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Abstract14

Combination treatments have been of increasing importance in drug development across ther-15

apeutic areas to improve treatment response, minimize the development of resistance, and/or16

minimize adverse events. Pre-clinical in-vitro combination experiments aim to explore the po-17

tential of such drug combinations during drug discovery by comparing the observed effect of18

the combination with the expected treatment effect under the assumption of no interaction19

(i.e, null model). This tutorial will address important design aspects of such experiments to20

allow proper statistical evaluation. Additionally, it will highlight the Biochemically Intuitive21

Generalized Loewe methodology (BIGL R package available on CRAN) to statistically detect22

deviations from the expectation under different null models. A clear advantage of the method-23

ology is the quantification of the effect sizes, together with confidence interval while controlling24

the directional false coverage rate. Finally, a case study will showcase the workflow in analyzing25

combination experiments.26

1 Introduction27

Combination therapy, a treatment modality that combines two or more therapeutic agents, is of28

growing importance in drug development across multiple therapeutic areas. Co-administration of29
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compounds may be necessary to account for disease complexity and increase efficacy while poten-30

tially reducing drug resistance, and/or minimizing adverse events. Consequently, combinations of31

compounds are routinely screened in pre-clinical in-vitro experiments to identify the most effective32

drug combinations.33

The establishment of a methodology to quantify the presence of synergistic or antagonistic effects34

is of critical importance. Such an assessment typically relies on the dose-response curves of individual35

compounds, called monotherapies. Synergy or antagonism is detected when the observed response36

of a drug combination is different from the expected treatment response under the assumption37

of no interaction (i.e., the null model) such that the direction of deviation determines synergy or38

antagonism. The expected treatment responses are derived solely from the monotherapies. Several39

null models, including Highest Single Agent (HSA) [1], the Bliss Independence Model [2] and the40

Loewe additivity model [3] have been proposed in the literature without an agreement on the most41

suitable choice [4]. The models differ on the assumptions of expectation under no interaction and42

thus, can differ on the conclusions about the detection or degree of synergy/antagonism. For the43

remainder of this tutorial paper, without loss of generality, we will focus on synergistic effects.44

Many software packages, relying on the above concept, often referred to as deviance assessment,45

have been published. Alternatively, one can perform some parametric modelling of a synergy index46

[5, 6] which is out of scope for this tutorial paper. Table 1 shows an overview of deviance assessment47

software packages frequently used in the pharmaceutical industry. To the best of our knowledge the48

details of the software packages are correct; however, we were unable to test these software packages49

and we extracted the details from publicly available documentation.50

Table 1: Overview of deviance assessment software packages.

Statistics reported

Software package Accessibility Monotherapy Null Models Overall Individual contributions

SynergyFinder Free 4PL, LOESS or LM HSA, Bliss, Loewe, and ZIP Point estimate (sd) Point estimate (sd)

SynergyFinder Plus Free 4PL, LOESS or LM HSA, Bliss, Loewe, and ZIP
Point estimate

p-value

Point estimate

CI (normal bootstrap)

MacSynergy™ Free No Bliss Point estimate Point estimate (sd)

Genedata Screener® Commercial 4PL, 3PL, 2PL HSA, Bliss, Loewe Point estimate Point estimate

CombeneFit Free 3PL (b1=1) HSA, Bliss, Loewe Point estimate
Point estimate

p-value

Chalice™ Commercial 3PL HSA, Bliss, Loewe and Boost Point estimate (sd) Point estimate (sd)

BIGL Free 4PL, 3PL, 2PL HSA, Bliss, Generalized Loewe2
Point estimate

CI (wild bootstrap)

p-value

Point estimate

CI (wild bootstrap)

p-value

1b represents the lower asymptote.

2The Generalized Loewe null model allows for partial response of the monotherapy data.

4PL, 3PL, 2PL are abbreviations for four-, three- and two-parameter logistic regression, respectively. LM is an abbreviation for linear model. CI is an abbreviation for confidence interval.

Most software packages start with modelling the monotherapy data using a dose-response re-51

lationship (e.g., 4-parameter logistic regression). The modelled monotherapy data are then used52

to predict the expected treatment effects under a specified null model. MacSynergy™ [7] uses the53
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observed responses to predict the expected treatment responses. Next, the divergence of the ob-54

served responses from the expected treatment responses are summarized in synergy scores as excess55

responses. For any statistical analysis, it is important to evaluate the point estimate (i.e., excess56

response) relative to the variability of the data expressed as either a confidence interval (CI) and/or57

p-value. Genedata Screener®, Chalice™, MacSynergy™, and SynergyFinder [8–10] are reporting the58

excess responses together with observed standard deviations for the latter three. The excess re-59

sponses in the individual combination points are further summarized as an overall excess response60

and is often evaluated using a threshold. Routinely, this threshold is not subjected to any hypothesis61

testing. Failure to evaluate the excess response(s) relative to either CIs or p-values increases the risk62

of reporting false synergies (i.e., false positives); the rate of these false positives (error rate) should63

be controlled. SynergyFinder Plus [11], which is an updated version of the original SynergyFinder,64

recently added a bootstrapping approach to retrieve CIs around the excess responses to reduce the65

risk of false positive calls, a procedure similar to the Biochemically Intuitive Generalized Loewe66

(BIGL) implementation [12]. Combenefit [13], alternatively, performs a one sample T-test on the67

excess responses, whereas BIGL uses an F-test.68

The remainder of this tutorial paper will describe important design aspects of drug combination69

experiments, describe proper statistical evaluation using the BIGL R package [14], and explain the70

different assumptions of the underlying null models. The BIGL R package was chosen for its ability71

to:72

1. Incorporate several widely used null models, including HSA, Bliss, and Loewe while allowing73

for partial response of the monotherapy data.74

2. Provide flexibility on the monotherapy dose-response models.75

3. Perform statistical testing with error rate control, while relaxing distributional assumptions76

via bootstrapping.77

4. Provide effect size estimates (i.e., excess responses), for each combination point and an average78

effect size, and their confidence intervals.79

Lastly, a case study will be presented to illustrate the use of the BIGL R package and how to80

interpret the results and visualizations from the BIGL R package output.81

2 Experimental design82

Prior to performing any combination experiment involving two or more monotherapies, experiments83

should be performed in which the monotherapies are profiled under the same conditions of the combi-84

nation experiment (e.g., assay, cell line, E:T ratio, incubation time, etc). Profiling the monotherapy85

is in the form of a dose-response relationship which describes the magnitude of response as a func-86

tion of dose. This dose-response relationship can be described by dose-response curves and can be87

mathematically modeled using either a 4-parameter logistic (4PL), 3PL, or 2PL regression model88

[15].89

3



The 4PL regression model is defined using four parameters that are related to the graphical90

properties of the curve, i.e., lower asymptote (b), upper asymptote (m), inflection point (EC50), and91

hill slope (h). These four parameters can be used to express the magnitude of response f , given92

dose, d, as93

f(d) = b+
(m− b)

1 +
(EC50

d

)|h| (1)

Parameters of the 4PL regression model can be fixed. For example, for a particular assay, the94

absence of any compound elicits no response. One may then fix the lower asymptote of the 4PL95

regression model to zero. Often, the 4PL regression model with fixed lower or upper asymptote is96

referred to a 3PL regression model. Fixing an additional parameter (e.g., hill slope) would create a97

2PL regression model.98

Accurate estimation of the 4PL model parameters is paramount since prediction of the combined99

treatment responses, assuming no interaction, are estimated using the 4PL monotherapy model100

parameters. Accurate estimation of these parameters is dependent on the doses selected and the101

magnitude of responses they elicit. The entire sigmoidal pattern of the monotherapy curve should102

be covered with the selected doses. A recommendation of the ideal spread of doses is provided in103

Figure 1, with 2 points at each of the asymptotes and 3 points on the linear part of the curve.104

Depending on the hill slope of the monotherapy curve, a certain dilution series should be chosen to105

follow the above recommendation, which is in line with published guidelines [16].106

Figure 1: Ideal dilution series with 7 doses.

After choosing the desired doses of the monotherapies, the combination experiment needs to107

be set up, with two common designs being applied, the ray (dose gradients) and the checkerboard108

(factorial) designs. The ray design uses fixed ratios of doses while the checkerboard crosses two sets109

of doses. Examples are given in Figure 2a and 2b for the checkerboard and ray design, respectively.110
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For the ray design, it is typical to fix the dose titration of one of the monotherapies and multiply111

the concentrations of the fixed doses by a scalar to get desired ratio for a ray. As such, ray designs112

tend to have the same number of titrations for each monotherapy and require the scientist to create113

additional dilutions of one of the monotherapies for each specified ray. Ray designs can be an efficient114

use of resources and exploration of a set of ratios; however, prior knowledge is often required for115

proper selection of the rays (drug ratios).116

The checkerboard experimental design is a more comprehensive design when prior knowledge117

is limited. The checkerboard design is a factorial design in which the doses of the monotherapies118

are crossed with each other. As such, the checkerboard design explores many ratios; however, the119

number of titrations for each ratio is limited (due to design) excluding the 1:1 ratio (i.e., typically the120

diagonal of the checkerboard). Furthermore, only a single set of dose titrations for each monotherapy121

is required; however, the checkerboard design tends to require more plate real estate than the ray122

design. Lastly, the checkerboard is limited to pairs of monotherapies whereas the ray design can123

more easily be scaled to triple-, quadruple-, etc., drug combinations.124

In summary, we recommend the checkerboard design for the discovery phase of drug development125

when prior knowledge of biological mechanism is limited, as it’s easier and more convenient requiring126

just one set of dose titrations for each monotherapy. However, when prior knowledge is available,127

the ray design is highly valuable, offering targeted insights. Additionally, the ray design allows dose128

response curves to be fit and compared to each ray at the expense of additional laboratory labor,129

i.e., each ray requires a unique set of dose titrations.130

(a) (b)

Figure 2: Drug combination designs. The dots indicate the tested doses of compounds A and B (a)
Checkerboard design. (b) Ray design.

Please note that as with any in-vitro experiment, sufficient control wells should be included to131

access the quality of the assay. This topic is beyond the scope of this tutorial, and we recommend132

using established guidelines within your organization.133

Regardless of the chosen design, the BIGL methodology provides a harmonized framework to134

analyze drug combination experiments through statistical evaluation of the differences between the135

expected and observed responses. To estimate variability, replicates of both the monotherapy and136
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the combination data are required. We currently recommend a minimum of 4 replicates to have an137

accurate estimation of the observed variability and sufficient power to detect excess responses (sup-138

portive information). Furthermore, if the experimental condition requires evaluation of donor effects139

(e.g., biologics), we recommend against using donors as replicates due to the increased variability.140

Instead, we recommend replicates within donor and analyzing the donors separately.141

3 Methods142

Since the BIGL methodology can be categorized as a deviance assessment methodology, a general143

workflow to detect synergy can be followed:144

1. Fit the dose-response curves for the monotherapies.145

2. Predict the responses for the combinations using the chosen null model.146

3. Estimate the effect sizes, together with CIs.147

Fitting monotherapies148

The BIGL R package offers flexibility in how the monotherapy dose-response relationships are149

modelled. The default implementation models the monotherapies using 4PL regression models with150

a shared asymptote. Depending on whether the monotherapy dose-response curves are increasing151

or decreasing, either a common lower asymptote or upper asymptote, respectively, is assumed for152

both drugs. The BIGL R package allows the lower asymptote, upper asymptote, and/or hill slope153

parameter to be set to a fixed value reducing the 4PL to either a 3PL or 2PL regression model. Setting154

a parameter to a fixed value must be done with caution and based on biological understanding.155

Additionally, the BIGL R packages allows linear constraints on the 4PL parameters to facilitate the156

monotherapy fitting. For instance, if the dose-response curve is decreasing, the minimum estimation157

could be constrained to be above 0 for an improved biological interpretation.158

Predicting expected combination response159

The BIGL R package integrates three popular null models, each assumes its own underlying160

mechanism, which characterizes the no interaction or the expected outcome under a combination161

of drugs. The HSA quantifies the degree of synergy as the excess over the maximum monotherapy162

response. Bliss independence assumes the drugs acted independently and synergy is evaluated as the163

excess of the multiplicative effects of the single drugs. Loewe instead, is a dose-effect based model,164

calculating the additive (i.e., no interaction) effects as if the single drugs where exchangeable (see165

Table 2) resulting in an additive effect when the drug is combined with itself. It’s worth noting that166

the true mechanism is often unknown and the described null models are often a simplification of the167

underlying biology. Therefore, the choice of a particular null model should be informed by domain168

expertise or results should be compared across null models. Implicitly, the null models assume the169

same maximal responses of the two monotherapies used in the combination. This assumption is170

often violated in practice. The BIGL R package relaxes this assumption through the use of the171
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Generalized Loewe null model. Details of this approach are out of the scope of this tutorial but we172

refer to Van der Borght 2017 and Thas 2022 for more information and additional alternatives. [12,173

17].174

Table 2: Overview of the null models.

Null model Assumption Formula

HSA Expected effect is highest effect of monotherapies f12(d1, d2) = max(f1(d1), f2(d2))

Bliss independence Drugs’ effects do not interfere with one another f12(d1, d2) = f1(d1) + f2(d2)− f1(d1)f2(d2)

Loewe Two compounds have same mode of action d1

f−1
1 (f12)

+ d2

f−1
2 (f12)

= 1

In Table 2, f12(d1, d2) or f12 represents the response at the combination of dose d1 for drug 1175

and dose d2 for drug 2. fi(di) is the response at dose di for drug i. f−1
i (x) is the inverse function of176

fi(di). It represents the dose of drug i that will produce a response of x.177

Estimating effect sizes178

The next step is the estimation of the effect sizes and their standard errors. The monotherapy179

data will be referred to as the on-axis points and the combination data will be referred to as the180

off-axis points. The effect size at off-axis point i = 1, . . . , N is defined as the average deviation from181

the expected treatment response under a null model,182

Ei =
1

ni

ni∑
j=1

(Rij − R̂i) = R̄i − R̂i,

where Rij represents the observed response at off-axis point i for replicate j, ni represents the183

number of replicates at point i, R̄i is the sample mean of the observed responses at point i, R̂i is184

the estimated treatment response under the chosen null model at off-axis point i, and N is the total185

number of off-axis points. An overall effect size of synergy which is also named single effect measure186

is defined as E = 1
N

∑N
i=1 Ei. With Et = (E1, . . . , EN ) the vector of all effect size estimates, the187

variance-covariance matrix of E can be written as[12, 17]188

Σ = Var(E) = σ2
0Cp + σ2

1D (2)

where σ2
0 is the residual variance of the on-axis responses, σ2

1 is the residual variance of the off-axis189

responses, D is a diagonal matrix with elements 1/ni (i = 1, . . . , N), and Cp is the correlation190

matrix of the expected treatment responses (R̂1, . . . , R̂N ). Specifically, σ2
0 is estimated as the mean191

squared error of the 4PL regression model fitting to the monotherapy data. And σ2
1 is estimated as192

the average variance of each off-axis point 1
N

∑
i

∑
j A

2
ij such that Aij = Rij − R̄i. If the assumption193

of constant variance at the off-axis points does not hold, the variance σ2
1 in (2) can be replaced by194

a diagonal matrix with model-based variances on the diagonal positions[12]. The correlation matrix195
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Cp is estimated by means of a bootstrap procedure. We outline the bootstrap procedure here in196

some detail, because it is also needed in the next section.197

The estimation of Cp is as follows:198

1. Construct a bootstrap sample of on-axis observations. Specifically, resample the residuals from199

the 4PL monotherapy regression with replacement. Add these resampled residuals to the fitted200

values of the 4PL regression model creating a bootstrap sample. Using the bootstrap sample,201

re-fit the monotherapeutic dose-response curves.202

2. Based on the re-fitted dose-response curves, new estimates of the expected treatment responses203

under the null model are computed for each off-axis point i: R̂b
i for bootstrap replicate b.204

3. Repeat steps 1 and 2 many times (e.g., 1000 times, B = 1000).205

4. Calculate the sample correlation matrix of the B vectors (R̂b
1, . . . , R̂

b
N ), denoted by Ĉp.206

The sample correlation matrix Ĉp, is an estimator of Cp. The estimator of the covariance matrix207

Σ can now be written as Σ̂ = σ̂2
0Ĉp + σ̂2

1D. The square roots of its diagonal elements (denoted by208

si) are estimates of the standard errors of the effect sizes. The variance of the overall effect size is209

given by Var(E) = Var
(

1
N

∑N
i=1 Ei

)
and can be estimated as 1

N21
tΣ̂1.210

Controlling the directional false coverage rate211

The original BIGL methodology [17] framed synergy detection in a classical multiple hypothesis212

testing paradigm, by constructing hypothesis tests based on the effect size estimates, Ei, and their213

standard errors, si, and by controlling the familywise error rate (FWER) at some nominal level.214

Despite the correctness of this procedure and a positive empirical evaluation[12] we have replaced the215

hypothesis testing method with a procedure that makes use of simultaneous confidence intervals to216

control the directional false coverage rate (dFCR). Before defining the dFCR, we give two drawbacks217

of the original approach: (1) controlling the FWER at 5% results in a very conservative detection218

method (small sensitivity); (2) the results from this testing procedure do not always agree with219

what would be concluded if confidence intervals were used instead. The first issue could have been220

resolved by controlling e.g. the false discovery rate (FDR) instead of the FWER, and a solution to221

the second problem could have been found in aligning the test and CI procedures. However, instead222

we have chosen to develop a procedure that controls the dFCR.223

First, we formally describe a generic method for synergy/antagonism detection based on con-224

fidence intervals. Let [Li, Ui] denote a confidence interval for the effect size at off-axis point i. If225

0 /∈ [Li, Ui], then we conclude that there is a synergistic or antagonistic effect. We will use the226

notation τi for the true effect size at off-axis point i (i.e., Ei is an estimate of τi).227

The original definition of the FCR[18] can then be formulated as228

FCR = E

(
F

m

)
, (3)
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where m is the number of off-axis points, and F is the number of intervals among these m points,229

that do not cover the true effect size τi:230

F = # {i : τi /∈ [Li, Ui]} .

This FCR makes sense in selective inference, i.e. statistical inference after the data-driven selection of231

a subset of parameters. However, in our context we want all confidence intervals to be interpretable,232

we therefore change the definition from a conditional to a marginal interpretation. Based on very233

early ideas of the concept of the FDR [19], we further adapt the definition towards a directional234

FCR. Equation (3) still applies, but now with235

F = # {i : τi /∈ [Li, Ui] and d(Li, Ui) ̸= sign(τi)} (4)

where sign(τ) equals 1 if τ > 0, 0 if τ = 0 and −1 if τ < 0, and d(L,U) equals 1 if L,U > 0, 0 if236

L < 0 and U > 0 and −1 if U,L < 0. In other words, F counts the number of off-axis points for237

which the conclusion (synergistic / antagonistic / no-effect) is wrong. This is illustrated in Figure238

3. Thus, if the dFCR is controlled at 10%, then, on average, 90% of the CIs either contain the true239

effect size, or at least these CIs result in a correct (directional) conclusion.240

0

t

0

t

Figure 3: Illustration of dFCR. The vertical lines represent confidence intervals and the dots are
the true effect sizes τi. Left: intervals that contribute to F in the definition of the dFCR. Right:
intervals that do not contribute to F.

For controlling the dFCR at a nominal level α, the lower and upper bounds Li and Ui can be241

found by means of the bootstrap procedure that was described earlier, but with two additional steps:242

1. At each off-axis point i, a Wild bootstrap sample of ni responses is obtained as Rb
ij = R̄i +243

νbijAij , where νbij is randomly sampled from a distribution with stochastic representation244 (
δ1 +

V1√
2

)(
δ2 +

V2√
2

)
− δ1δ2

with V1 and V2 two independent standard normal random variables, δ1 = 0.5(
√
17/6+

√
1/6)245

and δ2 = 0.5(
√
17/6−

√
1/6)[20].246
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2. Compute the averages of the bootstrap responses R̄b
i =

1
ni

∑ni

i=1 R
b
ij , the bootstrap effect sizes247

Eb
i = R̄b

i − R̂b
i and their standard errors sbi , for all off-axis points i = 1, . . . , N .248

After the bootstrap procedure has finished, compute the following intervals for a sequence of S249

constants ts, s = 1, . . . , S (e.g. 1, 1.1, 1.15, 1.2, . . ., 2.95, 3): [Lb
i (t

s), U b
i (t

s)], with250

Lb
i (t) = Eb

i − tsbi and U b
i (t) = Eb

i + tsbi .

For each s = 1, . . . , S and each b = 1, . . . , B, the number of directional false coverages F can251

be computed as in Equation (4); let F sb denote this number. Averaging over the B bootstrap252

runs, gives numbers F s = 1
B

∑B
b=1 F

sb, and F s/m may be seen as an approximation of the dFCR if253

threshold ts was used for the CI calculations. Now find the smallest ts that still results in dFCR≤ α:254

tα = min{ts : F s/m ≤ α}. This is the threshold used for the final calculation of the simultaneous255

confidence intervals and it will result in the control of the dFCR at the α level. In particular, the256

CIs are computed as [Li, Ui] with257

Li = Ei − tαsi and Ui = Ei + tαsi.

Empirical evaluation of the methodology258

The formal method for synergy testing, which aims at controlling the dFCR, deviates from what259

was presented earlier in our papers [12, 17] and hence a thorough evaluation of the new methodology260

is needed, particularly for an assessment in terms of dFCR control and sensitivity. Since this paper261

is meant to be a tutorial, we have decided to move the details of the simulation study to supporting262

information, and report here only the main findings. Briefly, the simulation settings are adopted263

from the extensive simulation study of our previous work [12].264

The results of the simulation studies demonstrate that our procedure succeeds in controlling265

the dFCR at the nominal level, while showing a sensitivity that is generally larger than what was266

obtained with our previous testing procedures (maxR and meanR). In the supporting information267

we give a more detailed discussion on the simulation results.268

4 Case study269

We will illustrate the described methodology and present data visualizations for synergy analysis270

using the BIGL R package and data from a drug combination experiment of direct-acting antivirals.271

Data are from the directAntivirals sample dataset included in the BIGL R package, consisting of 11272

drug combination experiments of direct-acting antivirals. To facilitate illustration, we will focus on273

the 4th experiment. We refer you to the supplementary material for R code implementation.274

Measurements from experiments following the designs above often need to be normalized to the275

control wells. In this 4th experiment, the controls are the wells with 0 dose of both drug A and drug276

B. We chose to normalize the measurements by taking the ratio of each measurement to the average277

measurements of the control wells. We will refer to the normalized measurements as responses.278
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Fitting monotherapies279

In the first step, the monotherapy curves for both drugs were estimated utilizing 4PL regression280

models (see Figure 4). Given the decreasing dose-response curves, a common upper asymptote281

assumption was made when fitting the model to both drugs. The 4PL regression models fit the data282

well (responses equally distributed above and below fitted line) and the sigmoidal patterns are well283

defined (i.e., two points defining upper asymptote, two points defining lower asymptote, and three284

points defining hill slope) with the selected doses. Notice that the lower asymptotes of Drug A and285

Drug B are not equal indicating a need for the Generalized Loewe null model.286

Figure 4: Monotherapy dose-response curves from directAntivirals dataset (BIGL R package), exper-
iment 4. The y-axis is the response (normalized measurement) and the x-axis is the logarithmically
transformed dose.

Predicting expected combination response287

The expected responses for the chosen null models were calculated at all dose combinations,288

based on the estimated monotherapy dose-response curves. For illustration purposes, we used three289

different null models (the HSA, the Bliss, and the Generalized Loewe), enabling a sensitivity analysis290

of the different assumptions. In Figure 5, the observed and expected responses for the selected null291

models were visualized with stratifying the response surface by Drug A dose, creating a 2-dimensional292

trellis plot (the BIGL R package allows either Drug to be used as the stratifying variable). In this293

experiment, for a particular dose combination, points below the expected response are in the direction294

of synergy and points above the expected response are in the direction of antagonism. Furthermore,295

each null model has different underlying assumptions, as such, each null model predicts different296

expected treatment responses which is clearly visible in trellis 2 (top right facet).297
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Figure 5: 2-Dimensional stratified predicted response surface plot, stratified by Drug A dose. The
points are the observed responses whereas the colored lines are the expected responses derived from
the different null models. The panels correspond to dose levels of drug A and the x-axis shows the
dose levels of drug B.

Estimating effect sizes298

The BIGL R package provides a plot to visualize the effect sizes along with the corresponding299

confidence intervals for the null models of interest. Simultaneously, the plot allows users to visualize300

the synergy or antagonism calls by color. Figure 6 represents the effect sizes and corresponding301

CIs under the Generalized Loewe null model. In particular, a square highlighted in light blue302

represents a synergy call at the corresponding dose combination. Should antagonism been detected,303

the corresponding combination would have been highlighted in light pink. For example, synergy was304

detected at the combination of 2, 0.016 (i.e., dose of Drug A = 2 and dose of Drug B = 0.016). The305

observed response at this combination was 0.198 units lower than the expected response derived from306

the Generalized Loewe null model with a 95% confidence interval of (-0.284, -0.111). In addition,307

synergy/antagonism calls can also be presented in a bi-dimensional contour plot (see Figure 7). The308

size of the point in the bi-dimensional contour plot represents the magnitude of the effect size. As309

in Figure 6, the color of the bi-dimensional contour plot indicates the direction of deviance and 0310

was not included in the 95% CI. The BIGL R package also allows for these data to be displayed in311

a table format (supplementary material). All confidence intervals simultaneously control the dFCR312

at 5%.313
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Figure 6: Effect sizes with simultaneous 95% confidence intervals (controlling the dFCR at 5%).
Synergy calls are highlighted in light blue.

Figure 7: Contour plot. Synergy calls are highlighted in blue. The size of the points are relative to
the magnitude of the effect sizes.
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5 Discussion314

The term synergy is used extensively to justify the potential of drug combinations. However, the315

meaning of it is often obscured as multiple null models exist, with most frequently used ones described316

in this tutorial paper. It is important, while evaluating the potential of combinations to keep the317

assumptions in mind and report accordingly. The HSA null model is the most liberal one, and in a318

technical sense not truly an evaluation of synergy as it only compares to the maximum response of319

either one of the monotherapies. Nevertheless, it can be an important evaluation where one would320

show the benefit of a combination versus a monotherapeutic effect. The other two null models, Bliss321

and Loewe, evaluate a particular type of additive effect. The Bliss null model is often the most322

conservative; however, the Bliss null model assumes the two drugs have a different mechanism of323

action. All these approaches are overly simplistic in that they fail to capture the underlying biological324

complexity. Hence, if no clear preference on the null model is present based on the assumptions, we325

suggest to run the models in parallel and evaluate the synergy calls with the assumptions in mind.326

Often, strong synergistic effects will be detected regardless of null model choice. When synergy327

is detected only under the HSA null model, this means that the combination only produces an328

increased effect when compared to a single monotherapy.329

As mentioned before, it is important to evaluate the excess response versus the null models330

considering the variability in the data as observed deviations can be due to inherent variability331

of the experiment. Hence, our preference goes to methodologies evaluating the variability in the332

data, and not based on arbitrary thresholds (see Table 1). Additionally, it is important to express333

the excess response as an interpretable effect size. The latter made us shift from the maxR test334

in BIGL [17] to reporting the effect sizes together with CIs while controlling the directional false335

coverage rate (dFCR) as our default methodology. In an in-vitro screening setting, it is important336

to control the proportion of false calls to avoid validating irrelevant hypothesis downstream while337

keeping the sensitivity as high as possible. However, in these early screens, it is less crucial to have a338

precise estimate of the excess itself, as the expected gain of the combination will likely be evaluated339

downstream in more translatable experiments (e.g. in-vivo). This is why we chose to control the340

dFCR. In an extensive simulation study, we have demonstrated that our testing procedure controls341

the dFCR under a wide range of scenarios with acceptable sensitivity. To the best of our knowledge,342

the evaluation of error rate control, specifically dFCR, which is most important in early stages, is343

what discriminates BIGL from all other deviance methods described in literature; making it our344

preferred method.345

To maintain a reasonable sensitivity, while controlling the dFCR, it is crucial to minimize the346

variability in the experiment which can be achieved during assay development and proper exper-347

imental design. Firstly, a capture of the full dose response of the monotherapies is required with348

sufficient data defining the hill slope. Often, the slopes are the areas where synergy could occur349

as asymptotes generally represent either no or full effect. Synergy calls, in neighbouring sampling350

points, are more convincing compared to singletons, as biologically, we expect some dynamic con-351

centration ranges where compounds enhance each other. If variability can’t be further reduced by352

identifying sources of variation and controlling key parameters in the assay protocol, it is crucial353
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to have enough replicates to ensure correct estimation of the variability in the experiment. From354

experience, we learned that 4 replicates of the full checkerboard is often sufficient. However, research355

is ongoing to evaluate the required number of replicates that results in adequate sensitivity to detect356

synergy.357

As cancer research is an important field in the exploration of combination therapies and its358

growing attention in immunotherapies, we feel there is a need to dig deeper in the nature of the359

replicates. The immune compartment in these type of experiments is often introduced using hu-360

man donor material. Hence, replicates in this setting, cannot be considered as technical replicates.361

Replicates derived from biological donors tend to enlarge the variability seen in the experiments. It362

is crucial to disentangle these different sources of variability. Currently, we are exploring if expec-363

tations, based on chosen null models can be calculated within a donor and the excess responses can364

be pooled between donors for statistical testing.365

Finally, the proposed methodology can be extended to three- or four-drug combinations by having366

one or both, respectively, of the monotherapies be a drug combination. Under this scenario, the367

EC50s of the monotherapy are less interpretable; however, the methodology remains the same and368

the effect sizes still represent excess responses.369
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Supporting information385

Simulation Study386

We have conducted a simulation study using the same methodology as in our previous work [12].387

More specifically, we have implemented scenarios 2 and 3, with slightly different parameter settings:388

the on-axis standard deviation σ0 ranges from 0.05 to 0.2 and the numbers of replicates are 2, 3, 4389

and 6. The results of the simulation study are also presented in the same way as in [12]: Appendix390

S1. In this html file the complete set of parameter settings is provided.391

The simulation results are evaluated in terms of several criteria. Most of them are the conven-392

tional criteria: FDR, sensitivity, specificity, . . . . However, since we now aim to control the dFCR,393

we have included a few extra criteria.394

The positive predicted value (PPV) and negative predicted value (NPV) refer to the expected395

proportion of true positive and true negative calls among the positive and negative calls, respectively.396

More formally, using the notation in Section 3, the PPV is defined as397

PPV = E
{#{i : 0 /∈ [Li, Ui] and τi ̸= 0}

#{i : 0 /∈ [Li, Ui]}

}
and the NPV is given by398

NPV = E
{#{i : 0 ∈ [Li, Ui] and τi = 0}

#{i : 0 ∈ [Li, Ui]}

}
.

We also introduced the concept of neighbouring in the evaluation of the method to better re-399

flect a realistic use of the testing procedure. In practice the data analyst often looks at the dose400

combinations in the (d1, d2) plane for which zero is not contained in the CI (i.e. the method gives401

a synergy or antagonism call). Let us refer to such a point as a positive point. If such a positive402

point is isolated in the sense that no neighbouring points are positive, then many researchers will403

ignore this point and suspect it as a false positive. A neighbouring point is defined as a point that is404

within a certain distance in the (d1, d2) plane. For example, in a checkerboard design this distance405

can be chosen such that all closest points along the horizontal, vertical and diagonal directions are406

considered as neighbouring points. On the other hand, if a positive point has at least one positive407

neighbouring point, then scientist are willing to believe that these are true deviations from additivity408

and these points will be considered as strong positive calls. In the light of this reasoning we now409

define the neighbouring PPV as410

nPPV = E
{#{i : i ∈ N+ and τi ̸= 0}

#{i : i ∈ N+}

}
,

where N+ is the set of positive off-axis points that have at least one positive neighbour.411

In a similar fashion the neighbouring false discovery rate (nFDR) is given by412

nFDR = E
{#{i : i ∈ N+ and τi = 0}

#{i : i ∈ N+}

}
.
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Finally, we included criteria related to power. We defined power3 as the probability to correctly413

detect at least three synergistic points,414

power3 = P
{
#{i : 0 /∈ [Li, Ui] and τi ̸= 0} ≥ 3

}
and power all as the probability to detect all synergistic points,415

power all = P
{
#{i : 0 /∈ [Li, Ui] and τi ̸= 0} = #{τi ̸= 0}

}
.

R Code416

Load the packages that are needed to generate the results. Set seed to get the same results.417

l i b r a r y (BIGL)418

l i b r a r y ( ggp lot2 )419

l i b r a r y ( dplyr )420

s e t . seed (1 )421

A function to subset data to a single experiment and, optionally, select the necessary columns422

only, and create the normalized measurements/responses.423

subsetData <− function (data , i ) {424

subset (data , experiment == i ) [ , c ( ” e f f e c t ” , ”d1” , ”d2” ) ] %>%425

mutate ( e f f e c t = e f f e c t / mean( e f f e c t [ d1==0 & d2==0]))426

}427

Extract data of the 4th experiment.428

data <− subsetData ( d i r e c tAn t i v i r a l s , 4)429

Step 1: Fit monotherapy dose-response models430

mf <− f i tMa r g i n a l s ( data , method = ” n l s ” , names = c (”Drug A” , ”Drug B”) )431

Step 2: Predict expected combination responses using 3 different null models: the HSA, the Bliss432

and generalized loewe, controlling the dFCR at 5%.433

r s <− l i s t ( )434

r s [ [ ” hsa”]]<− f i t S u r f a c e ( data , mf , nu l l mode l=”hsa ” , s t a t i s t i c=”both ” ,435

p a r a l l e l =4, B.B=20, w i ld boo t s t r ap=TRUE,436

wild bootType=”normal ” , c on t r o l=”dFCR”)437

r s [ [ ” b l i s s ”]]<− f i t S u r f a c e ( data , mf , nu l l mode l=”b l i s s ” , s t a t i s t i c=”both ” ,438

p a r a l l e l =4, B.B=20, w i ld boo t s t r ap=TRUE,439

wild bootType=”normal ” , c on t r o l=”dFCR”)440

r s [ [ ” loewe”]]<− f i t S u r f a c e ( data , mf , nu l l mode l=”loewe ” , s t a t i s t i c=”both ” ,441

p a r a l l e l =4, B.B=20, w i ld boo t s t r ap=TRUE,442

wild bootType=”normal ” , c on t r o l=”dFCR”)443
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Plot the monotherapy dose-response curves. (Figure 4)444

p lo t (mf) + labs (x=”Dose ” , y=”Response ”)445

Plot the 2-Dimensional stratified predicted response surface plot, stratified by Drug A dose.446

(Figure 5)447

synergy plot bycomp ( rs , c o l o r = TRUE, plotBy = ”Drug A” ,448

xlab = ”Dose (Drug B)” , ylab=”Response ”)449

Make the plot of effect sizes with simultaneous 95% confidence intervals. (Figure 6)450

plotConf Int ( r s [ [ ” loewe ” ] ] , c o l o r = ” e f f e c t −s i z e ”)451

Make the contour plot. (Figure 7)452

contour ( r s [ [ ” loewe ” ] ] , colorBy = ” e f f e c t −s i z e ” , d i g i t s =3, main = NULL)453

Print the effect sizes for all the combinations454

r s [ [ ” loewe ” ] ] $ c on f I n t$o f fAx i s455
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