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Abstract 
Digital PCR (dPCR) is a highly accurate technique for the quantification of target nucleic acid(s). It has shown great potential in 
clinical applications, like tumor liquid biopsy and validation of biomarkers. Accurate classification of partitions based on end-point 
fluorescence intensities is crucial to avoid biased estimators of the concentration of the target molecules. We have evaluated many 
clustering methods, from general-purpose methods to specific methods for dPCR and flowcytometry, on both simulated and real-life 
data. Clustering method performance was evaluated by simulating various scenarios. Based on our extensive comparison of clustering 
methods, we describe the limits of these methods, and formulate guidelines for choosing an appropriate method. In addition, we have 
developed a novel method for simulating realistic dPCR data. The method is based on a mixture distribution of a Poisson point process 
and a skew-t distribution, which enables the generation of irregularities of cluster shapes and randomness of partitions between clusters 
(‘rain’) as commonly observed in dPCR data. Users can fine-tune the model parameters and generate labeled datasets, using their own 
data as a template. Besides, the database of experimental dPCR data augmented with the labeled simulated data can serve as training 
and testing data for new clustering methods. The simulation method is available as an R Shiny app. 

Keywords: digital PCR; nucleic acid quantification; clustering; simulation; nucleic acid amplification; absolute quantification; molecular 
diagnostics; high-precision PCR 

INTRODUCTION 
In recent years, there has been a growing interest in digital PCR 
(dPCR) for nucleic acid sequence quantification, as the technol-
ogy offers numerous appealing features such as high accuracy, 
repeatability and calibration-free absolute quantification [1]. It 
also demonstrates high resistance to a sub-optimal amplification 
efficiency, often caused by PCR inhibitors. Consequently, dPCR is 
increasingly applied in a wide array of domains. These include the 
detection of genetically modified organisms, molecular pathol-
ogy, liquid biopsy analyses in oncology [2, 3], as well as clinical 

and environmental microbiology, including viral load monitoring 
[4, 5]. The recent technological improvements in dPCR allow for 
the use of up to six different fluorescent colors, enabling the 
simultaneous analysis of multiple target nucleic acids. To make 
dPCR terminology easier to grasp, we have added a glossary (see 
Table S1 in the Supplementary). 

dPCR has a straightforward reaction readout. In contrast to 
qPCR, which requires real-time monitoring for quantification, 
dPCR primarily relies on end-point fluorescence detection. First, 
a sample is partitioned into numerous individual PCR reactions
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each resulting in its own end-point fluorescence intensity. Quan-
tification relies on Poisson statistics and the fraction of positive 
partitions [5]. The analysis revolves around the binary outcome 
of each partition, namely positive or negative. For a singleplex 
experiment where only one target is quantified, the classification 
into positive and negative partitions is based on a threshold [6]. 

For multiplex experiments where multiple targets are quan-
tified in the same reaction, classification of multi-dimensional 
dPCR partition data can be challenging. One can either do the 
classification dimension-by-dimension by setting thresholds, or 
one can consider all channels simultaneously. In the latter case, 
particularly for duplex experiments, manual clustering is often 
applied, based on a visual inspection of the two-dimensional 
scatter plot of the fluorescence intensities. However, this manual 
procedure may introduce bias and lower precision [7]. As misclas-
sification can significantly impact the accuracy of estimates [8], 
and with higher-throughput instruments being introduced, there 
is a growing need for automated partition classification methods. 

However, designing a robust classification method is not 
straightforward [6]. Many methods are unsupervised because 
the true positive/negative partition labels are typically unknown. 
Although some methods make use of negative and positive 
controls, there are often deviations between the controls and 
actual samples due to variability in fluorescence readout or due 
to sample matrix effects. 

This paper evaluates the performance of clustering methods 
for the classification of partitions in duplex experiments, using 
both simulated and empirical data. We consider three types of 
clustering methods: methods specifically developed for dPCR par-
tition classification, general clustering algorithms and clustering 
methods designed for flow cytometry data. We assess the appli-
cability and performance of 11 different methods, discuss when 
and why specific methods fail, and finally provide guidelines for 
method selection in a variety of biologically relevant scenarios. 
Further, a novel simulation method is developed to guide users 
in the selection of the most suitable method tailored to their 
specific data. 

MATERIALS AND METHODS 
Methodology overview 
The adequacy of a clustering method hinges on the accurate clas-
sification of partitions, but the partition labels are often unavail-
able in dPCR data. Furthermore, the performance of a clustering 
method can vary significantly across different datasets due to 
biological and technical variability. Factors such as cluster size 
and proximity play pivotal roles in influencing the clustering 
outcome. As such, the effectiveness of clustering is related to 
these dataset-specific characteristics. 

To overcome these problems, we will use two different simula-
tion methodologies. The first starts from an empirical dataset for 
which the classification has been done by three experts (manually 
defined clusters). In the event of a dispute, the decision aligned 
with the majority viewpoint. This is subsequently considered as 
the ground truth. From this dataset, partitions are randomly sam-
pled to form a new dataset to which the clustering methods are 
applied. This process is repeated many times, and the average per-
formance of the clustering methods is reported. We have used this 
approach starting from three different datasets (see Section 3.3). 
The advantage of this approach is that the (resampled) data are 
very realistic, but a shortcoming is that the data characteristics 
(e.g. resolution of clusters, rain, target concentration, . . .  ) cannot 
be varied, and hence the conclusions from this study are limited 
to situations similar to the original empirical datasets. 

The second simulation method starts from a probabilistic 
model from which endpoint intensities can be sampled. The 
model generates realistic data, with parameters to tune cluster 
resolution, rain, target concentration, among others. Since the 
parameters are under our control, the clustering methods can be 
evaluated for a large set of scenarios (see Section 3.4.). 

Clustering methods 
Clustering methods can be broadly categorized into partition-
ing, hierarchical, density-based, model-based, and graph-based 
approaches [9]. Based on this categorization and the availability of 
R packages or code, we selected kmeans and cmeans (partitioning-
based), DBSCAN (density-based), f lowclust  and f lowmerge  (model-
based), f lowSOM  (hierarchical clustering), samSPECTRAL (graph-
based), dpcp, calico (partitioning-based and density-based), f low-
peaks (density-based and model-based) and ddPCRclust (concen-
sus clustering based on flowdensity, flowpeaks and samSPEC-
TRAL). This gives 11 clustering algorithms in total that have been 
utilized for flow cytometry, and dPCR, as well as all-purpose 
clustering methods (Table 1). 

We compared all these algorithms using their default parame-
ter settings in the R packages, except for dpcp. The use of the latter 
with its default values does not work for the standardized data 
(see Section 3.3). The dpcp method utilizes DBSCAN as the first 
step for the identification of cluster centers. The default value 
for ‘neighborhood distance’ in this step ranges from 100 to 150, 
which leads to one single cluster when applied to the standardized 
data. Thus, we had to change this distance parameter to 0.15 
(the same as used for the standalone DBSCAN algorithm). This 
method also requires clean references (with few rain and single-
target clusters identified), but since we do not have references 
in the simulations, we performed the two-step approach on the 
same data twice. This is allowed when the sample itself is clean 
and all lower-order clusters are present [13]. With respect to the 
initial values for kmeans and cmeans, we simply estimated the 
mean of cluster centers after manual clustering. For the empirical 
datasets, these will be accurate centroids, but for the simulated 
data, there may be small deviations. ddPCRclust fails to perform 
effectively on standardized data, consistently producing only one 
cluster. As a workaround, we conducted this method on the 
original, unstandardized data. 

Empirical datasets 
For the evaluation of the clustering methods, we selected three 
empirical datasets (Figure 1). 

The selected datasets encompass clusters of varying sizes, as 
can be seen from the Poisson parameter estimates in Table 2. 
The table also describes the amount of rain in the data, and the 
resolution of the clusters. The latter is quantified as follows. First, 
for each cluster j, the scaled distances to neighbouring clusters k 
are calculated: 

djk =
√√√√1 

2 

2∑
l=1 

(centroidjl − centroidkl)
2/(varjl + varkl), (1)  

where centroidkl is the fluorescence intensity values in channel 
l of the centroid of cluster k, and  varkl is the variance of the 
intensities in channel l of cluster k. For a given cluster j, the  
smallest of these distances between cluster centers is a measure 
of the resolution of cluster j from its neighbouring clusters. Let 
mj = mink djk denote this minimum distance for cluster k. As  
an overall measure for resolution, for the complete dataset, we 
calculated the smallest of the mj, i.e.  sep = minj mj. Thus, a  small
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Table 1: Overview of the clustering evaluated in this study 

Method Environment and availability Short description reference 

kmeans R package (stats) Iterative partitioning algorithm; used with or without good initial values 
(centroids). 

[10] 

cmeans R package (e1071) Iterative soft partitioning algorithm; with or without good initial values. [11] 
DBSCAN R package (dbscan) Density-based clustering algorithm; the number of sufficient neighbours 

and radius has to be pre-specified. 
[12] 

dpcp R code from GitHub; R shiny app Two-step approach; DBSCAN is utilized to identify the locations of 
first-order clusters, then cmeans is applied. 

[13] 

flowSOM R package from Bioconductor Self-organizing map to find winning nodes, followed by hierarchical 
clustering on those representatives. 

[14] 

flowPeaks R package from Bioconductor Based on finite Gaussian mixture models; start with kmeans to compute 
smooth density function empirically, then merging is performed; no need to 
specify the number of clusters. 

[15] 

flowClust R package from Bioconductor Based on t mixture models with Box-Cox transformation; model parameters 
are inferred using an Expectation-Maximization algorithm; the number of 
clusters can be pre-specified or automatically chosen by the Bayesian 
information criterion (BIC). 

[16] 

flowMerge R package from Bioconductor Extension of flowClust and is intended to solve the issue of flowClust 
producing too many clusters in the automatic mode; the best model is 
selected by the change point in entropy. 

[17] 

SamSPECTRAL R package from Bioconductor Graph-based method; starts with data reduction due to the computational 
cost, then computes the similarity matrix, followed by spectral clustering, 
then kmeans; the number of clusters can be pre-specified or automatically 
determined by the knee point of the eigenvalue plot. 

[18] 

calico R code from GitHub; R shiny app Based on gridding and kmeans; starts with sample space gridding to reduce 
the differences in density, then the first round of kmeans is implemented 
on the gridded data to obtain centroid for the second round of kmeans. 

[19] 

ddPCRclust R package from Bioconductor Ensemble-based approach that combines the outcomes of flowDensity, 
SamSPECTRAL and flowPeaks. 

[20] 

Additional details including software package versions used for each clustering method are included in Appendix Table S2 . 

Figure 1. (A) HR (high-resolution) dataset, (B) MM (multi-mode) dataset (C), LR (low-resolution) dataset. 

Table 2: Summary of the empirical datasets and their characteristics 

D ataset Number of 
partitions 

λ1 λ2 rain resolution short description 

HR 18 233 0.036 0.036 Not many, but 
some outliers 

sep=3.32 (good) good separation but some crosstalk; RPP30 
genomic DNA assay, refer to [21] 

MM 14 277 0.28 0.28 Continuous rain sep=3.30 (medium) Obvious multimodality; HIV gblock sequences, 
refer to [22] 

LR 22 723 0.69 0.19 Rain mainly 
along the x-axis 

sep=2.34 (poor) Barely separable on x-axis; The development of 
assays for the genotyping plants various 
primers/probes and conditions for each target are 
evaluated. 

λ1 and λ2 are the average number of target molecules per partition (for target 1 and target 2), see Figure 1 for more details. 
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value for sep means that there are at least two clusters that 
are close to one another, and a large value for sep means that all 
clusters are well separated. 

To make sure that different methods are compared fairly and to 
avoid any biases caused by differences in intensity scales between 
channels, we perform channel-by-channel standardization. The 
standardized data will have mean of 0 and standard deviation of 
1. This way, we prevent methods, such as kmeans, from favoring 
channels with larger scales and ensure unbiased comparisons. 

For the evaluation of the clustering methods, 10 000 bootstrap 
samples were generated from each of the three datasets, and all 
11 clustering methods were applied to each bootstrap sample. 
Details on how the performance of the clustering methods were 
quantified will be given in Section 3.7. 

Probabilistic model 
The model, which will be used for the simulation of synthetic data, 
is based on a non-homogeneous Poisson point process, which is a 
stochastic point process where the intensity of point occurrences 
varies across the spatial domain [23–25]. In a two-dimensional 
space, let γ (x, y) be the intensity function, where (x,y) represents 
the coordinates in the spatial domain. In our context, x and y 
refer to the intensities in the two channels. The intensity function 
specifies the expected number of points per unit area at a given 
location. Assume that the number of partitions in a small area 
near point (x,y), denoted as N(x, y), can be described by a Poisson 
distribution with mean γ (x, y). This mean parameter γ (x, y) is 
subsequently modelled as in a log-linear model. Here we suggest 

N(x, y) ∼ Pois
(
γ (x, y)

)
log(γ (x, y)) = log(s(x, y)) + β0 + β1x + β2y (2) 

where log(s(x, y)) is an offset that in itself comes from a working 
probabilistic model. If β1 = β2 = 0, the Poisson point process 
would be only an approximation of that working model, but the 
term β1x + β2y allows the model to smoothly deviate from the 
working model. As a working model, we consider the multivariate 
skew-t distribution [26]. With ft(x, y; μ, �, δ, ν) the density function 
of this distribution, where μ is the location parameter, � is the 
covariance matrix, δ regulates the slant of the density, and ν is 
the degrees of freedom, we have s(x, y) = ft(x, y; μ, �, δ, ν) [27]. 
The parameters are estimated from fitting individual clusters 
of the empirical datasets. After obtaining the parameters of the 
skewed-t distribution, the log densities of the data points are 
computed, which serve as the offset in the non-homogeneous 
Poisson process. 

Because rain is typically present along the directions connect-
ing any two clusters, a constraint on the density is imposed as a 
further refinement of the model. The model for cluster k is then 
given by 

N(x, y) ∼ Pois
(
γ (x, y)

)
log(γ (x, y)) = log(s(x, y)) + β0 + β1x + β2y +

∑
j �=k 

rj(y − ajx − bj)
2 (3) 

where the summation is over all other clusters, rj is a penalty 
parameter, and aj and bj are the slope and intercept of the line 
connecting the centers of clusters k and j. Again, the parameters 
will be estimated from empirical data, and, when simulating new 
data from this model, the structure of the rain can be altered by 
changing the values of rj. In particular, a large value of rj forces 
the rain to be concentrated near the line connecting the centers 

of clusters k and j (see Figure 2). Figure S1 in the Supplementary 
is an example with small values of rj. 

A visual examination of the two-dimensional scatter and den-
sity plots, and projection depth plots [28] is employed to assess 
the goodness-of-fit of the probabilistic model. 

Simulation set-up 
We consider a two-color system and two assays in our simulation 
study. In most of the scenarios, we will have four clusters: one neg-
ative population, two single positive populations and one double 
positive population. The double positive group may disappear in 
the case of very low target concentrations. 

We aim to investigate the impact of several factors on the 
clustering performance, including the following: 

• Cluster resolution: good, medium, and poor. 
• Concentration: expressed as the partition occupancy, which 

is the percentage of positive partitions. This number directly 
relates to the average number of molecules per partition (λ). 
We considered four levels: high (80% partition occupancy 
for each target), low (10%), very low (2%) and rare ( 0.1%). 
From the partition occupancies of the targets, we deduced 
the expected cluster sizes for single positive, double positive, 
and negative instances. These actual cluster sizes were then 
simulated from a multinomial distribution. 

• Rain percentage: from 0 to 10% of the cluster size, in steps 
of 2%. The control of rain percentage is achieved by manip-
ulating the parameter γ (x, y) in Equation 3. To generate the 
desired amount of rain in the dataset, we adjust the rain 
intensity by multiplying γ (x, y) with a scalar. However, it 
is important to note that this adjustment also affects the 
intensity of non-rain points. To maintain the desired ratio of 
rain to non-rain, a two-step process is implemented. Firstly, 
we generate the data with the required amount of rain by 
scaling γ (x, y). For instance, if we aim to increase the rain 
percentage from the initial 10–20%, we multiply γ (x, y) by a 
factor of 2.25. We then proceed to remove non-rain points 
based on their silhouette coefficients’ rankings. By retaining 
only the lowest 10% of silhouette coefficients, we preserve the 
required number of rain points in the dataset. Subsequently, 
the original non-rain points are reintroduced to complete the 
dataset. 

• Orthogonality: yes or no. Orthogonality means that the clus-
ter centers are positioned in a squared pattern. We have 
generated non-orthogonal clusters by applying a rotation 

matrix

[
1 0.1 

0.1 1

]
to the orthogonal data. 

• Modality: uni- or bimodal. A mode refers to a local den-
sity peak within a cluster. If there are multiple modes, we 
also consider the distance between those modes. To cre-
ate a bimodal cluster, we simulate two clusters. The covari-
ance matrix �2 (of the second population) differs slightly 
from �1 (of the first population). We manipulate this devi-
ation by sampling the values of �2 from a normal distri-
bution with �1 as mean and 10% of this mean as stan-
dard deviation (coefficient of variation). The final bimodal 
cluster is then constructed by sampling 80% of partitions 
from the first simulated cluster, and 20% from the second. 
The partitions from the second cluster are translated along 
the vertical direction with a Mahalanobis distance [29] of  
3, 7 or 10 from the first cluster center. In this way the 
overlap between the two populations is varied from large to 
small. 
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Figure 2. (A) HR dataset with the removal of data points that deviate substantially from the lines constructed by the centers of double positive and 
negative clusters. (B) Simulated data using the method described in Section 3.4. (C) Simulated data with no constraints imposed. (D) Simulated data 
with constraints imposed. Note: to emphasize the effect, we increased the concentration of the original dataset by a factor of 6. 

• Equal concentration: yes or no. If ‘no’, the concentration of 
target 2 will be set at half the concentration of target 1. 

Each combination of these factors makes up a simulation 
scenario. However, the total number of combinations of all these 
factors is large, and performing 1152 simulations for each factor 
combination would take too much computation time. We have 
therefore selected 150 factor combinations (i.e. 150 scenarios) by 
constructing a factorial empirical design with the JMP software 
(version 16). The design was constructed such that it allows us to 
estimate all main effects and all two-way interactions in a linear 
model. 

To assess the impact of variables on the model’s goodness-
of-fit, we conducted step-by-step variable elimination. Starting 
with the full model, we removed one variable at a time and 
observed the change in mean squared error (MSE). A significant 
drop suggested the variable’s importance, while minimal change 
indicated modest influence. 

In each simulation, we start with sampling the total number 
of partitions from a normal distribution with a mean of 20 000 
and a standard deviation of 1000; this number is rounded to 

an integer. Next, based on the concentration levels, we sample 
the cluster sizes from a multinomial distribution. Subsequently, 
for each cluster the endpoint intensities are sampled from the 
Poisson process (Equation 3) according to the simulation scenario 
as specified by one of the 150 factor combinations. 

Parameter optimization 
We optimized the tuning parameter values of the clustering algo-
rithms whenever possible. Two distinct methods were employed 
to search for the optimal tuning parameter values. 

The first method is manual or instructed search. Flowclust, 
SamSPECTRAL, ddPCRclust and dpcp provide specific instructions 
on how to select tuning parameter values or to make use of the 
prior knowledge, and we adhered to these guidelines. For meth-
ods without predefined optimization procedures, we employed 
a manual search. We initially identified key tuning parameters, 
assigning each a range of values spanning different magnitudes. 
Subsequently, the algorithms were tested with all combinations 
of these parameters, and the resulting clustering outcomes were 
visually inspected.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/3/bbae120/7636760 by H

asselt U
niversity user on 06 M

ay 2024



6 | Chen et al.

The second method is an automatic search that aims to opti-
mise the adjusted Rand index (ARI) or silhouette coefficient. In 
particular, ranges of possible values were assigned to the key 
tuning parameters. Then the optimization algorithm automati-
cally searched for tuning parameter values that can achieve the 
highest ARI or silhouette coefficient. The automatic search was 
implemented using Bayesian optimization with the ‘mlrMBO’ R 
package (version 1.1.5.1, [30]). It is a more exhaustive algorithm 
than then manual approach. 

We then manually compared the best clustering results given 
by manual/instructed search and automatic search. We did this 
for all three empirical datasets. For more details, please see 
Parameter optimization in the Supplementary. 

For the simulated data, a comprehensive manual search for 
tuning parameters was deemed impractical as there are 150 sce-
narios, but an automatic search may be possible. To explore this 
possibility, we implemented the automatic search based on the 
silhouette coefficient on the empirical datasets (no prior knowl-
edge about grouping is required). However, we have observed that 
the automatic search procedure can yield quite wrong results 
(Figures S6G, S13G and S15G). This could be attributed to the 
optimization algorithm getting stuck in local minima, and the 
silhouette coefficient may not always be a reliable indicator. After 
all, the silhouette coefficient does not make use of the manual 
grouping information. We thus decided not to adjust the tuning 
parameters for each simulation scenario. Instead, as the simula-
tion models were based on empirical data, we clustered the simu-
lated data with the tuning parameters that were optimised for the 
empirical data. Notably, the three empirical datasets align with 
three different levels of resolution (see Table 2). Consequently, we 
applied the corresponding tuning parameter values to simulated 
datasets sharing the same level of resolution. 

Performance evaluation 
The clustering performance is assessed using ARI [31] and the  
relative bias of the λ estimates. 

The ARI measures the similarity or agreement between two 
different clusterings of the same dataset. Here we compare the 
results of one of the 11 clustering methods with the ground truth. 
The ARI ranges from -1 to 1, where 1 indicates a perfect match 
between the two clusterings, 0 indicates random agreement, and
-1 indicates complete disagreement. 

We examined the ARI not only for the entire dataset but also 
for data points located on the periphery of clusters, as our interest 
also lies in rain classification. The edge data points are identified 
based on the ranking of silhouette coefficients within each cluster. 
We consider the percent of data points (c%) with the lowest 
silhouette coefficients as rain. To determine this, we need some 
prior knowledge about the rain percentage c. 

The relative bias of λ refers to the deviation between an esti-
mated value and the true value relative to the actual value itself, 
which is (λ̂ − λtrue)/λtrue. The average of this quantity over the 100 
simulations, gives the relative bias of the estimator. 

To match the clusters to the reference populations, we use 
the Hungarian assignment algorithm [32], which solves the linear 
assignment problem by finding a one-to-one mapping that min-
imizes the sum of distance between the cluster centers given by 
those methods and those of the references (the known true cluster 
centers). 

We also recorded the runtime for the empirical data analysis. 
To investigate the stability of the clustering results, we ran the 
methods with different random starts on 100 bootstrap samples 
of size 10 000 from the original datasets. 

We evaluated the overall performance as well as individual 
failure cases. We chose methods that demonstrated promising 
overall performance in both simulation and on the empirical data 
to perform further investigation. 

Implementation, data and code availability 
All the analyses were conducted using R (version 4.2.2) [33]. In 
addition, we have developed a Shiny app that enables end-users 
to interactively explore different parameters and simulate their 
own data for algorithm testing (see https://dpcr-ugent.shinyapps. 
io/DigitalPCRDataSimulator/). R code is available on GitHub (see 
https://github.com/digpcr/comparative_study_clustering/tree/ 
main). 

RESULTS 
Empirical data 
When comparing the different methods on empirical datasets, we 
observed that f lowmerge, dpcp, kmeans_initials and cmeans_initials 
(with good initials provided), calico and f lowpeaks work consistently 
well across datasets, both with default parameters and optimised 
tuning parameter values (refer to Table 3, S4 and S5). In 
contrast, cmeans without initials performed comparatively 
poor for all datasets. The performance of flowclust (manual 
or automatic) and SamSPECTRAL (manual) varied between 
datasets. 

With the optimal tuning parameter values, the overall per-
formance of the clustering methods has improved, especially 
for DBSCAN and SamSPECTRAL_auto. DBSCAN and SamSPECTRAL, 
which appeared as overall successful methods in our simulation 
study (see further), faced challenges for the HR dataset. DBSCAN 
overestimated the number of clusters, hampering the subsequent 
automatic labeling process (Figure S43A in the Supplementary). 
This overestimation may stem from rain scattering over many 
locations. Yet, post-clustering manual merging can yield accurate 
estimates, a finding supported by the disconnection between the 
observed ARI (high) and the relative bias (high). This problem 
was solved by using the optimal tuning parameter values. The 
relative bias of λ1 and λ2 dropped from 49.7% and 46.85% to 3.35% 
and 2.83%, respectively, and the estimated cluster number was 
reduced from 8.26 to 5. SamSPECTRAL proved sensitive to outliers 
and misidentified a minor cluster comprising two data points 
(Figure S43B in Supplementary). The alterations in parameters 
exhibit a minimal impact on the performance of SamSPECTRAL, 
as evidenced by only small changes in both the relative bias and 
ARI. Nonetheless, big improvements were observed in SamSpec-
tral_auto when optimal tuning parameter values were applied to 
the MM dataset (refer to Table S4).  The relative bias showed a  
significant improvement, decreasing from approximately 30% to 
2%. 

Flowclust (model-based) and kmeans and cmeans without initials 
(partitioning-based) suffered stability issues: in some cases, these 
methods split the negative cluster, resulting in high relative bias 
and low  ARI (Figure S43 in the Supplementary). 

Per sample run-times range from 6 ms (kmeans with initials) to 
14 s (SamSPECTRAL in automatic mode; Table S6), demonstrating 
feasible execution time overall. 

We also applied the clustering results to the duplex RPP30 host 
genomic DNA assay [21] for the absolute quantification of target 
DNA. The RPP30 assay can be used to correct for DNA shearing 
during the technical procedures [22, 34]. 

In terms of the confidence intervals (CIs) for the HR dataset, 
most of CIs covered the true values except for samspectral_auto
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Table 3: Performance metrics from the resampling study of the HR dataset 

Method λ̂1−λ1 
λ1 

(%) λ̂2−λ2 
λ2 

(%) ARI ARI non-central Number of clusters 

ddPCRclust 0.40‖1.11 −0.55‖−0.32 0.999‖0.999 0.987‖0.986 / 
flowmerge −0.84 −0.55 0.999 0.987 4 
dpcp −2.09‖−1.94 −0.97‖−0.77 0.998‖0.998 0.985‖0.984 / 
flowSOM −1.66‖−3.13 −1.44‖−1.54 0.998‖0.997 0.979‖0.973 / 
flowpeaks −2.15‖−4.27 −0.96‖−4.01 0.998‖0.999 0.980‖0.991 4‖8.61 
kmeans with initials −2.29 −1.09 0.998 0.979 / 
cmeans with initials −2.29 −1.14 0.998 0.979 / 
calico −3.12‖−2.82 −2.06‖−1.90 0.996‖0.996 0.975‖0.962 / 
DBSCAN −3.35‖-49.70 −2.83‖-46.85 0.999‖0.998 0.993‖0.996 5‖8.26 
SamSPECTRAL −14.18 −1.17 0.998 0.986 / 
SamSPECTRAL auto −30.57 −25.71 0.998 0.985 8.31 
flowclust 18.02 707.55 0.649 0.636 / 
flowclust auto 28.25 422.53 0.783 0.768 4 
kmeans 15.16 578.35 0.730 0.717 / 
cmeans 172.37 1045.16 0.414 0.399 / 

Average relative bias of λ1 and λ2, the ARI calculated for all resampled 10 000 data points and for the data points on the edge only, and the average number of 
clusters identified. When two values are separated with ‘‖’, the result with the optimal tuning parameter value is shown before the ‖, and the result with the 
default parameter value is shown behind ‖. For those methods that have only value, either no optimal tuning parameter values are available or the optimal 
ones coincide with the default ones. The methods are ranked from low to high relative bias (sum of the absolute relative biases |λ1| + |λ2|) based on the results 
with optimal tuning parameter values. ‘/’: the number of clusters is pre-defined. 

Figure 3. CI of λ1 and λ2 for HR dataset. The confidence interval is calculated based on the resampled 10, 000 data points with the optimal tuning 
parameter values. The 95% confidence interval spans from the 2.5th to the 97.5th percentile of all estimates. The red dashed line in the plot represents 
the true value for  λ1, while the blue line represents the true value of λ2. The methods are ordered by the relative bias of the mean concentration to the 
true value. 

where λ1 and λ2 are always underestimated (e.g. for λ1, 59.90% 
bias, 95% CI [14.54–38.30 ], see Figure 3). ddPCRclust (4.63% bias, 
95% CI [36.52–42.09]), f lowmerge  (7.03% bias, 95% CI [35.79–41.67]), 
f lowSOM  (7.48% bias, 95% CI [35.62–41.00]), f lowPeaks  (8.43% bias, 
95% CI [35.41–41.28]), kmeans_initials (8.70% bias, 95% CI [35.41– 
41.21]), cmeans_initials (8.71% bias, 95% CI [35.41–41.21]), dpcp 
(9.36% bias, 95% CI [33.73–41.30]) and calico (9.62% bias, 95% CI 
[35.12–41.05]) gave accurate and narrow CIs. kmeans (8.53% bias, 
95% CI [35.58–59.14]), SamSPECTRAL (13.09% bias, 95% CI [16.32– 
41.56]), DBSCAN (15.68% bias, 95% CI [16.57–40.90]), f lowclust_auto 
(59.79% bias, 95% CI [35.58–60.07]) and SamSPECTRAL_auto (59.90% 
bias, 95% CI [14.54–38.30]) gave quite wide CIs, which indicates 
that the clustering results produced by those methods are 
inconsistent. 

Data generation model: goodness-of-fit 
The density plots and depth-depth plots (Figures 4 and S2, S3 in 
the Supplementary) suggest that simulated aligns closely with the 
empirical data. While overall agreement looks good, deviations 
become noticeable as observations approach the center. 

Global method performance on simulated data 
We conducted a comparison of clustering results obtained 
through different methods using default parameter values and 
optimal tuning parameter values (Figure 5 vs. Figure S17). Notably, 
the application of optimal tuning parameter values derived from 
the empirical data did not enhance the overall performance in 
terms of average ARI and relative bias. In fact, it led to more 
extreme cases, particularly evident for flowpeaks and flowSOM. 
Consequently, we will only discuss here the simulation results 
obtained with default parameter values. 

Across the simulation scenarios, we observed large perfor-
mance disparities among the methods (mean ARI range [0.2, 
0.99]; Figure 5). Overall, f lowpeaks, kmeans_initials, SamSPECTRAL 
and DBSCAN showed the best performance with mean ARIs 
of 0.99, 0.99, 0.98 and 0.97 respectively). In contrast, simple 
partitioning methods like cmeans and kmeans often yielded low 
ARI values (mean ARI of 0.2 and 0.5, respectively). Still, when 
provided with appropriate initial centroid values (cmeans_initials 
and kmeans_initials), better results were obtained (mean ARI 
of 0.87 and 0.99, respectively). Model-based algorithms like
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8 | Chen et al.

Figure 4. Goodness-of-fit for the HR dataset. (A)–(B) Density plots of the original and simulated data, respectively, and (C) depth-depth plots. 1, 2, 3 and 
4 represent the negative population, single positive 1, double positive and single positive 2, respectively. The further the data points from the cluster 
center, the darker those data points are. Depth values indicate how deep a data point is within the data distribution, with more central or typical points 
having higher depths and outliers having lower depths [35]. 

Figure 5. Averaged ARI across the 150 factor combinations. 
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Figure 6. Relative bias of λ1 across the 150 factor combinations. Note: cmeans, kmeans, flowclust, flowclust in automatic mode, flowmerge and calico 
were omitted from the bias analysis since their overall performance is poor. 

Figure 7. Changes in log(MSE) with variable elimination. The x-axis represents the variable removed at each step, while the y-axis shows the change in 
log(MSE). This change was calculated by subtracting the log(MSE) of the full model from that of the model with the variable removed. A high � log(MSE) 
indicates a big drop if this variable is removed, signifying its substantial contribution to the response variable. 

f lowclust (in manual and automatic mode) and f lowmerge generally 
exhibited subpar performance (mean ARI of 0.54, 0.54 and 0.79, 
respectively). 

Of note, larger variation is observed when considering edge 
data points only (Figure S21 in Supplementary). f lowpeaks and 
SamSPECTRAL demonstrated superior performance (mean ARI 
of 0.97 and 0.96, respectively). Regarding the relative bias of λ 
estimates, most methods perform well (mean relative bias lower 
than 5%; Figures 6 and S22 in the Supplementary). However, some 
outliers indicate that these methods can sometimes suffer from 
large relative biases (over 50%). 

The linear model results indicate that target concentration and 
resolution greatly impact the clustering performance across all 
methods (Figures S23–S38, Appendix 2 for the linear model fit 
results). Likewise, changes in MSE identified ‘concentration’ and 
‘resolution’ as the most influential variables for the model’s per-
formance (Figure 7). Equal concentration, cluster orthogonality 
and multi-modality had minimal impact on most methods’ clus-
tering performance. One exception is the model-based method 
f lowmerge  that is sensitive to multiple modes. 

calico, cmeans, cmeans_initials, kmeans, f lowclust, f lowclust_auto, 
f lowSOM  and samspectral_auto struggle to accurately classify data 
points at low concentration levels (0.1–2% partition occupancy, 
Figure S39). Interestingly, we observed a positive impact on ARI 
due to the interaction between low concentration levels and rain 
percentage. This suggests that at extremely low concentrations, 
the presence of rain may increase the effective concentration and 
assist algorithms in identifying the correct clusters. 

Failure cases on simulated data 
In terms of failure scenarios (ARI < 0.9), there are 20% of cases 
for calico, 9%  for  DBSCAN, 12% for dpcp, 29% for f lowmerge, 0.66% 

for f lowpeaks, 14% for f lowSOM, 3.3% for kmeans_initials, 6.6% for 
SamSPECTRAL and 23% for SamSPECTRAL_auto. 

An examination of the failure cases allowed the identification 
of scenarios for which some methods struggled to accurately 
identify the clusters. For instance, calico showed poor performance 
at very low concentrations and could also make mistakes at high 
concentrations if the grid number was misspecified (Figures 8A 
and S40 in Supplementary). DBSCAN failed primarily when 
confronted with high concentrations alongside medium or poor 
resolution, characterized by continuous rain between clusters 
(Figure 8B). dpcp failed in similar situations (Figure 8C). Flowpeaks 
struggled with high concentrations and double modalities 
where the sub-cluster centroids were clearly apart (Figure 8E). 
f lowSOM  encountered difficulties when the resolution was poor 
at high concentrations. Additionally, flowSOM sometimes failed 
to identify small clusters and incorrectly split the negative 
cluster (Figure 8F). kmeans_initials only failed when the resolution 
was poor at high concentrations (Figure 8G). SamSPECTRAL 
also struggled at high concentrations and in cases of poor 
resolution, but instead of splitting the negative population, it 
identified some rain as a distinct cluster (Figure 8H). Furthermore, 
in automatic mode without pre-specified cluster numbers, 
SamSPECTRAL occasionally produced only one or two clusters 
when the clusters were too small to be identified (Figure 8I). 
Flowmerge struggled to find the small clusters (Figure 8D) but  
also defined sub-clusters when the two clusters were clearly 
separated. 

We reapplied the clustering methods to the failure cases pre-
sented in Figure 8, this time utilizing optimal tuning parameter 
values. Notably, adjusting the tuning parameters resulted in an 
improved performance of DBSCAN, dPCP and flowSOM (see Figure 
S41), with which fewer data points were misclassified. However,
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Figure 8. Scenarios where methods fail: calico (A), DBSCAN (B), dpcp (C), f lowmerge (D), f lowpeaks (E), f lowSOM (F), kmeans with initials (G), samspectral 
(H), sampectral in automatic mode (I). 

for flowPeaks and SamSPECTRAL, parameter adjustment did not 
yield improvements. 

DISCUSSION 
Method strengths and limitations 
We conducted a comprehensive comparison of various clustering 
algorithms, including those specifically designed for dPCR and for 
flow cytometry. Each method has strengths and limitations. While 
simpler, general methods or dPCR approaches may outperform 
more intricate flow cytometry methods in certain scenarios, the 
latter can excel when dealing with more complex datasets such 
as when the separation is poor. 

The flow cytometry methods can be directly applied to (higher-
order) multiplexing dPCR data. Many flow cytometry clustering 
algorithms start with a larger number of clusters and merge 
them based on criteria like distance and density, these merging 
criteria often rely on experience rather than being data-driven. 
Besides, in flow cytometry, cluster centers and sizes are unpre-
dictable. Conversely, in dPCR data, we can have prior knowledge 
about cluster positions and sizes. For instance, the positions of 

higher-order clusters can be approximated as the vector sum of 
primary clusters [36]. However, such information is not incorpo-
rated into flow cytometry methods. 

Existing dPCR clustering methods are typically limited to two-
dimensional data, but some one-dimensional methods have the 
potential to be extended to multiple dimensions [6]. Prior knowl-
edge on the cluster centroids can help with clustering, as shown 
in our study. dpcp depends on the presence of a well-separated 
reference sample for the initial identification of primary clusters, 
whereas ddPCRclust relies on accurately identifying the primary 
clusters within the samples. Obtaining good centroids is realistic 
as we can have control samples that closely resemble the target 
sample. On the other hand, if the controls significantly deviate 
from the target samples, then the resulting centroids may be 
misleading for the algorithms. 

Insights from the simulation study 
We developed a simulation method which is capable of generating 
data that closely resemble empirical dPCR data. Empirical data 
can often be complex and challenging to handle due to factors 
such as heavy noise, irregular shapes and overlapping clusters. In
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Table 4: Recommendations for clustering methods 

Concentration levels Resolution Recommended methods 

High Good cmeans with initials, dpcp, flowmerge, flowSOM, kmeans, SamSPECTRAL 
Medium cmeans with initials, dpcp, flowmerge, flowSOM, SamSPECTRAL 
Poor flowmerge, flowSOM, SamSPECTRAL 

Low Good calico, cmeans with initials, dpcp, flowmerge, flowSOM, SamSPECTRAL 
Medium calico, cmeans with initials, dpcp, flowmerge, flowSOM, SamSPECTRAL 
Poor flowmerge, flowSOM, SamSPECTRAL 

Very low Good dpcp, SamSPECTRAL 
Medium dpcp, SamSPECTRAL 
Poor / 

Rare Good SamSPECTRAL 
Medium SamSPECTRAL 
Poor / 

‘/’ means the methods other than DBSCAN, kmeans_initials and f lowpeaks do not work well under those circumstances. Note: by the simulation results, a high 
to low concentration level means cluster sizes of thousands to hundreds of positive partitions. 

contrast, simulation studies provide more controllable conditions 
where the classification is known in advance, enabling easier 
and more accurate comparisons. With the simulation model, 
we do not make assumptions of the fluorescence intensities, 
which is often not normally distributed and may be long-tailed 
due to the presence of rain. In this way, we avoided the bias 
introduced by making a normal distributional assumption. Our 
model used skew-t distribution as an offset, which takes into 
account the wide spread of the data and the irregular shape of 
the clusters. The Poisson point process also captures the rain 
well. Simulated data allow us to explore the underlying theo-
ries, application conditions, and limitations of various clustering 
methods. 

Among the evaluated methods, kmeans_initials, DBSCAN and 
f lowpeaks consistently exhibited strong performance across most 
simulation setups. Simple kmeans can be highly effective when 
provided with good centroids. While DBSCAN and f lowpeaks 
occasionally produced a higher number of clusters than expected, 
they demonstrated low relative bias in λ estimates. 

Conversely, model-based methods like f lowclust and f lowmerge  
faced challenges in many cases, potentially due to their reliance 
on likelihood estimation. These likelihood-based methods tend to 
perform well when the concentration is high. However, they may 
disregard small clusters as the sparse data points contribute little 
to the likelihood. 

The dPCR methods dpcp, calico and ddPCRclust also failed on 
many occasions. The performance of dpcp, which utilizes DBSCAN 
as the initial step for identifying centroids, is not on par with 
DBSCAN as stand-alone. In many instances where DBSCAN fails 
to produce reasonable centroids, such as in cases of very low 
concentration or poor resolution, dpcp fails to function. In the 
study by [13], a reference sample with distinct resolution, mini-
mal rain and identifiable first-order clusters was employed. This 
discrepancy in performance could be attributed to the fact that 
the two-step dpcp method may not be as effective as DBSCAN 
alone, when applied to noisy data. Calico, on the other hand, faces 
challenges when classifying data points with clear resolution 
at high concentration levels. This difficulty may stem from the 
dependence of this method on grid size. When too many grid cells 
are employed, the size discrepancies become magnified. ddPCR-
clust is an ensemble-based approach. However, when confronted 
with challenging dPCR data, individual models within the ensem-
ble may exhibit subpar performance, leading to unsatisfactory 
results or even worse results compared to using them individually. 
Apart from that, ddPCRclust cannot work on the standardized data. 

We identified resolution and concentration level as the most 
influential factors impacting clustering performance. Many 
methods encountered difficulties when dealing with extremely 
low concentrations, a problematic observation as this is one 
of the major application area of dPCR [37]. On the other 
hand, orthogonality and modality had negligible effects on 
clustering performance. Notably, when the concentration level 
was low, equal concentration and rain proved beneficial in aiding 
algorithms to accurately identify clusters. 

Recommendation for clustering methods 
The simulation study shows that at high to medium concentra-
tion levels with good resolution (from cluster sizes of hundreds 
of partitions to thousands), almost all methods work quite well. 
However, at very low concentration, many methods will struggle. 
In real-life, users generally have some prior knowledge about 
the target concentration. For example, dPCR has been applied 
for the detection of somatic mutations, both for absolute allele 
quantification and for rare mutation detection [3]. 

When selecting clustering methods, we recommend consid-
ering both the concentration and resolution levels. Among the 
tested methods, DBSCAN, kmeans_initials and f lowpeaks are good 
generic choices. For the remaining methods, we provide specific 
recommendations in terms of concentration and resolution, as 
outlined in Table 4. 

Here we offer a general recommendation. However, for select-
ing the most suitable clustering method tailored to a specific 
assay, we recommend utilizing our interactive Shiny application. 
With this tool, the user can construct a model based on their 
own data, generate synthetic data and assess the performance of 
various methods across different simulation scenarios. Access to 
the evaluation code, including ARI and relative bias calculations, 
is available from GitHub. 

Guidance and future perspectives in dPCR 
clustering 
Our findings provide valuable guidance for selecting appropriate 
clustering methods for dPCR data analysis. We only explored 
absolute quantification, but it would also be interesting to study 
other applications, e.g. CNV. However, we believe that the conclu-
sions from our examples translate to other applications, such as 
CNV. The reason is that all types of applications rely on the clus-
tering of the partitions. If a clustering method does not work well 
for absolute quantification, then it will also not work well for CNV.
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Additionally, the database of empirical dPCR data augmented with 
the labeled simulated data can serve as training and testing data 
for other clustering methods. 

Optimizing tuning parameter values resulted in improved clus-
tering on the three empirical datasets. Similarly, some failure 
cases in the simulation study were rectified through parameter 
adjustments. However, using the optimized tuning parameter 
values did not lead to an improvement in the overall performance 
on the simulated data. This could be attributed to the fact that 
parameters derived from the empirical data may not be univer-
sally optimal for all simulated data, given the diverse simulation 
scenarios that were considered. This indicates that parameter 
optimization can be helpful when analyzing specific datasets, but 
one should be cautious when using parameter values optimised 
for a single dataset to cluster many datasets when a case-by-
case parameter optimization is not feasible. Therefore, for future 
dPCR clustering endeavors, we recommend the establishment of 
guidelines for selecting optimal tuning parameter values tailored 
to the specific characteristics of the dPCR data. Additionally, the 
development of an effective automated aberrant classification 
flagging system would be a welcome addition to warn users of 
potential poor classifications. 

Furthermore, the latest generation of dPCR instruments now 
enable analysis of up to six colors [4]. Our study focused on two-
color settings for which it is possible to do an extensive and thor-
ough benchmarking of clustering methods. Today, applications 
with two colors are still much more common than with six or 
seven colors, and hence we consider our study as very relevant. 
The generalisation of our findings to more challenging scenar-
ios with higher-order multiplexing, requires further investigation. 
Although the clustering methods for general purposes or flow 
cytometry can be directly applied to multiplex dPCR data, they 
may not perform so well. Therefore, the development of better 
methods and methods that can cope with more than two colors 
will be needed. 

Key Points 
• We evaluated the performance of clustering methods for 

the classification of partitions in duplex experiments, 
using both simulated and empirical data. Three types of 
methods are considered: methods specifically developed 
for dPCR, also general clustering algorithms, and cluster-
ing methods designed for flow cytometry data. 

• We developed a novel simulation method to generate 
realistic dPCR data, which enables an extensive eval-
uation of clustering methods. The simulation method 
incorporates many biologically relevant characteristics, 
such as concentration and resolution. The method is 
available as a R Shiny app. 

• We discuss when and why specific methods fail, and 
finally provide guidelines for method selection in a vari-
ety of biologically relevant scenarios. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/. 
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