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Abstract

Spatial heterogeneity of cells in liver biopsies can be used as biomarker
for disease severity of patients. This heterogeneity can be quantified
by non-parametric statistics of point pattern data, which make use of
an aggregation of the point locations. The method and scale of aggre-
gation are usually chosen ad hoc, despite values of the aforementioned
statistics being heavily dependent on them. Moreover, in the context
of measuring heterogeneity, increasing spatial resolution will not end-
lessly provide more accuracy. The question then becomes how changes
in resolution influence heterogeneity indicators, and subsequently how
they influence their predictive abilities. In this paper, cell level data
of liver biopsy tissue taken from chronic Hepatitis B patients is used
to analyze this issue. Firstly, Morisita-Horn indices, Shannon indices
and Getis-Ord statistics were evaluated as heterogeneity indicators of
different types of cells, using multiple resolutions. Secondly, the effect
of resolution on the predictive performance of the indices in an ordinal
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regression model was investigated, as well as their importance in the
model. A simulation study was subsequently performed to validate the
aforementioned methods. In general, for specific heterogeneity indica-
tors, a downward trend in predictive performance could be observed.
While for local measures of heterogeneity a smaller grid-size is out-
performing, global measures have a better performance with medium-
sized grids. In addition, the use of both local and global measures of
heterogeneity is recommended to improve the predictive performance.

1 Introduction

In the study of disease progression, examination of the tissue has been an
essential tool. Disease staging and resistance to treatment are often linked
not only to the presence or abundance of certain cells in the tissue microen-
vironment, but also to the dynamics and heterogeneity between certain cells
of different types and purposes [1, 2]. In recent years, digital methods have
gained a foothold in pathology. In particular, digital pathology has proven to
be essential within the context of the tumor microenvironment [3]. Techno-
logical developments have allowed for fast and accurate microscopic imaging,
as well as for the subsequent application of artificial intelligence (AI) tech-
niques designed to identify cells within the environment. Given the digitized
information, further AI and statistical techniques can be applied to quantify
the aforementioned heterogeneity between cells in more detail. Specifically,
techniques stemming from point pattern analysis as a branch of spatial statis-
tics are relevant.

In point pattern analysis, in order to calculate non-parametric statistics,
point locations often need to be aggregated. Examples of these statistics
include but are not limited to the Morisita-Horn and the Shannon index,
statistics that are frequently used in ecology [4, 5] and more recently histology
[6, 7]. The method of aggregation, however, is not standardized but generally
chosen by the author ad hoc. Methodological differences can potentially lead
to differences in the values of the calculated statistics and therefore differences
in conclusion.

The issue of determining an optimal scale has already been studied in spa-
tial point pattern data, specifically in the context of crime patterns [8]. The
paper builds on the goodness-of-fit-for-multiple-resolutions method designed
by Constanza [9] and calculates Andresen’s S Index [10], which indicates sim-
ilarity of two point patterns, over iteratively decreasing grid cell sizes. The
conclusion from the paper reads that the best scale should be a balanced and
data context dependent trade-off between the benefits, being the accuracy,
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and the pitfalls, being the possible noise and data collection issues, of using
increased resolutions.

Although the method and conclusions provided by the paper are gener-
ally applicable, the issues for point pattern data concerned with measuring
heterogeneity can be slightly different. Increasing spatial resolution will not
endlessly provide more accuracy, as limiting each grid cell to only a few data
points might not yield as much information about heterogeneity between
species in the sample. In the most extreme case, limiting grid cells to either
being empty or containing one single data point will yield no such information
within any grid cell at all. The question then becomes how changes in grid
choice influence heterogeneity indicators derived from this grid aggregation,
and subsequently how they influence predictive qualities of these indicators.
Considering heterogeneity indicators have recently been increasingly used as
biomarkers in histological studies [11, 12, 13, 14, 15, 16], studying the influ-
ence of grid size is essential to safeguard the accuracy of conclusions drawn
from these statistical analyses. The aim of this paper is to analyze this is-
sue by evaluating different heterogeneity indicators as well as their influence
in models attempting to predict disease staging under different choices of
aggregation.

This paper builds on the concepts and application from Agten and col-
leagues [17]. They investigated both spatial summary statistics and spatial
models to summarize the cellular micro-environment of liver biopsies, to be
used as biomarker for the patient’s stage of liver fibrosis. In this paper,
the spatial summary statistics are further investigated, and in particular the
dependency on the aggregation scale. Using a penalized ordinal regression
model, allowing to take into account the censored nature of the fibrosis score,
we will investigate the sensitivity of the grid choice on the predictive behavior
of liver fibrosis. The next section summarizes the data and different spatial
summary statistics that are investigated. Both a simulation study and data
application are used to investigate the impact on the grid-choice.

2 Methods

2.1 Data

The data contains 110 liver biopsies that were collected from chronic hepati-
tis B patients, consisting of 100 formalin-fixed and paraffin-embedded core
needle biopsies delivered by Avaden Biosciences and 10 fresh frozen liver
biopsies from China Medical University in Taiwan. Further details concern-
ing the datasets can be found in the Appendix. Ethics commission numbers

3



Table 1: Range of fibrosis stages defined by METAVIR scores found in the
liver data. 15 of 110 scores are not defined as one stage, but rather as an
indefinite score ranging between two values.

Fibrosis score 0 0-1 1 1-2 2 2-3 3 3-4 4

Number of samples 37 4 23 6 13 4 17 1 5

for the samples are found in the Appendix. Collection was done fully ad-
hering to IRB-approved protocols. Written informed consent was provided
by all participants. Fibrosis stage assessment of the liver was done with a
METAVIR score [18]. This is summarized in Table 1. Note that some incon-
clusive scores were given by the pathologist. 15 of the 110 METAVIR scores
were provided by the pathologist with two neighboring values instead of one,
indicating that neither scores could be definitively chosen over the other.

Immunofluorescent staining was applied to the biopsies. As biopsies were
pooled from different sources, multiple scanners were used for scanning the
biopsies, with more details found in the Appendix. All were scanned at
20X magnification. CellProfiler and HALO were used for cell segmentation,
identifying each cell, their two-dimensional (x and y) coordinates and the cell
type according to the aforementioned stains. The two-dimensional window
of interest was chosen to be the rectangular window drawn around the most
extreme x and y coordinates. Each cell was identified as one of three cell
types: HBsAg-negative hepatocyte, HBsAg-positive hepatocyte and immune
cell. To classify the cells into these cell types, antibodies against HBsAg and
CD45 were applied, as well as a nuclear dye. Cells that showed a level of
fluorescence related to CD45 that was higher or lower than a certain threshold
were considered respectively immune cells or hepatocytes. Within this latter
class, cells that showed a level of fluorescence related to HBsAg higher or
lower than a certain threshold were considered respectively HBsAg positive
and HBsAg negative hepatocytes. Thresholds of both CD45 and HBsAg were
determined using intensity distributions found in control samples.

2.2 Spatial summary statistics

Spatial measures are needed to quantify the spatial micro-environment, often
referred to as the spatial heterogeneity amongst different types of biological
cells. Biological cells are hereafter referred to as points. The arrangement of
said points then form a spatial point pattern. Different summaries of spatial
statistics start by discretizing the spatial point pattern data by dividing the
window into grid cells of the same size. The number of points corresponding
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to each cell type in any given grid cell is assumed to be distributed by a
Poisson distribution. Certain biopsies were shaped such that the surrounding
window of interest contained a substantial area not of importance to the
study. To combat this issue, empty grid cells were subsequently discarded.
The size of each grid cell was chosen for each sample separately so that the
mean amount of points in the non-empty grid cells approaches a pre-specified
value chosen as 5, 10, 15, 20, 25, 50, 100, 200, 500 or 1000. To choose the size
that best approaches this value, a simple algorithm was constructed, defined
as Algorithm 1 in the Appendix.

In the following formulations, i denotes the index of a grid cell, cki denotes
the number of points of type k in grid cell i, pki denotes the ratio of cki to
the total number of points in grid cell i, and nk denotes the total number of
points of type k.

2.2.1 Morisita-Horn index

The Morisita-Horn index (MHI) [19] is a measure calculating the similarity
- or differently put, heterogeneity - of two cell types across the whole grid.
The formula of the index is defined as

M =
2
∑

i
cki
nk

cli
nl∑

i(
cki
nk )2 +

∑
i(

cli
nl )2

.

This index is thus calculated for the entirety of the sample and ranges from
0 to 1, indicating complete dissimilarity or homogeneity at value 0, and
complete similarity or heterogeneity at value 1. Specifically, in the extreme
case where some grid cells only contain points of a certain type, and the
other grid cells only contain points of the other type, this would point to
homogeneity and would result in a value of 0. In the extreme case, then,
where all grid cells contain an equal portion of points of either type, this
would point to heterogeneity and would result in a value of 1. Since this is
a pairwise statistic, this was calculated for each pairwise combination of the
three cell types studied in this paper.

2.2.2 Shannon diversity index

The Shannon diversity index (SDI), which is analogous to the Shannon en-
tropy in information theory [20], is an index measuring diversity per grid cell
i and is formulated as follows:

Si = −
3∑
l

pli log(p
l
i).
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Whereas the Morisita-Horn index does pairwise comparisons over the entirety
of the sample, the Shannon index compares all point types at once but only
for one grid cell at a time. The Shannon index ranges from 0 to log(l) with
l indicating the amount of distinct point types, which in the context of this
paper results in log(3) ≈ 1.1. Similar to the Morisita-Horn index, low values
indicate homogeneity and high values indicate heterogeneity. Specifically, in
the extreme case a grid only contains points of one type, this would point
to homogeneity and would result in a value of 0. In the extreme case, then,
where a grid cell contains an equal portion of points across all types, this
would point to heterogeneity and would result in a value of log(3). Both
the mean and variance of Shannon indices across all grid cells are used to
summarize the information about the entirety of the sample.

Note that both the Morisita-Horn index and the summary measures of
Shannon diversity index give a quantitative measure of cell type heterogeneity
found in the entirety of the sample, which is why they are referred to as global
spatial summary statistics or henceforth global covariates for short.

Figure 1: Visualization of different grid choices and corresponding neigh-
borhood structures. (A) and (B) show a sample of the real data with only
two cell types shown, with a grid overlay for an average of 20 and 200 point
cells per grid cell respectively. (C) and (D) show a simulated sample from
simulation type 4 with only two cell types shown, with a grid overlay for an
average of 20 and 200 point cells per grid cell respectively.
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2.2.3 Getis-Ord hotspot colocalization

The Getis-Ord hotspot analysis [21] is often used in ecology and more recently
in histology. It is designed to detect significant clusters or hotspots in the
distributions of types. In addition to measuring the significant spots of types
individually, within the context of constructing indicators for heterogeneity
between types, our aim is to combine significant spots of different types and
to measure their frequency. In its algorithm, for any point cell type, in each
grid cell a z-score is calculated by comparing the number of points in the
grid cells and its neighboring cells with the expected number of cells. The
expected number is based on the average number of cells per grid cell. A
significantly high and low z-score were defined respectively as a hotspot or
coldspot. Formally, in grid cell i, the z-score for point type k is defined as:

z =

∑m
j=1wi,jc

k
j − ck

∑m
j=1 wi,j

SU
,

with normalizing factors

S =

√∑m
j=1(c

k
j )

2

N
− (ck)2,

U =

√
N
∑m

j=1 w
2
i,j − (

∑m
j=1 wi,j)2

N − 1
,

where wi,j is the binary indicator whether grid cell i and j are neighbors, ck

is the mean of the points in the grid cells and N is the total amount of grid
cells.

Different summary measures of the hotspot analysis are calculated. First,
for each cell type separately, the proportion of significant hotspots (and
coldspots) across all the grid cells is calculated. Secondly, the colocalization
of two cell types is summarizes as the proportion of grid cells that showed sig-
nificance for both types. This results in different combinations of significant
spots (hotspots of both types, coldspots of both types or hotspot of one and
coldspot of the other). Both a second order and third order neighborhood
structure were considered. A second order neighborhood structure considers
horizontally, vertically and diagonally adjacent cells as neighbors, and subse-
quently adds adjacent cells of these neighbors to the neighborhood. A third
order neighborhood structure then adds a subsequent adjacency layer.

All statistics derived from the Getis-Ord statistics summarizes local in-
formation to a sample wide level, which is why they are referred to as local
spatial summary statistics or henceforth local covariates for short.
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2.3 Penalized ordinal regression

All spatial and nonspatial (i.e., cell type as percentage of total number of
cells) statistics were subsequently used as predictors in an ordinal regression
model. The probabilities πim = P (Yi = m) that a biopsy i (i = 1, . . . , N) is
classified as from a patient with fibrosis stagem (m = 0, . . . , 4) is modeled. A
forward cumulative probability logit model was used. The associated cumu-
lative probabilities of a score less than m is equal to P (Yi ≤ m) =

∑m
l=1 πil,

and is modeled as function of the P covariate(s) xi as

logit(P (Yi ≤ m|xi)) = log

(
P (Yi ≤ m|xi)

P (Yi > m|xi)

)
= αm + xT

i β

where αm are level-specific intercepts and β is the common slope correspond-
ing to the P covariates. A Least Absolute Shrinkage and Selection Operator
(LASSO) type penalization was added by adding a term directly related to
the magnitude of covariate weights to the likelihood function to be mini-
mized, inhibiting covariate influence. The formula to be minimized function
is then

M = − l

N
+ λ

P∑
j=1

|βj|

where l is the loglikelihood of the cumulative probability logit model

l =
N∑
i=1

4∑
m=0

I(Yi = m) log(πim)

and λ is a tuning parameter. Fibrosis stages with two neighboring values
were accounted for by including both possible values once into the model,
but with only half the importance given in the likelihood calculations.

The OrdinalNet package [22] was used in R. The OrdinalNet package uses
a coordinate descent algorithm, providing an initial output of a selection of
models ranging from high to low λ and thus low to high covariate usage,
where for each model the loglikelihood, Akaike information criterion (AIC)
and Bayesian information criterion (BIC) were provided. Due to experi-
encing excessive parameter shrinking yielding non-informative models when
choosing to minimize the loglikelihood, only AIC and BIC minimized models
were considered in the following analyses.

The performance of different model subtypes were investigated: a model
including all covariates (M1), a model with only local covariates (M2), with
only global and nonspatial covariates (M3) and a model with only local and
global covariates (M4).
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2.4 Simulated data

To validate the proposed methods and illustrate the influence of grid cell
size on the measured variables and model outcome, a simulation study was
done. Four datasets were created with 100 patients per dataset. Similar
to the data, per patient, a disease stage score was assigned as a categorical
outcome ranging from 0 to 4 (i.e. five categories). A point pattern with
three different types of cells was then simulated for each patient. Whereas
the three different types of cells in the original data include HBsAg-positive,
HBsAg-negative hepatocytes and immune cells, the three types of cells in
the simulated data are more simply named type 1, type 2 and type 3. The
settings with which this point pattern was simulated were dependent on
the disease stage assigned to the patient, therefore creating a link between
features found in the point pattern and the disease stage. Specifically, type
1 and type 2 cells had different levels of clustering depending on the disease
stage of the patient. The techniques detailed above were then used on these
datasets in addition to the original dataset. The complete simulation outline
and pseudocode can be found in the Appendix (Algorithm 2).

Figure 1 shows two grids of different cell sizes on top of a sample of the
real data as well as a sample of the simulated data of the fourth type. Grid
choices shown are 20 and 200 average points per grid cell. Visualization of
the neighborhood was done by implementing a second order neighborhood
structure. Note the more accurate outlining of the sample shape in the case of
a smaller grid size for the real data, as well as the difference in neighborhood
definition due to grid cell sizes.

3 Results

3.1 Data analysis

Statistics concerning amount of point cells and amount of grid cells used to
discretize the real data per setting are shown in Figure 2. The sample with
the least amount of point cells contained 4459 cells, the one with the highest
amount of point cells contained 71195 cells.

The predictive quality of our fitted OrdinalNet models was measured
by a leave-one-out-cross-validation (LOOCV) process for each combination
of model type and grid choice separately. The absolute difference between
model predicted fibrosis score and observed fibrosis score being only one or
below (hereafter referred to as lag one) was considered the primary measure
of predictive quality, rather than an exact prediction. This was chosen due
to the aforementioned ambiguity of scoring liver fibrosis. Ratios of number
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Figure 2: Boxplots for the number of grid cells per sample per chosen grid
size.

of samples with lag one prediction and total number of samples are shown
in Figure 3, expressed in percentages for all models fitted on the real data
and all grid choices. Scores that were deemed ambiguous by the pathologist
and thus had two neighboring values were included twice weighted 50% in
the calculation of the predictive error, once using the lower and once using
the higher score, e.g. an observed score of 0.5 and predicted score of 1 would
result in both an absolute difference of zero and of one).

The model with the highest predictive quality is the AIC minimized model
with second order neighborhood structure where all covariates were included
with a grid choice of an estimated average of 200 point cells per grid cell.
AIC minimized models and models with second order neighborhood structure
tend to have a higher quality prediction in most covariate inclusion scenarios
and grid choices. The best model can predict 84% of the samples correctly
with one lag step. In order to understand how the grid size impacts each
of the spatial summary measures, we look at the coefficient of variation,
defined as the ratio of the standard deviation to the mean, between covariate
values for different grid sizes. Figure 4 shows the coefficient of variation
for each of the 110 samples. This coefficient would therefore indicate per
sample how much the value of a given covariate changes when the chosen
grid cell size changes. Nonspatial covariates are left out since grid size could
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Figure 3: LOOCV lag 1 results (absolute difference between predicted and
observed score being one or less) for different model constructions using real
data. Plot A and B show results for all models that were respectively AIC
and BIC minimized with a second order neighborhood structure. Plot C and
D show these for a third order neighborhood structure. M1, M2, M3 and
M4 refer to models where all, local, global & nonspatial and local & global
covariates were included respectively. The x axis refers to the choice of mean
point cells per grid cell as indicator of grid choice. The highest percentage
was indicated using a red border.

not affect them. Consistently across samples, the global covariates have a
small coefficient of variation between grid sizes. Most local covariates have
larger coefficients of variation, some consistently and others inconsistently
across samples. This explains why the choice of the grid can influence the
predictive performance when using these summary measures as covariates in
a prediction model.

Figure 5 further details the predictive performance and the variable im-
portance results of the real data using the AIC minimized models with a
second order neighborhood structure. To indicate the importance of a co-
variate, the absolute value of the coefficient corresponding to said covariate
in the OrdinalNet model using all samples was used, since all covariates were
standardized prior to their inclusion in the model. The local covariate in-
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Figure 4: Coefficients of variation between covariate values for different grid
sizes per sample. ”SH” refers to Shannon index, ”MH” refers to Morisita-
Horn, ”H” and ”C” refer to Getis-Ord hotspots and coldspots respectively,
and any combination refers to a colocalization of these spots. Coefficient
values range from low in dark blue to high in yellow. Samples are sorted
from highest to lowest total number of data points.

cluded model has a predictive quality drop-off from grid choice 25 to 50 point
cells per grid cell. This drop-off is not as present in the three other covariate
inclusion choices. In all models where local covariates are included, local
covariates whose coefficients are largest in smaller grid choices such as the
Getis-Ord HBsAg-positive coldspots percentage have smaller coefficients in
larger grid choices, with the pivotal grid choice coinciding with the afore-
mentioned drop-off point. In M1 and M4, global and if present nonspatial
covariate weights become larger for grids choices 20 point cells and above per
grid cell.

3.2 Simulation study

Figure 6 shows the performance and the variable importance results of the
data collected using the first simulation type for the AIC minimized mod-
els with a second order neighborhood structure. Both models where global
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and nonspatial covariates are simultaneously included have near perfect lag
one performance for grid choice below 500 and 1000 point cells per grid cell.
The local and global covariates model mirrors this result with slightly worse
performing grid choices of 5 and 200 point cells per grid cell. Performance
of the local covariates model peaks at grid choice 25 point cells per grid cell
and rapidly decays beyond 50. The MHI of type 1 and 2 is almost consis-
tently the most important variable in the models where it was included, with
a drop-off in importance for the largest grid choices. The model with only
local covariates for most grid choices retains many covariates; most impor-
tantly Getis-Ord coldspots of type 1 and a colocalization of type 1 coldspots
with type three hotspots. Their importance dwindles in models where other
aforementioned important covariates are included. The performance and the
variable importance results of the data collected using the second, third and
fourth simulation type for the AIC minimized models with a second order
neighborhood structure are shown in the Appendix. Some notable differences
can be observed. Generally, models using the data of the second simulation
perform worse than the other simulations, and the third and fourth sim-
ulation show near perfect prediction for models M1, M3 and M4. For all
simulations but the fourth, variable importance is highest for the covariate
concerning the Morisita-Horn of type 1 and 2, in models where this covariate
was included. In contrast, for the fourth simulation, variable importance is
much higher for the covariate concerning the percentage of type 1 cells, in
models where this covariate was included. Many of the same phenomena
found in the results of the first simulation are also present in the results of
the remaining simulations. Models generally show a drop in quality beyond
grid choice 25 point cells per grid cell. Grid choices 500 and 1000 yield very
low percentages for all models, and in the M2 model, all grid choices beyond
25 yield these percentages as well.

4 Discussion

4.1 Real data

Firstly, the 110 real data samples have highly inconsistent shapes and sizes,
which is indicated by the highly variable number of total points per sample.
As a result, indicated in Figure 2, even within the same choice of grid cell
setting, the largest sample can have close to 20 times more grid cells to take
into account than the smallest one. Among all models applied to the real
data, the best performing is the AIC minimized model using a second order
neighborhood structure with a grid cell choice of an average 200 data points
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Figure 5: Performance and variable importance of liver data. Columns indi-
cate the results from the model where respectively all (M1), only local (M2),
global and nonspatial (M3), and local and global covariates (M4) were in-
cluded. ”SH” refers to Shannon index, ”MH” refers to Morisita-Horn, ”H”
and ”C” refer to Getis-Ord hotspots and coldspots respectively, and any com-
bination refers to a colocalization of these spots. Row one shows LOOCV
results, with lag zero % in green and lag one % cumulatively in green and
blue.

per grid cell. This is an intriguing result, since this grid cell choice no longer
provides as much local information as smaller grid cell choices, as can be seen
from the predictive quality of any M2 model. Note that in most cases, AIC
minimized models performed better than their BIC minimized counterparts.
Models using covariates with second order neighborhood structure performed
better in comparison to their counterparts using a third order neighborhood
structure. Due to this, the summarizing figures are only based on the AIC
minimized model with second order neighborhood structure. Looking only at

14



Figure 6: Performance and variable importance of simulation 1. Fibrosis
score dependent on b, the maximum distance in either dimension that a
parent point of type 2 that is colocalized with type 1 is simulated from a
parent point of type 1. Columns indicate the results from the model where
respectively all (M1), only local (M2), global and nonspatial (M3), and local
and global covariates (M4) were included. ”SH” refers to Shannon index,
”MH” refers to Morisita-Horn, ”H” and ”C” refer to Getis-Ord hotspots and
coldspots respectively, and any combination refers to a colocalization of these
spots. Row one shows LOOCV results, with lag zero % in green and lag one
% cumulatively in green and blue.

grid size influence, then, in Figure 5, there is no conclusive worse performing
grid size as expected, with the exception of the decay of predictive quality in
the local covariate model as grid size increases. What is noticeable, however,
is the clear change in variable importance due to grid size. For smaller grid
sizes, local covariates – in particular Getis-Ord hotspots of HBsAg negative
cells, hotspots of HBsAg negative cells that collocate with coldspots of HBsAg
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positive cells and immune hotspots – carry the model, whereas in larger grids
their influence dies out and gets taken over by the global and nonspatial
covariates -– in particular the Morisita-Horn measures of HBsAg negative
and positive and HBsAg negative and immune, as well as the percentage
of immune cells relative to the total amount of cells – for larger grid sizes.
Local covariates are most influenced by grid changes, as could be seen in
Figure 4. Many coefficients of variation between values in different grid
sizes for local covariates were quite large in comparison to those for global
covariates. Those that had zero coefficients of variation had a value of zero
in each grid choice. Therefore, these provided no information regardless.
On the other hand, many of the large coefficients of variation were only
inflated by having a small mean due to only having one grid size where
the covariate value was nonzero. Nonetheless, local covariates, especially
ones related to colocalization of different types, are most vulnerable to grid
changes. Nonetheless, their volatility is likely the cause of their diminished
influence in the models for larger grid sizes. By extension, the relatively
higher consistency among global covariates is the reason they gain importance
when local covariates can no longer provide predictive information.

4.2 Simulated data

Figure 6 as well as Figure S1, S2 and S3 (found in the Appendix) also show-
case grid size influence, but for the simulated data. Despite slight differences,
the local covariates models in all simulation types point to the same general
rule as the real data sets: smaller grid sizes provide better local information
than larger grid sizes. The diminished influence of local covariates in larger
grid size models confirms this. In other model types, however, it is clear
that the type of simulation controls the variable importance. In the first
three simulation types, in the models where global covariates are included,
the MHI of type 1 and 2 explicitly dominates any other included covariate
and loses influence in the two to three largest grid sizes. In the fourth sim-
ulation type, where included, the proportion of type 2 cells dominates other
covariates. The conclusions regarding the respectively waning and growing
influence of local and other covariates as grid size increases previously drawn
from the variable importance plot for the real data can not be drawn from
these simulations.

The method outlined in this paper and in the paper of Agten et al. [17],
with the previously described algorithm, always guarantee that each grid cell
has on average approximately the chosen number of data points (e.g. 20 num-
ber of points per grid cell). . Any possible change in tissue (e.g. tissue size
difference, different tissue type such as tumors, tissue from different organs
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or organisms, temporal differences in the same tissue such as hypertrophy
and hyperplasia) might affect the number of grid cells analyzed, but perfor-
mance of heterogeneity indicators will be invariant due to the approximately
invariant average number of data points per grid cell. Therefore, we argue
that the method used in Agten et al. and this paper would be well-suited in
contexts of other types of tissues.

4.3 Limitations

Firstly, in this study grid choice was defined by the average point cells per
grid cell. The simple algorithm used to find the best approximate length
of the side of a grid cell that would yield a specified average point cells per
grid cell in a given sample was imperfect as can be seen in Figure 2. Thusly,
inconsistencies, as small as they might seem, could have influenced subse-
quent calculations. Secondly, all data that was simulated, was simulated in
a unit square window. This is in stark contrast to the shapes of the actual
data samples, which due to the nature of biopsies were often stretched, thin
and irregular. Biases stemming from these shapes such as having the grid
size choice influence the edge structure are therefore not present in the sim-
ulated data. Thirdly, the four simulation settings heavily influenced a single
covariate as most important for prediction each time, as was mentioned in
the discussion. This was never a local covariate. This could be interpreted
to mean that the use of local covariates is generally ineffective, though it
is more likely a shortcoming in the construction of these simulations. The
local covariate importance found in smaller grid sizes using the real data
supports the latter interpretation. Fourthly, as previously mentioned, the
primary response variable of interest, namely the fibrosis score of the liver
tissue, suffered from a level of ambiguity. Some fibrosis scores were unable
to be marked as one value and were therefore chosen by the pathologist to
lie between two neighboring values. Moreover, one study showed that, de-
spite inter-observer agreement between the assessment of fibrosis score in
chronic viral hepatitis being shown to be rather good (Cohen’s kappa equal
to 0.59), inexperience and lack of consensus reading might cause agreement
to dwindle [23]. As scoring of the entire cohort was done by multiple different
pathologists, potential subjectivity in scoring as well as uncertainty to define
a definite score could have potentially influenced the analyses in this paper.
Finally, the predictive value of the heterogeneity measures was determined
by a LASSO type model. One study showed that variable selection using
LASSO for data with low signal to noise ratio (which is influenced by among
others number of data points and number of predictors, and can be assumed
to be low in our context due to the high number of data points relative to
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the number of predictors), outperforms some other selection methods [24].
However, other studies have been more critical of LASSO as a variable selec-
tion technique [25]. More advanced methods might be better suited to avoid
inaccurate assignment of variable importance in future studies.

5 Conclusion

In both real and simulated data, the model subtype where only local co-
variates were included had a mostly downward trend in predictive ability
as grid cell size increased. This trend was also reflected in the real data in
the dwindling importance of the local covariates due to a lack of informa-
tion at larger grid sizes. Even models containing all variables, only global
and nonspatial covariates, and only local and global covariates had a drop-
off in predictive quality in the largest choice(s) of grid size. While for local
measures a smaller grid-size is outperforming, global measures have a better
performance with medium-sized grids. Thus, across all data and models,
trends are not unambiguously apparent, and there is no ’one-size-fits-all’ so-
lution. This study aimed to find spatial resolutions that would be optimal
on which to calculate heterogeneity indices that in turn would be success-
fully predictive of disease staging. However, across all data and models, one
such resolution cannot be determined in this context. Furthermore, trends
in predictive power of these heterogeneity measures are not unambiguously
apparent and consistent. Despite this limitation, it is clearly shown that
local spatial measures of heterogeneity perform better with more detailed
resolutions, while global covariates are more stable with mild resolutions. As
such, there is no ’one-size-fits-all’ solution, and conclusions depend on the
measure of heterogeneity used. This should be taken into account in future
studies investigating heterogeneity as a biomarker in histological samples.
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