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Aims Guidelines recommend opportunistic screening for atrial fibrillation (AF), using a 30 s single-lead electrocardiogram (ECG) 
recorded by a wearable device. Since many patients have paroxysmal AF, identification of patients at high risk presenting with 
sinus rhythm (SR) may increase the yield of subsequent long-term cardiac monitoring. The aim is to evaluate an AI-algorithm 
trained on 10 s single-lead ECG with or without risk factors to predict AF.

Methods 
and results

This retrospective study used 13 479 ECGs from AF patients in SR around the time of diagnosis and 53 916 age- and sex- 
matched control ECGs, augmented with 17 risk factors extracted from electronic health records. AI models were trained 
and compared using 1- or 12-lead ECGs, with or without risk factors. Model bias was evaluated by age- and sex-stratification 
of results. Random forest models identified the most relevant risk factors. The single-lead model achieved an area under the 
curve of 0.74, which increased to 0.76 by adding six risk factors (95% confidence interval: 0.74–0.79). This model matched 
the performance of a 12-lead model. Results are stable for both sexes, over ages ranging from 40 to 90 years. Out of 17 
clinical variables, 6 were sufficient for optimal accuracy of the model: hypertension, heart failure, valvular disease, history 
of myocardial infarction, age, and sex.

Conclusion An AI model using a single-lead SR ECG and six risk factors can identify patients with concurrent AF with similar accuracy as a 
12-lead ECG-AI model. An age- and sex-matched data set leads to an unbiased model with consistent predictions across age 
groups.

* Corresponding author. Tel: +32 47 535 5873. E-mail address: peter.dejaeger@azdelta.be
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Graphical Abstract

actors Detects Atrial Fibrillation in Sinus Rhythm

With performance equal to detection from twelve-lead ECG model and better than using only clinical risk
factors; in a screening scenario, with age- and sex-matched negatives to ensure consistent predictions.
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What’s new?

• Can an AI-enhanced 10 s single-lead electrocardiogram (ECG) with 
electronic health record (EHR)-extracted risk factors be used to 
identify subclinical atrial fibrillation (AF) during sinus rhythm (SR) 
in a screening scenario?

• An AI-enhanced single-lead ECG with six cardiovascular risk factors 
performs equally well as a 12-lead ECG in a retrospective dataset of 
patients with AF and age- and sex-matched controls; significantly 
outperforming a pure risk factor–based classification. Performance 
is stable over age- and sex-stratification, allowing for reliable patient- 
level predictions.

• Atrial fibrillation detection is possible using an AI-enhanced single- 
lead ECG during SR in a screening scenario. Augmented with 
EHR-extracted cardiovascular risk factors, the Lead-I ECG model 
reaches the performance of an AI-enhanced 12-lead ECG.

Introduction
Atrial fibrillation and flutter (AF) are the most common arrhythmias, 
with an estimated prevalence of 60 million cases worldwide1 and 
prevalence rates around 8% in people above 55 years of age.2 It is a 
significant risk factor for ischaemic stroke, the number two most com-
mon cause of death worldwide.1 Approximately 13% of AF cases 
go undiagnosed.3 One-third of all known AF cases present without 

symptoms;4 this is most commonly paroxysmal AF and has similar 
outcomes as symptomatic AF.5

The life-time risk of AF is determined by age, sex, genetic, and (sub) 
clinical risk factors.6–8 The CHARGE-AF score9 is often used to esti-
mate the probability of diagnosing AF in the next 5 years and the 
CHA2DS2-VASc-score10 is used to classify the risk of stroke and 
thromboembolic events.

European and US guidelines recommend opportunistic or systematic 
screening for AF with pulse taking or single-lead electrocardiogram 
(ECG) in individuals above a certain age or who are at risk for stroke.11

The challenge is to identify patients who have undiagnosed intermittent 
AF but who are in sinus rhythm (SR) at the time of screening, in whom 
prolonged ambulatory cardiac rhythm monitoring using implantable 
loop recorders or wearables is advisable. However, these strategies 
are expensive, invasive, or inconvenient, require a home monitoring 
set-up, have a low diagnostic yield, and may also detect patients with 
a low burden of AF that is of uncertain clinical significance.12

New wearable ECG-monitoring devices and the use of AI in elec-
trocardiography are transforming the field of electrophysiology.13 An 
AI-enhanced algorithm applied to ECG during SR has recently been shown 
to detect concurrent, episodic clinical AF14,15 and allows for separating 
high- from low-risk patients for more efficient use of cardiac monitoring.16

It is however unclear whether the performance of a neural network 
trained on ECGs in different study populations could be affected by imbal-
ances in gender, age, and (sub)clinical risk factors for stroke. Furthermore, 
it is unclear whether AI ECG detection of AF could be further improved 
by incorporating clinical risk factors predictive of incident AF. Finally, we 
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aimed to evaluate whether a neural network performed equally well when 
trained using 1- or 12-lead ECG, with or without risk factors.

Methods
Study population and data sources
This retrospective study used data collected from the ECG and electronic 
health record (EHR) databases from AZ Delta (Roeselare, Belgium), from 
all departments. The ECG dataset contains 173 537 ECGs, from 68 880 pa-
tients, recorded between 13 July 2004 and 30 April 2022 and stored in the 
GE MUSE Cardiology Information System. All ECGs are 10 s, acquired at a 
sampling rate of 500 Hz. Diagnostic labels are assigned by the MUSE system. 
Structured clinical data comes from the hospital’s APR-DRG system as ICD9 
and ICD10 diagnostic and procedural codes, and from the HiX EHR system 
(Chipsoft) as physician diagnoses, drug prescriptions, and measurements. The 
structured data, including ECG diagnostic labels, were transformed into the 
Observational Medical Outcomes Partnership (OMOP) common data model 
(v5.4) developed by the Observational Health Data Sciences and Informatics 
collaborative. The OMOP dataset is built using the Rabbit-In-A-Blender pipe-
line17 in BigQuery on the Google Cloud Platform. The OMOP implementa-
tion is supported by a grant from the European Health Data Evidence 
Network (EHDEN); this study has support from Flanders Innovation & 
Entrepreneurship (VLAIO) through the Advanced Data-Aided Medicine 
(ADAM) project. This study was approved by the hospital’s ethical commit-
tee as part of the ADAM project.

Electrocardiogram selection
The ECG data set contains ECGs that meet the selection criteria for either 
the positive or negative case group. The positive case group contains SR– 
ECGs from patients with confirmed AF, i.e. with at least one ECG with an 
AF diagnosis. AF–ECGs occurring within 7 days after coronary artery bypass 
graft (CABG) surgery or valve procedures were excluded as they can be trig-
gered by the procedure rather than signify established AF. Sinus rhythm– 
ECGs were included starting from 91 days before the first AF–ECG. Sinus 
rhythm–ECGs after a set of (invasive) treatments are excluded, more specif-
ically after left atrial appendage closure, ablation therapy, cardioversion, pace-
maker/implantable cardioverter-defibrillator insertion, and heart transplant. 
The negative case group contains all SR–ECGs from patients who never 
had a diagnosis of AF. In order to limit the number of false negatives, patients 
are also filtered out if they have any history of (possible) AF-related 
treatments (left atrial appendage closure, ablation therapy, cardiover-
sion, pacemaker/implantable cardioverter-defibrillator insertion, use of 
oral anticoagulants (OAC), use of antiarrhythmic drugs), or have a (likely 
positive) mention of AF in their medical notes. Patients with heart trans-
plants are excluded as well. The selection criteria for ECGs are summar-
ized in Supplementary material online, Table S1. Observational Medical 
Outcomes Partnership concept-ids for the concepts used in these criteria 
are provided in Supplementary material online, File S1.

Clinical risk factors
Age, sex, obesity, and (any history of) AF risk factors are extracted from the 
OMOP database relative to the date of each SR–ECG. The risk factor had to 
be registered before recording the SR–ECG; no other time, number of repeated 
diagnoses, or treatment type constraints are imposed. The choice of risk factors 
is a simplified subset of risk factors found in the CHA2DS2-VASc-score,10

the CHARGE-AF score,9 and the EHR-AF score,18 depending on the granularity 
and accuracy of the available data. An overview of included risk factors is shown 
in Table 1. Concept-ids used for these risk factors are based on ICD-9 and 
ICD-10 codes from the EHR-AF score18 and the algorithm for the Elixhauser 
Comorbidity Measure from Quan et al.,19 mapped to OMOP’s standard 
concept-ids and supplemented with other relevant concept-ids; these 
concept-ids are available in Supplementary material online, File S2.

AI model
Datasets
The ECG records and clinical risk factors are combined, and the individual re-
cords are divided into a train, validation, and test set in an 80–10–10% split by 
the patient. Two subsets are constructed; the first dataset, termed the matched 
dataset, comprises AF patients and an age- and sex-matched control population. 

The second, termed the replication dataset, follows the approach of a previous 
study14 for literature comparison. Age-filtering and subset selection are done in 
Python (3.8.10), using the PyArrow (11.0.0) and Polars (0.16.14) packages.

The matched dataset contains ECGs taken at age 40 years or older. Only SR– 
ECGs in a window between 91 days before and 365 days after the first AF–ECG 
are kept for the positive cases. For the test and validation set, this is limited to 
the first SR–ECG per patient in the window. The negative case group contains 
four sex- and age-matched SR–ECGs per positive case SR–ECG. These ECGs 
are selected at random from all SR–ECGs from the negative cases in the re-
spective set, but limited to one ECG per patient for the validation and test sets.

The replication dataset is filtered for ECGs taken at age 18 or over. Sinus 
rhythm–ECGs for positive cases start 31 days before the first AF–ECG. No 
other filtering is done on the included positive and negative cases for the train-
ing set. The validation and test sets are reduced to one ECG per patient: in the 
positive case group, only the first SR–ECG in the 31 days leading up to the first 
AF–ECG is kept; for the negative case group, the first SR–ECG overall is kept.

Model architecture
Multiple residual neural network (ResNet) architectures are evaluated, simi-
lar to previous studies,14,20,21 but modified to use 1 (Lead I) or 12 ECG leads 
and optional side-input of clinical risk factors. The models follow the tem-
plate shown in Figure 1; more details can be found in Supplementary 
material online, Tables S2 and S3; the model code is in Supplementary 
material online, File S3.

Two random forest (RF) classifiers are fitted for comparison. The first 
uses only the clinical risk factors as input. The second uses both the clinical 
risk factors and a feature vector of the ECG. This feature vector contains 
the activations from the second to last Dense layer of the 12-lead ECG 
model, which lies in a space optimized for the classification of positive 
and negative cases. Details on the model hyperparameters can be found 
in Supplementary material online, Table S4.

All model training and evaluation are done on a local workstation with an 
Intel Xeon Silver 4214R CPU, 256 GB of memory, and an NVIDIA RTX 
A6000 GPU, in a containerized environment. The ResNets are implemen-
ted in TensorFlow (2.11.1) using the Keras API; the RFs are trained using 
scikit-learn (1.2.2).

Table 1 Clinical risk factors assessed relative to the date of each 
SR ECG

Patient characteristics

Age (numeric)

Obesity or BMI ≥30

Sex

Smoking (any exposure)

Medical history

Coronary artery bypass graft present

Chronic kidney disease

Chronic obstructive pulmonary disease

Diabetes mellitus

Heart failure

Heart valve disease or valve procedure

Hypertension

Hyperthyroidism

Hypothyroidism

Myocardial infarction

Obstructive sleep apnoea syndrome

Peripheral artery disease

Stroke or transient ischaemic attack

All parameters are binary, except for age in years. 
BMI, body mass index.
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Outcomes of interest
The outcome of interest is the diagnostic performance of the best single- 
lead ECG model with or without additional risk factors, compared with 
the best 12-lead ECG-only model for the matched dataset. The diagnostic 
performance of a model is defined as the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curves for the test set. The rele-
vance of individual clinical risk factors is assessed by an RF classifier trained 
on the risk factors. A single-lead ECG model with reduced risk factors is 
evaluated using the most relevant risk factors. Model performance is strati-
fied by age and sex to study the stability over varying age and sex groups for 
the single-lead ECG model with reduced risk factors.

As a secondary analysis, the diagnostic performance of the models trained 
using the replication dataset is compared with the literature. Model bias is as-
sessed using correlations between clinical risk factors and an ECG feature 
vector extracted from the trained model. Stability over age and sex groups 
is evaluated by stratification of results by age and sex.

Statistical analysis
The outcome of interest depends on the AUC of the ROC curve for differ-
ent models. This AUC is calculated using the roc-curve and auc methods 
from scikit-learn, on the true and predicted labels. Confidence intervals 
(CIs) for these AUCs are calculated using a bootstrapping method with re-
sampling implemented in Python. Area under the curves stratified for age 
and sex are used to assess bias. The relative importance of individual risk 
factors in the RF classifier is assessed using Shapley Additive Explanations 
(SHAP) values, as calculated by the shap package.22,23 Point-biserial correl-
ation coefficient between the ECG feature vector and the risk factors is cal-
culated using pointbiserialr from scipy.

Results
Study population, datasets, and model 
selection
The ECG dataset is filtered using the (general) in- and exclusion criteria 
shown in Table 1 and split into a training, validation, and test set. These 

sets are processed to match a replication dataset, as shown in Figure 2. 
The sets are compared for age, sex, and (estimated) CHA2DS2-VASc- 
score in Tables 2 and 3 and for clinical risk factors in Supplementary 
material online, Tables S5 and S6, for the matched and replication data-
sets, respectively. Supplementary material online, Figure S1 shows the 
performance for varying model architectures and inputs; performance 
depends mostly on the input data, with limited benefit for larger, more 
complex, models, so only the deep_resnet_encoder-architecture is 
evaluated below.

Model performance and stability for the 
matched dataset
Table 4 shows the AUC per input data type, ranging from 0.74 to 0.78 
for the test set. Both adding risk factors and increasing from 1 to 12 
leads consistently improve AUC by 0.02. The performance of the mod-
el using Lead-I ECG and clinical risk factors matches the performance of 
the 12-lead ECG model. The performance of the 12-lead ECG model is 
in line with results from literature for age-matched ECGs.21

The RF-model, trained on the matched dataset and using only risk 
factors, has an AUC of 0.67 (Table 5). The four most important (cardio-
vascular) conditions for the classification are myocardial infarction, 
hypertension, heart failure, and valvular disease (Figure 3A). The inclu-
sion of an ECG feature vector increases the AUC to 0.78, matching 
the AI model performance and demonstrating the benefit of adding 
ECG-derived information. Next to the ECG features, the same four 
cardiovascular diseases are important for this classification, see 
Supplementary material online, Figure S2. Retraining the single-lead 
ECG model with this optimal set of risk factors (four cardiovascular dis-
eases, plus age, and sex) performs equally well as both the single-lead 
ECG model with all risk factors and the 12-lead ECG model (Table 4
and Figure 3B).

Figure 3C shows age- and sex-stratified AUCs for the single-lead ECG 
model with an optimal set of clinical risk factors for the matched data-
set. Differences over varying age and sex are not significant. The results 
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Figure 1 Residual neural network architecture. Dotted boxes show model variations: squeeze-excite layers in residual units, encoder-layers, add-
itional structured data input. Input either single-lead or 12-lead ECG, output as logit values, convertible to probabilities using the logistic function. AF, 
atrial fibrillation; BN, batch normalization layer; Conv, convolution layer; COPD, chronic obstructive pulmonary disease; Enc Unit, encoding unit; GlAvg, 
global averaging layer; H/O, history of; OSAS, obstructive sleep apnoea syndrome; ReLU, rectified linear unit; Res Unit, residual unit; Self-Attent, self- 
attention; Sq-Ex, squeeze-excite layer; TIA, transient ischaemic attack.
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722262 ECG / 142282 pt

173537 ECG / 68880 pt

In- and exclusion criteria:
–548725 ECG / –73402 pt

138454 ECG (= 79.8%)
55092 pt (= 80.0%)

17397 ECG (= 10.0%)
6888 pt (= 10.0%)

17686 ECG (= 10.2%)
6900 pt (= 10.0%)

137309 ECG / 54886 pt 5696 ECG / 5696 pt 5719 ECG / 5719 pt

61295 ECG / 26888 pt 3025 ECG / 3025 pt 3075 ECG / 3075 pt

Train Validation Test

Replication
(~ Attia et al.)

Matched
(= age > 40

+ (–91 to +365) day window
+ age-matched negatives)

+ : 280 (= 4.9%)
– : 5416 (= 95.1%)

+ : 249 (= 4.4%)
– : 5470 (= 95.6%)

+ : 615 (= 20.0%)
– : 2460 (= 80.0%)

+ : 605 (= 20.0%)
– : 2420 (= 80.0%)

+ : 27976 (= 20.4%)
– : 109333 (= 79.6%)

+ : 12259 (= 20.0%)
– : 49036 (= 80.0%)

Figure 2 ECG dataset with train-validation-test split for replication and matched datasets. ECGs are split in an 80–10–10% split by the patient. The 
replication dataset uses a time window starting 31 days before the first AF–ECG for positive cases, and selects ECGs for the validation and test sets as in 
Attia et al.14 The matched dataset filters for ages above 40 years, uses a time window of 91 days before up to 365 days after the first AF–ECG for 
positive cases, and uses a 4-to-1 age-matching approach for the negative cases. ECG, electrocardiogram; pt, patients; +, positive cases; −, negative cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Study population characteristics for the matched dataset shows limited differences by selecting only age 40 years and above, by using a 
smaller time window around the first AF–ECG and especially by age- (and sex)-matching the negative cases

+ (train) − (train) + (val/test) − (val/test)

Age (years) 75 (67–82) 73 (66–81) 75 (68–83) 74 (66–82)

Sex (male) 60.76% 60.76% 58.44% 58.44%

CHA2DS2-VASc-score 3 (2–4) 3 (1–4) 3 (2–4) 2 (1–3)

The remaining differences between positive and negative cases should mainly be related to the AF risk. Age and CHA2DS2-VASc-score as ‘median (first quartile-third quartile)’. +, positive 
case; −, negative case; val, validation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Study population characteristics for replication dataset showing stark differences for negative cases between the training and 
validation/test set

+ (train) − (train) + (val/test) − (val/test)

Age (years) 75 (67–82) 62 (50–74) 76 (68–83) 57 (44–70)

Sex (male) 60.76% 46.26% 58.44% 46.05%

CHA2DS2-VASc-score 4 (2–5) 2 (1–3) 3 (2–5) 1 (0–2)

Differences between positive and negative cases are related to AF risk, but exaggerated by age-bias in ECG-selection strategies. Age and CHA2DS2-VASc-score as ‘median (first 
quartile-third quartile)’. 
+, positive case; −, negative case; val, validation.
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are stable, with no sex-related bias. Optimal performance is found for 
patients between 60 and 89 years, likely related to the larger amount of 
available training data.

Model performance and bias for the 
replication dataset
Table 4 contains the results for models trained on the replication data-
set. The addition of risk factors increases the AUC by 0.05 for both the 
single-lead and 12-lead ECG models. When evaluating these models on 
the test set with matched cases, the model performance is lower and 
the addition of risk factors shows no benefit.

The RF-model, trained on the replication dataset and using only risk 
factors, has an AUC of 0.86. This is almost as good as the best AI mod-
els and does not benefit from adding information extracted from the 
ECG models (Table 5). Furthermore, the performance depends strong-
ly on the ECG-selection criteria, as the AUC drops to 0.65 when evalu-
ating the test set with matched cases. Age is the strongest driver for 
classification (Figure 4A), followed by cardiovascular risk factors and 
sex. Supplementary material online, Figure S3A shows the correlations 
between ECG features derived from the pure 12-lead ECG model 
and the risk factors; especially high correlations are seen for age and 
some cardiovascular risk factors.

Age- and sex-stratified results, as shown in Figure 4B, show a striking 
decrease in performance for the age-stratified results compared with 

the overall results, especially for the model without risk factors. The re-
sults are highly dependent on the inclusion of risk factors and vary a lot 
more over age groups than for the matched dataset.

Discussion
Electrocardiogram screening for AF in patients in SR can improve 
screening efficiency by finding patients with a higher likelihood of having 
paroxysmal AF. We identified an age-independent, single-lead ECG 
model that reliably predicts AF when patients are in SR. Previous stud-
ies have suffered from age-related biases24,25 and were based on a 
12-lead ECG. These findings may help to translate this approach to 
point-of-care devices in an outpatient setting or wearable devices.

Furthermore, we identified clinical risk factors, allowing a single-lead 
ECG model to perform as well as a full 12-lead model. Simplifying the 
number of risk factors to age, sex, hypertension, heart failure, history of 
myocardial infarction, and heart valve procedures performs equally well 
and might be better adapted to clinical practice. The next step towards 
integration in practice would be a prospective clinical trial to validate 
this algorithm in a screening setting in the outpatient cardiology clinic.

Implications for AF screening
Single-lead ECG from a wearable ECG monitor can be used for an op-
portunistic, cost-effective screening program for AF.26,27 This strategy 
can be improved by identifying high-risk patients from ECGs in SR using 
an AI model. This idea was proven successful for 12-lead ECG;16 evi-
dence for single-lead ECG models is sparse.

We developed single-lead ECG models, trained on age- and sex- 
matched patients and controls to approximate a screening scenario 
and allow for unbiased risk estimation for individual patients. Using 
only single-lead ECG, the best model achieved an AUC of 0.74; the add-
ition of the six most important risk factors increased performance to an 
AUC of 0.76, matching the performance of the full 12-lead ECG model. 
Age- and sex-stratified results show stable performance and a small, but 
consistent benefit from the addition of risk factors (Supplementary 
material online, Figure S4).

Hygrell et al.25 developed a single-lead ECG–AI model using data 
from wearable ECG monitors from prospective AF screening studies. 
Their model achieved an AUC of 0.80 on the test data from the 
SAFER Feasibility Study for patients aged 65 years and above. 
However, the performance dropped to an AUC of 0.62 for the age- 
homogenous STROKESTOP I28,29 and STROKESTOP II30,31 studies, 
containing only 75- to 76-year-old patients. The performance of our 
single-lead ECG models for the subgroup of 75- to 76-year-old patients 
is more stable, with an AUC of 0.74 for the model with six clinical risk 
factors and 0.72 for the model without risk factors.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Area under the ROC curve for AI models trained and evaluated on the matched and replication datasets, with mean and 95% CI, for 
varying inputs

Train Test Lead I Lead-I + CRF Lead-I + ORF 12-Lead 12-Lead + CRF

Match. Match. 0.74 (0.72–0.76) 0.76 (0.74–0.79) 0.76 (0.74–0.79) 0.76 (0.74–0.79) 0.78 (0.76–0.80)

Match. Repli. 0.78 (0.75–0.82) 0.72 (0.69–0.76) — 0.81 (0.78–0.84) 0.75 (0.72–0.79)

Repli. Match. 0.74 (0.72–0.76) 0.73 (0.71–0.76) — 0.76 (0.74–0.78) 0.76 (0.74–0.78)

Repli. Repli. 0.83 (0.80–0.85) 0.88 (0.85–0.90) — 0.84 (0.81–0.86) 0.89 (0.87–0.91)

Performance is equal between Lead-I ECG with full and reduced set of risk factors and 12-lead ECG models (bold values) and stable over different test sets for models trained on the 
matched dataset. Performance for models trained on the replication dataset is very sensitive to the specific test dataset, and the effect of adding risk factors is not reliable, due to bias in 
dataset construction. 
CRF, clinical risk factors; ORF, optimal set or clinical risk factors.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Area under the ROC curve for RF models trained and 
evaluated on the matched and replication datasets, with mean and 
95% CI using risk factors and an ECG feature vector extracted from 
the 12-lead ECG model

Train Test Risk factors Risk factors + ECG 
embedding vector

Match. Match. 0.67 (0.64–0.69) 0.78 (0.76–0.80)

Match. Repli. 0.73 (0.69–0.78) 0.79 (0.76–0.82)

Repli. Match. 0.65 (0.63–0.68) 0.77 (0.75–0.79)

Repli. Repli. 0.86 (0.84–0.88) 0.86 (0.84–0.89)

The addition of the ECG embedding vector significantly improves the performance of 
the classifier, almost reaching the original best AI model performance, for the matched 
dataset (bold values, top row). Models trained on the replication dataset have very high 
performance, while not benefiting from the addition of ECG features for the replication 
test set; this suggests possible bias in the risk factors, driving the decision (bold values, 
bottom row).
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Figure 3 (A) Relative contributions of risk factors for the RF classifier. Four cardiovascular diseases are the most important. SHAP-values calculated 
for the matched dataset. (B) ROC curves for the single-lead ECG model with an optimal set of risk factors compared with full 12-lead ECG model and 
RF model using all risk factors. (C ) Age- and sex-stratified AUC for single-lead ECG model with optimal risk factors, showing stable results over a large 
range of ages and both sexes. AUC, area under the curve; CABG, coronary artery bypass graft; CKD, chronic kidney disease; COPD, chronic obstruct-
ive pulmonary disease; MI, myocardial infarction; OSAS, obstructive sleep apnoea syndrome; PAD, peripheral artery disease; RF, random forest; TIA, 
transient ischaemic attack.
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Figure 4 (A) Relative contributions of risk factors for the RF classifier in the replication analysis, using SHAP-values. Age is the dominant risk factor in 
the classification. (B) Age- and sex-stratified AUC for 12-lead ECG model with and without (all) risk factors. The age-stratified results show large dif-
ferences depending on the inclusion of risk factors. Results are much more variable over age groups, compared with the models trained on the matched 
dataset. CABG, coronary artery bypass graft; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; MI, myocardial infarction; 
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We highlight two important limitations to the application of this 
method in clinical practice. First, the relation with AF-burden was not 
assessed. This method can suggest a potential benefit of a more thor-
ough diagnostic assessment, but makes no claims surrounding the 
severity of the AF or the effect of treatment. Second, current guide-
lines11 suggest using 30 s of single-lead ECG recordings, while 10 s 
was used in this study due to data availability. Its effect on prediction 
accuracy and over- or underdiagnosis is unknown and unpredictable.

Model bias
Age- and sex-matching of the negative controls to the positive cases 
minimizes the bias in the dataset, resulting in age- and sex-stable mod-
els. An unbalanced dataset could lead to a biased model, as ECGs 
contain information on both age and sex,32 and there are important 
age- and sex-related differences in clinical risk factors. Case matching 
limits the differences in CHA2DS2-VASc-score (Table 2) and in clinical 
risk factors (Supplementary material online, Table S5), between the 
positive and negative cases. The remaining differences are likely related 
to the presence of AF, allowing for improved classification when risk 
factors are included in the model. Slight differences are present 
between the train and validation/test set, due to the inclusion of all 
SR–ECGs in the time window for the training set. Sicker patients are 
overrepresented in the training set due to a more intensive follow-up 
(and thus more ECGs) and more hospital admissions leading to a 
more complete structured record of their medical history (higher, 
more accurate risk factor rates). No race or other biases could be as-
sessed due to limitations in the dataset.

In contrast, the ECG-selection strategy replicated from litera-
ture14,15 resulted in an important bias in age, where negative cases 
were recorded on average in significantly younger patients than positive 
cases, with a mean difference of 13.3 years in the test set.14 As age can 
quite reliably be predicted from ECGs,32 this overrepresentation of 
negative, younger and positive, older patients leads to a biased model. 
This presents itself as an increasing sensitivity and a decreasing specifi-
city with age for their model.24 This difference in age results in large dif-
ferences in CHA2DS2-VASc-score, in Table 4, and clinical risk factors, in 
Supplementary material online, Table S6, adding additional bias to mod-
els using risk factors. Using our replication dataset, the 12-lead ECG 
model with an AUC of 0.84 was outperformed by a simple 
risk-factor-based model, achieving an AUC of 0.86; age being the 
main driver of classification, see Figure 4. Furthermore, the performance 
of the 12-lead ECG model can also be explained by age-bias, as 
Supplementary material online, Figure S3A shows the features extracted 
from the ECG model correlate more strongly with age than with the 
outcome. This bias lead to unstable model performance, with a large 
decrease in performance when tested on a matched dataset (Table 4).

Electrocardiogram labelling and selection 
criteria
Electrocardiograms in SR are assigned to the positive or negative case 
group based on automatic diagnoses of SR and AF as stored in the 
MUSE system. An automatic diagnosis of SR is relatively reliable, with 
a positive predictive value of 93.2% for computer interpretation of 
ECGs.33 These labels are used without correction. AF-labelling is 
more difficult, with 11.3% being misdiagnosed,34 mostly as other 
arrhythmias. Additionally, an AF diagnosis might have been made at 
another hospital or in primary care. Both physician corrections to 
the automatic diagnoses and out-of-hospital diagnoses are frequently 
present in the patients’ EHR. To reduce the number of false negatives 
in the negative case group, patients with a structured diagnosis of AF in 
the EHR system or any likely positive mentioning of AF in their clinical 
notes were excluded. False positive labels, which can occur in up to 
9.3% of cases,34 were not corrected for.

The replication cohort was defined as previously described,14 but 
with additional exclusion criteria for data quality. The original study 
did not exclude same-day SR–ECGs recorded after an AF–ECG treated 
with cardioversion. To match the study population more closely to 
a population that would be screened for AF in clinical practice, 
SR–ECGs recorded after common AF treatments (including cardiover-
sion, see Supplementary material online, Table S1) were excluded from 
the positive case group. In the negative case group, these treatments 
were used as a proxy for possible missed AF diagnoses in our 
OMOP dataset and those patients were excluded entirely. This intro-
duces some bias by excluding patients receiving one of these treat-
ments for indications other than AF, especially exclusion based on 
any use of OAC. However, most (non-AF) indications for these treat-
ments will require direct follow-up, less fitting to the simulated screen-
ing scenario. Lastly, ECGs with an AF diagnosis recorded within 7 days 
from a CABG or heart valve surgery or intervention were excluded 
from the positive case set. The underlying assumption in detecting AF 
from SR–ECGs is the presence of some electrocardiographic marker 
in the ECG due to an underlying electromechanical abnormality, e.g. 
an atrial myopathy. Coronary artery bypass graft and valve procedures 
predispose a patient to developing AF, but post-operative AF has a dis-
tinct underlying mechanism, with a different ECG signature.35

Supplementary material
Supplementary material is available at Europace online.
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