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Over the past decade, deep learning (DL) methods
have rapidly become the state of the art when it
comes to automated classification and segmen-

tation of biomedical images. In this article, we provide
an overview of convolutional neural networks (CNNs),
the most important type of model for image analysis.

Although ideas on and the theory of CNNs have been
around for decades, CNNs started gaining popularity
quickly from about 2012 onward. Because of fast CNN
implementations on graphics processing units, a type
of a parallel processor, computing power has now
become available to train and use these models. CNNs
started winning image classification contests by large
margins. For example, the 2012 ImageNet challenge (a
large challenging contest in which millions of images
had to be classified into 1000 classes) was won by Alex
Krizhevsky, whose CNN model achieved an accuracy of
83.6%, whereas the best model based on classic com-
puter vision methods the year before had an accuracy
of 74.3%. By 2015, the accuracy of the best model had
increased to 96.4%. These days, DL has become ubiqui-
tous in our lives and can be found in applications
ranging from self-driving cars to silly selfie filters on
our phones.
BUILDING BLOCKS OF CONVOLUTIONAL
NETWORKS

Similar to other DLs discussed in a previous article of
this series on ML,1 CNN architectures consist of many
simple layers, each performing nonlinear transforma-
tions from input to output. This hierarchy of layers learns
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progressively more complex and meaningful attributes,
enabling the model to learn complex interactions in
the data and model complex functions. For example,
on the first layers, the model will learn simple attributes
such as edges and colors; intermediate layers will
combine these to recognize shapes; and the deepest
layers will further combine this output to learn complex
representations of the images.

In principle, a multilayer perceptron with many hid-
den layers, which was briefly discussed in a previous
article of this series on ML,1 is a DL model and could
be applied to images. However, this approach does not
scale well: for a 300 3 300 pixels color image, a single
neuron in the first fully connected hidden layer will
require 270,000 weights (300 3 300 pixels times 3 in-
tensities of red, green, and blue), and a hidden layer typi-
cally consists of many neurons. A deep network built in
this manner will use an enormous number of weights
and will be computationally too expensive to learn and
use. In addition, a model with such a large number of pa-
rameters will be prone to overfitting.1

A solution is to make use of convolutional layers, the
main building block of CNNs. Unlike the fully connected
layers in a multilayer perceptron that learn global pat-
terns, the neurons in a convolutional layer make use of
the 2-dimensional structure of images: pixels that are
close together are related and belong together. There-
fore, the neurons are only connected to a small area
from the input (typically between 3 3 3 and 11 3 11
pixels), limiting it to learning local patterns and thus
reducing the number of weights.

Another property of images is that objects or features
are not in a fixed location. They can occur anywhere in
the image. Therefore, the neurons are reused on each
input location: attributes such as edges or textures
learned in one location can be useful anywhere. As the
Figure illustrates, the convolutional layer scans its input
and produces a result at each location. This forms a 2-
dimensional “activation map” showing where and by
how much a neuron is activated and, thus, where the at-
tributes were found. The next convolutional layer then
uses these results as its starting point and can then
combine the previous attributes and learn more complex
ones. In this way, CNN learns a hierarchy of patterns of
increasing complexity.
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Fig. Illustration of locally connected neurons in a convo-
lutional layer (blue). Neurons in the convolutional layer
are locally connected to a patch of the input. This patch
is moved over the input 1 pixel at a time, producing a
result for each location.
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Similar to the neurons in a perceptron, each layer of
neurons in a CNN is followed by a nonlinear activation
function. For CNN, the ReLu activation function is the
most used, as it does not saturate as easily as the sigmoid
or tanh functions.1

The result of a convolutional layer is roughly the
same size as its inputs. This leads to several issues.
First, even in deeper layers, the more complex attri-
butes will only come from a small part of the original
input image, whereas we would like to have a more
global overview. Second, a reduction in size reduces
the computations needed. Therefore, so-called pooling
layers, which serve to scale down the activation maps
of attributes, are placed between the convolutional
layers. These merge attribution activations that are
close together by dividing the intermediate result into
a coarser grid and taking the average or maximum
value for that grid cell.

Because all the neurons in the network are trained
together, they can become too dependent on each other
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and co-adapt, causing the model to overfit. For example,
assume that we want to detect vehicles and our dataset
happens to contain many images of black cars. Although
the data contain only images and no features such as co-
lor, number of wheels, etc, the model may learn a “black
color” attribute, and subsequent neurons may learn that
it is very important to the “car” class, as discussed in a
previous article in this series.2 To prevent this co-
adaptation, the dropout layer method is used.3 This layer
randomly drops connections from neurons during
training, removing the attribute that that neuron repre-
sents. If the “black” neuron is randomly missing, the
network must learn to also rely on other attributes to
detect cars.

ARCHITECTURES

The architecture of a CNN refers to the way the build-
ing blocks and layers are combined to create the model.
Over the years, the way these are connected has become
increasingly complex as new generations of architecture
build on ideas of the previous generation. AlexNet,4

which won the 2012 ImageNet challenge, was a straight-
forward architecture with 8 convolutional layers that
learned and extracted the features and patterns from
the images, followed by 3 fully connected layers to
make the classifications.

A natural question to ask is, how important is the
“deep” in DL? The Visual Geometry Group architecture5

showed that substantial improvements could be
made by pushing the depth to 19 layers. It uses a setup
similar to AlexNet, but applies convolutional layers that
use a smaller area. This reduces the computational
complexity, allowing this architecture to be much
deeper. GoogLeNet6 and its subsequent improvement
Inceptionv27 make use of a network-in-network
approach. A building block called the inception module,
which contains multiple convolutional layers in parallel
with different area sizes that are applied to the
same input, is used and thus learns patterns at
different scales.

Even when computational power is not a problem,
going deeper with CNNs encounters other obstacles.
One of them is related to the fact that the error signal
that is propagated back into the model to update the
weights becomes smaller and smaller for the bottom
layers at the start of the model, making learning for these
layers very slow or even impossible. This is called the
vanishing gradients problem. The winning architecture
for the 2015 ImageNet challenge, ResNet,8 came up
with a solution to this issue. Namely, they introduced
skip connections, which are connections that bypass a
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layer and allow a path for the error signal to propagate
back to the bottom layers more easily.

Finding a good architecture for a given task can be a
huge undertaking. Luckily, one does not need to reinvent
the wheel. Typically, architectures that perform well on
ImageNet will give decent results on other image classifi-
cation tasks. On top of that, “of-the-shelf” architectures
often have trained models available so that we can use
a technique called transfer learning. The idea is that a
CNN trained on a large, diverse dataset such as ImageNet
will learn to recognize many different edges, gradients,
shapes, textures, etc. Chances are that some of these
attributes will also be relevant when learning another
task, or at least be a better starting point than a randomly
initialized model. Therefore, ResNet (and variants thereof)
is still a widely used architecture.
TRAINING

The basics of training a DL model were described in a
previous article in this series.1 However, DL practitioners
employ a large toolbox of tricks to train models.9

Because the datasets used are often too large to fit
into a computer’s working memory, models are trained
on batches of data. The choice of batch size has a large
influence on training. Large batch sizes lead to better es-
timates of the error, allowing for larger updates of the
weights and faster convergence. At the later stages of
training, however, small updates may be preferred to
make finer adjustments to the weights. Therefore,
learning rate schedules are used to gradually reduce
the learning rate over time.

Training a CNN requires lots of data, which are often
not available. To increase the availability of data and
prevent overfitting, extra synthetic data can be created,
called data augmentation.10 New versions of an image
can be created by using transformations such as zoom-
ing, rotating, shearing, cropping, elastic deformation,
and color and intensity changes. These transformations
are randomly applied during training so that no image is
American Journal of Orthodontics and Dentofacial Orthoped
the same as before, preventing the network from memo-
rizing the training samples.

CONCLUSIONS

CNNs have revolutionized the field of computer
vision. They use stacks of many simple layers that
make use of the properties of images to efficiently
compute and learn large amounts of image attributes
of varying complexity. Although the layers may be sim-
ple, the architectures used are complex and are in
continuous development to improve on the state of
the art.
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