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Abstract

Many statistical models have been proposed in the literature for the
analysis of longitudinal data. One may propose to model two or more
correlated longitudinal processes simultaneously, with a goal of under-
standing their association over time. Joint modeling is then required to
carefully study the association structure among the outcomes as well as
drawing joint inferences about the different outcomes. In this study, we
sought to model the associations among six nutrition outcomes while cir-
cumventing the computational challenge posed by their clustered and high
dimensional nature. We analyzed data from a 2×2 randomized crossover
trial conducted in Kenya, to compare the effect of high-dose and low-dose
iodine in household salt on systolic blood pressure (SBP) and diastolic
blood pressure (DBP) in women of reproductive age and their household
matching pair of school aged children. Two additional outcomes, namely
urinary iodine concentration (UIC) in women and children were measured
repeatedly to monitor the amount of iodine excreted through urine. We
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extended the model proposed by Mwangi et al. (2021) allowing flexible
piecewise joint models for six outcomes to depend on separate random
effects, which are themselves correlated. This entailed fitting 15 bivariate
general linear mixed models and deriving inference for the joint model us-
ing pseudo-likelihood theory. We analyzed the outcomes separately and
jointly using piecewise linear mixed effects (PLME) model and further val-
idated the results using current state-of-the-art Jones & Kenward (2014)
methodology (JKME model) used for analyzing randomized crossover tri-
als. The results indicate that high-dose iodine in salt significantly reduced
blood pressure compared to low-dose iodine in salt. Estimates for the ran-
dom effects and residual error components showed that SBP and DBP had
strong positive correlation, with effect of the random slope indicating that
significantly related outcomes are strongly associated in their evolution.
There was a moderately strong inverse relationship between evolutions
of UIC and blood pressure both in women and children. These findings
confirmed the original hypothesis that high-dose iodine salt has signif-
icant lowering effect on blood pressure. We further sought to evaluate
the performance of our proposed PLME model against the widely used
JKME model, within the multivariate joint modeling framework through
a simulation study mimicking a 2×2 crossover design. From our findings,
the multivariate joint PLME model performed exeptionally well both in
estimation of random effects matrix (G) and hessian matrix (H), allow-
ing satifactory model convergence during estimation. It allowed a more
complex fit to the data with both random intercepts and slopes effects
compared to the multivariate joint JKME model that allowed for ran-
dom intercepts only. When a hierarchical view-point is adopted, in the
sense that outcomes are specified conditionally upon random effects, the
variance-covariance matrix of the random effects must be positive-definite
(Oliveira et al., 2017). In some cases, additional random effects could
explain much variability in the data, thus improving precision in esti-
mation of the estimands (effect size) parameters. The key highlight in
this evaluation shows that multivariate joint JKME model is a powerful
tool especially while fitting mixed models with random intercepts only, in
crossover design settings. Addition of random slopes may lead to model
compexities in some cases, resulting in unsatifactory model convergence
during estimation. To circumvent convergence pitfalls, extention of JKME
model to PLME model allows a more flexible fit to the data (generated
from crossover design settings), especially in the multivariate joint mod-
eling framework.

Keywords:longitudinal, repeated measures, crossover design, piecewise model

1 Introduction

Many statistical models have been proposed in the literature for the analysis of
longitudinal data. One may propose to model two or more correlated longitu-
dinal processes simultaneously, with a goal of understanding their association
over time. For example, in many AIDS studies both viral load and CD4 are
measured repeatedly over time which are known to be correlated. Joint mod-
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eling is required and gives more efficient inference than separate analyses when
we are interested in the association structure among the outcomes or when we
are interested in drawing joint inferences about the different outcomes (Molen-
berghs & Verbeke, 2005; Fitzmaurice et al., 2008; Tsiatis & Davidian, 2004).
There is no simple methodology that accommodates all facets of repeated mea-
sures experiments and surveys. In some cases, repeated measurements may be
recorded at equally spaced times, while others at irregularly spaced times. Some
subjects may experience drop outs as the experiment progresses, which may be
random, or may be caused by the treatment the subject is receiving. In some
experiments, the repeated measures factor can be randomized, while in others,
the repeated measures factor is time or space and cannot be randomized. In
addition, the outcome variable or variables may be continuous, discrete, or a
combination of the two, leading to different possibilities for drawing inference
from the experiment or survey. Methodologies have been developed for continu-
ous, Gaussian data, as well as for non-Gaussian settings, such as binary, count,
and ordinal data. Overviews can be found in Verbeke & Molenberghs (2009) for
the Gaussian case and in Molenberghs & Verbeke (2005) for the non-Gaussian
setting

A number of longitudinal cohort studies on hypertension have been con-
ducted (Fan et al., 2018; Dregan et al., 2016 and Wang et al., 2006). The
objective was to monitor the trend in blood pressure (BP) measurements over
time. BP is a measure of the force that the circulating blood exerts on the walls
of the main arteries. It is described by two measured quantities considered im-
portant biomarkers of hypertension, namely, systolic blood pressure (SBP) and
diastolic blood pressure (DBP). The pressure wave transmitted along the arter-
ies with each heartbeat is easily felt as the pulse. Systolic pressure is created
by the heart contracting and the diastolic pressure is measured as the heart fills
(Lawes et al., 2004). BP serves as a biomarker for the disease hypertension (TD
et al., 2009). Hypertension or High blood pressure (HBP) has been identified as
the leading global risk for mortality worldwide, and is ranked third as a cause
of disability-adjusted life-years (Hendriks et al., 2012) and responsible for 13%
of deaths globally (WHO, 2009). Hypertension affects approximately 20% of
adults worldwide and is a major, but modifiable, contributory factor to cardio-
vascular disease such as coronary heart disease and stroke (Parker & Glasziou,
2009). It is a chronic disease known to be a risk factor for the development of
a number of disease processes. Its progression is strongly associated with func-
tional and structural cardiac and vascular abnormalities that damage the heart,
kidneys, brain, vasculature, and other organs and lead to premature morbidity
and death if not treated properly (Giles et al., 2005). Preventive interventions
have been proposed to mitigate on the risk of developing cardiovascular dis-
eases. One such initiative is the hypertension follow up study described in the
next section, where two primary outcomes i.e. SBP and DBP, were measured
repeatedly for each mother-child pair at every household and the focus was to
investigate changes in the two outcomes over time as well as to detect the role of
two dosages of iodine treatment associated with a more rapid progression. One
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secondary outcome namely urinary iodine concentration (UIC) was measured
repeatedly to monitor the amount of iodine excreted through urine. In addition
to accounting for between and within-subject variations, a flexible joint mixed
modeling approach is implemented to account for the possible correlation in the
six (three mother-child paired) outcomes for valid inferences.

In statistical literature, a number of approaches to joint modeling of multiple
outcomes, where some or all of the outcomes are ascertained longitudinally, have
been proposed, such as multivariate marginal models (Molenberghs & Verbeke,
2005), conditional models (Cox & Wermuth, 1992), shared parameter model
(Tsiatis & Davidian, 2004), and joint random effects model (Verbeke & Molen-
berghs, 2009). In this article, we use the joint random-effects model that allows
more fexible correlation patterns (Fieuws & Verbeke, 2004; Chakraborty et al.,
2003; Molenberghs & Verbeke, 2005; Fitzmaurice et al., 2008) in order to si-
multaneously model maternal-child paired SBP, DBP and UIC processes. We
extend the model proposed by Mwangi et al. (2021) allowing a flexible piecewise
models for the six outcomes to depend on separate random effects, which are
themselves correlated. We implemented a piecewise randomly correlated joint
model of multivariate longitudinal outcomes within the context of a random-
ized crossover trial. To validate our findings, we compared our model results
to the current widely used state-of-the-art Jones & Kenward (2014) model for
analyzing randomized crossover trials. We futher conduct a simulation study
comparing performance of our proposed piecewise linear mixed-effects (PLME)
model to the Jones & Kenwards mixed-effects (JKME) model. The remainder
of the article is organized as follows: Section 2 describes the motivating case
study, Section 3 gives an overview of methods applied, Section 4 presents the
analysis results, and finally Section 5 offers concluding remarks.

2 Motivating Case Study

A 2-arm, double blind, randomized 6 weeks cross-over trial to compare the ef-
fect of high-dose (84mg/kg) and low-dose (50mg/kg) iodine in household salt,
on systolic and diastolic blood pressure in women of reproductive age (15 to
49 years) and their household matching pair of school aged children (8 to 12
years), was conducted in Kenya between 22-Oct-2013 and 29-Nov-2013, with a
first paper already published by Bukania et al. (2015). The aim of the study was
to investigate the role of iodine intake in modulating blood pressure. The two
iodine dosages (high and low) were extreme ranges within the Kenyan manda-
tory salt iodization level (50-84mg/kg), (Kenji et al., 2003). A total of 174
mother-child pair randomized into two independent treatment sequences were
followed for six weeks, constituting two treatment periods of three weeks each
with no washout between each treatment period. The absence of a washout
period, contrary to standard cross-over design studies, was informed by ethi-
cal issues. It was considered unethical denying participants iodized household
salts because of potential health risks associated with non-consumption of io-
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dine fortified salt (Hetzel, 2004; Jooste et al., 2001). In the first sequence,
85 participants received high-dose iodine salt during the first period and later
swapped to low-dose iodine salt during the second period. In the second se-
quence, 89 participants received low-dose iodine salt during the first period and
later swapped to high-dose iodine salt during the second period. Treatment 1,
denoted as Tr1, represents high-dose iodine salt and Treatment 2, denoted as
Tr0, represents low-dose iodine salt. Each participant was expected to use the
assigned treatment every day. Table 1 summarizes the sample design.

Table 1: Cross-over design

Period
Sequence Subjects 1 2
1 n = 85 Tr1 Tr0
2 n = 89 Tr0 Tr1

Two primary outcome measurements (SBP and DBP) and one secondary
outcome (UIC) were measured repeatedly over the duration of study. To de-
termine the duration effect, the outcomes for each individual were measured at
seven equally spaced time-points; baseline (week 0), week 1, and then through
to week 6. The expected total number of measurements for each outcome across
the seven time-points was 1218. However, due to drop-out and failure to attend
some scheduled appointments, there were varying number of missing values in
the dataset. Among women, 90 matched measurements for SBP and DBP were
missing with 111 for UIC, whereas for children, 100 matched measurements for
SBP and DBP were missing with 122 for UIC. Appendix 1 presents the list of
variables under consideration.

3 Joint Modeling: Random-Effects Approach

3.1 Univariate Mixed Models

Longitudinal data are (often non-uniformly) ordered in time, and missing data
are very common. Furthermore, serial measurements of one subject are poten-
tially correlated, and the between-subject variance is not constant over time
due to possibly diverging trajectories (Bernal-Rusiel et al., 2013). The linear
mixed-effects model (LMM) is a flexible model to handle such data. (Laird &
Ware, 1982)

Let yij denote the jth measurement, j = 1, 2, . . . , ni; available for the ith

individual, i = 1, 2, . . . , N . The algebraic notation of the LMM can be expressed
in vector form as:
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Yi = Xiβ + Zibi + ϵi, (1)

where Yi is an ni×1 dimensional vector of observed outcomes (yi1, yi2, . . . , yini).
Xi is a ni×p matrix of known covariates associated with a p-dimensional vector
β of unknown fixed-effects parameters. Zi is a ni×q matrix of known covariates,
bi ∼ N(0, G) is the q-dimensional vector of unknown random-effects parame-
ters, ϵi ∼ N(0, Ri) is the vector of unknown residual error components. Ri is
an ni × ni covariance matrix that depends on i only through its dimension ni.
(In case of conditional independence, we have Ri = σ2Ini). See Bernal-Rusiel
et al. (2013), Verbeke & Molenberghs (2000, 2009) for the real-life application
of the LME model. Restricted maximum likelihood (ReML) is used to estimate
all parameters in the marginal model. Computational details are found in Lind-
strom & Bates (1988), Laird & Ware (1982) and Molenberghs & Verbeke (2005).
Details on hypothesis testing can be found in Bernal-Rusiel et al. (2013).

3.1.1 Modeling Crossover Data

This article considers the simplest design of crossover studies, with a two-
sequence and two-period design for comparing two treatments (or 2×2). In
crossover clinical trials with one active (A) and one placebo/standard (B) treat-
ment, participants are randomly assigned to a sequence of AB or BA (Grizzle
1965). That is, all participants are supposed to take one treatment during the
first period and the other treatment during the second period in a random or-
der. Let Si denote a randomization assignment sequence indicator for the ith

participant (i = 1, 2, . . . , N), with Si = 0 denoting sequence AB and Si = 1 de-
noting sequence BA. Furthermore, let Tij = 0 if the ith participant is assigned
to treatment A at time tj (j = 1, 2, . . . , ni), and Tij = 1 if assigned to treatment
B. Pj = 0 for all measurements during the first period and Pj = 1 during the
second period. yij is the outcome variable for the ith participant assigned to
treatment Tij , during period Pj at time tj .

Next, we implement the Jones & Kenward mixed model and piecewise lin-
ear mixed model in the identification and estimation of parameters under the
following Soltanian & Faghihzadeh (2012) assumptions:
(I) Random assignment: Pre-treatment variables including potential outcome
and baseline variables are independent of randomization.
(II) Absence of carryover effects.
(III) Fixed compliance: A subject would have the same compliance behaviour
across the two periods in each sequence.
(IV) Fixed treatment effect: Each treatment has a fixed effect across the two
periods, that is, there is no interaction between treatment and period.

Assumptions I, II and III, applies to both models. Assumption IV applies to
the Jones & Kenward mixed model, but can be relaxed for the piecewise linear
mixed model.
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3.1.2 Jones and Kenward Mixed Effects Model

The Jones & Kenward mixed effects (JKME) model is an extention to Grizzle
(1965) with inclusion of two interaction terms. The algebraic notation for the
JKME model is given by:

Yij = β0 + β1tj + β2Pj + β3Pjtj + β4Tij + β5Tijtj + bi0 + bi1tj + ϵij , (2)

Here, bi0 is the random intercept and bi1 is the random slope (averaged over
first and second period) for the ith participant, ϵij is the random error in the
measurement for the ith participant assigned to treatment Tij , during period
Pj , at time tj . The assumptions for the random elements are:[

bi0
bi1

]
∼ MVN

([
0
0

]
,

[
σ2
0 σ0σ1

σ0σ1 σ2
1

])
, (3)

and ϵij ∼ N(0, σ2). The components in [bi0, bi1]
′ and ϵij are independent.

The vector [β0, β1, .., βp]
′ of fixed effects describes the average evolution of the

outcome variable, and the vector [bi0, bi1]
′ of random effects describes how the

profile of the ith participant deviates from the average evolution.

3.1.3 Piecewise Linear Mixed Effects Model

The piecewise linear mixed effects (PLME) model has an extended parametriza-
tion beyond the Jones & Kenward model. The fact that the model does not
assume fixed treatment effect across periods makes it flexible in modeling non-
linear trends (in different periodic phases), without putting contraints on the
curve evolution. The algebraic notation for the PLME model is given by:

Yij = β0 + β1tj + β2Pj + β3Pjtj + β4Tij + β5Tijtj + β6PjTij + β7PjTijtj
+bi0 + bi1tj(1− Pj) + bi2tjPj + ϵij ,

(4)
bi0 is the random intercept for the ith participant, bi1 is the random prechange

slope for the ith participant during the first period (Pj=0), bi2 is the random
postchange slope for the ith participant during the second period (Pj=1), ϵij is
the random error in the measurement for the ith participant assigned to treat-
ment Tij , during period Pj , at time tj . Note that the fixed intercepts and slopes
are period specific, but for the random effects only the slopes are period-specific.
The assumptions for the random elements are:bi0bi1

bi2

 ∼ MVN

00
0

 ,

 σ2
0 σ0σ1 σ0σ2

σ0σ1 σ2
1 σ1σ2

σ0σ2 σ1σ2 σ2
2

, (5)

and ϵij ∼ N(0, σ2). The components in [bi0, bi1, bi2]
′ and ϵij are independent.

We further examine the time, treatment and period effects on the mean
outcome profile for model (4). At tj=t4 it can be shown that β2=-t4β3 and
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β6=-t4β7. For implementation of a two piecewise linear spline model, the linear
mean profile plot was fitted over time tj with a knot at time t4, where the curve
was expected to change, hence a time spline t∗j for all tj>t4 was created:

t∗j =

{
0, if tj≤t4.

tj - t4, if tj>t4.
(6)

Using two time variables, tj and t∗j , two separate lines were fitted before and
after t4.

3.2 Joint Mixed Model

In a multivariate context, more than one outcome variable is observed at each
occasion. Hence, we measure a vector of outcomes, Wi, at each occasion and
thus we can use equation (1), where:

bi ∼ MVN(0, G)

ϵi = [ϵi1, . . . , ϵini
]T ∼ MVN(0, Ri)

Cov(bi, ϵi) = 0

Here the assumption of conditional independence does not hold because, given
bi, the observations measured at the same occasion on the same individual might
be correlated. As a result,

Ri = Ini ⊗ Σm×m (7)

where Σm×m is the variance covariance matrix of the m outcome variables con-
ditional on bi. The joint model assumes a mixed model for each outcome, and
these univariate models are combined through specification of a joint multivari-
ate distribution for all random effects.

Consider the problem in its simplest form when we have only two continous
outcomes W1 and W2 measured over time for a number of subjects. Each of the
variables is described using the linear mixed effects model:

W1i(t) = µ1i(t) + b01i + b11i(t) + ϵ1i(t) (8)

W2i(t) = µ2i(t) + b02i + b12i(t) + ϵ2i(t) (9)

where µ1i(t) and µ2i(t) refer to the average evolutions, b01i and b02i represent
subject-specific random intercepts, b11i(t) and b12i(t) are random slopes that
describe how the subject specific profiles deviate from the average evolution
for the two outcomes, ϵ1i(t) and ϵ2i(t) are residual error terms. Both outcome
trajectories are tied together through a joint distribution for the random effects,
as:
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
b01i
b11i
b02i
b12i

 ∼ MVN(0, G) (10)

where the variance-covariance matrix for the random effects, G, has the
following structure:

σ2
01i σ01iσ11i σ01iσ02i σ01iσ12i

σ11iσ01i σ2
11i σ11iσ02i σ11iσ12i

σ02iσ01i σ02iσ11i σ2
02i σ02iσ12i

σ12iσ01i σ12iσ11i σ12iσ02i σ2
12i

 (11)

The error components for each outcome, which are independent of the random
effects, can be taken to be uncorrelated (σ12 = 0) and not associated with the
random effects, such that the error components are defined as,[

ϵ1i
ϵ2i

]
∼ MVN(

[
0
0

]
,

[
σ2
1 σ12

σ12 σ2
2

]
) (12)

Assuming σ12 = 0 implies that, conditional on the random effects, both out-
come trajectories are independent. In which case the identity matrix with size
ni is used for the covariance matrix. The assumption of conditional indepen-
dence could alternatively be relaxed and the random errors could be taken to be
dependent by allowing for a nonzero covariance between the error components
σ12 ̸= 0.

Association of the evolution (AE) of W1 and W2 is typically derived
from the covariance matrix of the random effects, given by:

AE =
Cov(b11, b12)√

Var(b11)
√
Var(b12)

=
σb11b12√
σb11

√
σb12

(13)

It summarizes how the slope of W1 (denoted as b11) is associated with the slope
of W2 (denoted as b12).

Evolution of the Association (EA): The joint model also shows how the
association between the outcomes evolves over time. The marginal correlation
given random effects (conditional correlation) between W1 and W2 at time t is
given as:

EA =
Cov(W1(t),W2(t))√

Var(W1(t))
√

Var(W2(t))
=

σb01b02 + tσb01b12 + tσb02b11 + t2σb11b12 + σ12√
σ2
b01

+ 2tσb01b11 + t2σ2
b11

+ σ2
1

√
σ2
b02

+ 2tσb02b12 + t2σ2
b12 + σ2

2

(14)
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It summarizes how the association between W1 and W2 evolves over time (Gao
et al. (2017)).

The smaller the measurement errors of both outcomes, the closer the marginal
correlation at t = 0 approximates the correlation between the random intercepts.
Moreover, when t increases the marginal correlation converges to the correlation
between the random slopes. It is important to note that the covariance parame-
ters of the random effects (together with the variances of the error components)
determine the shape of the marginal correlation function.

The joint model assumes a mixed model for each outcome, and these uni-
variate models are combined through specification of a joint multivariate dis-
tribution for all random effects. Obviously, the joint model can be considered
as a new mixed model of the form (1), but with a random-effects vector bi of
a higher dimension. As the number of outcome variables (or the dimension of
multivariate outcomes) increases, the number of covariance parameter increases
exponentially and the problem of estimation of covariance parameters becomes
more and more difficult.

3.3 Pairwise Fitting Approach

To circumvent the computational complexity of high dimensional joint random
effects models, the dimensionality of the problem needs to be reduced. One
possible strategy might be fitting first all pairwise bivariate models separately,
instead of maximizing the likelihood of the full joint multivariate model. As-
suming the full joint model is correct, all possible pairwise models are correct
(Fieuws & Verbeke, 2006; Fieuws et al., 2007).

For them number of outcomes that need to be modelled jointly, the pairwise-
fitting approach starts from fitting all m(m− 1)/2 bivariate models, that is, all
joint models for all possible pairs.

(W1,W2), (W1,W3), . . . , (W1,Wm), (W2,W3), . . . , (W2,Wm), . . . , (Wm−1,Wm)

This approach is equivalent to maximizing a pseudo-likelihood function of
the following form:

pl(Θ) = l(W1,W2|Θ1,2)l(W1,W3|Θ1,3) . . . l(Wm−1,Wm|Θm−1,m) =

m−1∏
r=1

m∏
s=r+1

l(Wr,Ws|Θr,s)

(15)
The pseudo-log likelihood can be written as:

pll(Θ) =

m−1∑
r=1

m∑
s=r+1

ll(Wr,Ws|Θr,s) (16)
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where l(Wr,Ws|Θr,s), ll(Wr,Ws|Θr,s) and Θr,s represent likelihood, log likeli-
hood and the vector of all parameters in the bivariate joint mixed model corre-
sponding to the rth and sth outcome variable, respectively.

Assume we have P possible pairs from m outcome variables, where P =
m(m− 1)/2. pll(Θ) can be written as follows:

pll(Θ) =

P∑
p=1

ll(Wp|Θp) (17)

where, Wp contains all the observations in the pth pair. Similarly, Θp contains

all the parameters of the pth pair.

Let, Θ∗ be the vector containing all parameters (fixed effect parameters as
well as covariance parameters) of the full multivariate joint mixed model and
Θ be the stacked vector combining all pair-specific parameter vectors Θp(p =

1, . . . , P ). Also, assume that Θ̂p is the maximizer of l(Wp|Θp). Then Θ̂, the

stacked vector combining all Θ̂p, would maximize the pll(Θ).

Asymptotic normality of the pseudo-likelihood estimator in the single param-
eter case and in the vector-valued parameter case is discussed in B. C. Arnold
& Strauss (1991) and in Geys et al. (1999), respectively. The asymptotic mul-
tivariate normal distribution for Θ̂ is given by

√
N(Θ̂−Θ) ∼ MVN(0, J−1KJ−1) (18)

where J is a block-diagonal matrix with diagonal blocks Jpp, and where K is a
symmetric matrix containing blocks Kpq (Fieuws & Verbeke, 2006) , given by:

J =

J11 . . . 0
...

. . .
...

0 . . . Jpp

 and K =

K11 . . . K1q

...
. . .

...
Kp1 . . . Kpq

,
,

Jpp = −1
1

N

N∑
i=1

E

(
∂2lli(Wp|Θp)

∂Θp∂ΘT
p

)
and Kpq = −1

1

N

N∑
i=1

E

(
∂lli(Wp|Θp)

∂Θp

∂lli(Wq|Θq)

∂ΘT
q

)
,

p, q = 1, . . . , P .

Let V̂i,p = Zi,pĜpZ
T
i,p + R̂i,p and Q̂i,p = V̂ −1

i,p . Then Jpp and Kpq are esti-
mated as follows:

Ĵpp =
1

N

N∑
i=1

XT
i,pQ̂i,pXi,p and K̂pq =

1

N

N∑
i=1

XT
i,pQ̂i,pϵi,p(X

T
i,qQ̂i,qϵi,q)

T

(19)
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where Xi,p, Zi,p and ϵi,p are contributions from the ith subject in Xp (design
matrix pertaining to fixed effects), Zp (design matrix pertaining to random
effects) and ϵp (residual error vector) respectively. Rewritting

Ĥp =

N∑
i=1

XT
i,pQ̂i,pXi,p and Ĝp = [XT

1,pQ̂1,pϵ1,p . . . XT
N,pQ̂N,pϵN,p]

(20)
and assuming

Ĥ =

Ĥ1 . . . 0
...

. . .
...

0 . . . Ĥp

 and Ĝ =

Ĝ1

...

Ĝp


then

Ĵ =
1

N
Ĥ and K̂ =

1

N
ĜĜT

It is important to note that the parameter vectors Θ∗ and Θ are not identi-
cal. Some parameters in Θ∗ will have a single counterpart in Θ, for example,
the covariance between random effects from two different outcomes. Other ele-
ments in Θ∗ will have a multiple counterpart in Θ, for example, the covariance
between random effects from the same outcome. In later case, a single estimate
is obtained by averaging all corresponding ML estimates in Θ̂. This is obtained
by Θ̂∗ = AΘ̂ with Θ̂∗ following a multivariate normal distribution with mean
Θ∗ and covariance matrix A

∑
(Θ̂)A′. A is a matrix containing the appropriate

coefficients to calculate the averages and
∑

(Θ̂) equals the covariance matrix for
Θ̂ obtained by expression (18).
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4 Results

4.1 Summary statistics

Analysis tables and figures presented in this section contain variables with
acronyms defined in Apendix 1. In the actual dataset of the cross-over trial, a
relatively small proportion of missing data was observed across time points (see
Table 2 and Figure 1). Overall, missing data ranged from 7.4% in SBPWRA and
DBPWRA to 10.0% in UICSAC . SBPWRA was missing if-and-only-if DBPWRA

was missing. A similar pattern was observed for SBPSAC and DBPSAC . The
heatmap shows a pattern of missing at random (MAR). No missing data was
observed in the four baseline covariates.

Results from the analysis of baseline covariates and outcome measurements
are presented in Tables 3 and 4. Aligned with expected results, mean values for
BMIWRA, AgeWRA, BAZSAC , AgeSAC and for the six baseline outcome mea-
surements were statistically comparable between the two treatment sequences.
Noticeably, repeatedly measured UIC values were scaled different compared to
SBP and DBP both in women and children. To harmonize the scale for all out-
come measurements, we rescaled UIC using the square root function resulting in
square root urinary iodine concentration (sqrtUIC). In general, the mean value
of all outcomes reduced across time points relative to baseline. All outcome
measurements taken at week 0 (baseline value) were included in the outcome
vector. Modeling of the six outcomes repeatedly measured at seven timepoints
commenced with exploratory data analysis presented in the next subsection.
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Figure 1: A heatmap showing missing data pattern

4.2 Exploratory Data Analysis

Individual profiles presented in Apendix 2 show evidence of random intercept in
all outcomes. Generally, those starting at relatively high values remained high,
while those starting at relatively low values remained low (between-subject vari-
ability). There was considerable within-subject variability indicated by irregular
fluctuation up-down at different gradients, depicting evidence of random slopes.
Individuals evolution showed tendency to moderate decrease in all outcomes.
Figure 2 presents a box-and-whisker plot showing overall trend in the outcomes.

For the SBP and DBP data of women introduced in Section 2, Mwangi et al.
(2021) proposed a piecewise linear mixed effects model to analyze the evolution
of two blood pressure outcomes for women in univariate setting. In addition to
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Table 3: Distribution of baseline covariates

Total Low-to-high iodine High-to-low iodine

Variable n Mean(95% CI) n Mean(95% CI) n Mean(95% CI)

BMIWRA 174 24.1(23.5-24.8) 89 24.6(23.7-25.5) 85 23.6(22.8-24.5)
AgeWRA 174 35.6(34.6-36.5) 89 35.6(34.5-36.8) 85 35.5(34.0-37.0)
BAZSAC 174 -0.89(-1.01 to -0.77) 89 -1.03(-1.19 to -0.86) 85 -0.74(-0.90 to -0.59)
AgeSAC 174 120.3(117.8-122.9) 89 118.1(114.6-121.6) 85 122.7(118.9-126.4)

Figure 2: A box-and-whisker plot of outcomes
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Table 4: Distribution of repeated outcome measurements

Total Low-to-high iodine High-to-low iodine
Variable n Mean(95% CI) n Mean(95% CI) n Mean(95% CI)
SBPWRA

Week 0 174 124.6(122.8-126.4) 89 124.8(122.2-127.4) 85 124.4(121.8-127.0)
Week 1 165 119.4(117.8-121.0) 84 118.5(116.2-120.7) 81 120.4(118.1-122.6)
Week 2 161 119.1(117.5-120.8) 87 119.5(117.4-121.6) 74 118.8(116.2-121.3)
Week 3 154 118.0(116.3-119.7) 78 118.9(116.6-121.3) 76 117.0(114.5-119.5)
Week 4 158 118.8(117.3-120.3) 87 118.7(116.6-120.8) 71 119.0(116.8-121.1)
Week 5 159 118.0(116.5-119.6) 85 117.5(115.3-119.6) 74 118.7(116.4-121.0)
Week 6 157 116.8(115.3-118.4) 84 116.6(114.6-118.6) 73 117.1(114.7-119.5)
DBPWRA

Week 0 174 77.1(75.8-78.4) 89 77.2(75.4-79.0) 85 77.0(75.2-78.9)
Week 1 165 74.9(73.6-76.1) 84 74.5(72.8-76.2) 81 75.3(73.5-77.0)
Week 2 161 73.9(72.6-75.1) 87 74.3(72.6-76.1) 74 73.3(71.5-75.1)
Week 3 154 73.8(72.4-75.2) 78 75.7(73.8-77.6) 76 71.8(69.8-73.9)
Week 4 158 72.6(71.3-73.9) 87 72.2(70.6-73.8) 71 73.1(70.9-75.3)
Week 5 159 71.9(70.6-73.1) 85 72.5(70.9-74.1) 74 71.2(69.2-73.2)
Week 6 157 72.0(70.8-73.1) 84 71.9(70.5-73.2) 73 72.1(70.2-74.1)
UICWRA

Week 0 174 541.5(483.1-599.8) 89 607.2(527.7-686.7) 85 472.6(389.1-556.2)
Week 1 155 447.8(388.9-506.7) 77 388.0(336.4-439.5) 78 506.8(402.6-611.0)
Week 2 149 388.7(337.2-440.2) 85 422.7(357.5-487.8) 64 343.6(261.2-426.0)
Week 3 158 323.5(270.4-376.5) 84 234.2(194.7-273.8) 74 424.7(325.3-524.2)
Week 4 157 223.1(184.4-261.9) 83 183.9(141.0-226.8) 74 267.1(201.6-332.6)
Week 5 158 197.8(174.6-221.0) 86 231.1(195.8-266.4) 72 158.0(132.2-183.8)
Week 6 156 179.2(153.1-205.3) 83 208.4(169.0-247.8) 73 146.0(114.3-177.7)
SBPSAC

Week 0 173 82.1(79.3-84.9) 89 80.2(76.0-84.4) 84 84.1(80.4-87.8)
Week 1 161 78.0(75.6-80.3) 83 78.6(75.4-81.7) 78 77.4(73.8-80.9)
Week 2 158 76.0(73.7-78.3) 88 74.5(71.5-77.5) 70 77.9(74.3-81.5)
Week 3 152 74.3(72.0-76.7) 80 74.8(71.5-78.0) 72 73.8(70.5-77.2)
Week 4 161 74.3(71.9-76.6) 86 73.3(70.1-76.6) 75 75.3(71.9-78.8)
Week 5 158 74.4(72.0-76.8) 83 74.4(71.4-77.4) 75 74.4(70.6-78.2)
Week 6 154 75.1(72.7-77.4) 78 74.1(70.8-77.5) 76 76.0(72.7-79.4)
DBPSAC

Week 0 174 81.0(78.9-83.2) 89 81.2(78.3-84.1) 85 80.9(77.7-84.1)
Week 1 161 72.6(70.4-74.9) 83 73.1(70.0-76.2) 78 72.2(68.9-75.5)
Week 2 158 69.5(67.5-71.5) 88 67.2(64.8-69.6) 70 72.4(69.1-75.7)
Week 3 152 73.7(71.6-75.9) 80 74.0(70.9-77.1) 72 73.4(70.4-76.5)
Week 4 161 70.5(68.4-72.5) 86 69.2(66.4-72.0) 75 71.9(68.8-75.0)
Week 5 158 70.4(68.4-72.5) 83 69.0(66.2-71.9) 75 72.0(68.9-75.0)
Week 6 154 70.7(68.5-72.8) 78 70.5(67.4-73.6) 76 70.8(67.7-73.9)
UICSAC

Week 0 167 460.7(411.6-509.8) 87 492.4(422.2-562.6) 80 426.1(358.1-494.2)
Week 1 153 441.1(392.8-489.5) 80 335.1(288.7-381.4) 73 557.4(477.5-637.2)
Week 2 154 432.8(381.4-484.3) 84 462.3(395.4-529.3) 70 397.4(318.0-476.9)
Week 3 158 336.1(286.6-385.7) 81 243.2(195.7-290.6) 77 433.9(350.4-517.4)
Week 4 151 240.7(204.0-277.4) 82 189.5(156.7-222.3) 69 301.6(233.7-369.4)
Week 5 154 216.6(184.5-248.8) 80 267.7(225.1-310.2) 74 161.5(115.8-207.2)
Week 6 154 196.5(166.9-226.0) 80 208.4(168.0-248.9) 74 183.6(140.3-226.9)
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accounting for variability between and within treatment, three correlated ran-
dom effects namely intercept, prechange slope in Period 1 and postchange slope
in Period 2 were fitted. For this article, we adjusted the fixed effects part by
adding four baseline covariates while maintaining the random structure. These
was implemented for all six outcomes in univariate setting. To alleviates the
problem of data missingness, REML estimation method was used hence miss-
ingness did not impact on estimation of parameters for both PLME and JKME
models. REML estimation method is valid under missing at random (MAR).

While fitting sqrtUIC for women and DBP for children, introduction of
postchange slope in Period 2 resulted in convergence problem. We further ex-
plored the convergence status of all 15 paired analysis (of the six outcomes) in
baivariate setting. None of the children outcomes allowed a postchange slope
in period 2. Table 5 summarizes information about the hessian matrix for each
outcome; upon implementing the piecewise linear mixed effects (PLME) model
and Jones & Kenward mixed effects (JKME) model. Allowing for models whose
hessian matrix was positive definite, the findings reveal that each outcome had
specific structure of the mixed model some with reduced dimensions of the
shared random effects. The PLME model allowed a more complex fit to the
data than JKME model thus able to explain much variability in the data. Next
we describe the results obtained from the univariate and multivariate analysis
of the data using PLME model and further validate our findings against the
current widely used state of art JKME model (in the analysis of clinical trials).

Table 5: Information about estimated hessian matrix

Model PLME JKME

Random effect I I+Ps I+Ps+Qs I I+Ps

Outcome WRA SAC WRA SAC WRA SAC WRA SAC WRA SAC

SBP PD PD PD PD PD NPD PD PD PD NPD
DBP PD PD PD PD PD NPD PD PD PD NPD
sqrtUIC PD PD PD PD NPD NPD PD PD NPD NPD

WRA - Women of reproductive age; SAC - School aged children;
I - Intercept; Ps - Prechange slope; Qs - Postchange slope; PD - Positive definite;

NPD - Not positive definite
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4.3 Univariate mixed models

First we anlyzed the outcomes in univariate piecewise linear mixed effects model.
Table 5 presents the estimated parameters for the fixed and random effects.
Results for the baseline covariates show that BMIWRA was positively correlated
with SBPWRA, DBPWRA and sqrtUICWRA. Whereas AgeWRA was positively
correlated with DBPWRA, AgeSAC was negatively correlated with DBPSAC .
The two time variables (Time and Timespl1) appearing in Table 6 and any
other subsequent presentation refers to tj and t∗j respectively (see explaination
in section 3.1.3, equation 6).

Table 6: Estimates (standard error) for the fixed and random effects in univari-
ate piecewise linear mixed models

Model WRA SAC

Outcome SBP DBP sqrtUIC SBP DBP sqrtUIC

Fixed effects:
Intercept 107.78(6.69)∗ 56.87(5.09)∗ 20.28(3.11)∗ 85.69(6.99)∗ 88.57(5.46)∗ 18.62(3)∗

Time -1.52(0.34)∗ -0.63(0.26)# -2.87(0.31)∗ -1.97(0.65)∗ -2.57(0.60)∗ -1.86(0.31)∗

Timespl1 1.53(0.58)∗ -0.04(0.45) 1.25(0.51) 2.49(1.17)# 3.13(1.06)∗ 0.14(0.54)
Treatment 0.81(1.37) 1.33(0.99) -4.65(1.22) 2.87(2.2) 0.60(1.98) -1.72(1.15)

Time*Treatment -0.57(0.50) -1.1(0.37)∗ 1.75(0.46) -1.03(0.94) -0.04(0.87) 1.11(0.46)#

Timespl1*Treatment 0.53(0.83) 1.61(0.64)# -1.15(0.75) 0.72(1.73) -0.90(1.56) -0.92(0.78)

BMIWRA 0.34(0.15)# 0.36(0.12)∗ 0.15(0.07)# 0.18(0.16) 0.05(0.12) -0.02(0.07)
AgeWRA 0.04(0.11) 0.23(0.08)∗ -0.09(0.05) -0.06(0.11) -0.10(0.09) 0.01(0.05)
BAZSAC -0.28(0.87) 0.20(0.66) 0.21(0.39) 0.80(0.92) -1.15(0.71) 0.58(0.39)

AgeSAC 0.04(0.04) 0.02(0.03) 0.03(0.02) -0.06(0.04) -0.08(0.03)# 0.03(0.02)

Random effects:
Intercept 97.68 47.26 44.56 75.71 52.51 29.24
Intercept∗Time -8.36 -2.60 -7.29 -7.71 -7.63 -4.74
Time 3.56 1.82 1.34 2.43 1.89 0.95
Intercept∗Timespl1 3.41 0.34
Time∗Timespl1 -3.87 -2.21
Timespl1 6.16 3.71
Residual 35.14 21.02 37.86 186.15 161.20 39.99

∗p < 0.01,# p < 0.05

4.4 Multivariate mixed model

Likelihood estimation in multivariate mixed models have been discussed exten-
sively in literature. With increased number of outcomes, coupled with a random-
effects vector of a higher dimension, the number of likelihood data points in-
crease exponentially. Likelihood estimation of a full multivariate mixed model
encounters computational difficulty with standard software. Standard MLE or
REML fails even for a single outcome with large sample size and increased num-
ber of random effects. A pairwise fitting approach (based on pseudo-likelihood
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theory) proposed by Fieuws & Verbeke (2006), circumvents this computational
challenge by fitting joint models to all pairs of outcomes separately, followed by
summarizing the estimates over possible number of pairs. With increased num-
ber of random effects, our proposed method have a large number of parameters,
even for a single outcome. We therefore proceeded to fitting our multivariate
joint mixed-effects model using pairwise fitting approach.

We implemented a randomly correlated joint model of multivariate longitu-
dinal outcomes maintaining the structure for the fixed and random effects as
implemented in a univariate setting. We allowed flexible piecewise models for
the six outcomes to depend on separate random effects, which are themselves
correlated. Table 7 presents the results for the multivariate piecewise linear
mixed effects model. Estimates for the parameters with respective standard
errors (see Table 10 ) are relatively close to those generated in a univariate
analysis as presented in Table 6.

Table 7: Estimates (standard error) for the fixed effects in multivariate piecewise
linear mixed model

Model WRA SAC

Outcome SBP DBP sqrtUIC SBP DBP sqrtUIC

Fixed effects:
Intercept 107.67(6.06)∗ 56.64(4.67)∗ 20.15(2.77)∗ 85.91(6.43)∗ 88.63(4.99)∗ 18.91(2.63)∗

Time -1.49(0.37)∗ -0.62(0.29)# -2.88(0.32)∗ -1.97(0.73)∗ -2.57(0.54)∗ -1.84(0.30)∗

Timespl1 1.51(0.61)∗ -0.04(0.49) 1.25(0.52) 2.50(1.21)# 3.16(0.97)∗ 0.10(0.53)
Treatment 0.94(1.30) 1.33(0.95) -4.74(1.32) 2.85(2.34) 0.63(1.94) -1.75(1.10)

Time*Treatment -0.61(0.52) -1.10(0.39)∗ 1.76(0.51) -1.03(0.96) -0.03(0.82) 1.07(0.45)#

Timespl1*Treatment 0.57(0.82) 1.62(0.64)# -1.16(0.81) 0.73(1.65) -0.98(1.41) -0.86(0.74)

BMIWRA 0.34(0.15)# 0.36(0.11)∗ 0.15(0.07)# 0.19(0.15) 0.05(0.12) -0.02(0.07)
AgeWRA 0.04(0.09) 0.23(0.07)∗ -0.09(0.05) -0.05(0.11) -0.10(0.07) 0.01(0.04)
BAZSAC -0.25(0.86) 0.21(0.64) 0.22(0.35) 0.92(0.92) -1.12(0.67) 0.59(0.34)

AgeSAC 0.04(0.03) 0.02(0.03) 0.03(0.02) -0.07(0.04) -0.08(0.03)# 0.03(0.02)
∗p < 0.01,# p < 0.05

To explore results for the covariance parameters, Tables 8 and 9 show com-
bined results of the 14 x 14 variance-covariance matrix of the random effects
with corresponding matrix of correlation coefficients. The results of the cor-
relation matrix for the 14 x 6 random prechange slopes and 14 x 2 random
postchange slopes indicate that significantly related outcomes are more strongly
associated in their evolutions than insignificantly related outcomes. Correlation
of prechange slopes revealed that the evolution of systolic blood pressure for
women (SBPWRA) was strongly associated to the evolution of diastolic blood
pressure for women (DBPWRA); correlation coefficient = 0.664. Similarly, the
evolution of systolic blood pressure for children (SBPSAC) was strongly related
to the evolution of diastolic blood pressure for children (DBPSAC); correlation
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coefficient = 0.764.

The evolution of square root of urinary iodine concentration for women
(sqrtUICWRA) was negatively correlated with evolution of systolic blood pres-
sure for women (SBPWRA), correlation coefficient = -0.198; and evolution
of diastolic blood pressure for women (SBPWRA), correlation coefficient = -
0.123. Similarly, the evolution of square root of urinary iodine concentration
for children (sqrtUICSAC) was negatively correlated with evolution of systolic
blood pressure for children (SBPSAC), correlation coefficient = -0.189. How-
ever, it was not related with evolution of diastolic blood pressure for children
(DBPSAC); correlation coefficient = 0.031.

Correlation of postchange slopes revealed that the evolution of systolic blood
pressure for women (SBPWRA) was strongly associated to the evolution of di-
astolic blood pressure for women (DBPWRA); correlation coefficient = 0.662.
Tables 9 shows results of the variance-covariance estimates with correlation co-
efficient for the random error in the multivariate PLME model.
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Table 9: Variance-covariance estimates with correlation coefficient for the ran-
dom effects in the multivariate PLME model (b)

Measure Variance-covariance Correlation coefficient

Population WRA WRA

Outcome SBPQs DBPQs SBPQs DBPQs

WRA SBPI 3.50 0.47 0.141 0.025
DBPI -0.90 0.35 -0.052 0.027

sqrtUICI -3.45 -0.82 -0.206 -0.064
SAC SBPI -3.85 -1.67 -0.177 -0.100

DBPI -4.73 -3.72 -0.260 -0.265
sqrtUICI 0.47 -0.66 0.034 -0.063

WRA SBPPs -3.94 -2.16 -0.828 -0.592
DBPPs -1.49 -2.22 -0.440 -0.853

sqrtUICPs 0.30 0.28 0.102 0.124
SAC SBPPs -0.92 -0.44 -0.235 -0.146

DBPPs 0.54 0.80 0.154 0.300
sqrtUICPs -0.60 -0.17 -0.244 -0.090

WRA SBPQs 6.30 3.20 1 0.662
DBPQs 3.20 3.71 0.662 1

WRA - Women of reproductive age; SAC - School aged children; I - Intercept;
Ps - Prechange slope; Qs - Postchange slope

4.5 Validation of the PLME multivariate model Results

To validate the PLME model results, we compared our findings with the current
state-of-the-art Jones & Kenward (2014) methodology for analyzing randomized
crossover trials. We maintained the same structure for the fixed effects but re-
duced the random structure to intercept only. Appendix 3 show the results of
the variance-covariance estimates with corresponding correlation coefficients for
the random effects and residual (error) component in the multivariate PLME
and JKME models.

Implementation of the PLME model yielded similar results to the JKME
model. For example, the magnitude of correlation between random intercepts
for systolic blood pressure for women (SBPWRA) and those of diastolic blood
pressure for women (DBPWRA) was the same for both models (PLME model
= 0.798, JKME model = 0.798). Similarly, magnitude of correlation between
random intercepts for systolic blood pressure for children (SBPSAC) and those
of diastolic blood pressure for children (DBPSAC) was comparable between the
two models (PLME model = 0.605, JKME model = 0.613). Correlation co-
efficients of the error components between systolic blood pressure for women
(SBPWRA) and diastolic blood pressure for women (DBPWRA) was similar
for both models (PLME model = 0.545, JKME model = 0.550). Similarly,
magnitude of Correlation coefficients of the error components between systolic
blood pressure for children (SBPSAC) and diastolic blood pressure for children
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Table 10: Variance-covariance estimates with correlation coefficient for the ran-
dom error in the multivariate PLME model

Population WRA SAC

Outcome SBP DBP sqrtUIC SBP DBP sqrtUIC

Measure Variance-covariance estimate

WRA SBP 35.10 13.61 1.52 0.23 3.01 -1.38
DBP 13.61 21.03 0.62 3.46 4.15 -0.24

sqrtUIC 1.52 0.62 37.84 -2.82 3.89 12.16
SAC SBP 0.23 3.46 -2.82 186.14 44.99 3.44

DBP 3.01 4.15 3.89 44.99 161.18 -1.22
sqrtUIC -1.38 -0.24 12.16 3.44 -1.22 40.00

Measure Correlation coefficient

WRA SBP 1 0.501 0.042 0.003 0.040 -0.037
DBP 0.501 1 0.022 0.055 0.071 -0.008

sqrtUIC 0.042 0.022 1 -0.034 0.050 0.312
SAC SBP 0.003 0.055 -0.034 1 0.260 0.040

DBP 0.040 0.071 0.050 0.260 1 -0.015
sqrtUIC -0.037 -0.008 0.312 0.040 -0.015 1

WRA - Women of reproductive age; SAC - School aged children

(DBPSAC) was the same for both models (PLME model = 0.288, JKME model
= 0.288). A similar parttern is observed in all estimated parametes.

5 Simulation Study

Our simulation study tries to mirror real-life situation by deriving true un-
derlying parameters from empirical data. We considered multiple continuous
repeated measures evaluation setting. Assuming four outcomes repeatedly mea-
sured seven times for individual i,

Wi1 = wi11, wi12, . . . , wi17

Wi2 = wi21, wi22, . . . , wi27

Wi3 = wi31, wi32, . . . , wi37

Wi4 = wi41, wi42, . . . , wi47

follow a multivariate normal distribution within the general linear mixed effects
framework. Simultaneous simulation of four repeatedly measured continuous
blood pressure outcomes (SBPWRA, DBPWRA, SBPSAC and DBPSAC), for
maternal-child pair, was implemented using the following set of ingredients: Let
Xi ∈ (0, 1) be an indicator denoting assignment to two treatment sequences with
an equal allocation ratio, where assignment is generated using Xi ∼ Bern(0.5);
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vector of parameters for the fixed effects

β =


β1

β2

β3

β4


where,

β1 =
[
122.8000 −1.5202 1.5155 0.7391 −0.5579 0.5670

]T
,

β2 =
[
75.9594 −0.6328 −0.0443 1.2296 −1.0757 1.6276

]T
,

β3 =
[
79.9301 −1.9449 2.4154 2.8466 −1.0683 0.8824

]T
,

β4 =
[
78.2049 −2.6441 3.0212 −0.1231 0.1109 −0.6555

]T
;

variance-covariance matrix of the random effects

G =


G1 0 0 0
0 G2 0 0
0 0 G3 0
0 0 0 G4


where,

G1 =

97.9956 −8.3895 3.7696
−8.3895 3.5714 −3.8839
3.7696 −3.8839 6.1758

 ,

G2 =

48.7846 −2.1354 0.0418
−2.1354 1.8259 −2.2249
0.0418 −2.2249 3.7287

 ,

G3 =

122.8400 −31.3064 36.2701
−31.3064 13.6510 −15.8098
36.2701 −15.8098 19.2251

 ,

G4 =

51.2783 −6.1942 −0.2157
−6.1942 0.6549 1.2444
−0.2157 1.2444 0.0000

 ;

and the residual error components

Σ =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4


where,

σ1 = 35.1327, σ2 = 21.0231, σ3 = 178.6400, σ4 = 160.9300.
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Clinical trials with cross-over designs often have small samples sizes. With addi-
tional random effects, our proposed PLME method (see equation 4) has a large
number of parameters compared to the widely used JKME method (see equation
2). Therefore, we sort to evaluate the stability (including convergence) of the
estimation in small and medium sample sizes allowing for estimation of equal
number of parameters. The data-generating mechanism adopted the following
scenarios: small (n = 10) and medium (n = 50) sample sizes with unstruc-
tured covariance for the random effects. As previously reported by Burton et
al. (2006), two common replicates used in simulation studies include; csim = 500
and csim = 1000. Owing to the large number of parameters for estimation both
in PLME and JKME models, we opted for the former, mainly to keep comput-
ing time within a reasonable limit. Five hundred replicates were done under
each sampling scenario. The fixed- and random-effects parameters used in the
simulation process were estimated from the univariate PLME model applied to
the real-life data introduced in Section 2 (R simulation code can be accessed
upon request).

5.1 Modeling Simulation Data

Analysis of the simulated data was adjusted accordingly to address two com-
monly encountered modeling challenges, namely, (1) problem of the data and/or
(2) complexity in model specification. We fitted a mixed-effects model with un-
structured covariance of the random effects, across the two candidate models
(PLME and JKME), for which estimates were computed. For a start, the fixed
effects part of the model included time, treatment and period with interaction
terms, while the random effects part included random intercept and slope. Con-
vergence was satisfied for both models in real-life data settings. The same model
structure was fitted to the simulated datasets where convergence problems and
other warnings were checked (SAS analysis codes and simulated datasets can be
accessed upon request).

5.2 Estimands

Differences in predicted means for each simulated outcome between high-dose
(H) and low-dose (L) Iodized household salt for mothers and children were
considered as estimands (θ), representing treatment effect in a randomised cross-
over trial. The parameters were based on effect size, defined by differences in
SBPWRA, DBPWRA, SBPSAC and DBPSAC for participants consuming low-
dose (Tij = 0) and high-dose (Tij = 1) Iodized salt, during first and second
periods in a randomised sequence. Table 11 shows values for the two candidate
models, estimated from real-life data.

5.3 Performance Measures

The term “performance measure” describes a numerical quantity used to assess
the performance of a method. The performance measures required in a simula-
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Table 11: Parameter estimates for difference in means of each outcome

PLME model JKME model

95% CI 95% CI

Random effect Outcome ∆H−L(SE) LCL UCL p value ∆H−L(SE) LCL UCL p value

Intercept SBPWRA -0.557(0.518) -1.572 0.458 >0.05 -0.366(0.411) -1.172 0.440 >0.05
DBPWRA -1.095(0.382) -1.844 -0.346 ≤0.05 -0.738(0.315) -1.356 -0.120 ≤0.05
SBPSAC -0.982(0.957) -2.858 0.894 >0.05 -0.438(0.891) -2.184 1.308 >0.05
DBPSAC 0.025(0.817) -1.577 1.627 >0.05 0.928(0.720) -0.484 2.340 >0.05

Intercept and slope SBPWRA -0.569(0.594) -1.734 0.596 >0.05 -0.365(0.398) -1.146 0.416 >0.05
DBPWRA -1.103(0.446) -1.978 -0.228 ≤0.05 -0.680(0.312) -1.291 -0.069 ≤0.05
SBPSAC -0.973(0.942) -2.818 0.872 >0.05 -0.432(0.886) -2.169 1.305 >0.05
DBPSAC 0.079(0.820) -1.528 1.686 >0.05 0.909(0.760) -0.580 2.398 >0.05

PLME - Piecewise linear mixed effects; JKME - Jones & Kenwards mixed effects;
∆H−L - Estimand

95% CI - 95% confidence interval; LCL - Lower confidence limit; UCL - Upper
confidence limit

tion study depend on the aims and targets for the study. When the target is an
estimand, the most obvious performance measure to consider is bias. Precision
and coverage of confidence intervals will also be of interest. A simulation study
targeting an estimand may of course also assess power and type I error (Morris
et al., 2019).

Our study focusses on seven measures to evaluate performance of the pro-
posed PLME model against JKME model. These include; proportion of samples
meeting convergence criteria, proportion of samples with random effects matrix
G turning positive definite, proportion of samples with Hessian matrix H turn-
ing positive definite, bias of the estimator, mean standard error of the estimator,
coverage probability (Cp) and empirical power (Ep).

Cp is the proportion of samples drawn from a sampling distribution for which
the (known) population parameter is contained in the specified confidence inter-
val (CI). The CI often has the form ξ± τ(α, n), where ξ is an unbiased estimate
of the parameter and τ(α, n) is a width that depends on the significance level
α, the sample size n, and the standard error of the estimate. The degree of
certainty pre-specified by the analyst, referred to as the confidence level or con-
fidence coefficient of the constructed interval, is effectively the nominal coverage
probability of the procedure for constructing confidence intervals. The nominal
coverage probability is often set at 0.95. A CP estimate closer to the nominal
coverage probability is desired for a given estimator model. If all assumptions
used to derive the confidence interval are met, nominal coverage equals CP. If
any of the assumptions are not met, the CP may be smaller or larger than the
nominal probability of application. When the CP is greater than the nominal
coverage probability, the interval is called a conservative (confidence) interval;
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when it is less than the nominal coverage probability, the interval is called a
”non-conservative” or ”acceptable” interval.

Ep of the design is the fraction of datasets with p-values smaller than or equal
to 0.05 across the simulation runs (B. F. Arnold et al., 2011). This measure
is key when the simulation study targets hypothesis testing. The higher the
fraction the better for a given design. From the analysis of empirical (real-life)
data, the direction of p-value corresponding to specific estimand (effect size)
are shown in Table 11. This direction forms the basis of EP calculation in our
study.

5.4 Simulation Results

The analysis was commenced by fitting models (2) and (4); for JKME and
PLME models respectively, with random intercept and slope. Even though
convergence criteria were met in all 500 simulated datasets across all sampling
scenarios, the specified structure was complex to fit, in relatively high propor-
tion of simulated datasets. While estimating variance-covariance matrix (G)
and Hessian matrix (H) for this datasets, some variance components turned
negative hence were forced to zero.

The concept of negative variance components in linear mixed-effects models
has received considerable attention in the literature (Chernoff, 1954; Nelder,
1954). Broadly, negative variance components in linear mixed models are al-
lowable if inferences are restricted to the implied marginal model (Verbeke &
Molenberghs 2000). Hierarchical models arise where outcomes are modeled con-
ditional upon covariates and random effects (Diggle et al. 2002, Molenberghs &
Verbeke 2005). When a hierarchical view-point is adopted, in the sense that out-
comes are specified conditionally upon random effects, the variance-covariance
matrix of the random effects must be positive-definite (positive-semi-definite
is also possible, but raises issues of degenerate distributions). Molenberghs &
Verbeke (2011) further reviewed negative variance components in linear mixed
models. Oliveira et al. (2017) highlights that whenever inference for variance
components is required, one has to choose between a hierarchical and a marginal
view. Under a marginal interpretation, the variance component can be negative
as long as the resulting marginal variance-covariance matrix of the observations
is positive definite. On the other hand, when a hierarchical view is adopted,
random effects retain their interpretation and, hence, their variances must be
non-negative.

The performance measures seen in our review are summarised in Table 12.
Notably, analysis of all simulated datasets met convergence criteria, with H ma-
trix turning positive-definite for both PLME and JKME models. Upon fitting a
complex model with random intercept and slope, a high proportion of samples
with estimated G matrix turning non-positive definite was reported. The JKME
model had a problem fitting 98.8% of the small sample datasets compared to
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32.2% for the PLME model. Similarly, the JKME model had a problem fitting
99.8% of the medium sample datasets, compared to none for the PLME model.
To overcome the problem associated with estimated G matrix, we resolved the
model complexity by specifying one random effect (intercept only). Both PLME
and JKME models performed better with a less complicated model. Nonethe-
less, a finite proportion of sampled datasets (1.2%) turned non-positive definite
in both models.

Assessment of bias revealed that PLME model yielded relatevely low esti-
mates compared to JKME model across all four outcomes, consistent across
two sampling scenarios. However, the converse was true with respect to mean
square error (MSE). JKME model yielded low MSE estimates compared to
PLME model across all outcomes, consistent in both sampling scenarios.

CP estimates across all the candidate models were > 70%, ranging from
72.4% to 95.8%. Compared to the nominal coverage probability of 95%, the ac-
tual coverage probability both in PLME and JKME models was relatively low
in three parameters (SBPWRA, DBPWRA and SBPSAC), implying that the
confidence interval was ”non-conservative” or ”acceptable”. This could be due
to low standard errors and/or reduced number of repetitions. In small sample
scenario with random intercept only, the JKME model performed better than
PLME model by approximately 3.5%, in SBPWRA, DBPWRA and SBPSAC

outcomes, but same performance in DBPSAC outcome. Similarly, in small
sample scenario with random intercept and slope, the JKME model performed
better than PLME model by approximately 2.7%, in SBPWRA, DBPWRA and
SBPSAC outcomes. Nonetheless, in DBPSAC outcome, the PLME model per-
formed better than JKME model by 5.4%. In medium sample scenario with
random intercept and slope, the JKME model performed comparable to PLME
model, with marginal increase by approximately 1.3%, in SBPWRA, DBPWRA

and SBPSAC outcomes. However, in DBPSAC outcome the PLME model per-
formed significantly high than JKME model by 45.8%.

Results from the analysis of Ep revealed inconsistent inference across differ-
ent outcomes and scenarios. In small sample scenario with random intercept
only, the JKME model performed better than PLME model, with an increase
by 2.8% in SBPWRA and by approximately 7.0% in SBPSAC and DBPSAC

outcomes. However, in DBPWRA outcome the PLME model performed higher
than JKME model by 11.6%. In small sample scenario with random intercept
and slope, the JKME model performed better than PLME model by approxi-
mately 2.7%, in SBPWRA and DBPSAC outcomes and by 7.4% in SBPSAC .
However, the PLME model performed higher than JKME model by 8.2% in
DBPWRA. Similarly, in medium sample scenario with random intercept and
slope, the JKME model performed better than PLME model by approximately
5.8%, in SBPWRA, SBPSAC and DBPSAC outcomes. However, the PLME
model performed significantly higher than JKME model by 30.4% in DBPWRA.
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6 Concluding remarks

We sought to extend the proposed model by Mwangi et al. (2021) allowing flex-
ible piecewise models for six outcomes to depend on separate random effects,
which are themselves correlated. We formulated a piecewise linear mixed ef-
fects (PLME) model and the Jones & Kenward mixed effects (JKME) model
within univariate settings, with further extentions to the joint modeling frame-
work, using pairwise fitting approach (Fieuws & Verbeke, 2006; Fieuws et al.,
2007). We estimated the separate and joint effects of covariates on six outcomes
from an empirical real-life data set collected during a double blind randomized
crossover trial conducted in Kenya, to compare the effect of high-dose and low-
dose Iodized household salt on systolic and diastolic blood pressure in women
of reproductive age and their household matching pair of school aged children.
We examined the association between blood pressure and urinary Iodine con-
centration by estimating the strength of association among the outcomes using
a correlated random effects joint model. We implemented the PLME model in
univariate and multivariate settings, allowing all possible random effects with
satisfactory model convergence. To validated the results from the multivari-
ate joint PLME model, we compared our findings with those obtained from
the current state-of-the-art Jones & Kenward (2014) methodology for analyzing
randomized crossover trials. Upon fitting the main fixed effects, with random
intercepts only, the multivariate joint PLME model yielded similar results to
the multivariate joint JKME model.

We further sought to evaluate the performance of our proposed PLME model
against the widely used JKME model, within the multivariate joint modeling
framework through a simulation study mimicking a 2×2 crossover design. From
our findings, the multivariate joint PLME model performed exeptionally well
both in estimation of random effects matrix (G) and hessian matrix (H), allow-
ing satifactory model convergence during estimation. It allowed a more complex
fit to the data with both random intercepts and slopes effects compared to the
multivariate joint JKME model that allowed for random intercepts only. When
a hierarchical view-point is adopted, in the sense that outcomes are specified
conditionally upon random effects, the variance-covariance matrix of the random
effects must be positive-definite (Oliveira et al., 2017). The multivariate joint
PLME model is prefered especially in modeling increased number of random
effects, compared to multivariate joint JKME model that works equally well
with random intercepts only. In some cases, additional random effects could
explain much variability in the data, thus improving precision in estimation of
the estimands (effect size) parameters.

The key highlight demonstrated in this evaluation shows that multivari-
ate joint JKME model is a powerful tool especially while fitting mixed models
with random intercepts only. Addition of random slopes may lead to model
compexities in some cases, resulting in unsatifactory model convergence during
estimation. To circumvent convergence pitfalls, extention of JKME model to
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PLME model allows a more flexible fit to the data (generated from crossover
design settings), especially in the multivariate joint modeling framework.

The time variable tj used in our analysis is of continuous type, in which case
only monotonic increase (or decrease) over time was considered. In a simple
linear mixed model, it is possible to include higher-order terms or time points
as categorical variables. The assumption of a linear relationship is without loss
of generality as one can easily extend the models with, e.g., polynomial terms or
add dummy variables to allow for non-linear trends. However, with a complex
model such as the PLME model, this may be difficult from the viewpoint of
model stability. Hence the assumption of the model may be too strong where
non-monotonic increase (or decrease) over time tj is considered. This could be
an interesting topic for further study.
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Appendix 2: Individual Profiles
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