑡𝛼∕2,𝐷𝐹𝑊

√
𝑀𝑆𝐸

(
1
𝑛𝐴

+ 1
𝑛𝐵

)
(5)

where 𝑡 is the critical value from the 𝑞-distribution table, 𝑀𝑆𝐸 is the mean square error obtained from the results of the ANOVA 
test, and 𝑛𝐴 and 𝑛𝐵 are the numbers of observations in groups A and B, respectively. Despite its high power, this test provides an 
increasing type I error rate (even when assumptions hold) for more than three comparisons [17] and is affected by unequal group 
size [36].

Dunnett test: When we consider comparisons between a treatment group and control group, Tukey’s HSD and Scheffe’s procedure 
provide a wider confidence interval, which is not needed. This problem was addressed by [37], who proposed a procedure to 
compare several treatments with a control. Dunnett’s test (also called Dunnett’s Method or Dunnett’s Multiple Comparison) compares 
the means from several experimental groups against a control group mean to determine if there is a difference. One fixed “control” 
group is compared to all the other samples, so it should only be used when there is a control group. As Dunnett’s test compares two 
groups, it acts similarly to a t-test. The following formula is used to compare the mean difference (6) [37]:

𝐷𝐷𝑢𝑛𝑛𝑒𝑡𝑡 = 𝑡𝐷𝑢𝑛𝑛𝑒𝑡𝑡

√
𝑀𝑆𝐸

(
1
𝑛0

+ 1
𝑛𝑖

)
(6)

where 𝑡𝐷𝑢𝑛𝑛𝑒𝑡𝑡 is the critical value in the Dunnett-critical value table, MSE = mean square error, and 𝑛0 and 𝑛𝑖 are the numbers of 
observations for the control group and 𝑖𝑡ℎ group in comparison, respectively. However, this method was designed using table for 
only equal group sizes. Otherwise, the test provides just an approximation [37].

Bonferroni method: Dunn [38] developed a method for constructing simultaneous confidence intervals for a selected number of 
contrasts (not all possible linear contrasts, as Scheffe did) for a given number of means in comparison. The result is a simultaneous 
test using the Student 𝑡 distribution and is conservative for a large number of comparisons or when the test statistics are positively 
correlated [39]. This reduced the power of the test. The Bonferroni method involves adjusting the significance level per comparison, 
using the Bonferroni inequality (hence the name), to ensure that the FWER is always below the level chosen (𝛼 = 5%). [38] first 
computed the Bonferroni correction as follows (7):

𝛼𝐵 =
𝛼𝐹𝑊 𝐸

𝑘
(7)

where 𝛼𝐹𝑊 𝐸 is the desired familywise error rate (often .05, but not necessarily) and 𝑘 is the number of comparisons (statistical 
tests). If FWER <𝛼, then the method is stricter than what is allowed. Such methods are also referred to as conservative methods. For 
the Bonferroni method, the conservativeness increases with the number of simultaneous tests (𝑚). This comes from the probability 
terms that are omitted in the expression of the FWER. Therefore, when 𝑚 is large, the Bonferroni method is not recommended. Also, 
it is more sensitive to unequal group size than heteroscedasticity [40].

Dunn’s test: Some alternative methods, like Kruskal-Wallis or the Wilcoxon method, are used to detect significant differences among 
groups, but few such alternative methods have been developed. Dunn [41] found that this test is adequate for hand computation 
and better for revealing the differences between groups that are close together. This distribution-free test is usually performed after 
the rejection of a non-parametric group difference test. This is one of the least powerful multiple comparison tests and can be very 
conservative, especially for larger numbers of comparisons. When comparing groups 𝐴 and 𝐵, [38] used the test statistic (8):

�̄�𝐴 − �̄�𝐵

𝜎𝐴,𝐵

(8)

where 𝜎𝐴,𝐵 =

√√√√[
𝑁(𝑁 + 1)

12
−

∑𝑟

𝑠=1 𝜏
3
𝑠
− 𝜏𝑠

12(𝑁 − 1)

](
1
𝑛𝐴

+ 1
𝑛𝐵

)
; 𝑁 =

∑𝑘

𝑖=1 𝑛𝑖 is the total sample size of the 𝑘 groups; 𝑟 is the number of 

tied ranks across all 𝑘 groups; 𝜏𝑠 is the number of observations across all 𝑘 groups with the s𝑡ℎ tied rank; and �̄�𝑖 = 𝑊𝑖∕𝑛𝑖 is the 
per-group average rank with 𝑊𝑖 being the 𝑖𝑡ℎ group’s summed ranks.

The Sidak method: [42] worked on finding a rectangular confidence region for a multivariate normal distribution. A slight mod-

ification of the Bonferroni method was proven to be “best” when the variances are known or unknown but equal. [38]. The Sidak 
method gives a familywise error equal to the nominal level (unlike the Bonferroni method, for which it is below) and results in an 
increase in power compared to the Bonferroni method. The Sidak method is based on the assumption that all tests are mutually inde-

pendent under 𝐻0, i.e., all test statistics 𝑇𝑘 for the partial null hypotheses are mutually independent under 𝐻0. This is an unrealistic 
5

assumption for many applications (e.g., test statistics may share the same sample mean), but it simplifies the expression for FWER 
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(similar to the omission of probability terms in the development of the Bonferroni method). Sidak [42] defined the per-comparison 
significance level 𝛼∗ for controlling the FWER at 𝛼 as follows (9):

𝛼∗ = 1 − (1 − 𝛼)(1∕𝑚) (9)

It can be shown that the method of Sidak is conservative but less conservative than the Bonferroni method. The latter follows 
from the fact that 𝛼

𝑚
< 1 − (1 − 𝛼)(1∕𝑚). The per-comparison significance level of the Bonferroni method is never higher than that of 

the Sidak method. Hence, the power of the Sidak procedure is generally greater than that of the Bonferroni procedure.

Games-Howell test: The authors were interested in the robustness of the latter procedures (HSD, LSD, etc.) when conditions are 
violated [43]. Games and Howell [44] addressed the problem of unequal variances and group sizes while comparing the Tukey-

Kramer test, t-test, and their BF test (Behrens-Fisher modification of the Tukey HSD). The proposed BF test incorporates the Welch 
degree-of-freedom solution and weighted pooled variance instead of MSE. It performs better when the sample sizes and variances are 
unequal. The Games-Howell procedure controls for type I error per comparison in heterogeneity variances and group sizes compared 
to the Tukey-Kramer procedure. A comparison of 𝑘 groups is statistically significant if the following holds (10) [40]:|||�̄�𝑖 − �̄�𝑗

||| ≥𝑄∗
𝑖,𝑗
𝑆𝜀,𝑘,𝑣∕

√
2 (10)

where �̄�𝑖 and �̄�𝑗 are the means of groups 𝑖 and 𝑗, respectively; 𝑄∗
𝑖,𝑗

=

√√√√ 𝑠2
𝑖

𝑛𝑖
+

𝑠2
𝑗

𝑛𝑗
is the weighted pooled variance for the two groups; 

and 𝑆𝜀,𝑘,𝑣 is the Studentized range value.

This is performed for unequal variance and sample sizes, which is usually the structure of the data. The test can fairly control the 
type I error rate when the requirements are satisfied. Moreover, the Games-Howell test has more power when the assumptions are 
violated compared to several post-hoc tests.

Holm-Bonferroni method: The Bonferroni-Holm method, also referred to as the Holm method [45], sequential Bonferroni, or 
Holm-Bonferroni method, is an alternative approach to counteract the problem of multiple comparisons. Holm [45] proposed a 
modification of the Bonferroni procedure by using sequential comparison to different levels instead of a constant one. The obtained 
test is uniformly more powerful than the classical Bonferroni test. Although Bonferroni correction controls the FWER by rejecting 
null hypotheses with a p-value less than 𝛼∕𝑚, the cost is an increased risk of accepting the false null hypothesis (type II error). Holm 
[45] proved that his test maintains the FWER at a specified level in the strong sense. Moreover, the test has a gain of power compared 
to the classical Bonferroni, especially when the null hypothesis is completely wrong. Holm [45] presented the following steps for 
executing this procedure:

1. Order the p-values from small to large:

𝑝(1) < 𝑝(2) < .... < 𝑝(𝑚),

where 𝑝(𝑘) denotes the 𝑘𝑡ℎ-order statistic of the set of 𝑚 p-values.

2. If 𝑝(1) < 𝑝(2), then the partial null hypothesis that corresponds to this p-value is rejected, and the method proceeds (go to step 3). 
Otherwise, no partial hypotheses are rejected and the procedure stops here.

3. If 𝑝(2) <
𝛼

𝑚−1 , then the partial null hypothesis corresponding to this p-value is rejected, and the method proceeds (go to step 4). 
Otherwise, no further partial hypotheses are rejected and the procedure stops here.

4. For a general 𝑘 = 3, ..., 𝑚, if 𝑝(𝑘) <
𝛼

𝑚−(𝑘−1) , then the partial null hypothesis corresponding to this p-value is rejected, and the method 
proceeds as long as 𝑘 < 𝑚. As soon as 𝑝(𝑘) >

𝛼

𝑚−(𝑘−1) , the procedure stops and no further partial hypotheses are rejected.

In other words, for the smallest p-value, the classical Bonferroni method is applied. If this result is significant, the method proceeds 
to the next smallest p-value, and the method of Bonferroni is used again, but this time on the 𝑚 − 1 remaining p-values (thus, the 
Bonferroni method needs to adjust for only 𝑚 − 1 tests and is thus less strict). Each time a significant test result is obtained, the 
method is allowed to proceed at a larger per-comparison significance level. Hence, this method is more powerful than the classical 
Bonferroni method. Note that the FWERs of the Bonferroni and Holm-Bonferroni methods coincide because FWER depends only on 
the smallest adjusted p-value, and these are the same for both methods.

2.3. Use of post-hoc tests in biological and environmental sciences

2.3.1. Current use of post-hoc tests according to the domain

The proportions of effective uses of post-hoc tests in general and per applied field considered are presented in Table 1. Tukey HSD 
(30.04%), Duncan (25.41%), and Fisher’s LSD (18.15%) were the most used post-hoc tests over the past twenty years. In contrast, 
the Games-Howell test (1.13%), Holm-Bonferroni (1.25%), and Scheffe’s test (2.25%) were the least used. In most domains, Tukey 
HSD was the most commonly used post-hoc test. Apart from Tukey HSD, Duncan’s test (20%) and Fisher’s LSD (20%) were the most 
6

commonly used in genetics. In agriculture, Duncan’s test (32.68%) and Fisher’s LSD (28.74%) were mostly used. In biotechnology, 



Heliyon 10 (2024) e25131C.E. Agbangba, E. Sacla Aide, H. Honfo et al.

Table 1

Row profile of the use of post-hoc tests according to domain (%).

Effective 
use

Domains Bonferroni 
Procedure

Duncan’s 
test

Dunnett’s 
correction

Dunn’s 
test

Games-

Howell 
test

Holm-

Bonferroni

Fisher’s 
LSD

Scheffé’s SNK Tukey 
HSD

Overall use 9.637 25.407 4.506 4.255 1.126 1.252 18.148 2.253 3.379 30.038

Research 
field

Genetics 6.667 20.000 0.000 0.000 0.000 0.000 20.000 0.000 0.000 53.333

Agriculture 1.575 32.677 3.543 2.756 0.787 0.000 28.740 0.000 4.331 25.591

Biotechnology 0.000 40.000 0.000 0.000 10.000 0.000 15.000 0.000 5.000 30.000

Breedings and 
animal health

7.143 33.333 4.762 9.524 0.000 4.762 11.905 2.381 4.762 21.429

Dentistry 26.415 0.000 5.660 7.547 1.887 1.887 1.887 0.000 0.000 54.717

Ecology 3.226 12.903 3.226 3.226 3.226 0.000 19.355 0.000 3.226 51.613

Medicine 22.388 11.940 9.701 10.448 1.493 1.493 11.194 6.716 3.731 20.896

Nutrition and 
food security

3.478 46.087 4.348 1.739 0.870 0.000 10.435 2.609 1.739 28.696

Others 10.000 15.000 2.500 2.500 0.000 0.000 20.000 10.000 2.500 37.500

Soil science 
and Plant 
nutrition

0.000 25.397 3.175 1.587 0.000 1.587 26.984 0.000 6.349 34.921

Sport 50.000 0.000 0.000 0.000 0.000 12.500 6.250 3.125 0.000 28.125

Fig. 2. Relative use of post-hoc tests regarding size of groups. Bonferroni : Bonferroni test; Ducan: Duncan test ; Dunnett: Dunnett’s test; Dunns : Dunn’s test ; GH : 
Games-Howell test ; HB : Holm-Bonferroni test ; Fischer LSD : Fisher’s Least Significant Difference test ; Scheffé : Scheffé’s test ;SNK : Newman-Keuls test; Tukey HSD 
: Tukey Honestly Significant Difference.

Duncan’s test (40%) was the most used. In breeding and animal health, Duncan’s test (33.33%) was the most highly cited test in 
the literature. In dentistry, Bonferroni (26.41%) and Tukey HSD (54.72%) were the most frequently cited tests. In soil sciences and 
plant nutrition, the most commonly used post-hoc tests were Duncan (25.40%), Fisher’s LSD (26.98%), and Tukey HSD (34.92%). 
In ecology, Tukey HSD (51.61%) and Fisher’s LSD (19.36%) were the most cited. In medicine, the Bonferroni procedure (22.39%) 
and Tukey HSD (20.90%) were mainly used, while in nutrition and food security, Duncan’s (46.08%) and Tukey HSD (28.70%) 
were used. Furthermore, the Bonferroni procedure was the most used post-hoc test in sports sciences (50%), followed by Tukey HSD 
(28.13%).

2.3.2. Use of post-hoc tests according to group size (equal or unequal)

The Chi-square independence test showed dependence between the test used and the equality of size of the groups in comparison 
(DF = 108; Chi2 = 400.78; Prob <0.001). In the case of equality in group size, the most commonly used tests were the Tukey HSD, 
Duncan, and Fisher’s LSD tests. In cases of unequal group size, Tukey HSD, Fisher’s LSD, Duncan, and Bonferroni were mostly used 
7

(Fig. 2).
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Fig. 3. Correspondence analysis biplot of post-hoc procedures and statistical methods. Bonf: Bonferroni; Duc:Duncan ; Dun_c: Dunnett’s correction ; Dunns : Dunn’s 
test ; GH : Games-Howell ; HB : Holm-Bonferroni ; LSD : Fisher’s Least Significant Difference ; Schf : Scheffé ;SNK : Newman-Keuls; Tukey HSD GLM: Generalized 
Linear Models; Anova: Analysis of variance; LMEM: Linear Mixed Effect Models; t-test: Test t de Student; KW: Kruskal Wallis test; MW: Mann Whitney test.

Fig. 4. Correspondence analysis biplot of post-hoc procedures and domain of use. Genetics: Gene; Agriculture: Agri; Biotechnology: Biotech; Breeding and animal 
health: BAH; Dentistry: Dent; Ecology: Eco; Medicine: Med; Nutrition and food security: NFS; Others: Others; Soil science and Plant nutrition: SPN; Sport: Sports.

2.3.3. Use of post-hoc tests in relation with statistical analysis methods and domains

The choice of post-hoc tests depends on the statistical method used (Chi2 = 479.88, Prob <0.001). From the correspondence 
analysis, the first two axes consider 83.83% of the variability in the information on the number of uses of post-hoc tests regarding the 
statistical methods. Duncan’s test was the most used after the Kruskal-Wallis test. Duncan, Fisher’s LSD, Tukey, SNK, Games-Howell, 
and Dunnet tests were used after ANOVA, mixed ANOVA, linear mixed effect model, and generalized linear models. Bonferroni and 
Scheffe’s tests were mostly used after the t-test and generalized linear models (Fig. 3).

Fig. 4 presents the relationship between post-hoc procedures and their respective domains of use. The Holm-Bonferroni procedure 
is widely used in sports and related sciences, while the Bonferroni procedure is more commonly used in dentistry. In Medicine, the 
8

most commonly used tests were Dunns, Scheffé, and Dunnett. Fisher’s LSD and Tukey HSD were used in several domains.
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Table 2

Normality and equality of variance checking in relation to the post-hoc 
tests.

Post-hoc tests and domains Estimate (se) z value Pr(>|𝑧|)
Normality

Tukey - - -

Bonferroni 1.16 (0.31) 3.7 0.001

Duncan -1.06 (0.30) -3.47 0.001

Dunnett 0.81 (0.39) 2.08 0.037

Dunn 2.94 (0.52) 5.7 0.001

GH 0.19 (1.17) 0.17 0.868

HB 0.89 (0.67) 1.33 0.183

LSD -0.22 (0.27) -0.8 0.424

Scheffé 2.17 (0.56) 3.89 0.001

SNK 0.71 (0.43) 1.65 0.101

Equality of variance

Tukey - - -

Bonferroni 0.69 (0.34) 2.02 0.044

Duncan -0.92 (0.33) -2.81 0.005

Dunnett 0.69 (0.42) 1.66 0.097

Dunn 3.22 (0.52) 6.17 0.001

GH 0.47 (1.17) 0.4 0.687

HB 1.16 (0.67) 1.74 0.083

LSD -0.14 (0.30) -0.49 0.628

Scheffé 2.45 (0.56) 4.34 0.001

SNK 0.47 (0.47) 1 0.32

GH: Games-Howell; HB: Holm-Bonferroni; LSD: Fisher’s Least Significant 
Difference; SNK: Newman-Keuls

2.4. Post-hoc test effectiveness

Failure to verify normality before choosing post-hoc tests varied significantly depending on the test. Indeed, compared with the 
Tukey test, the proportion of non-verification of normality in the literature was significantly different among the Bonferroni, Duncan, 
Dunnett, Dunns and Scheffé tests (Prob <0.05, Table 2). Fig. 5 presents the proportion of articles in which the application conditions 
of ANOVA were checked for each post-hoc test. The tests for which normality was better verified were Tukey, Dunns, and Fischer’s 
LSD tests (Fig. 5). The proportion of failures to verify the equality of variance before choosing post-hoc tests also varied significantly 
depending on the test. Compared to the Tukey test, the non-verification of the equality of variance was significant compared to 
the Bonferroni, Duncan, Dunns, and Scheffé tests (Prob <0.05) (Table 2). The tests for which the equality of variance was verified 
more were the Tukey, Dunns, Fischer LSD, and Bonferroni tests (Fig. 5). In addition, these conditions of use were most verified in 
agriculture (Fig. 6).

3. Discussion

In this study, we investigated the effective use of post-hoc tests various fields: Agriculture, Biotechnology, Breeding and Animal 
Health, Ecology, Genetics, Medicine, Nutrition and Food Security, Soil Science and Plant Nutrition, and Sports. The results suggest 
certain trends, which are discussed in this section.

3.1. Use of post-hoc tests: is there specific use according to different fields?

This study demonstrated that various post-hoc tests were used, with Tukey HSD being the most popular across all fields. However, 
no direct correlation was found between the choice of tests and the specific fields of study. It is unclear whether users only choose 
tests with which they are familiar or if they base their choices on the data structure. We can conclude that there is no clear reasoning 
behind the selection of post-hoc tests by users, but choosing the correct test can lead to valuable insights and interpretations [46]. 
For instance, Day and Quinn [2] suggested that ecologists consider whether they can frame specific questions to test using orthogonal 
planned comparisons with a per-comparison error rate. Even if a specific post-hoc test is adequate for a domain, the authors or users 
must clearly define the procedure used and at least present the test statistics [1]. Authors are used to only giving the p-value and 
conclusion.

3.2. Holding of post-hoc test assumptions

According to the results, the conditions for applying post-hoc tests, namely, normality and homogeneity of variances, were rarely 
checked by the authors. This was attributed to the ignorance of users in the applied sciences, who were not always aware of the 
subtleties of choosing appropriate tests. In addition, users may be limited by the comparison tests available in the statistical software 
9

used. However, as discussed by several authors, various methods have been recommended for each situation. Appropriate post-hoc 
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Fig. 5. Proportion of articles in which the application conditions are checked regarding the test. Bonf: Bonferroni; Duc: Duncan; Dun_c: Dunnett’s correction; Dun : 
Dunn’s test; GH : Games-Howel; HB : Holm-Bonferroni; LSD : Fisher’s Least Significant Difference; Schf : Scheffé; SNK : Newman-Keuls; Tukey HSD.

Fig. 6. Proportion of articles in which the application conditions are checked regarding the domain.

tests are available for both parametric and non-parametric analyses. Non-parametric post-hoc tests include the Dunn, Steel, Nemenyi, 
and Steel-Dwass tests [2]. For parametric post-hoc tests, there are tests available for both equality and inequality of variance, such 
as Fisher’s LSD, Scheffé, Tukey, Duncan, and Student-Newman-Keuls (SNK) for equal variances and Games-Howell, T’method, and 
Krammer’s for unequal variances [2]. Dunnett’s test is a post-hoc test that can be used to compare groups to a benchmark when the 
variance is equal [2]. Post-hoc tests are also appropriate for comparing groups of equal or unequal size [2]. Recommendations have 
been made for the selection of relevant post-hoc tests among parametric tests when dealing with some violation conditions [19]. 
While a normal distribution is required for some post-hoc tests, real data may not meet this criterion; therefore, non-parametric post-

hoc tests are strongly recommended. Day and Quinn [2] noticed that, in biology, data are usually log-normal when the variances are 
unequal. A plot can help determine whether a log transformation can normalize the data. However, if the transformation after plotting 
residuals or box plots is not useful, non-parametric post-hoc tests are strongly recommended. Recently, Dolgun and Demirham [47]

suggested the use of the Steel-Dwass procedure with Holm’s approach when the number of groups is small and Dunn’s method for a 
10

greater number of groups.
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3.3. Post-hoc tests use: future directions

Researchers have used various post-hoc procedures, even within the same domain. However, it should be noted that some post-

hoc tests are more commonly used in specific domains, despite the fact that no significant association is found between the test and 
the domain. Moreover, researchers do not provide sufficient justification for choosing a particular post-hoc test. They should explain 
their selection based on assumptions or the required conditions of use, such as normality and homoscedasticity. For instance, post-hoc 
tests requiring the normality and homoscedasticity of data could be provided by using positive normality and homoscedasticity tests, 
respectively. Indeed, more than ten post-hoc tests were found to be used, with different importance of use. Among them, Tukey HSD, 
Duncan, and Fisher’s LSD tests are the most commonly used. These tests are indeed better than others [4], mainly the Tukey test [6] as 
it protects against type I errors. Moreover, their use does not necessarily require the rejection of the null hypothesis. Fisher’s LSD test, 
in particular, is favoured because of its ease of application and ability to identify even the smallest significant differences [46,48]. 
Although Scheffe’s test is one of the most recommended tests, it has been used very little over the past two decades [4]. Day and 
Quinn [2] suggested some post-hoc tests under certain conditions, such as heterogeneity of variances, comparisons of control groups 
vs. treatment groups, and equal or unequal group sizes. However, a strong study to confirm these suggestions was not conducted 
during this period. The use of a convenient post-hoc test when the assumptions do not hold was deeply investigated by [19] using 
various conditions of violation. This wide simulation study compared 18 multiple comparison tests using powers and type I error 
measures under heterogeneity and dependency conditions. The authors recommended SNK, one of the most powerful tests, in cases 
of high heterogeneity and a large number of groups for comparison. The same study was conducted by considering non-parametric 
multiple comparison tests and including a skewed error distribution [47]. Another recent simulation study [40] recommended the 
Games-Howell procedure when dealing with normal and independent data. Nevertheless, the authors did not study cases violating 
normality. Further studies could investigate the robustness (performance in terms of power and type I error rate) of several tests 
when some required assumptions (e.g., heterogeneity of group variances and sizes, residual distributions) do not hold. This will be 
used as a guideline for researchers performing group difference comparisons. Future studies may focus on the use of post-hoc tests 
in generalized (mixed) or linear (mixed) models.

4. Conclusion

In this critical review, we examined the use of post-hoc tests to compare means in the environmental and biological sciences. A 
total of ten post-hoc tests were identified, and their frequency of use varied according to scientific field and period. We found that 
researchers rarely check post-hoc test assumptions before using or proposing a justification for their choice. This leads to a crucial 
question: when sample sizes, variances, and normality assumptions are not met, which post-hoc tests can adequately maintain a type 
I error rate while maintaining strong power? This question is particularly relevant in linear or generalised mixed-effect models and 
survival analysis, where these conditions are frequently violated. Our critical analysis of the literature highlights the need for an 
in-depth examination of the use of post-hoc tests, not only in classical ANOVA but also in linear and generalised mixed-effect models 
and survival analysis. The results of such studies will provide researchers with clear guidelines for performing post-hoc tests.
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