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Abstract—Over the past years, automated, robotic
radiation source localisation has become of emerging
interest due to a variety of reasons, e.g. disaster response,
homeland security, or dismantling and decommissioning
of nuclear contaminated areas. Nowadays, to perform in-
the-field measurements, radiation protection officers and
safety personnel are tasked with characterising an envi-
ronment before a nuclear contaminated area can enter
the final phase of the dismantling and decommissioning
process. This involves some severe drawbacks such as the
absence of any a priori information on the potentially
contaminated area. Besides the potential health risks
involved, this preliminary task is very time-consuming
and prone to errors concerning the taken measurements
and the post-processing of the obtained measurements.
To further automate this task, this paper presents an
approach to build a radiation model of the environment
based on measurements collected by a robotic arm
during in-situ laboratory tests. The task of estimating the
radiation distribution in an environment is modeled as a
regression problem, where the framework of Gaussian
Processes is adopted. The experiments conducted in
an in-situ laboratory environment demonstrate that the
approach is feasible to model the radiation distribution
caused by multiple radiation point sources, for both static
measurements, where a robot stops moving to sample a
measurement, and dynamic measurements, where a robot
executes measurements in a continuous manner.

Index Terms—Robotics for nuclear power plants; Ra-
diological mapping; Gaussian Processes; Field robotics;
Robotic exploration

I. INTRODUCTION

Over the past decades, a substantial amount of
research has been conducted in the field of localis-
ing nuclear radiation sources, often abbreviated by
hot spots. Localising these hot spots has become
of emerging interest for a variety of purposes, e.g.
homeland security, leakage detection, and disman-
tling and decommissioning (D&D) of nuclear power
plants. Nowadays, to start with the activities towards
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the latter, safety personnel are sent out in the field
to characterise the environment by taking ambient
dose rate measurements, atmospheric contamination,
and surface contamination measurements. This task,
however, contains various risks. The physical state
of the personnel needs to be continuously monitored
to prevent potential health damage. Moreover, this
task is very time-consuming, and in practice, these
measurements can vary from a few minutes up to a few
hours, depending on the geometric properties of the
environment. Furthermore, the uncertainties of these
measurements cannot be neglected. Due to these dis-
advantages, a high demand towards fully autonomous
robots can be observed. The task of such a robot is
threefold. Firstly, the robot has to gather geometric
information of the environment. In robotics, this task
is performed by simultaneous localisation and map
building algorithms. Based on measurements received
by, and actions taken by the robot, the map and the
location of the robot in that particular map is sequen-
tially updated. Secondly, an autonomous robot has to
characterise the identified nuclear radiation sources
by making use of spectral measurements, captured by
(a) radiation detection device(s), which can take up
a few minutes to a few hours. Finally, the robot has
to decontaminate the identified sources. Motivated by
the challenges as described above, in this paper we
present a supervised regression approach based on the
Gaussian Processes framework to model the radiation
distribution stemming from multiple unknown radio-
logical point sources in the environment. Based on a
dataset collected during in-situ laboratory experiments,
the parameters from the GP model are learned. The
approach shows that the problem of multiple radiation
source localisation can be tackled both in the case
of performing static measurements defined by a grid
of points, and by executing a continuous movement
without the need to stop to sample a measurement. The
remainder of the paper is organised as follows. Sec-
tion II initiates with related work concerning robotics
in nuclear environments, robotic tools to localise radi-
ation sources, and the usage of the Gaussian Processes
framework in robotics. Section III briefly delineates the
working principle of the used sensor to measure levels
of radiation in an environment. Section IV discusses
our overall approach to the multiple radiation source
distribution mapping problem. Section V illustrates the



results of the presented approach in an in-situ envi-
ronment performing static and dynamic measurements.
Finally, conclusions are drawn in section VI, and some
tracks for future work are discussed.

II. RELATED WORK

Research towards (semi-)autonomous localisation of
radiation point sources has been focusing on either
the electro-mechanical aspects of designing robotic
systems that can be adopted in radiological environ-
ments, or on the development of software algorithms
to solve the problem of identifying contaminations
in the environment. The latter is known as radia-
tion source localisation or radiation mapping. In lit-
erature, multiple approaches for robotic devices are
presented. In [1], an approach is described for the
design and development of a mobile, autonomous,
radiological-monitoring robot called CARMA. It was
the first proof-of-concept robot that was designed to
be deployed into an active nuclear site in Europe. In
the proof-of-concept experiments, the robot showed
it was capable of identifying and localising α ra-
diation acquired from a single point source at the
Sellafield nuclear site. In previous work [2], a ground-
based mobile manipulator proof-of-concept robot is
developed suited for radiological monitoring purposes.
Experiments show that a wall can be automatically
scanned and characterised. Next to ground-based mo-
bile robots, research has also been carried out towards
semi-autonomous aerial vehicles [3]–[5], and even
remote operated vehicles for underwater exploration
and monitoring which has lead to several tests at
the Fukushima Daiichi plant [6]–[9]. Additionally,
research has concentrated on developing techniques to
solve the problem of radiation source localisation in,
often cluttered, nuclear environments. This is a very
challenging problem due to (i) the non-linearity of ra-
diation intensity propagation. This follows the inverse
square law of intensity propagation; (ii) unknown a
priori information of the environment. The amount of
sources, their respective activities, and the background
intensity are often unknown, but very important pa-
rameters in order to solve the localisation problem;
(iii) the relative high cost of implementing radia-
tion detectors. However, in more recent years several
approaches have been implemented towards nuclear
radiation source localisation where the uncertainty of
measuring radiation is taken into account. In [10], the
potential of applying Bayesian techniques for radio-
logical source detection and localisation is explored.
Baidoo-Williams et al. [11] explored nuclear source
localisation and tracking through maximum likelihood
techniques. Their approach was applied on the case
of a stationary nuclear source and a moving target
with a radiological measurement tool. The approach
was, however, only feasible for perfect measurements,
i.e. uncertainties in measurements are not taken into
account. The approach worked well with one radiation

source, which was a priori known. The authors in [12]
presented a probabilistic approach towards multiple
nuclear sources localisation. The foundation of this
approach lies in the fact that multiple sources can
be estimated using multiple sensors, or a network
of sensors distributed in the area to be measured.
Though this approach is robustly designed, a network
of distributed sensors is needed to make it work. In
many applications, e.g. exploration of unknown terrain
before dismantling and decommissioning, a network of
sensors cannot be installed a priori. Gao et al. [13] ex-
tended the approach of Chin et al. to just one radiation
detector, mounted on the tool center point (TCP) of a
mobile manipulator. The approach of [14] adopted a
range and bearing sensor using a Compton Gamma
camera to localise a single radiation source in a 3D
environment. As a measurement model, the authors
adopted a range and bearing based model, containing
an intensity, and the elevation and azimuth angle of the
estimated radiation source. Mascarich et al. [15] used a
mobile robot, mounted with three radiation sensors to
estimate the distributed radiation in a 3D environment.
In order to actively control a mobile robot, with
three, under 120 degrees radially mounted, Thallium-
doped Cesium Iodide (CsI(TI)) radiological sensors
combined with Silicon Photomultipliers (SiPm) and a
LIDAR sensor, an informative path planning algorithm
was adopted. This formation allows the algorithm to
compute the 2D field gradient immediately. The field
gradient is calculated as a weighted difference over
two measuring times from the corresponding radiation
sensor. Gaussian Processes (GPs) have been used in
a variety of robot applications, going from WiFi-
based localisation [16], learning observation models
for laser range finders [17] and user models for semi-
autonomous wheelchair navigation [18], to mapping
high concentrations of gas [19], [20]. The framework
has also been used in order to map elevated levels of
radiation coming from a single radiation source [21],
[22]. In [21], a GP approach was examined for the
purpose of intensity mapping in complex radiation
fields. The built GP model of a single radiation source
was used together with a Monte Carlo N-Particle based
case study to illustrate the potential of integrating the
GP model for inter- and extrapolating predictions of
the model. The authors however propose the integra-
tion of multiple sensors to perform the mapping of
an environment. The authors of [22] used a Gaussian
Process Regression technique to create a radiation map
based on sparse and noisy measurements of radiation.
Based on real experiments at a nuclear facility, the ap-
proach was able to recreate a model of the environment
where a single source of radiation was successfully
reconstructed.



III. WORKING PRINCIPLE OF THE USED RADIATION
SENSOR

A Cadmium-Zinc-Telluride (CdZnTe, CZT) sensing
device, which is adopted in this work, works accord-
ing to the following principle. X-ray or gamma (γ)
radiation emits photons ranging from low-energetic
photons to photons containing high energy. Radioac-
tive materials emit, depending on the type of radionu-
clide, α, β, or γ radiation. Sensors containing a CZT
semiconductor crystal can measure γ radiation or X-
ray radiation. The first interaction between γ radiation
or X-ray radiation with the sensing device happens
in the semiconductor crystal. Ionising radiation in-
teracts with the detector in the CZT crystal. This
absorbed ionising radiation excites electron-hole pairs
in proportion to the deposited energy of the emitted
photon. The amount of generated electron-hole pairs
is mathematically represented using formula 1:

n0 =
E0

ε
(1)

where n0 is the number of generated electron-
hole pairs, E0 is the deposited energy of the photon
particle and ε is the average consumed energy to
create an electron-hole pair [23]. Electrons are neg-
atively charged, while holes are positively charged.
By applying an electric field across the detector, the
detector causes two currents, i.e. an electron current
(ie) and a hole current (ih). The electron current will
drift towards the anode, while the hole current will
drift towards the cathode. This will introduce a charge
on the electrodes Qind, which in turn will result in
a current i(t). This resulting charge pulse will be
captured and fed into a charge sensitive pre-amplifier,
which produces a voltage pulse, with the amplitude
of the pulse being proportional to the incident energy
of the absorbed photon. Thereafter, the output pulses
from the pre-amplifier are fed into a shaping amplifier,
which converts the pulse into a Gaussian shape and at
the same time providing further amplification. These
clean pulses can then typically be fed into a suit-
able counter or multi-channel analyser (MCA) which
enables the characteristic spectrum for the incoming
photons to be generated.

IV. RADIATION MODELING DESCRIBED AS A
GAUSSIAN PROCESS

A. Gaussian Processes

A Gaussian Process, often abbreviated by GP , is
a collection of random variables, any finite number
of which have a joint Gaussian distribution [24]. A
Gaussian Process defines a distribution of functions
f(x) : χ → R in function space. Function values
(f(x)) form this collection of random variables with
joint Gaussian distribution of every finite subset of
them. The Gaussian Process is completely defined by
its mean and covariance function:

f(x) ∼ GP(m(x), k(x,x′))

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x)(f(x′)−m(x′))]

(2)

Gaussian Processes provide a Bayesian framework
for regression, where learning is specified in terms
of Gaussian probability density functions. The mean
function, m(x), can be set to zero provided that all
training values are normalised to zero mean before
estimating the Gaussian Process. The covariance func-
tion, or kernel function k(x,x′), encodes all the prop-
erties about the unknown function, f(x), to be learned.
In order to use the GP framework in a correct way,
only positive semi-definite covariance functions are
valid. Given a set of training data D = {(xi, yi)}ni=1,
where xi ∈ Rd are the input data and yi ∈ R are the
target data. The goal of the regression framework is to
predict target values y∗ ∈ R at a new input point x∗.
Let X = [x1; . . . ; xn]T be the n×d matrix of the input
data and X∗ be defined analogously for multiple test
data points. In the GP model, any finite set of samples
is jointly Gaussian distributed. The joint distribution of
the observed target values and the function values at
the noisy test locations, samples from the prior of a
GP model, can be written as

[
y

f(X∗)

]
∼ N

(
0,

[
k(X,X) + σ2

nI k(X,X∗)
k(X∗,X) k(X∗,X∗)

])
(3)

where k(X,X) refers to the covariance matrix (or
kernel function) built by evaluating the covariance
function k(., .) for all pairs of all row vectors 〈xi,xj〉
of X. To make predictions of X∗, we take the joint
conditional Gaussian prior distribution on the obser-
vations, which results in the predictive mean, and
predictive covariance function:

f∗|X,y,X∗ ∼ N
(
f̄(X∗),V [f(X∗)]

)
(4)

where

f̄(X∗) , E [f(X∗)] =

k(X∗,X) ·
[
k(X,X) + σ2

nI
]−1

y
(5)

V [f(X∗)] = k(X∗,X∗)− k(X∗,X)

×
[
k(X,X) + σ2

nI
]−1

k(X,X∗)
(6)

More information on the derivation of GP model
priors and predictions can be found in [24].

B. Learning the radiation model from data

Given a training set D = {(xj , yj)}nj=1 of radiation
intensity measurements yj sampled at the correspond-
ing sensing locations xj , the task is to learn the GP
model. The training set is visually represented by
figure 1. Figure 1a represents the observed amount of
sampled radiation information with respect to the total



time of data captation. Figure 1b depicts the training
set as a stem plot, where the x and y position shows
the two-dimensional tool pose of the robot used to
capture the dataset, and the Z axis shows the amount
of concentration of ionising radiation captured by the
radiological detector. Figure 2 in turn illustrates the
used robotic arm for in-situ data collection. A first step
towards the learning of a GP model lies in the choice
of the appropriate covariance function. The intensity
of radiation decreases quadratic with the distance. The
Radial Basis Function (RBF) and the Matérn kernels
are therefore preferable as they return to minimum
value as distances to a test point increases. This gives
a better representation of the nature of point source
radiation intensity [22]. In this work, the Matérn class
of covariance functions is used:

kν=3/2(r) =

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
(7)

kν=5/2(r) =

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√

5r

l

)
(8)

in particular, the covariance function expressed in
equation 7, where l denotes the characteristic length-
scale, and r the input distance. Based on the input
training data and the chosen covariance function, with
arbitrary chosen hyperparameters, a prior GP model
can be calculated. This gives us the GP prior. To fully
learn the GP model, i.e. the posterior distribution func-
tion, the hyperparameters should be estimated. These
are estimated by maximising the marginal likelihood.
For this, the open-source implementation of Gaussian
Processes in Python, GPy, was used [25].

V. EXPERIMENTAL RESULTS

In this work, two different types of experiments
were conducted in which data is collected. The first
one consists of a full static dataset collection, where
the robotic arm explicitly stops at discrete positions in
the environment, followed by a sampling measurement
of the radiation detector during an amount of time. The
second type consists of a dynamic dataset collection,
where the robotic arm executes a trajectory, and where
the radiation sensor samples data at a fixed frequency.
Figure 2 shows the robotic setup used for static and
dynamic data collection. Figure 3 depicts the in-
situ measurement setup, consisting of a Kinova Jaco
robotic arm with six degrees of freedom, a Kromek
CZT sensor mounted at the end effector of the Kinova
robotic arm, and the used radiological point sources.
An overview of the different radionuclides used in
this work can be found in table I, together with their
activities at calibration time, and the actual activities
at data collection time.
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Fig. 1: Count rate information serving as input dataset.
Figure 1a depicts the received count rate (total received
counts per second) in function of time during the
in-situ laboratory test. Figure 1b illustrates the same
concentration of radiation at sampled (x, y) positions
acquired by a robot arm. The distribution consists
of a solid background count rate and several peaks,
indicating zones of elevated radiation.

Isotope Activity [kBq] Half time
[years]

Actual
activity [kBq]

241Am 418,10 458,00 391,99
137Cs 412,60 30,00 154,19
60Co 405,50 5,26 1,48
152Eu 1651,00 13,55 1.536,86
137Cs 333,00 30,00 227,97
57Co 685,00 0,74 173,02

TABLE I: Overview of the different radionuclides
together with their properties used during the in-situ
dataset collection with the robotic arm.



Fig. 2: A Kinova Jaco robotic arm with six degrees
of freedom setup is used together with an radiological
gamma ray detector spectrometer from Kromek to col-
lect the datasets in an in-situ laboratory environment.

A. Static measurements

In the first type of experiment, the robot is tasked
to perform data collection in a plane. In this static
experiment setup, a grid of pre-defined points in the
XY plane of the robot is scanned. At these points, the
robot holds his trajectory execution, and waits until
the Kromek device, mounted at the end effector of the
robot, has sampled a measurement at this particular
position. The robot is being controlled using the C++
API at a frequency of 250Hz, while the Kromek
samples a measurement during 1s. The vertical offset
between the end effector of the robotic arm and the
surface of the workbench is 0.1m. The collected data
is stored in dataset and is used in an offline phase
to perform the GP regression with the GPy library.
Figure 4 shows the output of the GP regression based
on the input training set D(x, y), as shown in the stem
plot of figure 1. Figure 4a depicts the mean function
of the GP posterior visualised as a heatmap in a
two-dimensional manner. Elevated values of radiation
intensity are shown in red colors. Blue colors indi-
cate lower radiation intensities. Together with the GP
model, the ground truth positions of the used sources
(241Am, 60Co, and 137Cs) to collect the dataset are
drawn on figure 4a. As can be seen, two of the three
sources are modeled correctly by the GP model.

B. Dynamic measurements

In the dynamic type of measurements, the robot
executes a trajectory, pre-defined by a set of waypoints
without completely stopping at a waypoint, while the
radiological sensor samples measurements at a fixed
frequency. The same constraints, i.e. control frequency
of the robot, sampling frequency of the Kromek sensor,
and vertical offset between robot end effector and
surface, are employed. Figure 5 shows the output of
the GP regression, illustrated again by plotting the
mean function as a 2D heatmap, together with the
ground truth positions of the used sources during

in-situ measurements. As can be seen in figures 5a
and 5b, the radiation distribution is modeled correctly
with one global maximum, depicting the strongest
point source, and two local maxima, indicating the
two point sources of lower intensity. When comparing
the GP model from the dynamic test setup with
the one learned during the static test setup, similar
results are being achieved. Both models indicate the
ground truth positions of the point sources very well.
The model, learned during the dynamic in-situ test,
seems to model the actual distribution of point sources
slightly better, by modeling a local maximum of the
lowest point source, as can be seen in figure 5a. To
compare the two learned GP models, figure 6 depicts
the optimised covariance functions of the GP posterior
during static and dynamic data collection. As can be
noticed, the covariance function of the static GP model
has values of low covariance at the positions where a
measurement was sampled, and higher values at the
remaining parts of the environment. In contrast, the
covariance of the dynamic GP model has low values
of covariance over the entire environment, indicating
that the dynamic model is relatively more certain about
its predictions. The pose of the robot end effector
during dynamic dataset collection and the Cartesian
end effector velocities are shown in figure 7. The
Cartesian velocities are calculated by applying the
forward kinematic equations, given the captured joint
velocities of the robotic arm, and the robot model,
using the KDL library [26]. As can be seen in figure 7,
a Cartesian velocity of ±0.15m/s is achieved during
the dynamic in-situ measurements. This indicates that
a continuous scanning pattern has the opportunity to
perform equally compared with performing a grid-
based scanning pattern, and has the benefit of increas-
ing the speed of characterising an environment and
localising radiological spots of contamination.

VI. CONCLUSIONS AND FUTURE WORK

This work presented an approach towards radiation
mapping and point source localisation by considering
the problem of modeling the radiation distribution in
an environment as a regression problem. For this, the
framework of Gaussian Processes was used. Based on
datasets captured during in-situ laboratory measure-
ments with a robotic arm and a radiological device,
the model of the distribution of radiation intensity in
an environment is learned. The experiments showed
that a realistic model of the environment can be
achieved. Furthermore, it was found that a dynamic
measuring principle, i.e. without effectively stopping
at a certain position to sample a radiological measure-
ment, performs equally to the static alternative, and
therefore offering the opportunity to increase the speed
of scanning and characterising an environment, and
therefore localising source of radiological contamina-
tions. Tracks for future work concern the evaluation of
time in order to scan an environment dynamically and
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Fig. 3: Pictures while performing the in-situ laboratory experiments. Figure 3a shows the Kinova robotic arm
while collecting data together with three radiological point sources lying on the surface of a workbench.
Figure 3b illustrates a different dataset collection with five point sources spread over the working surface.
Figures 3c, 3d, and 3e depicts the three most intense point sources (57Co, 137Cs, and 152Eu radionuclide
respectively) used in the dataset collection process.

achieving a good representation of the environment. In
this work, the scanning area was rather small due to
the limited work space of the robotic arm kinematics.
Future work will also concern to scale up the scanning
environment by using a mobile manipulator robot.
Furthermore, the adopted model in this work consists
of just one GP component. Therefore, future work will
look at how well a mixture of GP components can
model the distribution of radiation.
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Fig. 4: Output from the Gaussian Process regression
based on the input dataset D(x, y). Figure 4a shows
a two-dimensional view of the GP posterior mean
function after optimisation of the hyperparameters, l
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Fig. 6: Covariance functions of the GP model learned
during the static (6a) data collection, and dynamic (6b)
in-situ data collection. Blue color represent low values
of covariance, while a red color indicates high values.
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Fig. 7: Cartesian tool pose (figure 7a) and Cartesian
velocities (figure 7b) in function of time during in-situ
dynamic dataset collection.


