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Abstract. This non-technical review discusses the use of historical data in
the design and analysis of randomized controlled trials using a Bayesian
approach. The focus is on comparing the philosophy behind different ap-
proaches and practical considerations for their use. The two main approaches,
that is, the power prior and the meta-analytic-predictive prior, are illustrated
using fictitious and real data sets. Such methods, which are known as dynamic
borrowing methods, are becoming increasingly popular in pharmaceutical
research because they may imply an important reduction in costs. In some
cases, e.g. in pediatric studies, they may be indispensable to address the clin-
ical research question. In addition to the two original approaches, this review
also covers various extensions and variations of the methods. The usefulness
and acceptance of the approaches by regulatory agencies is also critically
evaluated. Finally, references to relevant software are provided.

1 Introduction

The Bayesian approach to statistical inference enjoys the unique feature that it can incorporate
external information in an explicit manner into the analysis of collected data. Given a statisti-
cal model, external information summarized in a prior distribution can be combined with the
observed data using Bayes’ theorem to obtain a posterior distribution for the model param-
eters. In case the prior distribution reflects historical data and/or expert knowledge, the gain
in posterior information on the model parameters can be considerable, which is one of the
main advantages of the Bayesian approach over the classical frequentist approach. Although
the Bayesian framework provides the capability to incorporate valuable external information,
this attractive feature often goes unused, and non-informative or vague prior distributions are
used instead.

In this review, we look at incorporating external information in pharmaceutical studies.
In pharmaceutical research, there is often a variety of previous data available, and due to
the highly controlled setting, these so-called historical data are generally quite reliable. Nev-
ertheless such historical data are often neglected, which is unfortunate. Due to regulatory
requirements, randomized controlled trials (RCTs) have become increasingly expensive and
time consuming in the last decades. Also, the increasing focus on rare diseases and precision
medicine has led to more trials with small patient populations, where patient recruitment for a
fully powered trial is difficult. Therefore using past data, or better formulated: borrowing in-
formation from historical studies, has lately received considerable interest in pharmaceutical
research, typically in combination with a Bayesian approach to inference. Making explicit
use of historical information may not only reduce the necessary sample size of the study
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and/or increase the statistical power of the analysis, it may also be essential to render a clin-
ical trial feasible. Incorporating historical information into a current study may be useful in
the following settings:

• Often the same control treatment is used to test the efficacy and safety of different ex-
perimental treatments. One may then consider to use the historical control information to
reduce the sample size of the current control arm, which was first proposed by Pocock
(1976).

• The development of new drugs classically follows several development stages, from Phase
I studies that verify the safety of the drug or in oncology to find the optimal dose of the
drug to Phase IV trials that monitor public safety, the effectiveness of the drug in real life
but also potential serious adverse events in the general patient population. Results from a
previous phase are used in the design of the subsequent study, but one may also use the
historical data in the analysis of the new study.

• For rare diseases, it may be difficult to recruit sufficient numbers of patients to test the
performance of an experimental treatment, let alone to organize two independent RCTs
with enough power. Then, making use of past data obtained in a similar setting may render
the clinical trial feasible, see, for example, Schmidli, Neuenschwander and Friede (2017),
Wandel et al. (2017) or Lesaffre, Baio and Boulanger (2020).

• External information can be obtained by extrapolating information collected on one patient
group to another patient group. This may happen in, for example, pediatric studies. Because
ethical approval is not so easily obtained for RCTs in children, many pediatric studies are
(small) studies upon which it is difficult to draw clinical conclusions. It may then be a
logical choice to extrapolate the efficacy/safety results from adult studies to the children
population, of course depending on the disease and the similarity of the disease progression
in children/adolescents and adults. A bridging study is another example of an extrapolation
study, where one brings over the results obtained from one geographical area to another.

• In some situations, historical information that was not collected in a highly controlled trial
could be considered in the analysis of a new trial. Such data are often referred to as real-
world data. Relevant examples include data from patient registries and expanded access
programs (i.e., patient data collected as part of a program for pre-approval access to a
novel drug). Of course real-world data should only be considered if they are relevant and
of high quality, and any differences in patient characteristics with the current data should
be addressed.

• In medical device studies, RCTs may be hard to organize since devices are subject to
rapid technical innovations and their comparative efficacy/safety may be apparent only
after many years. Historical controls may then be of help to shed some light on the perfor-
mance of the experimental device.

• Historical data may also be useful in platform trials, which are trials with an innovative
design based on a single master protocol to evaluate in an efficient manner multiple in-
terventions. See Liu et al. (2023) for an example where data from historical controls are
combined with the current control data.

To incorporate these sources of historical information in the analysis, the Bayesian ap-
proach provides a natural and elegant framework, where the historical information is sum-
marized using an informative prior. The use of historical information is however not without
pitfalls or drawbacks. Naturally, the historical information should be chosen carefully, to
make sure that it is valid and relevant, and that no considerable differences with the data of
the new trial are to be expected. Even then, the analyst should take into account the pos-
sibility of a prior-data conflict, that is, a difference between the historical information and
the data of the new trial, which could lead to a bias in the study results. For this reason, it
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is typically not appropriate to assign equal weight to the historical data and the data of the
new trial. Various statistical approaches have been developed to protect against the effects
of prior-data conflict, typically by downweighting the information from the historical data,
leading to a more robust prior. These statistical approaches are in effect different ways to
construct the informative prior from the historical information. Of course we need to choose
the most appropriate statistical approach (i.e., the prior) for the problem at hand.

This article is structured as follows. We first look in Section 2 which of the historical data
sets are eligible to be used in the analysis of the current data. In Section 3, we start our review
of the dynamic borrowing methods with the two most popular approaches, that is, the power
prior approach and the meta-analytic approach. Then in Section 4 we briefly discuss some
alternative approaches. In Section 5, design aspects when using dynamic borrowing methods
are discussed. In Section 6, the two discussed dynamic borrowing methods are illustrated
using practical data sets. The operating characteristics of the dynamic borrowing methods
are critically discussed in Section 7. A short overview of available software packages is given
in Section 8. Concluding remarks can be found in Section 9.

2 Choice of historical studies

The (dynamic) borrowing approaches do not automatically account for how and where the
historical studies were conducted. Therefore, prior to borrowing information from historical
studies, one should check whether the conditions under which the past and current studies
were done are similar enough. This was first pointed out by Pocock (1976). He stipulated
in a seminal paper the conditions under which a historical control group can be used in the
analysis of a current study. These are:

1. The group must have been treated with exactly the same treatment as the randomized
controls in the current study.

2. The group must have been part of a recent clinical study with the same requirements for
patient eligibility.

3. The methods of treatment evaluation must be the same.
4. The distributions of important patient characteristics in the group should be comparable

with those in the new trial.
5. The historical study must have been performed in the same organization with largely the

same clinical investigators.
6. There must be no other indications leading one to expect different results between the

current and the historical controls.

Simply stated, Pocock argued that the historical controls should be quite similar to the
current control patients and done under basically the same conditions. However, these well-
known criteria are too strict to be applied in practice because they prevent using dynamic
borrowing methods for, e.g., in pediatric studies when data of adults are to be used as input
for the study on children; with rare diseases where the historical controls are often taken
from the real world and in bridging studies, where the historical data are inevitably taken
from subjects living in another geographical region and therefore cannot be taken from the
same institution as the current data.

For these reasons, Hatswell et al. (2020) suggested to relax Pocock’s conditions. The main
relaxation was that Hatswell et al. proposed a framework to present relevant data and study
design aspects and to identify and quantify differences, whereas Pocock proposed conditions
that should all be satisfied. The idea of this framework was to facilitate a more nuanced
assessment of the usefulness of the historical data, so that an appropriate statistical technique
may then be selected. The framework also allows for differences in patient characteristics
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between data sources, because such differences can be addressed using regression modeling
or propensity score methods.

3 Dynamic borrowing methods: The power prior and the meta-analytic
predictive prior

A variety of borrowing methods has been suggested in the statistical literature, and not only
in the context of RCTs. We will focus mainly on the power prior approach and the meta-
analytic prior predictive approach. Both approaches have been explored extensively in the
last two decades. Although combining past with current data can be done in any context,
here we will take only illustrations from pharmaceutical research. Two settings emerge with
respect to borrowing information from the past: (1) control data or (2) contrast data measuring
the efficacy of the experimental arm versus the control arm. We focus here on the first case.

The two extreme cases of borrowing information from past studies is either not using
the historical information at all (analyzing just the current data) or completely pooling the
historical with the current data. Ignoring historical information may be the optimal strategy,
especially when the historical and current data tell a different story. Pooling the past data with
the current data implicitly assumes that the historical studies and the current study measure
exactly the same effect and that the patients from the two studies are exchangeable. However,
completely pooling is not recommended in general, because exchangeability of the two sets
of patients is often a too strong assumption. Nevertheless, in a review on the use of historical
data, Wadsworth, Hampson and Jaki (2018) found that 8 of the 58 selected papers completely
pooled historical and current data.

The parameter of interest, denoted as θ , can basically represent anything and can be uni-
variate or multivariate. This parameter can also be part of a vector of parameters that includes
nuisance parameters such as covariate effects and variance parameters. For instance, when θ

represents the effect of an intervention (e.g., an odds ratio or a relative risk or their logarithm),
it is combined with a parameter expressing the baseline rate. Most of the developments on dy-
namic borrowing methods have focused on the case of a univariate θ , as we will also do here.
In this section, we discuss the power prior approach and the meta-analytic predictive prior
approach. In Section 4, we review a number of alternative methods. We start with the oldest
formal approach, namely the power prior. Especially Ibrahim and Chen explored the proper-
ties of two of the three power prior approaches and illustrated their use in a great variety of
clinical applications (Ibrahim and Chen, 2000, 2015).

3.1 The power prior approach

The power prior approach was first developed for the case of a single historical study that
can complement current data. While the approach assumes that the historical and current
study measure the same effect, the historical data are downweighted when combined with the
current data. We first consider three versions of the power prior approach: (1) the conditional
power approach; (2) the joint power prior approach and (3) the normalized or modified power
prior approach. Then we look at variations of the basic versions.

3.1.1 The conditional power prior approach. Assume a single historical study set up to
estimate parameter θ0, say the true proportion of subjects that show a clinical benefit when
treated. Assume that the study produced a sample D0 of size n0. Given a statistical model,
the likelihood L(θ0|D0) is produced. Assume also that the current study produces a sample
D of size n to estimate parameter θ .
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For the power prior approach, one assumes that θ0 = θ . To construct the conditional power
prior pCPP(θ |D0, λ) one combines an initial, typically vague, prior p0(θ) for the historical
data with the historical likelihood raised to the power λ (0 ≤ λ ≤ 1), that is,

pCPP(θ |D0, λ) = L(θ |D0)
λp0(θ)∫

L(θ |D0)λp0(θ) dθ
. (1)

In the conditional power prior (CPP) approach the power parameter is chosen by the in-
vestigator. For λ = 0 no borrowing is done, while for λ = 1 the historical and current data are
pooled to draw conclusions about θ . A value of λ between 0 and 1 implies downweighting
the historical data with a factor. The assumption that the historical and current study esti-
mate the same parameter may look too stringent, but this is compensated for by discounting
the historical information. The posterior based on the conditional power prior follows from
Bayes’ theorem:

pCPP(θ |D,D0, λ) ∝ L(θ |D)pCPP(θ |D0, λ),

∝ L(θ |D)L(θ |D0)
λp0(θ). (2)

When λ is established without looking at the current data, the conditional power prior
is an example of borrowing information in a static way. The conditional power approach has
interesting theoretical properties (Ibrahim and Chen, 2015). We now illustrate the conditional
power prior for the Gaussian and binomial case.

Gaussian case. Suppose the current data are given by D = {y1, . . . , yn} with elements in-
dependently distributed according to a Gaussian distribution with expectation μ and known
variance σ 2, that is, N(μ,σ 2). Suppose also that a historical sample D0 = {y01, . . . , y0,n0} is
given with elements that are independently distributed according to N(μ,σ 2). For the con-
struction of the power prior, an initial Gaussian prior for μ is taken, that is, μ ∼ N(μ0, σ

2
0 ).

The power prior is based on the Gaussian likelihood raised to the power λ, that is,
L(μ|D0)

λ = ( 1√
2πσ 2

)λ exp[− 1
2σ 2/λ

∑n0
i=1(y0i − μ)2]. Since λ is fixed, L(μ|D0)

λ is in fact

proportional to a Gaussian likelihood with variance σ 2/λ. In other words, the power prior for
the Gaussian case inflates the prior variance by factor 1/λ. With the initial Gaussian prior for
μ, the power prior for the current data becomes N(μ|μ0, σ

2
0), with

μ0 = μ0/σ
2
0 + n0λy0/σ

2

1/σ 2
0 + n0λ/σ 2

& 1/σ 2
0 = 1/σ 2

0 + n0λ/σ 2. (3)

The posterior obtained from combining this prior with the current Gaussian data is then given
by N(μ|μ,σ 2), with

μ = μ0/σ
2
0 + ny/σ 2

1/σ 2
0 + n/σ 2

& 1/σ 2 = 1/σ 2
0 + n/σ 2. (4)

Binomial case. In this case, the current data consist of the number of ‘successes’ y out of a
sample of size n. We assume that the current data are given by the sample D : y ∼ Bin(n, θ)

and similarly that the historical data are given by the sample D0 : y0 ∼ Bin(n0, θ). When
combined with an initial beta prior θ ∼ Beta(α0, β0), the binomial power prior is a beta
distribution given by

Beta
(
θ |λy0 + α0, λ(n0 − y0) + β0

)
,

and when combined with the current data results in the beta posterior

Beta
(
θ |λy0 + α0 + y,λ(n0 − y0) + β0 + (n − y)

)
.
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From the above two examples we can conclude that λ represents the proportion of histor-
ical data used in the current study, that is, λ = r/n0, with r the amount of historical sample
used. Thus in these models, λ is easy to interpret. De Santis (2006) showed that the above
interpretation of λ holds more generally. In practice, though, it may not be easy to choose an
appropriate value for λ.

Alternatively, one could estimate λ from the data, depending on the discrepancy between
the historical and the current data. This leads to the joint and the normalized power priors.

3.1.2 Two dynamic power prior approaches. In this section, we look at the (joint and mod-
ified) power prior approaches. They are called dynamic borrowing methods because the
amount of borrowing is determined by contrasting the historical data with the current data.
Hence, the amount of borrowing can only be determined after having seen the current data.

A Bayesian way to deal with the uncertainty of a parameter is to give it a prior. For the
joint power prior both the parameter of interest θ but also the power parameter λ is given a
prior distribution, say a prior p0(θ) for θ and a Beta(1,1) or Beta(0.5,0.5) prior for λ. Thus
with a prior p(λ), the joint power prior is given by

pJPP(θ, λ|D0) = L(θ |D0)
λp0(θ)p(λ)∫ 1

0
∫
� L(θ |D0)λp0(θ)p(λ)dθ dλ

. (5)

� refers to the support of θ . The parameters θ and λ are then estimated from the joint poste-
rior of historical and current data.

The idea is that the estimated λ will be close to 0 for discrepant historical and current
data and close to 1 when they are similar. However, the problem with pJPP(θ, λ|D0) is that
it does not satisfy the Likelihood Principle, which in the context of the Bayesian paradigm
states that proportional likelihoods should produce the same posterior distribution. That this
property does not hold for pJPP can easily be seen by multiplying the original likelihood of
the historical data by a constant c, then pJPP will involve cλL(θ |D0)

λ, and cλ does not cancel
out from the joint power prior nor from its posterior. The reason for this behavior is that
L(θ |D0)

λ is not the likelihood function of θ and λ given the historical data. The Likelihood
Principle is one of the basic principles in likelihood theory and hence also in the Bayesian
approach, strongly advocated by Berger and Wolpert (1988). Hence, it is argued that the
principle should hold also here. In addition, simulations showed that pJPP tends to shrink the
power to 0 and hence there will be little or even no borrowing regardless of heterogeneity
between historical and current data (Neelon and O’Malley, 2010).

The modified or normalized power prior (MPP) is a slight but important modification of
the joint power prior to make sure that it satisfies the Likelihood Principle. The MPP is given
by

pMPP(θ, λ|D0) = pCPP(θ |D0, λ)p(λ),

= L(θ |D0)
λp0(θ)∫

� L(θ |D0)λp0(θ) dθ
p(λ). (6)

The MPP has the disadvantage that it involves an integral in the denominator. In some cases,
as will be seen below, an analytical expression of that integral can be derived but most often
this is not possible, impacting the computations considerably, especially when one uses a
Markov chain Monte Carlo approach to estimate the parameters. Below we illustrate these
two power priors for the binomial case. For the Gaussian case, the MPP is given by

N(μ|μ0(λ), σ 2
0(λ))p(λ), where the first term is given by equation (3) but now the mean

and standard deviation of the power prior depend on the unknown parameter λ.
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Binomial case. The joint power prior for the binomial case pJPP(θ, λ|y0, n0) is given by

pJPP(θ, λ|y0, n0) ∝

(
n0
y0

)λ

θλy0+α0−1(1 − θ)λ(n0−y0)+β0−1

B(α0, β0)
p(λ),

where B(•,•) is the Beta function. The MPP is given by

pMPP(θ, λ|y0, n0) = θλy0+α0−1(1 − θ)λ(n0−y0)+β0−1

B(λy0 + α0, λ(n0 − y0) + β0)
p(λ),

= Beta
(
θ |λy0 + α0, λ(n0 − y0) + β0

)
p(λ),

whereby the denominator in equation (6), given by

C(λ) =
∫ 1

0
L(θ |y0, n0)

λBeta(θ |α0, β0) dθ =

(
n0
y0

)λ

B(λy0 + α0, λ(n0 − y0) + β0)

B(α0, β0)
,

can be computed analytically. The posterior distribution when y events were recorded out of
n subjects and combined with the MPP is then proportional to

Beta
(
θ |λy0 + α0 + y,λ(n0 − y0) + β0 + (n − y)

)
p(λ). (7)

An illustrative example. We now illustrate the performance of the MPP for the Gaussian
case using simulated data; the binary case resulted in similar conclusions. In both cases, we
evaluated the MPP when the historical and the current control data were taken from the same
population (congruent case) and when they were taken from different populations (incongru-
ent case). The MPP for the Gaussian case is proportional to

N
(
μ

∣∣μ0(λ)/σ 2
0(λ) + ny/σ 2

1/σ 2
0(λ) + n/σ 2

,
1

1/σ 2
0(λ) + n/σ 2

)
p(λ).

When σ0 → ∞ and with D0, D represented by y0 and y, respectively, the posterior for μ is
given by

p(μ|y, y0) ∝
∫ 1

0
N

(
μ

∣∣y0,
σ 2

n0λ

)
dλL(μ|y).

The integral part of the right-hand side of the previous expression represents the actual prior
which is concentrated around y0. It is a scale mixture of normals and therefore ‘looks’ like a
t-distribution. So, if y0 and y are distant there is only minimal overlap between the prior and
the likelihood and borrowing will be limited.

A simulation study illustrates these findings with the following settings:

• Historical data yhi(i = 1, . . . , n) were simulated from N(μh,22). The current control data
yci(i = 1, . . . , n) were simulated from N(μc,22) and n current experimental data from
N(μe,22);

• Two sample sizes were considered: (i) n = 100 and (ii) n = 1000 and one data set was
generated for each sample size;

• Two settings were considered for the historical and current control population: (i) congru-
ent case, i.e. same populations with μh = μc = 10 and (ii) incongruent case, i.e. dissimilar
populations with μh = 9, μc = 10. In both cases, μe = 12;

• A vague prior N(0,10002) was taken for μh and μe, whereas for μc the same vague prior
or the MPP, based on the historical data, was taken;
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• Two priors for λ were considered: Beta(1,1) (uniform prior) and Beta(0.5,0.5) (Jeffreys
prior).

A BUGS program was written to obtain the posterior estimates of μh, μc, 	 = μe −μc and
λ. Another BUGS program estimates 	 without borrowing information from the historical
data. The relative efficiency of dynamic borrowing is measured by the relative efficiency
equal to releff = 100 (varwithout−varwith)

varwithout
, where varwithout, varwith is the posterior variance for 	

without and with borrowing information from the historical controls, respectively. For each
program, three chains were initiated each with length 10,000 and a burn-in size of 1000,
yielding 27,000 samples.

Regarding estimating 	, the following results were obtained:

• The posterior means were (evidently) closer to the true value for n = 1000 than for n =
100, both for the congruent as for the incongruent case and both priors for λ.

• The precision also (again evidently) increased with the sample size.
• The relative efficiency for the congruent case was around 13% for n = 100, and around

7% for n = 1000 for both λ priors. These values decreased for the incongruent case and
n = 100 to 6% (Beta(1,1)) and to 2% (Beta(0.5,0.5)), but was for both priors around −2%
for n = 1000.

Clearly this simulation study was too small to draw definitive conclusions, but it can al-
ready be inferred that borrowing information can increase the precision of the estimated
treatment effect, but the greatest gain is to be expected in small samples which is exactly
the scenario where we wish to use dynamic borrowing.

We return to the results of this simulation study for estimating the power parameter in
Section 3.2.

Note that a simple BUGS program could be written because we assumed that σ is known.
When σ is estimated from the data, the results in Banbeta, Lesaffre and van Rosmalen (2022)
can be used to derive the marginal posterior of λ. We will now consider further extensions of,
primarily, the modified power prior.

3.1.3 The power prior approach for multiple historical studies. The power prior has been
extended to multiple historical studies by Chen, Ibrahim and Shao (2000). Suppose that there
are K historical studies with data Dk of size nk estimating parameters θk , each yielding a
likelihood L(θk|Dk). Suppose also that the current study yields a data set D of size n to
estimate parameter θ , yielding a likelihood L(θ |D). Again it is assumed that the parameters
of the historical studies and the current study are equal, i.e. θ1 = · · · = θK = θ . With a(n
often) vague prior for the historical data p0(θ), the MPP is given by

pMPP(θ,λ|Dk) ∝ [∏K
k=1 L(θ |Dk)

λk ]p0(θ)p(λ)∫
�[∏K

k=1 L(θ |Dk)λk ]p0(θ) dθ
,

where λ = (λ1, . . . , λK)�. Further, λk = 0 implies no borrowing from the kth historical study,
and λk = 1 means that the kth historical data is pooled with the current data.

Inspired by the MAP approach discussed in Section 3.3, Banbeta et al. suggested a hier-
archical version of the power prior for multiple historical studies and illustrated this for the
binomial model and for linear regression (Banbeta et al., 2019; Banbeta, Lesaffre and van
Rosmalen, 2022). This version of the power prior, also called the dependent modified power
prior and denoted by pDMPP, is based on the idea that historical studies are similar and there-
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fore also the powers should be similar. Hence, it is assumed that the powers λk (k = 1, . . . ,K)
have the following hierarchical distribution:

λk ∼ Beta(αλ,βλ) (k = 1, . . . ,K),

(αλ,βλ) ∼ p(αλ,βλ),

with p(αλ,βλ) a hyperprior.

Binomial case. The prior p(λ) can be an independent prior or a dependent prior as in Ban-
beta et al. and p0(θ) = Beta(α0, β0) with α0 and β0 fixed and known. The MPP for multiple
historical binomial studies then becomes

pMPP
(
θ,λ|{yk, nk}) = θ

∑K
k=1 λkyk+α0−1(1 − θ)

∑K
k=1 λk(nk−yk)+β0−1

B(
∑K

k=1 λkyk + α0,
∑K

k=1 λk(nk − yk) + β0)
p(λ),

= Beta

(
θ
∣∣∣ K∑
k=1

λkyk + α0,

K∑
k=1

λk(nk − yk) + β0

)
p(λ).

While the calculation of the MPP is rather straightforward for the binomial case, the deter-
mination of the denominator may not be easy in general. A method based on path sampling
has been applied to calculate the integral in the denominator with a single historical control
(van Rosmalen et al., 2018). The algorithm can be adapted to the case of multiple historical
studies, but it is probably too computationally intensive for three or more data sets.

3.2 The choice of the power parameter

For the MPP the power parameter λ is given a prior and it is hoped that contrasting the his-
torical with the current data will drive its posterior value to 0 for incongruent data and to a
value close to 1 for congruent data. In Figure 1, we show the marginal posterior distributions
for λ in the eight scenarios we discussed in the illustrative example of Section 3.1.2. There is
a clear dependence of the posterior on the sample size and (in)congruency of the setting. But

Figure 1 Marginal posterior of λ in the Gaussian case with known standard deviation. The top row corresponds
with μh = μc = 10, the bottom row corresponds with μh = 9 and μc = 10.
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it is striking that in the congruent case the sample size has relatively little impact on the pos-
terior. Further irrespective of the sample size, the posterior median for λ was around 0.6 and
0.7 for Beta(1,1) and Beta(0.5,0.5), respectively. Additional simulations under the congruent
case (results not shown) revealed that the uncertainty of the power parameter does not materi-
ally decrease with increasingly larger sample sizes (n → 10,000). Neuenschwander, Branson
and Spiegelhalter (2009) reached the same conclusion, which triggered recent developments
to determine the power parameter in a different manner.

For Gaussian data with a known variance Pawel et al. (2023a) demonstrated that in the
congruent case for an increasing sample size of the current study the marginal posterior of
λ converges to a Beta(λ|α0 + 0.5, β0) distribution. For α = β = 1 this implies a posterior
mean for λ equal to 0.6, and equal to 0.7 for α = β = 0.5, confirming the above simulation
results. Thus these authors showed that in the congruent case of a Gaussian model with known
variance pooling the historical and current data will never happen, and there will always be
discounting. In the incongruent case the posterior mean of λ is pulled towards zero. The
binomial model shows a similar behavior. We were able to confirm, by performing a small
simulation study (results not shown), that the DMPP in a setting with multiple historical
controls has a similar behavior.

The fact that the power prior does not borrow all historical data in the congruent case is
to some extent comparable to the inability of a frequentist statistical test to prove that two
populations are equal. The congruence of the observed historical and current data provides
some evidence that the underlying model parameters are also congruent (or at least similar),
but it does not provide a clear proof. It appears that the behavior of the MPP reflects that
pooling is only appropriate when we know that both data sets have been sampled from the
same population. Recently several authors suggested to work with the conditional power
approach whereby the power parameter is directly determined from the discrepancy between
the historical and current data. These recent approaches are reviewed now, but we start with
the empirical Bayes approach of Gravestock and Held (2017).

3.2.1 An empirical Bayesian approach. To avoid the computation of the normalizing con-
stant, Gravestock and Held (2017) proposed the empirical Bayesian power prior where the
power parameter is estimated empirically. To this end, the marginal likelihood of the power
parameter λ is maximized, that is,

λ(D,D0) = arg max
λ∈[0,1]

L(λ|D,D0), (8)

where L(λ|D,D0) = ∫
� L(θ |D)p(θ |λ,D0) dθ =

∫
� L(θ |D)L(θ |D0)

λp(θ) dθ∫
� L(θ |D0)

λp(θ) dθ
. The empirical

Bayesian power prior is then defined as a conditional power prior with the empirical es-
timate of λ. This method does not require to specify a prior for the power parameter and
hence avoids the computational difficulties that go along with the MPP. For the other model
parameters a prior still needs to be specified. However, one might argue that summarizing
the power parameter using a single value likely grossly underestimates the uncertainty with
which borrowing should be applied.

3.2.2 The power prior approach using a discrepancy function. What follows are hybrid
approaches that determine the “best” power parameter based on evaluating the discrepancy
between the historical and the current data in a direct way. In a second step, the conditional
power prior is applied with the chosen power parameter. This was done in (Haddad et al.,
2017; Haddad, 2020) for a single historical data set. The method uses a function α that mea-
sures the difference between θ based on all data (historical and current) and θ̃ based on only
the current data. In their example, they defined α(θ, θ̃) as 2(1−
(Z)) with Z a standardized
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difference between the two estimates and 
(·) the cumulative normal distribution function.
Then a monotonic discrepancy function T (α(θ, θ̃)), with range (0,1) computes the weight
given to the historical data, with T (α) = 0 for α = 0. The power λ to downweight the histori-
cal data is estimated from λ = T (α(θ, θ̃)). When T (α(θ, θ̃)) = 1, λ is given a maximal value
determined by the user.

To allow for pooling, Pan, Yuan and Xia (2017) proposed the conditional power prior
approach with λ defined as a function of a discrepancy measure T (the authors called it
rather a congruence measure) between D and D0. As for the approach of Haddad et al. the
function that relates λ with the discrepancy measure is pre-specified. The measure T should
be positive and converge to zero when θ = θ0 (D and D0 congruent) and to ∞ when θ 
= θ0
(D and D0 incongruent) as the sample sizes of the historical and current control increase.
For a binary response one could use, for example, a scaled (for sample size) χ2-statistic and
for a continuous response, for example, a standardized Kolmogorov–Smirnov test. Further, a
function g(T ) then maps the support of T to (0,1) in a monotonic manner such that g(T ) → 1
as T → 0 and g(T ) → 0 for T → ∞. To this end, Pan, Yuan and Xia (2017) proposed
a logistic function g(T ) = 1

1+exp(a+b logT )
. This function is then calibrated by simulations

by choosing a and b such that under a congruent scenario strong borrowing will happen and
little borrowing when there is incongruence. Thereby, this procedure aims to control the Type
I error rate and to increase the power.

Jiang, Nie and Yuan (2023) suggested the elastic prior, which builds on the proposal of
Pan et al. That is, Jiang et al. also make use of the above logistic function (they called it an
elastic function) calibrated in the same way as done by Pan et al., but they bypassed the condi-
tional power prior approach. Indeed, the authors simply inflated the variance of the posterior
given D0 by a factor proportional to g(T )−1, which suggests also a simpler definition of the
effective sample size, see Section 5.2. These authors also claimed that with their approach the
Type I error rate is better controlled (see Section 7) than with other dynamic borrowing meth-
ods. The extension to multiple historical controls, however, needs further research. Finally,
the authors argued that their elastic power approach can better handle differential borrowing
of several parameters by specifying a separate discrepancy function for each parameter.

3.2.3 The multiparameter case.

Correcting for covariates. The power prior approach assumes that the historical and cur-
rent data sets are similar. But, even when Pocock’s strict conditions are satisfied, it might be
that demographics and/or other patient characteristics such as disease severity differ between
the historical and current data. Further, there is also a tendency to use dynamic borrowing
approaches even when Pocock’s conditions are not all fulfilled as mentioned in Section 2.
In that case, one might apply statistical correction before borrowing historical information.
Incorporating covariates in the dynamic borrowing methods was done by, for example, by
Ibrahim and Chen for the joint power prior (Ibrahim and Chen, 2000). Banbeta, Lesaffre and
van Rosmalen (2022) developed MPP approaches for linear regression models, thereby ex-
tending these models to account for covariates. Here, we assume that the observed covariates
capture almost all of the imbalance between the historical and the current data.

Another possibility is to summarize relevant patient characteristics using propensity
scores, and then to account for measured confounding using propensity score matching,
weighting or stratification. Classically, propensity score methods are used to account for con-
founding in non-randomized experimental settings, where the propensity score models the
assignment to either treatment or control. In the context of historical data, propensity scores
are however used to model the allocation between current and historical data. A detailed case
study on the use of propensity score methods for including historical data is provided by Lin,
Gamalo-Siebers and Tiwari (2018).
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Up to now, we have focused on measured confounding, but the historical and current data
can also differ by unmeasured covariates. When dynamic borrowing methods are planned at
the design stage of the study one must be aware that the historical and current data may be dif-
ferent in an unforeseen way and one may be confronted with a prior-data conflict. Dynamic
borrowing methods are designed to mitigate the effects of such differences in unmeasured
covariates. But still, in Section 3.4 an approach is discussed that protects the trialist even
more from such a problematic setting. Several authors have recently proposed hybrid methods
which combine propensity score methods with dynamic borrowing, such as the combination
of propensity score stratification with power priors (Wang et al., 2019) or a MAP approach
(Liu et al., 2021). A variety of hybrid methods was considered by Wang et al. (2022), and
they recommended the combination of propensity score matching or weighting with the com-
mensurate prior (see Section 4). Our research group has recently developed a hybrid method
using propensity score weighting combined with the power prior (Polak et al., 2023).

Partial borrowing power prior. Most often the model for the current data is based on more
parameters than the model for the historical data. A simple example occurs when we wish
to borrow information on the control rate in a future RCT where the interest lies in the ben-
eficial effect of the experimental treatment measured for example, by a log(odds ratio). In
some applications the model structure, and thus the model parameters, may differ even more
between the historical data and the current data, so that the likelihood functions L(θ |D0) and
L(θ |D) will have a different form. A simple example is when the covariates differ between
data sources, or when only summary statistics are available for the historical data combined
with individual-level data for the current study. There are also other situations where it is
appropriate to borrow information from only a subset of the model parameters. Classically
the power prior was developed to borrow information from all model parameters. To make
the power prior more flexible, Ibrahim et al. (2012) and Chen et al. (2014) proposed and
applied the use of partial borrowing power priors in several publications. In the partial bor-
rowing power prior, some model parameters are integrated out of the informative prior, so
that information on these parameters is not borrowed from the historical data. The historical
data are then borrowed only through the remaining parameters, which are shared by the mod-
els for the historical data and the current data. Note that the elastic power prior approach in
Section 3.2.2 provides an alternative way for partial borrowing.

3.3 The meta-analytic predictive prior

3.3.1 The original approach. Take the settings of Section 3.1.3, but now assume that
the parameters of the historical trials and of the current trial are exchangeable, that is,
θ1, . . . , θK, θ ∼ G(φ). Under this setting, Neuenschwander et al. (2010) suggested the meta-
analytic predictive (MAP) prior approach. Originally they considered the MAP prior for θk =
logit(πk) ∼ G(φ) ≡ N(μ, τ 2), with πk the true proportion of events in the kth historical con-
trol arm. More specifically, with the normality assumption θ1, . . . , θK, θ |μ,τ 2 ∼ N(μ, τ 2),
the MAP prior is actually the posterior predictive distribution (PPD) θ |D1, . . . ,DK . Neuen-
schwander et al. (2010) showed that if σk and τ 2 are known and one takes a flat prior for

μ then the MAP prior is N
(
θ |

∑
wkθ̂k∑
wk

, 1∑
wk

+ τ 2
)
, where θ̂k is the estimated parameter ob-

tained from Dk (k = 1, . . . ,K), wk = 1
σ 2

k +τ 2 are weights with σ 2
k (k = 1, . . . ,K) usually fixed.

When K is small, the inter-study variance τ 2 is often given an informative and sensible prior.
A large value of τ 2 implies that little can be learned from the past studies. Clearly, the MAP
prior approach is again an example of a dynamic borrowing prior approach.

Two versions of the meta-analytic approach exist. The first version, called the MAP ap-
proach, is a two-step procedure where first the MAP prior is computed for the unknown
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parameter θ and then combined with the current data. Alternatively, in the meta-analytic
combined (MAC) approach, one combines the historical and current data in a hierarchical
model as given above. Once the historical and current data are combined the two approaches
are equivalent (Schmidli et al., 2014). But, the MAP approach requires that the historical data
are available at the design stage of the study, while for the MAC approach the historical data
can combined in real-time with the current data. For instance, in pediatric studies, when one
wishes to extrapolate adult data to children, the MAP approach is useful when the adult data
were obtained before, whereas the MAC approach offers the ability to combine the adult data
with pediatric data when data on adults and children are collected at the same time.

A practical problem with the MAP approach occurs when the MAP prior is determined
via Markov chain Monte Carlo methods. In that case, the MAP prior is only available from
sampled values. In other words, there will be no analytical expression of this prior but rather
a histogram of sampled values. Note that this problem may also occur with the joint and nor-
malized power prior. In that case, Schmidli et al. (2014) suggested to approximate the MAP
prior with a finite mixture of conjugate priors. This can be done with the R package RBesT
(R Bayesian Evidence Synthesis Tools) (Weber et al., 2021). For instance, for a binomial re-
sponse with θ as unknown success probability one could use a mixture of beta distributions
to approximate the sampled MAP prior or alternatively the sampled MAP prior of logit(θ )
could be approximated with a mixture of Gaussian distributions. Hence, the RBesT package
can be used when the (uni-dimensional) posterior has no closed-form solution and one wishes
to use it as a prior in a subsequent study. This is now illustrated.

Phase IV transplant trial: The MAP prior. We replay here the first example in Neuen-
schwander et al. (2010), that is, a phase IV trial in de novo transplant patients designed to
compare a standard (control) treatment to an experimental treatment. The primary outcome
is treatment failure. A conventional balanced design would require a total of 450 patients
per treatment arm. It was therefore hoped that the information from 11 phase IV trials with
essentially identical designs and amounting to 930 patients on the standard arm can be used
to reduce the size of the study. The results obtained from these 11 trials were (# treatment
failures/total number of patients in standard arm (%)): 6/33 (18%), 8/45 (18%), 17/74 (23%),
28/103 (27%), 26/140 (19%), 8/49 (16%), 22/83 (27%), 8/59 (14%), 6/22 (27%), 16/109
(15%) and 53/123 (23%).

The MAP approach assumes that the above proportions are estimates of true risks that
are exchangeable, also with the risk in the future control arm. The MAP prior can eas-
ily be determined using, say, a simple BUGS program yielding a sample distribution as
prior. Here we worked on the logit scale of the true risk. Then the RBesT package approx-
imates the sampled MAP prior by a mixture of Gaussian distributions. This mixture can
then be used as a prior in standard Bayesian software such as WinBUGS or JAGS. In Fig-
ure 2 the sampled MAP prior is shown, together with the approximating Gaussian mixture
0.59N(−1.32,0.592) + 0.41N(−1.35,0.382) and its components. This mixture is best out
of several Gaussian mixtures (here up to 10 components) according to Akaike’s information
criterion as determined by the RBesT package.

3.3.2 Correcting for covariates. Since the MAP prior is based on a hierarchical model, it is
straightforward to include covariates into the prior. The original exchangeability assumption
is then replaced by conditional (on the covariates) exchangeability or partial exchangeability
(Neuenschwander et al., 2010). Han et al. (2017) investigated the inclusion of patient-level
covariates in this method.
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Figure 2 MAP prior for the phase IV transplant study with the approximating mixture of Gaussian distributions
and its two components.

3.3.3 Relaxing distributional assumptions. The original MAP approach assumes a paramet-
ric distribution for θ . Often a Gaussian distribution is assumed for θ (or for a transformation
of θ ) or the more robust t-distribution with few degrees of freedom. To further relax the
parametric assumptions, Hupf et al. (2021) proposed a semi-parametric MAP prior based on
a non-parametric Bayesian approach. The approach handles the between-study heterogene-
ity in a different manner with a more flexible prior. Instead of a common between-study
standard deviation as in the classical MAP approach, Hupf et al. assumed study-specific vari-
ations around the common overall mean using a Dirichlet process mixture prior for the study-
specific between-study standard deviations. The Dirichlet process mixture prior is more ro-
bust and does not require the pre-specification of the amount of borrowing, i.e. the prior for
the between-study standard deviation.

3.4 Protecting against prior-data conflict

Despite all precautions, the current data may be quite different from the historical data. If
this happens, we speak of a prior-data conflict. Schmidli et al. (2014) suggested a variation
of the MAP prior that can accommodate such a prior-data conflict by ignoring the historical
information when it is too different from the current information. This is achieved by the
robustified MAP prior, which is a mixture distribution for θ with one component the MAP
prior (activated when the current control is similar to the historical controls) and a vague prior
(applies when the current control is quite different from the historical controls). An example
of such a robustified MAP prior is the Gaussian mixture given by

(1 − w) × N
(
θ |μ,τ 2) + w × p0R(θ),

where p0R(θ) is called the robust component and is here a Gaussian distribution with the
same mean μ as the MAP prior but with a large variance and w is the mixing proportion
usually taken small (0.1). We note that one must not take the robust variance too large to
avoid Lindley’s paradox (Mutsvari, Tytgat and Walley, 2016).

There exists also a robustified power prior based on the hierarchical version of the power
prior for multiple historical studies, see Section 3.1.3. The robustified dependent power prior
pRDMPP for controls was derived from pDMPP by Banbeta et al. (2019) in two ways:

• Version 1: λk ∼ (1 − w) × Beta(λk|αλ,βλ) + w × p0R(λk)(k = 1, . . . ,K). In this version
individual historical controls can be ignored in case of prior-data conflict.

• Version 2: λ ∼ (1 − w) × Beta(λ|αλ,βλ) + w × p0R(λ). Now either all or none of the
historical controls are ignored.
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Figure 3 Phase IV transplant study: Robustified MAP prior combining the MAP prior of Figure 2 with a robust
component, i.e. N(0,22) as represented by the RBesT package. The two components of the MAP prior are denoted
as ‘inf1’ and ‘inf2’ with weights 53.2% and 36.8%, respectively.

Note that now the robust component in version 1, p0R(λk), is a Dirac function at zero
implying that in case of a prior-data conflict the kth historical control is ignored. A similar
result applies to the robust component in the second version. We illustrate the use of this
robustified prior in Section 6 when we analyze the HOVON trials.

Phase IV transplant trial: The robustified MAP prior. A robustified MAP prior for the trans-
plant study consists in augmenting the two-component Gaussian mixture for the logit proba-
bility with a vague Gaussian prior. Here, we have taken a N(0,22) prior as robust component.
See Figure 3 for a graphical representation of the three-component robustified MAP prior
produced by RBesT and based on the MAP prior of Figure 2.

3.5 Comparison of power prior and MAP prior

The power prior approach and the meta-analytic predictive prior approach have a different
starting point:

• The power prior approach was first developed for a single historical study. For this ap-
proach, it is assumed that the parameter of interest is the same for the historical study and
the current study.

• The MAP prior approach was developed for multiple historical studies and assumes ex-
changeability of the parameter of interest across the historical studies and the current study.

Chen and Ibrahim (2006) demonstrated that, for one historical study of size n0 and i.i.d.
Gaussian data with distribution N(μ,σ 2), there is an exact relationship between the condi-
tional power approach with a flat initial prior for μ and a hierarchical model, and hence they
related the conditional power approach with the MAP prior developed by Neuenschwander
and colleagues four years later (Neuenschwander et al., 2010). They thus proved that for λ =

1
(1+2τ 2n0/σ

2)
the pCPP and the MAP prior (with chosen τ 2) match. They also proved the match

for a Gaussian linear regression model with Zellner’s g-prior p(β) = N(β|μ, c(X�X)−1) for
λ = 1

(1+2cn0/σ
2)

, where X represents the design matrix. In addition they derived asymptotic
relationships for multiple historical data sets and for generalized linear models. Pawel et al.
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(2023b) showed that a beta prior for the MPP prior parameter λ is equivalent to a generalized
F prior for the heterogeneity parameter τ 2.

Besides the above analytical results, several authors compared the performance of the two
approaches via simulations. We refer to Section 7 for a review of how such comparisons are
performed. A consistent finding from previous literature, based on both simulation studies
and mathematical proofs (see, e.g., Pawel et al. (2023a) and Pawel et al. (2023b)), is that both
the power prior and the MAP prior do not borrow all historical data. This result applies even
when the historical and the current data have been drawn from the same population and the
sample sizes are large.

4 Other dynamic borrowing methods

4.1 Pocock’s approach and related proposals

Pocock (1976) was the first to propose a general Bayesian procedure to incorporate informa-
tion from historical controls into a new trial. He assumed that the historical control parameter
is a biased realization of the new control parameter, that is, θ = θ0 + δ. The bias δ is assumed
to have a normal distribution with mean 0 and standard deviation σδ , i.e. δ ∼ N(0, σ 2

δ ), where
σ 2

δ is a measure of between-study heterogeneity. Given that it is difficult to estimate σ 2
δ based

on one historical control, Pocock recommended a pre-specified value for σδ , and a sensitivity
analysis based on different values for σδ .

Hobbs, Sargent and Carlin (2012) suggested to use plausible priors for σδ to avoid the
subjectivity of a pre-specified value, which led to the commensurate prior. The approach
is closely related to the MAP approach, and there exists a one-to-one relationship between
σ 2

δ in the commensurate prior and the between-study standard deviation τ in the MAP ap-
proach with one historical control, that is, σ 2

δ = 2τ 2. Using in fact the commensurate prior of
Hobbs, Sargent and Carlin (2012), Röver and Friede (2020) showed how the MAP approach
can effectively be used to borrow information from one historical study for the analysis of
the current study and, more generally, to combine information from two different sources.
The commensurate prior can be extended to multiple historical controls. Hobbs et al. (2011)
also proposed a new version of the power prior, i.e. the commensurate power prior, which
allows for different parameters for the historical and new data. The commensurate power
prior directly parameterizes the commensurability of the historical and new data (i.e., the
between-study variation) via a new commensurability parameter.

Another variation of Pocock’s proposal was suggested by Ohigashi et al. (2022) who used
a horseshoe prior when there are multiple historical control data. Suppose that the kth control
parameter is a possibly biased version of θ0, that is, θk = θ0 + δk . As for the power prior
approach it is expected that this bias is zero. The approach is then based on the following
assumption

δk ∼ N
(
0, α2

kτ
2)

,

with αk ∼ C+(0,1) and τ ∼ C+(0,1), where C+(0, σ 2) is a half-Cauchy prior on the positive
axis with scale parameter σ . When the current and historical controls are congruent, the
posterior distribution of δk will concentrate around zero. But when the kth historical control
is in conflict with the current control group, αk will be estimated far from zero. When many
historical controls are in conflict, then the global shrinkage parameter τ will be estimated as
large.
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4.2 The test-then-pool approach

Viele et al. (2014) proposed a frequentist approach to incorporate historical information into
a current study based on a test-then-pool strategy. For this approach, the historical data and
the current data are first compared using a frequentist test to determine whether there exist a
significant difference between the parameter in the historical control and the counterpart in
the new control. If not statistically significant, the analysis is done by pooling the current and
the historical control. Otherwise, the analysis will ignore the historical control.

5 Design aspects

5.1 Determining the necessary sample size

In an RCT, it is standard to compute the necessary sample size to show that with high proba-
bility a desired clinical effect of the experimental treatment, if it exists, can be demonstrated.
For relatively simple frequentist statistical tests, analytical formulas can be used for this pur-
pose. But, if the setting becomes a bit more complicated, as when mixed models are involved,
computer simulations are needed to determine the power for a given sample size and hence
such computations are also needed to determine the necessary sample size. For Bayesian
inference computer simulations are inevitable when it comes to determining the power and
the necessary sample size. Such calculations can show what the average effect is of borrow-
ing information from a historical study when repeating the current study. This is done in the
example below.

Planning the (fictitious) HOVON 43 study

In Section 6, we illustrate the use of dynamic borrowing methods on HOVON RCTs con-
ducted by the HOVON organization since 1988. The trials called HOVON 4, HOVON 4A,
HOVON 29, HOVON 42 and HOVON 42A had essentially the same control treatment for
treating patients who suffer from acute myeloid leukemia (AML) when their bone marrow
produces immature white blood cells (blasts) (van Rosmalen et al., 2018).

We now imagine that we wish to organize a future HOVON study, say HOVON 43, a suc-
cessor to the HOVON 42A study that resulted in a success rate of 83.7% for the experimental
arm to 82.6% for the control arm. The new experimental treatment is promising and it is
believed that it will improve the success rate of the control treatment by about 5%. Suppose
also that budget restrictions allow to allocate maximally 400 patients in each arm. The aim is
to compute the power under these assumptions.

One can compute the Bayesian power for a given study size by pre-posterior calculations.
Namely, one could sample from the future patient populations a large number of times, each
time computing the posterior probability that the 95% credible interval of the difference in
effect includes 0 or not. The proportion of times that this happens gives the power based on
the conditional approach discussed in Section 7. Formally, let θc and θe be the true proportions
in the current control and experimental arm, respectively and 	 = θe − θc. Then the power
is defined as the proportion of times the 95% CI for 	 excludes 0. This calculation was done
here under two scenarios:

• θc and θe were given a uniform prior, expressing no prior information on these proportions,
and

• θe is given a uniform prior, but for θc the power prior (equation (7) with an initial uniform
prior p0(θ) and a uniform prior for λ) is applied, thereby making use of the HOVON 42A
study results with 214 patients out of 259 showing CR.
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We also considered two settings with respect to the gain in success rate. In both cases
θc = 0.83 and θe = θc + 	, but in the first case we assumed a fixed 	 = 0.05, while in the
second case we made use of a design prior, that is, 	 ∼ N(0.05,0.012).

To determine the power, we sampled 1000 times from the assumed populations. Based on
a self-written BUGS program, we obtained a power of 0.53 for 	 fixed at 0.05 and ignoring
prior information on θc. This increased to a power of 0.65 when the HOVON 42A results were
incorporated into the analysis. For the design prior, the powers were respectively, 0.56 and
0.77. This shows that including historical information may increase the power considerably,
if the assumptions are correct.

5.2 Effective sample size

The impact of the historical data can be assessed using the above simulation-based ap-
proaches by comparing the necessary sample size under a non-informative prior for the con-
trol arm and that under the borrowing prior. This decrease in necessary sample size could be
considered as the sample size represented by the borrowing prior. A less computer-intensive
approach is to establish in a direct manner the equivalent number of fictitious subjects that
is represented by the borrowing prior. This has been called the prior effective sample size
(PESS) in the literature. Knowing the effective number of observations that impacts the anal-
ysis later on, allows to make sure that the historical information is not overwhelmingly large,
so that the conclusions from the current analysis are not dominated by historical data. On the
other hand, it is also useful to see whether it pays off to include historical information.

In the binomial and Gaussian (with σ known) case, the power in the conditional power
prior represents the fraction of the historical information that will be used for the analysis of
the current data. Namely, in these cases the PESS is easily calculated as λn0, where n0 is the
size of the historical study. For the joint and the modified power prior, one might use λ̂n0 for
PESS, where λ̂ is the prior mean or median of λ.

Several proposals have been made for the PESS of a known prior. Their starting point is the
notion of the equivalent amount of data in a conjugate prior. For instance, when a Beta(a, b)

prior is used for a binomial likelihood, the PESS is equal to the sum a + b (Morita, Thall and
Müller, 2008). The two methods discussed below reduce to the known PESS when applied to
the conjugate cases.

The proposal of Morita, Thall and Müller (2008) is based on the following reasoning. For a
given prior p(θ), look for the sample size m such that the distance is minimized between this
prior and the posterior qm(θ |y), obtained by combining a minimally informative prior (called
ε-information prior) q0(θ) and the likelihood of a sample y of size m. Since the information in
a distribution can be expressed as the curvature evaluated at a central value of the distribution,
the authors computed the distance between the curvatures (second derivatives) of (1) the
logarithm of p(θ) and (2) the logarithm of qm(θ |y) at the mean of p(θ). Their suggestion for
the PESS, PESSMTM , reduces to the classical PESS when applied to conjugate priors.

The proposal of Neuenschwander et al. (2020) builds on the previous approach, but drops
the ε-information prior from the calculation and integrates over the uncertainty of θ instead
evaluating the distance at one particular point. Their so-called expected local-information-
ratio (ELIR) method provides the PESS denoted here as PESSELIR that fulfills the predictive
consistency criterion, that is, for a sample of size n, the expected posterior ESS (PoESS) must
be the sum of PESS and n. Technically speaking, the PESSELIR is equal to the expectation of

the ratio of the information of p(θ), i(p(θ)) = −d2 logp(θ)

dθ2 , to the Fisher information of one

information unit, iF (θ) = −Ey1|θ {d2 logf (y1|θ)

dθ2 }. Namely,

PESSELIR = Eθ

{
i(p(θ))

iF (θ)

}
.
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The adjective ‘effective’ in PESS might be misleading since the effective impact of the
borrowing prior can only be evaluated a posteriori, that is, when the prior is combined with
the current data. A simple a posteriori calculation of the effective sample size was provided
by Malec (2001). He proposed as PoESS

PoESSM = n
Var(θ |data,non-informative prior)

Var(θ |data, informative prior)
− n.

The first part in the above expression expresses the total sample size when based on an infor-
mative prior compared to not using prior information. This value is subtracted with n, which
is the original sample size, so with a non-informative prior. Hence, PoESSM expresses the
gain in sample size by using the informative prior.

Wiesenfarth and Calderazzo (2020) pointed out that the above PESSs ignore the impact of
historical data on the new data, especially when there is prior-data conflict. Note that this is
also the case with the above simulation-based approach. Hence, these authors argue that an
effective sample size only makes sense when evaluating the impact of the prior on the actual
results after combining the historical with the current data, as with the PoESS of Malec. They
proposed the effective current sample size (ECSS), which accounts for the influence of the
prior on the newly observed data. The ECSS is calculated by finding the m that minimizes
the distance of mean squared errors of (1) a posterior combining a sample of size k and a
noninformative prior, and (2) a posterior combining a sample of size k − m and the prior of
interest.

The discrepancy approach of Jiang, Nie and Yuan (2023) provides an alternative for PESS.
Since the variance of the dynamic borrowing prior is inflated by a factor g(T ), the authors
defined the PESS simply as g(T )n0, where n0 is the sample size of the historical data set.

Thus, the simulation-based approaches and the proposals for the prior ESS may give us an
idea of the impact of the historical data. However, the proof of the pudding lies in the eating,
which in this case means that the ultimate impact of the historical data can only be seen when
they are actually combined with the current data. This is a trivial conclusion, though.

The R package RBesT (Weber et al., 2021) supports the calculation of PESSMTM and
PESSELIR (and a third one). It has been documented and will also be illustrated below that
these proposals often provide markedly different estimates for the PESS in non-conjugate
settings. Note that there is no publicly available software for the other discussed proposals.

6 Applications

In this section, we will illustrate the dynamic borrowing methods using two applications. The
first application examines selection criteria for historical controls and introduces the borrow-
ing methods using a simple binomial model, based on HOVON data with a binary outcome.
The second application highlights the computational aspects of the borrowing methods in a
more complex negative binomial regression model, using data on incontinence episodes with
a count outcome.

6.1 Application 1: HOVON data—binary outcome

6.1.1 Selection of historical trials. Here, we consider the five HOVON trials that were first
mentioned in Section 5. All of these trials had essentially the same control treatment for
AML. We consider here HOVON 42A as the current study that investigates the effect of, at
that time, a possible promising new treatment. More details on these studies can be found
in van Rosmalen et al. (2018). The control arms of the previous four trials provide histori-
cal information on the control arms to help estimate the efficacy of the investigational arm
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in HOVON 42A. The endpoint of interest in all trials is complete remission or complete
response (CR) from AML, which is a dichotomous outcome.

The HOVON trials were conducted over a long period of time. The first trial, HOVON 4,
was conducted between 1988 and 1992, HOVON 4A between 1992 and 1993, HOVON 29 be-
tween 1997 and 2000, HOVON 42 between 2002 and 2004, and HOVON 42A between 2004
and 2006. Over a 20-year period, techniques in bone-marrow transplantation and supportive
care for AML patients have considerably improved, for example, with new antibiotics, better
antimicrobial prophylaxis and treatment, better blood transfusion support, and other medical
care changes.

Pocock’s criteria suggest that HOVON 4 and HOVON 4A are too old to be acceptable for
the analysis of HOVON 42A and should therefore be discarded for our analysis. However,
the studies HOVON 29, HOVON 42 and HOVON 42A were conducted in a relatively short
period of time and the AML patients probably have received similar treatment and blood
transfusion support. Hence, we assumed that the distribution of patient characteristics was
similar across these three studies. For our analysis, this evaluation is important because we
have first considered a simple binomial model, which does not allow for covariates to adjust
for confounding.

In the investigational arm of HOVON 42A trial, 211 patients out of 252 (83.7%) showed
CR, while 214 out of 259 (82.6%) in the control arm. The CR rates in the control arms of
HOVON 29 and HOVON 42 trials were 86.3% (358 CR out of 437 patients) and 81.9% (598
CR out of 693 patients), respectively.

6.1.2 Applying the borrowing methods. We applied the power prior and the MAP approach
to estimate the treatment effect (difference in CR rates between treatment arm and control
arm) in HOVON 42A trial using: (a) a single historical (only HOVON 42) control arm, and
(b) multiple historical control arms (HOVON 29 and HOVON 42). The two extreme cases,
that is, complete pooling and ignoring the historical data, were also considered.

For the binomial case, the posterior of the MPP can be derived analytically as seen in
Sections 3.1.2 and 3.1.3. For the empirical Bayesian power prior (EBPP) approach, seen in
Section 3.2.1, the power parameter was first estimated and then the conditional power prior
based on this power was applied. For the MAP approach, a half-normal distribution with
mean zero and standard deviation 1, that is, HN(0, 1), was used for the between-trial standard
deviation. The analyses were done on log odds scale, but the results in the tables below are
given in differences in percentages. We used the JAGS software in combination with the R
package MCMCpack (Martin, Quinn and Park, 2011). JAGS was used to obtain the posterior
samples for the Current data, Pooled data, MAP, and Robust MAP methods, MCMCPack was
used for the power prior (EBPP, MPP, DMPP, RDMPP1 and RDMPP2) methods.

A single historical control. The results of the different borrowing methods are summarized
in Table 1. One can conclude that, taking into account the 95% CIs, the results are quite
similar across the different methods, with the EBPP and MPP approaches resulting in a treat-
ment effect estimate close to pooling, while the MAP and robust MAP approach provide an
estimate basically equal to that obtained by analyzing just the current data. Thus, the MAP
approaches tended to borrow less information from the historical study than the power prior
approaches. Further, all borrowing methods reduced the uncertainty of the estimated treat-
ment effect compared to using just the current data.

The posterior median of the power parameter was 0.57 with 95% equal-tail CI = [0.06,
0.98] for the MPP approach based on a Beta(1,1) prior for the power parameter. However,
the estimated power was almost 1 for EBPP, which led to basically pooling the data from the
historical control and current control arms.
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Table 1 HOVON data: Posterior summary measures of the treatment effect (difference in %) in the HOVON 42A
trial based on different methods using the control data from the HOVON 42 study

Method Mean Median SD 95% CI

Current data 1.10 1.10 3.29 (−5.41,7.54)

Pooled data 1.37 1.41 2.74 (−4.09,6.56)

EBPP 1.36 1.38 2.74 (−4.16,6.62)

MPP 1.31 1.41 2.91 (−4.51,6.94)

MAP 1.10 1.10 3.10 (−5.08,7.08)

Robust MAP 1.10 1.10 3.13 (−5.24,7.02)

CI: equal-tail credible interval; EBPP: Empirical Bayesian power prior; MAP: meta-analytic predictive; MPP:
modified power prior; SD: standard deviation.

Table 2 HOVON data: Posterior summary measures of the treatment effect (difference in %) in the HOVON 42A
trial based on different methods using the control data from the HOVON 29 and HOVON 42 studies

Method Mean Median SD 95% CI λ̂1 λ̂2

Current data 1.10 1.10 3.29 (−5.41,7.54) - -
Pooled data −0.73 −0.67 2.52 (−5.88,4.07) - -
EBPP 0.70 0.76 2.63 (−4.64,5.64) 0.12 0.99
MPP −0.22 −0.14 2.75 (−5.96,5.00) 0.48 0.55
DMPP −0.28 −0.25 2.63 (−5.57,4.75) 0.52 0.52
RDMPP1 −0.17 −0.10 2.74 (−5.69,5.02) 0.45 0.50
RDMPP2 −0.21 −0.12 2.67 (−5.47,4.96) 0.47 0.48
MAP 0.33 0.28 3.07 (−5.73,6.49) - -
Robust MAP 0.32 0.31 3.10 (−5.65,6.53) - -

The naïve estimate for the PoESS of a MPP is equal to λ̂n0, where n0 is the size of the
control arm in the HOVON 42 study (equal to 693) and λ̂ is the posterior median of the power.
Using the estimated powers, the PoESSs for EBPP and MPP were computed as 693 and 396,
respectively. Using the suggested procedure of Malec, we also computed the PoESS for the
different approaches, that is, pooling (115), EBPP (115), MPP (73), MAP (33) and robust
MAP (28). The above calculation was done using the formulas in Section 5.2.

Multiple historical controls. Adding the HOVON 29 study to the historical data reduced the
estimated treatment effect and even changed the sign for some of the methods, see Table 2.
The uncertainty of the estimated treatment effect (posterior SD & 95% CI) was reduced only
a bit. We conclude that the different dynamic approaches again indicate no treatment effect,
but also that (again) the MAP approaches tend to borrow less information from the historical
data than the power prior approaches. See Table 2 for the results. It is also of interest to look
at the estimated median powers for the power prior approaches. There are now two powers to
estimate: λ1 for HOVON 29 and λ2 for HOVON 42. As before, the estimated powers of the
EBPP are extreme, putting doubt on the usefulness of this approach. For the MAP approach,
the posterior median of τ (between-study standard deviation) was 0.25 on the log-odds scale,
indicating a moderate variability among the HOVON trials (Neuenschwander et al., 2010).

We have again taken the naïve estimate of the PoESS for the power prior approaches.
PoESSs based on λ̂1 and λ̂2 for EBPP, MPP, DMPP, RDMPP1, and RDMPP2 were 739,
589, 585, 541, and 539. PoESS values based on Malec’s method for the above power prior
approaches were 149, 114, 149, 117, and 137, respectively. The naïve PoESS estimates ex-
aggerate considerably the impact of the historical data when compared with Malec’s PoESS
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values. On the other hand, the naïve estimates of the PoESS for the robustified power prior
approaches were rightfully lower than the corresponding original power priors, which was
not the case for Malec’s estimates.

For the MAP approach, the MAP prior was approximated with a mixture of beta distribu-
tions using the RBesT package (Weber et al., 2021), which also computes the two proposals
for a prior ESS. The results were PESSMTM = 120 and PESSELIR = 41, which confirms that
different methods can yield significantly different PESS values as mentioned in Section 5.2.
PESSs for the robust MAP prior were PESSMTM = 77, and PESSELIR = 33. The PoESSs
based on Malec’s method were 41 and 35 for the MAP and the robust MAP priors, respec-
tively. As for the power prior approaches, the PESS value for the robustified MAP prior was
lower than for the corresponding MAP prior, and this was also the case here for Malec’s es-
timates. In addition, the PESS estimates for the MAP approaches appeared to overestimate
the importance of the historical data, but to a much lesser extent than for the naïve PESS
estimates of the power prior approaches. That there was quite some variability in the PESS
estimates for the MAP prior was already mentioned by Neuenschwander et al. (2020). These
authors argued though that only PESSELIR is appropriate. In contrast, the PoESSs based on
Malec’s method showed less variability.

6.2 Application 2: Incontinence episodes data—count outcome

We now apply the borrowing methods in a more complex setting. Three Phase III RCTs of
treatments for patients with overactive bladder (OAB) were considered, described in Khullar
et al. (2013) (RCT 1), Nitti et al. (2013) (RCT 2) and Herschorn et al. (2013) (RCT 3). The
primary endpoint was the number of incontinence episodes observed three days prior to week
12. The variance of the counts showed in all trials overdispersion at baseline and at week 12.
Therefore, we used a negative binomial regression model including sex, age group and the
number of incontinence episodes at baseline as covariates for the analysis of the primary
endpoint. In addition, we wished to incorporate the data of the control arms of RCT 1 and
RCT 2 to better estimate the effect of active treatment over the control treatment in RCT 3.
Baseline characteristics of the three studies are shown in Table 3.

The MAP approach can easily be applied to the negative binomial regression model. But
for the MPP approaches, there is the difficulty that there is no closed-form expression for the
normalizing constant. Hence, we needed to use a more sophisticated algorithm based on a
path sampling algorithm (Banbeta et al., 2023) in combination with a Metropolis–Hastings
algorithm using the R package MCMCpack. Note that the EBPP approach in this example

Table 3 Incontinence episodes data: Descriptive statistics for the three trials

Trial Khullar et al. Nitti et al. Herschorn et al.

Group Control Control Control Treatment
Number of subjects 291 325 262 256
Inc12, mean (SD) 4.6 (7.3) 5.3 (8.2) 4.5 (7.0) 3.4 (6.2)
Inc0, mean (SD) 8.0 (7.1) 9.0 (9.1) 7.3 (7.0) 7.5 (6.8)
Sex, n (%)
Female 243 (83.5) 270 (83.1) 211 (80.5) 204 (79.7)
Male 48 (16.5) 55 (16.9) 51 (19.5) 52 (20.3)
Age group, n (%)
< 65 years 177 (60.8) 191 (58.8) 165 (63.0) 148 (57.8)
≥ 65 years 114 (39.2) 134 (41.2) 97 (37.0) 108 (42.2)

Inc0, total number of incontinence events in the 3-day diary at baseline; Inc12, the number of incontinence
episodes observed three days prior to week 12; SD, standard deviation.
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Table 4 Posterior summary measures of the incidence rate ratio (IRR) of 50 mg mirabegron versus placebo
for patients with overactive bladder in the trial described in Herschorn et al. (2013), estimated using different
borrowing methods

Methods Mean Median SD 95% CI

Current data 0.731 0.724 0.105 (0.547,0.958)

Pooled data 0.797 0.792 0.087 (0.640,0.982)

MAP 0.755 0.751 0.096 (0.581,0.954)

RMAP 0.754 0.749 0.095 (0.581,0.955)

MPP Ind 0.768 0.762 0.098 (0.594,0.975)

DMPP 0.767 0.759 0.093 (0.596,0.960)

RDMPP1 0.764 0.757 0.095 (0.598,0.967)

RDMPP2 0.767 0.760 0.097 (0.594,0.980)

was not applied because we had difficulties obtaining the marginal likelihood to determine
the powers.

From Table 4, we can conclude that the dynamic borrowing methods resulted in quite
similar treatment effects, in-between the estimates obtained from complete pooling and by
using only the current data. Also, all borrowing methods reduced the uncertainty of the esti-
mated treatment effect compared to just using the current data. Furthermore, again estimates
of the powers were obtained for the different MPP approaches, showing a similar behavior
as before. We do not show the ESS values here, since they showed the same behavior as for
the HOVON example, i.e. quite some variability for the prior ESSs but less for the posterior
ESSs.

7 Operating characteristics of dynamic borrowing methods

Bayesian inference is based on the parameter space and not on the sample space. Un-
like the frequentist approach, it does not have a built-in mechanism to control its behavior
over repeated sampling. It is thus important to assess the operating characteristics (OCs),
Pr(Type I error) and Pr(Type II error), of the dynamic borrowing methods. From a regula-
tory perspective, any increase in Pr(Type I error) above the nominal 5% level may be a cause
for concern, and it is generally considered unethical to have a too high Pr(Type II error).

To calculate the OCs one must imagine what additional settings of data could have oc-
curred besides the setting that was observed. The question is how rich these fictitious settings
should be chosen. In the standard scenario, without historical data, the procedure to calculate
the OCs is clear. Namely, one imagines all possible alternative outcomes of the current study
(sample space) and then establishes how extreme the observed test statistic is compared to all
possible settings, either analytically or via simulation.

For the calculation of the OCs of dynamic borrowing methods, the main question is
whether alternative outcomes for the historical study should be considered part of the sample
space. In other words, should one condition on the historical data when evaluating the OCs
(i.e., a conditional approach) or should one determine the OCs by sampling simultaneously
the data of the historical studies and the current study (i.e., an unconditional approach)? In
both approaches the OCs can be calculated as proportions of repeatedly sampled data sets
yielding a particular result.

To choose among these options, we may consider the context of how the study is planned.
When the historical data are available at the design stage of the current study, the conditional
approach, where the sampling space is restricted to the current study, may seem more nat-
ural. An unconditional approach appears more logical when the historical and the current
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data are obtained simultaneously. Because the historical data are typically available at the
design stage, there is a tendency to prefer the conditional approach for dynamic borrowing
methods. However, such an approach may not be customary in other areas of statistics. For
instance, in group sequential trials the OCs are determined by considering all possible sam-
ple paths. After the first interim analysis there is no intention to control the conditional type
Pr(Type I error) given the data of the first stage (Quan et al., 2022). We could treat historical
data in clinical trials similarly to data observed before an interim analysis, by considering
historical and current data as part of a combined scientific procedure. Alternatively we could
see the historical data as fully external to the current study. We thus argue that the choice
between the conditional and the unconditional approach cannot be completely justified by
statistical arguments: it should depend on the perspective that is adopted when performing an
analysis.

To what extent can OCs illustrate the value of dynamic borrowing methods? It is natu-
ral to assume that historical data can provide a gain in statistical power while maintaining
the Pr(Type I error) below the nominal significance level when the historical data are similar
to the current data, and that there might be a loss in statistical power and/or an inflation of
Pr(Type I error) in case of a prior-data conflict. Unfortunately this intuition does not fully
hold under a conditional approach. Kopp-Schneider et al. showed that it is not possible to
gain power while controlling Pr(Type I error) (Kopp-Schneider, Calderazzo and Wiesenfarth,
2020). A simplified version of their argument goes as follows. Under a conditional approach,
including historical data will affect the results of hypothesis testing based on borrowing meth-
ods only through changes of the rejection region, which will be part of the current data sample
space. For the current data, there are efficient statistical tests available (which cannot be im-
proved upon in terms of the OCs), which have a rejection region defined on the current data
sample space. Including historical data will lead to a different test, with a different rejec-
tion region, but this cannot lead to a substantial improvement of the OCs when these OCs
are defined on the same sample space. The result of Kopp-Schneider et al. means that with
a conditional approach, it is difficult to show any value of including historical data in an
analysis.

In the unconditional approach, assumptions and/or scenarios are needed for the values of
the model parameters of the historical data and how these may differ from the new trial. If
we make the (slightly unrealistic) assumption that the model parameters of the historical data
and the current data are identical, gains in power while controlling Type I error rate are pos-
sible. Such gains in power are, however, generally not possible if we insist on controlling
Pr(Type I error) for all possible values of the model parameters of the historical data and the
current data and the difference between these parameters. In our own research group, we have
obtained useful comparisons of borrowing methods using an unconditional approach with a
meta-analytic model for the population parameters of the historical trials and the current trial.
OCs were calculated by sampling first population parameters for each trial, and then gener-
ating data given the sampled parameters per study (van Rosmalen et al., 2018). The variance
of the meta-analytic model, which represents the amount of between-trial heterogeneity, can
then be varied in scenarios to investigate the effects of differences between trials. Using this
setup, we found that several borrowing methods are able to increase the statistical power for
the treatment at a usually minor increase in Pr(Type I error). In this case, including historical
data did provide some advantage, but the gains were limited and dependent on assumptions
regarding the comparability of the historical data and the current data.

There currently is no consensus on how OCs of dynamic borrowing methods should be
assessed. Some argue that, due to the possibility of a prior-data conflict, borrowing histor-
ical data always yields an increase in Pr(Type I error), which should be balanced against
the increase in statistical power, see, for example, Viele et al. (2014). According to that line
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of reasoning, some degree of inflation of Pr(Type I error) should be considered acceptable,
although it is unclear what the upper limit (greater than the α of 0.05) should be. A more
purist point of view is that any inflation of Pr(Type I error) is not acceptable, at least not for
regulatory drug approval, and that therefore historical data and dynamic borrowing methods
should not be used. There are some methods that can assess trade-offs between increases in
statistical power and increases in Pr(Type I error), such as a calibrated power metric (Banbeta
et al., 2019) and a decision-theoretic approach that maximizes a utility function after spec-
ifying costs for committing a Type I error and a Type II error (Caderazzo, Wiesenfarth and
Kopp-Schneider, 2022). Nevertheless it is clear that any simulation should at least consider
the possibility of a prior-data conflict, for example by evaluating various scenarios for the dif-
ference between historical and current data. The historical data should be chosen carefully,
so that we may expect any prior-data conflict to be relatively small. We thus recommend that
the breadth of scenarios is informed by a substantive assessment of the comparability of the
historical trials and the current trial, for example, in terms of study design, patient charac-
teristics, intervention and outcome measures. Furthermore, when reporting the results of a
simulation of dynamic borrowing methods, it should be clear from the publication how the
OCs are calculated and what the sample space is.

Due to the difficulties associated with OCs of dynamic borrowing methods, some re-
searchers prefer to focus on other metrics, such as the bias in the estimated treatment effect,
its mean square error and the width of the 95% CI of the treatment effect. Results of these
metrics have been reported in many publications, see, for example, Viele et al. (2014). Com-
pared to an analysis without historical data, most dynamic borrowing methods reduce the
width of the posterior CIs, although the gains are sometimes limited. If the historical data
are biased, then the estimates of the treatment effect of dynamic borrowing methods will
generally also be biased, but typically less so than with naïve pooling of data sources. The
mean square error, which combines bias and variance, may be reduced by using dynamic
borrowing methods, because the reduction in variance often outweighs the bias. Viele et al.
(2014) report that there is a sweet spot in the parameter values, where the historical data are
sufficiently similar to the current data, such that the inclusion of historical data reduces the
mean square error and the Pr(Type I error) and increases the power. Note however that the
calculation of most of these metrics also requires choosing a sample space, and that there
may thus be theoretical debate on how they should be calculated.

8 Software

Currently, there are multiple R packages or R scripts available for the implementation of the
methods discussed in this paper.

8.1 Software for the power prior approach

As seen in Section 3.1.1, determining the conditional power prior and combining it with the
likelihood of the current data is straightforward with standard Bayesian software such as
Win/OpenBUGS, JAGS, etc. The same is true for the joint power prior, please consult the
website reported at the end of the paper for some examples. More problematic is the compu-
tation of the MPP, as the normalizing constant needs to be determined at each iteration of the
MCMC program. Hence, the MPP is often implemented in a Metropolis–Hastings algorithm,
which can be done using the R package MCMCpack. R programs for the binomial, Poisson,
negative binomial models and regression models can be found at the same website. The scal-
ing constant of the MPP has a closed-form expression for the binomial model, Poisson and
Gaussian model whereas for the negative binomial model we used a path sampling algorithm
prior to posterior sampling.
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In Section 3.2.2, we discussed two approaches to fix the power for the conditional power
prior approach using a discrepancy function. For the approach suggested by Haddad et al.
(Haddad et al., 2017; Haddad, 2020), Balcome et al. developed the R package bayesDP
(Balcome et al., 2022), which makes use of MCMCpack. For the elastic power prior ap-
proach, the R scripts can be found (Jiang, Nie and Yuan, 2023) at https://onlinelibrary.wiley.
com/doi/10.1111/biom.13551.

The R package psborrow https://CRAN.R-project.org/package=psborrow is a tool that
combines propensity scores and the commensurate prior approach discussed in Section 4 and
is based on Liu et al. (2019). The recent extension psborrow2 is the successor of psborrow.
For more information we refer to https://genentech.github.io/psborrow2/develop/index.html.

8.2 Software for the MAP prior approach

The MAP approach is basically a hierarchical model, therefore its software implementation
is less challenging than that of the power prior. Software packages such as Win/OpenBUGS,
JAGS and Stan can be used for its implementation. The RBesT package is based on the
package Stan and was developed specifically for the MAP prior. The ess function of the
RBesT package was used to calculate ESSMTM and PESSELIR. The RBesT package offers
also to approximate any uni-dimensional posterior that has been generated by a sampling
algorithm by a mixture of conjugate distributions, which is quite a nice feature.

The R package bayesmeta allows for a Bayesian random effects meta-analysis which pro-
vides shrinkage estimates that can be used for dynamic borrowing for the normal-normal
hierarchical case without invoking an MCMC algorithm.

See https://rdocumentation.org/packages/bayesmeta/versions/3.3, but also Röver (2020)
and Röver and Friede (2023).

9 Discussion

In this paper, we have focused on the two main approaches for dynamic borrowing informa-
tion from historical studies: the power prior approach and the meta-analytic predictive prior
approach. The two approaches seem quite different in their philosophy and setup. The power
prior was first suggested when only a single historical study was available, while the MAP
prior works best with more than one historical study. Both approaches have been general-
ized to a great variety of settings, such as generalized linear models, generalized linear mixed
models, survival models, frailty models, multivariate models and nonlinear models. Although
their assumptions and mechanics are quite different, Chen and Ibrahim (2006) showed that
for the Gaussian case there is a mathematical relationship between the conditional power
prior and the MAP prior developed four years later. Our experience, confirmed by findings
in the literature (Gravestock and Held, 2017; Hupf et al., 2021), shows that the power prior
approach tends to borrow more information from the historical studies than the MAP prior
approach. In our analyses, the choice of the prior of λ had a non-negligible impact on its
posterior. Finally, it appears that the empirical Bayes approach tends to produce too extreme
values of the power parameter.

We have also shown in this review that there is a great variety of alternative approaches to
dynamic borrowing, but they all are based on evaluating the discrepancy between the histori-
cal and current data to determine how much the historical data must be downplayed.

Having explored the different dynamic borrowing approaches, an important question pops
up: ‘Which approach to choose in practice?’ The power prior approaches have been devel-
oped initially for a single historical study, but as seen here can be generalized easily, at least in
principle, to multiple historical studies. The MAP prior approaches have been developed for

https://onlinelibrary.wiley.com/doi/10.1111/biom.13551
https://CRAN.R-project.org/package=psborrow
https://genentech.github.io/psborrow2/develop/index.html
https://rdocumentation.org/packages/bayesmeta/versions/3.3
https://onlinelibrary.wiley.com/doi/10.1111/biom.13551
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applications with multiple historical studies, but can work also when there is a single histori-
cal study. The calculation of the normalizing constant of the MPP becomes computationally
prohibitive in general, while the inter-study variance τ 2 needs a well-chosen informative prior
in order for the MAP prior approach to be effective. Apart from the aforementioned compu-
tational limitations, it is difficult to choose the best approach in general. What seems clear is
that robustifying the priors is a necessity in practice to deal with the possibility of a prior-data
conflict.

The dynamic borrowing methods are becoming increasingly popular in pharmaceutical
research. Indeed, they allow to reduce the necessary sample size and therefore to reduce the
risks for the recruited patients and to reduce costs. In this research area, regulatory authorities
play a major role, since they decide on the registration of the newly developed drugs and serve
as guardians to avoid accepting drugs that by chance show a positive result. This means that
they are particularly worried about inflating the Type I error rate. For this reason they insist on
taking frequentist criteria into account to judge the dynamic borrowing approaches. However,
it has been shown that, while the borrowing methods may imply a considerable increase in
power, this benefit will typically come with an increase of Pr(Type I error), depending also
on what approach is used to calculate Pr(Type I error) and power.

Numerous simulation studies, conditional on the historical data or unconditional, have
been performed to conclude that there is no free lunch. So one might think that this implies
the end of the dynamic borrowing methods. However, a potential way out to this deadlock
is not to focus primarily on the Pr(Type I error) but to use a decision-theoretic approach as
suggested in Caderazzo, Wiesenfarth and Kopp-Schneider (2022). But, the question is also
whether the frequentist criteria are the only beatific criteria. After all they refer to future
studies, which probably will never happen in life (the classical argument for Bayesians to
criticize the frequentist principles). Luckily, one can give several practical examples where
the regulators have taken a less strict frequentist viewpoint. Indeed, an example of an early
success of a Bayesian approach that makes use of historical information can be found in
Recht et al. (2009).

In that paper, Recht et al. describe the process of demonstrating the safety of a production
process of a recombinant factor VIII product called ReFacto Antihemophilic Factor (AF)�,
for the treatment of hemophilia A patients. Refacto AF� is manufactured in a more sophis-
ticated way than the previous version called Refacto�. The company wished to demonstrate
safety of Refacto AF�, but the initial FDA requirements for a successful study revealed un-
realistic necessary sample sizes of more than 10,000 patients. For this reason, the company
suggested an alternative, Bayesian approach, to reduce the necessary sample size by borrow-
ing information from the past and to make use of published data on pivotal registration trials
for four licensed products. These data produced a beta posterior distribution from which they
suggested a Bayesian criterion for the coming study to be successful. This was accepted by
the FDA. Using historical data from earlier studies with Refacto� and combining it with the
data of a study of 90 patients, the company was able to show the safety of the new manufac-
turing process, and obtained approval from FDA.

In general, the acceptance of Bayesian methods in clinical trial research goes slow. The
regulators worry that the prior distributions are based on favorable data for the experimen-
tal drug, so that bias and an inflated Type I error rate are caused. As a result, the Bayesian
approach is in general tolerated and accepted only when conventional clinical trial designs
are impossible to implement in practice. This is the case for orphan diseases and pediatric
studies, as mentioned in the Introduction. For medical devices the Bayesian approach is gen-
erally accepted by the regulatory authorities assuming, of course, the same rigorous setup
and conduct as with a frequentist approach, see, for example, Haddad (2020). Moreover, the
Bayesian approach often is the recommended approach to deal with small sample issues.
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Price and Scott (2021) described a recent initiative of FDA to discuss the feasibility and
acceptance of complex innovative trial designs, which are rarely used in new drug applica-
tions. Since conventional trial designs are becoming increasingly expensive and require often
many patients, the FDA realized that in a number of cases alternative designs may be needed
to accelerate product development or to make the product available at an earlier stage. To
this end, the FDA has set up the Complex Innovative Trial Design Pilot Meeting Program.
Sponsors may suggest in such a meeting an innovative design for their clinical trial which
can then be discussed with the FDA for their acceptance.

Price and Scott (2021) described five accepted innovative designs. All of them are
Bayesian in nature and make use of historical data. This initiative clearly shows the increas-
ing interest of sponsors and regulators to embark on Bayesian clinical trial designs and to
make use of the above discussed dynamic borrowing methods. For an additional reference
that illustrates the usefulness and increasing popularity of Bayesian clinical trial designs, see
Carlin and Nollevaux (2022).

Finally, note that most of the programs used in this paper can be found on the website of
I-Biostat, that is, https://ibiostat.be/online-resources/bayesian.
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