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1. Introduction

Quillen introduced the notion of an exact category in [20] as a framework for homological algebra and
algebraic K-theory. For the definition of an exact category, one starts with an additive category together
with a chosen class of kernel-cokernel pairs (called conflations). The kernel morphism of a conflation is
called an inflation and the cokernel morphism is called a deflation. In Quillen’s original definition, he states
8 axioms, which can be partitioned into two dual sets of axioms: axioms RO-R3 referring solely to the
deflation side and axioms L0-L3 referring solely to the inflation side (see Definition 2.2 for the axioms). It
is well known that these axioms are not minimal; in particular, the obscure azioms (as they were referred
to in [36] and subsequently in [9]) L3 and R3 are superfluous (see [23,37]).

Requiring only the axioms on the deflation side (axioms R0-R2) gives the definition of a deflation-exact
category. These axioms imply that the deflations define a Grothendieck pretopology on the category (see [28]

r [22]). Requiring the inflation side of the axioms gives rise to an inflation-exact category. Such one-sided
exact categories are relative versions of one-sided quasi-abelian categories (also called one-sided almost
abelian categories), and have been introduced by [2] and [30] (in [30], the obscure axiom is part of the
definition).

Recently, the theory of one-sided exact categories has gained some interest. One-sided exact categories
appear as an intermediate step in the construction of the maximal exact structure on an additive category
([12,27,30,35]); similarly, they appear as an intermediate step in a recent approach to the K-theory of the
category of locally compact modules ([6,7], shortening the proof from [5], see also [11]), as a localization of
an exact category ([18,19]). Furthermore, natural examples of one-sided exact categories can be found in
representation theory and in functional analysis (see §3.2 for explicit examples). An additive homological
category [3] is an example of a one-sided exact category, as is a so-called one-morphism Grothendieck
pretopology ([22,28]).

In this paper, we consider an additive category A together with a class of conflations D such that the
pair £ = (A, D) is a one-sided exact category. We will state our results for deflation-exact categories, leaving
the dual statements for inflation-exact categories to the reader. In this introduction, and throughout most
of the paper, we assume that D contains all split kernel-cokernel pairs (this condition has been referred to
in [2] as axiom RO*, and we will keep this terminology).

At first glace, a one-sided exact category might seem a considerably weaker structure than an exact
category. Closer inspection reveals that a one-sided exact category £ admits an exact hull £, meaning that
there exists an exact and full embedding j: £ — £°* of £ into an exact category £, which is 2-universal
among all exact functors from & to an exact category (see [18,28]). Moreover, the embedding j lifts to
a derived equivalence D”(€) — D"(£). We infer that a one-sided exact structure is (homologically and
K-theoretically) close to a Quillen exact structure. However, to translate homological properties from the
exact hull £ to &, the following property would be useful: a sequence X — Y — Z is a conflation in
& if and only if j(X) — j(Y) — j(Z) is a conflation in £°*. In this paper, we show that this property
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is equivalent to the obscure axiom (see Theorem 1.1 or Proposition 1.4); this illustrates how the obscure
axiom implies the existence of homological properties close to those of an exact category.

Some one-sided exact categories of interest do not satisfy the corresponding obscure axiom: the conflation
structure given by all semi-stable cokernels [31] and the quotient of an exact category by a deflation-
percolating subcategory [19] are examples of deflation-exact categories, possibly not satisfying the obscure
axiom. For this reason, we also consider the closure £rs of a one-sided exact category £ under the obscure
axiom (see Theorem 1.3). This closure might change the underlying additive category, but the closure Egs
is nonetheless derived equivalent to the original category £.

1.1. Homological consequences of the obscure axiom

Let £ = (A, D) be a deflation-exact category. We say that £ satisfies the obscure axiom R3 if the following
condition holds: for any morphism f: X — Y, if f has a kernel and there is a morphism ¢: X’ — X such
that go f: X’ =+ X — Y is a deflation, then f is a deflation. In addition, we also consider the following two
versions of the obscure axiom by altering the condition “f has a kernel”: if we instead require f to admit all
pullbacks, we obtain axiom R37; if we remove the condition on the kernel of f altogether, we obtain axiom
R3T.

Following [2], we call a deflation-exact category strong if it satisfies the obscure axiom R3. The following
equivalent conditions illustrate that a strongly deflation-exact category is homologically close to an exact
category.

Theorem 1.1. Let £ be a deflation-exact category satisfying axziom RO*. The following are equivalent:

Axiom R3 holds.
The nine lemma holds (see Theorem 4.1 for a precise statement of the nine lemma,).
Conflations are closed under retracts.

If (0g9): X®Y — Z is a deflation and g admits a kernel, then g is a deflation.

A morphism g: Y — Z with kernel f: X — Z is a deflation if and only if there exists a deflation

[ Y'Y such that go [ is a deflation.

(7) A sequence X Ly % Zisa conflation in & if and only if there is a triangle i(X) “, i(Y) A9,
i(Z) — %i(X) in D°(E).

(8) A sequence X Ly 5% Zisa conflation in £ if and only if it is a conflation in the exact hull £¢* (see
Theorem 2.13).

(9) The embedding & — g of € into its weak idempotent completion £ is fully exact.

(1)
(2)
(3)
(4) Conflations are closed under direct summands.
()
(6)

For a deflation-exact category £, axiom R3™ is equivalent to satisfying the obscure axiom R3 and being
weakly idempotent complete (i.e. every retract has a kernel; this property is also called divisive, see [32]):
deflation-exact categories satisfying axiom R3™ are closely related to a weakly idempotent complete exact
category. Specifically, we have the following theorem.

Theorem 1.2. Let £ be a deflation-exact category satisfying axiom RO*. The following are equivalent:

(1) Aziom R3* holds.

(2) & is weakly idempotent complete and axiom R3 holds.

(3) If (09): X ®Y — Z is a deflation, then g is a deflation.

(4) A morphism g: Y — Z is a deflation if and only if there exists a deflation f: X —Y such that go f is
a deflation.
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(5) The ker-coker-sequence property holds (see Proposition 5.2).
(6) The (short) snake lemma holds (see Corollary 5.3 and Theorem 5.5).
(7) Deflations are closed under retracts, i.e. for any commutative diagram

y sz

L, |

vy

where the vertical arrows are retractions, if g is a deflation, then ¢’ is a deflation.
(8) Deflations are closed under direct summands, i.e. for any two morphisms g: Y — Z and g': Y' — Z',
if the direct sum'Y @Y’ — Z @& Z' is a deflation, then g and g' are deflations.

Both Theorem 1.1 and Theorem 1.2 will be proved in §6.
1.2. The obscure closure of a one-sided exact category

Let £ = (A,DD) be a deflation-exact category (such that the split kernel-cokernel pairs are conflations). It
was shown in [30] that D can be restricted to a largest strongly deflation-exact substructure. This restriction
usually alters the derived category and might as such be undesirable. In the opposite direction, it need not
be possible to extend D to a strongly deflation-exact structure on A. The obstruction lies with conflations
of the form

(69)

X@A>—>Y®A(p—0)»2;

even though the pullback P of a morphism f: Z' — Z along (p0): Y & A— Z may exist, the pullback of
f along p: Y — Z need not exist in A.

This leaves the following options: add only those conflations for which the required pullbacks exist, or
change the underlying category A. The former approach yields the closure under axiom R3~, while the
latter approach yields the closure under axiom R3 or R3™.

Theorem 1.3. Let £ = (A,D) be a deflation-exact category such that the split kernel-cokernel pairs are
conflations.

(1) There is a smallest deflation-ezact structure Drg O D on A satisfying axiom R3™.

(2) There is an exact functor € — Eps from & to a deflation-exact category Ers satisfying aziom R3,
universal among all exact functors to deflation-exact categories satisfying axiom R3.

(3) There is an exact functor & — Egg+ from & to a deflation-exact category Ers+ satisfying axiom R3T,
universal among all exact functors to deflation-exact categories satisfying axiom R3™.

Moreover, the embeddings of £ into each of these three closures are derived equivalences.

The deflation structure Egrzg = (A, Dgs-) is the largest extension of D such that & — Ers- is a derived
equivalence. The categories £gz and Egs+ need not have A as underlying category: the underlying additive
category of Egs+ is the weak idempotent completion A of A, and the underlying additive category of &rs is
a subcategory of A containing A.
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As the obscure axiom yields a slew of interesting homological properties, it is useful to know which
sequences in € become conflations in Egs (or Erg+ or £F). The following proposition addresses this (see
Proposition 7.18 in the text).

Proposition 1.4. Let X i) Y L Z be a sequence in a deflation-exact category E. The following are equivalent:

(1) the sequence is a conflation in Egs,
(2) the sequence is a conflation in Egz+,

;0
(4) there is an A € € such that X & A >(0—1)> Yo A GO 7 s a conflation in .

(3) the sequence is a conflation in £,

In §8, we apply these insights to compare the different lattices of one-sided exact structures on an additive
category A and its weak idempotent completion A. Specifically, we show that there is a Galois connection be-
tween the deflation-exact structures satisfying axiom R3~ on A and the deflation-exact structures satisfying
axiom R3* on A.

1.8. The exact structure of stable kernel-cokernel pairs

One-sided exact structures have been used to construct the maximal exact structure on an additive
category A: for a weakly idempotent complete category, the maximal exact structure is given by intersecting
the maximal deflation-exact structure Dy, and maximal inflation-exact structure I, on A (see [27,35]
for the pre-abelian case and [12] for the more general weakly idempotent complete case). The conflations in
Dmax N Inax are the stable kernel-cokernels.

When A is not weakly idempotent complete, the stable kernel-cokernels need not form an exact structure.
Here, the maximal exact structure is obtained by intersecting the largest strongly deflation- and strongly
inflation-exact categories, but this set of conflations might be considerably smaller than the set of stable
kernel-cokernels (see [30,31]).

In §9, we show that, given any additive category A, the intersection I N of an inflation-exact structure
I and a deflation-exact structure D “almost” endows .4 with the structure of an exact category: even though
(A, I ND) is not an exact category, the weak idempotent completion (.Z, m) is an exact category. This
suggests that an exact closure of (A,1 ND) can be constructed inside (.Z, m) The following theorem is
Proposition 9.5.

Theorem 1.5. Let D and I be a deflation- and an inflation-ezact structure on an additive category A. There

is an exact category (A',E) and a conflation-exact functor ¢: (A,DNI) — (A", E’) satisfying the following
2-universal property: for each exact category (B, &), the functor

— o Homoxact((A> DN ]1)7 (Bv]F)) - Homcxact((A/a E,)) (Ba F))
s an equivalence.

The additive category A’ in this theorem is found as a full subcategory of the weak idempotent completion
A, and contains the category A. Put differently, A C A’ C A.

Acknowledgments

The second author gratefully acknowledges the support given by FWO (12.M33.16N).



6 R. Henrard, A.-C. van Roosmalen / Journal of Pure and Applied Algebra 228 (2024) 107635

2. Preliminaries

This section is preliminary in nature. We recall the definition of a one-sided exact category as given in [2].
Note that our left exact categories are called right exact in [2] and vice-versa. To avoid confusion, we will
refer to one-sided exact categories by either inflation-exact categories or deflation-exact categories referring
directly to the underlying axioms instead.

2.1. One-sided exact categories

Definition 2.1. A conflation structure on an additive category A is a chosen class C of kernel-cokernel pairs,
called conflations, such that this class is closed under isomorphisms. The kernel part of a conflation is called
an inflation and the cokernel part of a conflation is called a deflation. We depict inflations by the symbol
— and deflations by —».

A conflation category is a pair (A, C) where C is a conflation structure on the additive category A. A
functor F': (A;,C1) — (Asz, C3) between conflation categories is called ezact or conflation-ezact if it maps
conflations to conflations.

For a conflation category £ = (A, C), we often write X € € for X € A.

Definition 2.2. A conflation category & = (A, C) is called deflation-ezact or right exact if £ satisfies the
following axioms:

RO The identity morphism 1p: 0 — 0 is a deflation.
R1 Deflations are closed under composition.
R2 The pullback of any morphism along a deflation exists. Moreover, deflations are stable under pullbacks.

Dually, a conflation category & is called inflation-exact or left exact if £ satisfies the following axioms:

LO The identity morphism 1p: 0 — 0 is an inflation.
L1 Inflations are closed under composition.
L2 The pushout of any morphism along an inflation exists. Moreover, inflations are stable under pushouts.

Definition 2.3. In addition to the axioms listed above, we discuss the following axioms as well.

RO* For any A € £, A — 0 is a deflation.
R3 Ifi: A— B and p: B — C are morphisms in £ such that p has a kernel and pi is a deflation, then p is
a deflation.

The following axioms are dual.

LO* For any A € £, 0 — A is an inflation.
L3 Ifi: A— B and p: B — C are morphisms in £ such that ¢ has a cokernel and pi is an inflation, then ¢
is an inflation.

Following [2], a deflation-exact category satisfying axiom R3 is called a strongly deflation-exact category or
a strongly right exact category. Dually, an inflation-exact category satisfying axiom L3 is called a strongly
inflation-exact category or a strongly left exact category.



R. Henrard, A.-C. van Roosmalen / Journal of Pure and Applied Algebra 228 (2024) 107635 7

Remark 2.4.

(1) A Quillen exact category is a conflation category satisfying the axioms in Definitions 2.2 and 2.3.
Yoneda showed that axioms R3 and L3 are redundant for exact categories (see [37, p. 525]). In fact,
Keller showed that axioms RO, R1, R2 and L2 imply the other axioms of an exact category (see [23,
appendix A]). Dually, an inflation-exact category satisfying axiom R2 is an exact category.

(2) For a deflation-exact category, axiom RO* translates to all split kernel-cokernel pairs being conflations.
Similarly, for inflation-exact categories, axiom L0* yields that all split kernel-cokernel pairs are con-
flations (see Proposition 2.6 below). In this text, we are solely interested in one-sided exact categories
having all split kernel-cokernel pairs as conflations.

We recall some basic properties of inflations and deflations in a deflation-exact category (see, for example,
[2] or [19]).

Proposition 2.5. Let £ be a deflation-exact category. Then:

(1)
(2)
(3) Ewvery deflation is an epimorphism. A deflation which is a monomorphism is an isomorphism.
(4)

FEvery isomorphism is a deflation.
Every inflation is a monomorphism. An inflation which is an epimorphism is an isomorphism.

The class of conflations is closed under direct sums.

Proposition 2.6. Let £ be a deflation-exact category the following are equivalent:
(1)

(2)

(3) Retractions with kernels are deflations.
(4)

Aziom RO* holds.

All split kernel-cokernel pairs are conflations.
Coretractions with cokernels are inflations.

2.2. The derived category of a one-sided exact category

The derived category of a one-sided exact category was introduced in [2]. We recall some relevant defini-
tions and properties from [2,18].

We write C(&) for the category of bounded cochain complexes over & and K"(&) for the homotopy
category of £. It is well-known that Kb(5 ) has the structure of a triangulated category induced by the strict
triangles in Cb(é' ). In order to define the (bounded) derived category of a one-sided exact category, we need

to define acyclic complexes.

Definition 2.7. Let £ be a conflation category. A morphism f: X — Y is called admissible or strict if it
admits a deflation-inflation factorization:

X\?Y

We denote an admissible morphism by X —£—> Y .
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Remark 2.8. The deflation-inflation factorization X — I — Y above is unique (up to isomorphism), more-
over, coim(f) = I = im(f). Clearly an admissible map has a kernel and cokernel: ker(f) is the kernel of
f —» coim(f) and coker(f) is the cokernel of the map im(f)—Y.

Definition 2.9. Let £ be a conflation category. A sequence

Jiz1 fi fit1 fit2
» Xi1 > X > X1 —— Xjpo —— -+

is called ezact or acyclic if each f; is admissible, i.e. factors as ¢; o p; with deflation p;: X; —im(f;) and
inflation ¢;: im(f;) — Xi41 such that ¢; = ker(fj41) and p; = coker(f;—1) for all j.

The full subcategory of Kb(é’) consisting of complexes which are homotopic to an acyclic complex is
denoted by Ac”(€).

The following lemma is [2, Lemma 7.2].

Lemma 2.10. Let £ be a one-sided eract category. The category Acb(S) is a triangulated subcategory of
K (&).

Hence, we arrive at the following definition.

Definition 2.11. Let £ be a one-sided exact category. The bounded derived category Db(é’ ) is the Verdier
localization K®(€)/ Ac”(€).

The following theorem (see [18, theorem 1.1]) summarizes some basic properties of the derived category.

Theorem 2.12. Let £ be a deflation-exact category.

(1) The natural embedding i: & — D°(E) is fully faithful.
(2) For all X,Y € & and n > 0, we have Hompy o) (X"i(X),i(y)) = 0.

If € satisfies axiom RO*, then
(3) a conflation X —Y — Z lifts to a triangle i(X) — i(Y) — i(Z) — %i(X) in D"(E).

For a deflation-exact category &£, we write £ for the extension-closure of £ in its bounded derived
category Db(S ). We may endow £ with the structure of an exact category in the following way (see [18],

based on [13]): a sequence X — Y — Z is a conflation in £* C DP(€) if and only if there is a triangle
(X)) = i(Y) = i(Z) = Xi(X). We call £ the exact hull of £. We recall the following theorem.

Theorem 2.13. Let £ be a deflation-exact category satisfying axiom RO*. The embedding j: £ — £ is an
exact embedding which is 2-universal among exact functors to exact categories. Moreover,

(1) the embedding £ — DP(E) lifts to a triangle equivalence D°(£%) ~ DP(E), and
(2) the embedding €& — £ lifts to a triangle equivalence DP(E) ~ D" (£¢).
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2.8. Weakly idempotent complete categories

Let A be any category. A morphism f: X — Y is called a retraction (or a coretraction) if there is a
morphism g: Y — X such that fog = 1y (or go f = 1x, respectively). The following proposition is [9,
Lemma 7.1].

Proposition 2.14. In an additive category A, the following are equivalent.

(1) Ewvery retraction has a kernel.
(2) Every coretraction has a cokernel.

A category satisfying the conditions of the previous proposition is called weakly idempotent complete.
The following is an immediate corollary to Proposition 2.6.

Corollary 2.15. Let £ be a weakly idempotent complete deflation-exact category. If € satisfies axiom RO*,
then retractions are deflations and coretractions are inflations.

Every additive category A has a weak idempotent closure A. Explicitly, the weak idempotent completion
of A can be realized as the full additive subcategory of the idempotent completion A containing A and all
kernels of retractions in A (see [9, Remark 7.8] or [18, Proposition A.11]).

Remark 2.16. Let X be an object of the idempotent completion A. By the construction of the weak idem-
potent completion A, we have that X € A if and only if there exists an object X. € Ob(A) such that
X & X, € Ob(A).

The following observation will be useful.
Lemma 2.17. Let A be an additive category. The embedding i: A — A commutes with limits and colimits.

Proof. Let D: J — A be a diagram in A and let L = lim D. For any object A € E, we write Ca: J — A
for the constant functor J — A mapping every object to A and every morphism to 14.

For every X € le\, there is a split kernel-cokernel pair X — Y — Z with Y, Z € A. Hence, there is a (split)
exact sequence 0 — Hom(X, —) — Hom(Y,—) — Hom(Z, —) — 0 in the functor category Hom(ﬁ, Ab). As
the natural morphisms Hom(Y, L) — Hom(Cy, D) and Hom(Z, L) — Hom(Cyz, D) are isomorphisms (as
L is the limit of D in A), we find that there is a natural morphism Hom(X,L) — Hom(Cx, D) is an
isomorphism as well. This shows that L is also the limit of D in fT, as required.

That i: A — A commutes with colimits is dual. O

3. Variants of the obscure axiom

We introduce several variants of the obscure axiom. The variants gain significance throughout this text.
Examples of one-sided exact categories satisfying these axioms will be provided in §3.2.

8.1. Definitions and first results

Definition 3.1. Let £ be a conflation category. We introduce the following axioms.

R3~ If the composition Y’ ¥ 2 Zis a deflation and all pullbacks along g: ¥ — Z exist, then g: ¥ — Z
is a deflation.
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R3™ If the composition Y’ I v 9 Z is a deflation then g: Y — Z is a deflation.

The following axioms are dual.

L3~ If a composition X 1y 25 ¥ is an inflation and all pushouts along f: X — Y exist, then f: X — Y
is an inflation. )

L3* If a composition X Ly 2y isan inflation then f: X — Y is an inflation.

Remark 3.2. For a deflation-exact category, we have

R3" = R3 = R3™ = R0*,

meaning that axiom R3T is the strongest and axiom RO* is the weakest. A similar sequence exists for
inflation-exact categories, changing the axioms to their inflation counterparts.

The following proposition is a small extension of [2, Proposition 6.4]. It states that, for weakly idempotent
complete one-sided exact categories, all aforementioned variants of the obscure axiom are equivalent.

Proposition 3.3. Let £ be a deflation-exact category. The following are equivalent:

(1) & satisfies axiom R3™,
(2) &€ is weakly idempotent complete and satisfies axiom R3,
(3) & is weakly idempotent complete and satisfies axiom R3™.

Proof. If (1) holds, then (2) holds (and hence also (3)), see [2, Proposition 6.4]. For the other direction,
assume that (3) holds. Let g: Y — Z be a morphism such that g o f’ is a deflation (for some f': Y' —Y)
as in the statement of axiom R3%. We need to show that g is a deflation. As axiom R3~ holds, it suffices to
show that g admits all pullbacks, or, equivalently, that for any h: H — Z, the morphism (g »): YO H — Z
has a kernel. We consider the following pullback diagram:

> Y

P
l lQOf'
&) Z

which exists by axiom R2. As gof’ = (g h) ( Jg ), the universal property of the pullback shows that p: P — Y’
is a retraction and thus a deflation by Corollary 2.15. Again using the pullback property, one can show that
the composition kerp — P — Y @ H is the kernel of (gh): Y & H — Z, see [30, Lemma 1]. This shows
that (g h) has a kernel, completing the proof. 0O

~

Y¢H —mM—

(g h)

The following observation leads to useful equivalent characterizations of the obscure axioms.

Proposition 3.4. Let £ be a deflation-exact category satisfying axiom RO* and let g: Y — Z be a morphism.
The following statements are equivalent:

(1) there is a morphism f': Y' —Y such that the composition go f' is a deflation,
(2) there is an E € £ for which (0g): E®Y — Z is a deflation.
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Proof. Assume that (1) holds. Choose F = Y’. The map (0 g) is obtained as the following composition:

(1) (e49) (09) (10)

Voy L Sy ey 217y Y 70y 2L 7

Note that each of the above maps is a deflation by Proposition 2.5 and axiom RO0*. Axiom R1 yields the
result.

For the converse, it suffices to observe that the deflation (0¢): E@Y — Z factorsas F¢Y — Y — Z. 0O

Proposition 3.5. Let £ be a deflation-exact category satisfying axiom RO*.

e category & satisfies axiom R3™ if and only if for every morphism g: Y — Z admaitting all pullbacks,
1) Th & ) jom R3™ if and only i hi Y — Z admitti [l pullback
0g): eY — eing a deflation (for any € implies that g is a deflation.
Y'®&Y — Z bei d ) Y’ € &) implies th s a d )
(2) The category € satisfies axiom R3 if and only if for every morphism g: Y — Z admitting a kernel,
0g): e Y — eing a deflation (for any € implies that g is a deflation.
Y'®&Y — Z bei d ; Y’ € &) implies th s a d )
e category € satisfies axiom if and only if for every morphism g:' Y — Z, i (0g9): Y ' ®Y —
3) Th & ) jom R3% i d only i, hi Y = Z, 1 Y'Y - Z
is a deflation (for any Y' € £), then g is a deflation.

Proof. We show the first equivalence, the other two are similar.

Assume that £ satisfies axiom R3™ and let g: Y — Z be a map admitting all pullbacks such that

(09): Y'®Y — Z is a deflation. As the composition Y/ @Y ﬂ Y < Z is a deflation, axiom R3~ implies

that ¢ is a deflation.

Conversely, assume that for every morphism g: Y — Z admitting all pullbacks, (0¢) being a deflation
implies that g is a deflation. Let g: Y — Z be a morphism admitting all pullbacks such that there is a map
fY" — Y such that go f is a deflation. By Proposition 3.4, the map (0 ¢) is a deflation. By assumption,
g is a deflation as well, this shows axiom R3~. O

The following proposition is based upon [2, Proposition 6.1] and [33, Lemma A.2]. It states that any
deflation-exact category satisfies the dual of Theorem 1.1.(5).

Proposition 3.6. Let £ be a deflation-exact category and let f: X — Y be a morphism admitting a cokernel.
A map (g) : X =Y @Y’ is an inflation if and only if f is an inflation.
If £ is weakly idempotent complete, one need not require f to have a cokernel.

Proof. Denote by ¢g: Y — Z the cokernel of f and assume that (g): X—Y @Y’ is an inflation. One
(4) (5%)

readily verifies that X»—— Y @Y’ —» Zp Y’ is a conflation. By axiom R2 we obtain the following

commutative diagram

(%) (81)

— YooY —» ZapY'

X Y
)H{\ f <5}>T ol

Y » Z

where the lower row is a conflation. In particular, f is an inflation.
The converse direction follows from Proposition 2.5. The last part is [2, Proposition 6.1]. O

Proposition 3.7. Let £ be a deflation-exact category satisfying axiom R3~. Let f: Y — Z and g: Y' — Z' be
morphisms such that ({; 2) Y @Y »ZaZ isa deflation. If f admits all pullbacks, then f is a deflation.
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Proof. Axiom R2 yields a pullback diagram:

As (f0)op: P— Z is equal to h, axiom R3™ shows that f is a deflation. O
3.2. Ezamples

We now provide some motivating examples, mainly from representation theory and functional analysis,
of one-sided exact categories satisfying the obscure axiom. Theorem 1.1 states that each of these categories
satisfy the nine lemma. When these examples are furthermore weakly idempotent complete, Theorem 1.2
states that these categories satisfy the snake lemma and the ker-coker-sequence. As these homological
properties were known for exact categories (see [9]), we restrict ourselves to one-sided exact categories. We
start with a definition.

Definition 3.8. We say that an additive category is pre-abelian if it admits all kernels and cokernel. Let A
be a pre-abelian category and let C be the class of all kernel-cokernel pairs in A. We say that A is left
quasi-abelian if (A, C) is a deflation-exact category. Dually, we say that A is right quasi-abelian if (A, C) is
inflation-exact. A category which is both left and right quasi-abelian is called quasi-abelian.

Corollary 3.9. Any left quasi-abelian category satisfies axiom R3™.

Proof. We recall that a quasi-abelian category is called an almost abelian category in [29]. The required
statement is shown in [29, Proposition 2]. O

Example 3.10. The following are examples of left quasi-abelian categories which are not right quasi-abelian:

(1) the Isbell category (that is, the full subcategory of abelian groups not containing an element of order
p? for a fixed prime p) is left quasi-abelian, but not inflation-exact (sce [2, Example 4.7]).

(2) the category of glider representations [10] of a filtered ring is a left quasi-abelian category which is not
inflation-exact [20],

(3) the category of LB-spaces ([16, Theorem 3.4]).

Example 3.11. The following are examples of right quasi-abelian categories which are not left quasi-abelian:

(1) the category of complete Hausdorff locally convex spaces ([16, Theorem 3.3]),
(2) the category of separated, complete topological groups with linear topology ([25, Corollary 8.6]).

In order to describe further examples, we recall the following definition from [19].

Definition 3.12. Let £ = (A, C) be a conflation category. We say that a full subcategory B C A is a deflation-
closed subcategory be a subcategory of A satisfying the following property: if p: B — B’ is a deflation in £
with B, B’ € B, then ker p € B. An inflation-closed subcategory is defined dually.
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Proposition 3.13. Any deflation-closed subcategory B of a deflation-exact category & is deflation-exact (the
conflations are given by those conflations in A with terms in B). If £ satisfies axioms R3 or R3", then B
satisfies the corresponding obscure axiom.

Proof. That B is deflation-exact is shown in [19, Proposition 3.11] and [21, Proposition 3.6]. It is also shown
that if £ satisfies axiom R3, then so does B. It is easy to see that if A is weakly idempotent complete, then
so is B. Hence, if £ satisfies axiom R3™, then so does B. O

Remark 3.14. In contrast to axioms R3 and R3T, the axiom R3~ need not be inherited by a deflation-closed
subcategory. We will provide an explicit example in Example 7.16 after introducing the R3™-closure.

Example 3.15.

(1) Tt is well known that the category LCS of locally convex spaces is a quasi-abelian category (see, for ex-
ample, [16, Theorem 3.1]). It is shown in [35, Example 4.1] that the full subcategory BOR of bornological
spaces is closed under quotients. This implies BOR is inflation-closed in LCS. Hence, BOR is an inflation-
exact category satisfying axiom L3T.

(2) Likewise, the category HD — LCS of Hausdorff locally convex spaces is a quasi-abelian category (see, for
example, [16, Theorem 3.2]). It follows from [35, Example 4.2] that the full subcategory HD — BOR of
bornological spaces is closed under kernels. As HD — BOR is deflation-closed in HD — LCS, we find that
HD — BOR is a deflation-exact category satisfying axiom R3™.

The following examples are based on [2,17].

Example 3.16. For any category A, a preradical functor T: A — A is a subfunctor of the identity. Let A be
an abelian category and let n: T'— 14 be a preradical functor. One can show that the full subcategory

B={AecA|n:T(A)— A is an isomorphism}

is closed under epimorphic quotients (B is called the pretorsion class of T'). Hence, B lies inflation-closed in
A and is hence inflation-closed. As A is abelian, the category B satisfies axiom L3T. We give two explicit
examples:

(1) Let A be the category Mod R of right modules over a ring R and let I < R be a right ideal of R. The
functor T: M — M1 is a preradical functor. Hence, the pretorsion class B is an inflation-exact category.
(2) Let H = Zp %Z be the subgroup of Q generated by the elements %, where p runs over the prime
numbers. Let T be the preradical on the category Ab of abelian groups given as follows: we map an
abelian group M to the image of the evaluation Hom(H, M) x H — M. It is shown in [2, Example 4.6]

that the pretorsion class is an inflation-exact category which is not deflation-exact.

Example 3.17. Let R be a ring and let M € Mod R be right R-module. Denote by fac(M) the full additive
subcategory of mod R consisting of factor modules of finite direct sums of M. Is clear that fac(M) is
inflation-closed, and hence an inflation-exact category satisfying axiom L3T. Likewise, the subcategory
sub(R) is deflation-closed and hence a deflation-exact category satisfying axiom R3*.

4. The nine lemma

Throughout this section, £ = (A, D) is a strongly deflation-exact category, i.e. axiom R3 holds. The goal
of this section is to show that the nine lemma (see Theorem 4.1) holds in £. The proof follows [3,4] closely.
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Theorem 4.1 (The nine lemma). Let € be a strongly deflation-exact category. Consider a commutative

diagram

>
N

~
T =
$— N +——

X" 3

where the columns are conflations and ¢’ o f' = 0. If two of the rows are conflations, so is the third.

Before coming to the proof of the nine lemma, we will establish several preliminary results. The first two

lemmas are akin to [3, lemmas 4.2.5 and 4.2.6].

Lemma 4.2. Consider the following commutative diagram in a strongly deflation-exact category €

X > Y A
Y Z

/ NN

~
Y
~

where the rows are conflations.

(1) If w is an isomorphism, then w is a deflation if and only if v is a deflation.

(2) If u and w are deflations then so is v.

Proof. (1) Assume that w is an isomorphism. If u is a deflation, then [2, Lemma 5.10] shows that v is a

deflation as well.
Conversely, assume that v is a deflation. Using that w is an isomorphism (or more specifically, a
monomorphism), it can be shown that the left square is a pullback square, see for example [24, Propo-
sition 1.13.2]. Axiom R2 implies that u is a deflation.

(2) Assume that u and w are deflations. Taking the pullback of Y' — Z’ along w, which exists by axiom

R2, we obtain the following commutative diagram:

X > Y %
-
X' s P 5
H U”l wl
X'y s Y’ w 7'

where v” is a deflation and v’ is obtained by the universal property of the pullback (thus v = v 0v’). By
the first part of the lemma we find that v’ is a deflation. Axiom R1 now implies that v is a deflation. O
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Lemma 4.3. Consider the following commutative diagram in a deflation-exact category £

!

X Y 5
xc oy g

where the top row is a conflation and f' is a monomorphism. If g’ o f' =0, then [’ = ker(¢g’).

Proof. As we have assumed that f’ is a monomorphism, we only need to show that f’ is a weak kernel of
g'. To that end, let t: T — Y’ be a map such that ¢’ ot = 0. By axiom R2, we can take the pullback of ¢
along v, obtaining the following commutative solid diagram:

K _ K
K’ 4
X Y —2 Z
T h V’
u P )
’ v’ ¥ ’
x' ! Y Z
T t
l ¥
T

Note that got' = (¢’ ot) o v’ = 0 and thus there exists a unique map h: P — X such that f o h =t'. By
commutativity of the diagram, we find that

tov' =vot' =vofoh=f ouoh.

Since f’ is monic and since f' o (uohok’) =vot' ok’ =0, we find that wuo hok’ = 0. As v' = coker(k’),

there exists a unique map [: T'— X’ such that [ o v’ = wo h. Thus
flolov =fouoh=vofoh=vot =tod.
As v’ is an epimorphism, we find that ¢ = f’ o [. This shows that f’ is a weak kernel of ¢’. 0O

The following proposition is a straightforward adaptation of [34, Proposition 1.1.4] (see also [29, Corollary

1)).

Proposition 4.4. Let f: X — Y be a morphism in a deflation-exact category £. The following are equivalent:

(1) f =moe where e is a deflation and m is a monomorphism,
(2) f admits a kernel which is an inflation.

In this case, the deflation is given by e: X — X/ ker(f).

Proof. Assume first that f = m o e where e is a deflation and m is a monomorphism. As m is a monomor-
phism, we know that ker(f) = ker(e). As e is a deflation, ker(f) — X is an inflation.
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For the other direction, assume that i: ker(f)— X is an inflation. Let C' = coim(f) = X/ ker(f). This

gives the commutative diagram

We only need to show that m: C' — Y is a monomorphism. To this end, let ¢t: T" — C be any morphism
such that m ot = 0. We need to show that ¢ = 0. Using axiom R2, we consider the pullback diagram

— X

ga,

where the downward arrows are deflations. As fot' =moeot' =motoe =0, we know that t': P - X
factors as t’ = ioj for some j: P — ker(f). As €’ is a deflation (and hence an epimorphism), it now follows

t
e’
t

H«——"

—_

from
toe =eot =eo0ioj=0
that ¢ = 0. This shows that m is a monomorphism. O
We are now in a position to prove the nine lemma.
Proof of Theorem 4.1. (1) If the lower two rows are conflations, so is the third (see [2, Proposition 5.11]).

(2) Assume that the upper two rows are conflations. It can be verified that the top-left square is a pullback,
see [24, Proposition 1.13.2]. Again using [24, Proposition 1.13.2], we find that X ~— X’ is the kernel of

X xr Ly, Proposition 4.4 yields that f”: X” — Y” is a monomorphism.
Taking the pullback of ¢” along the deflation Z’ — Z”, we obtain the following commutative diagram:

g

Y ——» 7 VA
L]
Y/ y P—— 7'
Lol
Y”:Y//Q—>Z”

Here, the dotted arrow, obtained using the pullback property of P, factors the map ¢': Y’ — Z'.
Applying Lemma 4.2.(1) to the first two columns of the previous commutative diagram, we find that
the dotted map Y’ — P is a deflation.

Note that ¢” o f” = 0. Indeed, the composition X’ BNV Ny N equals the composition

”

X' X" L5y 55 77 and is zero as g o f' =0, since X’ — X" is an epimorphism, we find that
! "
g'o f"=0.
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Using ¢” o f”” = 0 and the pullback property of P, we obtain the following commutative diagram:

The dotted map X” — P is a monomorphism as f” is a monomorphism. By Lemma 4.3, the map
X" — P is the kernel of the map P — Z’. Using that the lower-right square is a pullback, we find that
" =ker(g"), see for example [30, Lemma 1]. Axiom R3 now implies that ¢” is a deflation and thus the
lower row is a conflation as well.

(3) Assume that the upper and lower rows are conflations. Lemma 4.2.(2) implies yields that ¢’ is a deflation.
Applying part (1) of this proof to the right columns yields the commutative diagram

f Y CN

!

" ZI

l

n 9 7
» Z

& '~<\€ <
Q

//

X// Xl/

h<

Here, the dotted arrow is obtained by using that K = ker(¢g’) and that g o f/ = 0. The short five
lemma (the lemma holds for one-sided exact categories, see [2, Lemma 5.3]) implies that X’ — K is an

isomorphism. This concludes the proof. O

Remark 4.5. In [3,4], it was shown that the nine lemma holds for homological categories. Although our proof
follows these references closely, we do not assume that the category £ is finitely complete, nor do we assume
that every cokernel is a deflation.

5. The snake lemma

In this section we show the snake lemma (see Theorem 5.5) holds in a deflation-exact category &€ = (A, D)
satisfying axiom R37, i.e. £ is weakly idempotent complete and satisfies axiom R3. Our proof follows [9]
closcly, and we obtain the snake lemma as a consequence of the ker-coker sequence (see Proposition 5.2
below).

We start with the observation that, in this setting, admissible morphisms are stable under pullbacks
along deflations and, when those exist, pushouts along inflations.

Proposition 5.1. Let £ be a deflation-exact category satisfying axiom R3™.

(1) Given a commutative diagram of the form:

Ay > Ao » As

N

A1> > By » Bg
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The map fo is admissible if and only if f3

(2) Given a commutative diagram of the form:

1s admissible.

e > Ao » As

B> > Bs » A3

The map f1 is admissible if and only if fo

15 admissible.

Proof. (1) Note that the right square of diagram (1) is both a pullback square and a pushout square. Indeed

this follows from [19, Proposition 3.7].

Now assume that fs is admissible. As such, fo admits a cokernel and a straightforward verification
shows that f3 admits a cokernel as well and that coker(f2) = coker(f3), see for example the dual of [30,
Lemma 1]. Axiom R3" implies that the induced map B3 — coker(f2) is a deflation. Hence we obtain

the following commutative diagram:

Ay > im(f2) » K
Al) > By » D3
0>——— coker( f2) coker( f2)

By the nine lemma, the upper row is a conflation as well. Using that K is a kernel, we find that f3

factors through K — Bj. The induced map

Az — K is a deflation by axiom R3" and by commutativity

of the square A A3 K im( f5). Indeed, one can verify the commutativity of the square As A3 K im(f2) by
using that K ~— Bg is a monomorphism and that the square As A3 B3Bs; commutes. This shows that f3

is admissible and that K = im(f3).
Conversely, assume that f3 is admissible.

It follows from [19, Proposition 3.10] and axiom R3 that

admissible maps are stable under pullbacks along deflations. Note that this does not require £ to be

weakly idempotent complete.

(2) The left square of diagram (2) is both a pullback square and a pushout square by [19, Proposition 3.7].
Assume that f; admissible. As the left square is a pushout, a straightforward verification, as in the dual
(30, Lemma 1], shows that coker(f;) & coker(fz). Axiom R3™1 implies that the map By — coker(f;) is

a deflation. Hence, we obtain the following

commutative diagram:

im(fy) > K » As
B » Bo » As
coker( f1) coker(f;) —» 0

By the nine lemma, the upper row is a conflation. Note that fs factors through K — B>, moreover, we

obtain the following commutative diagram:
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ker(fl) ker(fl) — T
A1> > A2 A3
im(f1)> ? I\; As

Applying the nine lemma once more, we find that the middle column is a conflation. It follows that fo
is admissible and that K = im(fs3).

Conversely, assume that fo is admissible. It is straightforward to see that A, — As factors through
Ay —im(f3). By axiom R3™, the induced map im(fy) — Az is a deflation. Using that the left square is
a pullback, we obtain the following commutative diagram:

ker(f1) ker(fi) —» 0

T

A1> )AQ

T

Ky———im(fs) —» A3

By the nine lemma, the left column is a conflation. Clearly, f; factors through A; - K. It remains
to show that the induced map K — Bj is an inflation. Applying the nine lemma once more to the
commutative diagram

K im(fy) ——» A3

| ]

Bl) B2 ” A3

L 1]

coker( f2) coker(fo) —» 0

we find that the left column is a conflation. It follows that fi is admissible and that K = im(f1). O

The next proposition shows that the ker-coker-sequence property holds for weakly idempotent complete
deflation-exact categories. We generalize the proof given in [9, Proposition 8.11].

Proposition 5.2 (Ker-coker-sequence). Let £ be a deflation-exact category satisfying aziom R3'. Let

/
A—5>% B and B —o— C be admissible morphisms such that h = g o f is admissible as well. There is
a natural exact sequence

0 — ker(f) — ker(h) — ker(g) — coker(f) — coker(h) — coker(g) — 0.

Proof. Clearly g induces a map im(f) — im(h), moreover, by axiom R3™, this map is a deflation. Hence,
we obtain a conflation X — im(f) — im(h). Consider the following commutative diagram:



20 R. Henrard, A.-C. van Roosmalen / Journal of Pure and Applied Algebra 228 (2024) 107635

ker(f) > ker(h) » X

Y

~+ ~

ker(f)» > A » im(f)

¥

00— im(h)

i
<

im(h)

By the nine lemma, the upper row of this diagram is a conflation.

Similarly, f induces a map coker(h) — coker(g) which is a deflation by axiom R3*. Hence, we obtain a
conflation Z — coker(h) — coker(g). Consider the following commutative diagram:

im(h) > im(g) > Z
im(h) > > C » coker(h)
0>—— coker(g) === coker(g)

Again, the nine lemma yields that the top row is a conflation.

By axiom R1, the composition B —im(g) — Z is a deflation. Axiom R3™ implies that the induced map
coker(f) — Z such that the square B coker(f)Zim(g) is commutative, is a deflation. Hence we obtain a
conflation Y — coker(f) — Z. Consider the following natural commutative diagram:

X > ker(g) »Y
im(f)> » B » coker(f)
im(h)> » im(g) » Z

Again, the nine lemma implies that the top row of this diagram is a conflation. The result follows by gluing
the edges of the previous three diagrams together. O

As a corollary, we obtain the short snake lemma.

Corollary 5.3 (Short snake lemma). Let € be a deflation-exact category satisfying aziom R3™. Consider a
commutative diagram

Ay s Ao % As

NN

By > By » Bs

such that the rows are conflations and the f;’s are admissible morphisms. Write K; = ker(f;) and C; =
coker(f;). There exists a natural connecting morphism 0 such that the sequence
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P ¥ 5 P ¥
0 > K> 1>K2 2>K3 > C4 1>C2 2»(]3 > 0

is an exact sequence. Here the maps ¢; and . are the natural maps induced by the above diagram.

Proof. By [2, Proposition 5.2], the given map between conflations factors as

¢ )
Ay Ay —

» Ag
]
As

By %
o s

By > By » B3

b1 )

—o— Ny é—o—

s

such that fo = fJ o fi, the upper-left and lower-right squares are bicartesian squares, i.e. both pullbacks
and pushouts. By Proposition 5.1, both f5 and f} are admissible.
Applying Proposition 5.2 to the composition fo = f§ o f4, yields the exact sequence

0 — ker(f5) — ker(f2) — ker(f3') — coker(f3) — coker(fz) — coker(f5) — 0.

It follows from [30, Lemma 1] that pullbacks preserve kernels, and so that ker f1 = ker f4 and ker f4 = ker f.
Dually, pushouts preserve cokernels so that coker f; = coker f} and coker f = coker f3. This yields the
required sequence. O

Remark 5.4.

(1) The short snake lemma holds for a strongly one-sided exact category & only if € is weakly idempotent
complete. The proof is similar to [9, Remark 8.14].

(2) The proof of Proposition 5.2 is similar to the proof given in [9, Proposition 8.11]. However, we avoid
using axiom L3 by combining axiom R3 and the nine lemma to obtain the desired inflations.

‘We now come to the full version of the snake lemma.

Theorem 5.5 (Snake lemma). Let € be a deflation-exact category satisfying aziom R3T. Consider a commu-
tative diagram

¢ ¢
A1 —01—) AQ —02—) A3 —» 0

bl e .

0—— By —0/—> By —0,—> Bg
1 2

with exact rows. There is an induced exact sequence

ker(¢1) » Ky > Ko > K3 > Oy > Oy > Cs3 » coker (¢h)

where K; = ker(f;) and C; = coker(f;).
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Proof. Note that ¢, is a deflation, ¢/ is an inflation, and that the composition ker(¢;)— Ay —im(fy) is
zero. By axiom R3™, the induced map im(¢;1) — im(f;) is a deflation. By the nine lemma, the top row of
the following commutative diagram is a conflation:

ker(¢,

(
|

)
ker(¢q) »

|

0>———— im(f1)

> ker(f1) > K

Y

y)
A}
<
S

N\

—
x
¥
g.

—~
—

~—

AN}
)
AN}

By axiom R1, the composition Ay — A3 —im(f3) is a deflation and thus an epimorphism. It follows that
the composition im(f3) — B — coker(¢5) is zero if and only if the natural map As — coker(¢h) is zero.
The latter follows from the commutativity of diagram (3). Using axiom R3T, we find that the induced
map coker(f3) — coker(¢h) is a deflation. The nine lemma yields that the left column of the following
commutative diagram is a conflation:

im(f3) 1m§f3) —» T
im( 5)» > ég » coker(¢h)

X
2

Z>—> coker( f3) —» coker(¢})

Applying Corollary 5.3 to the commutative diagram

im(¢1) > s Ao » As
im(f1) im( f2) im( f3)
Bl) > BQ » 1m( /2)

together with the above yields the desired result. O

Remark 5.6. In [28, C2.2, proposition], a version of the snake lemma was proven in the setting of non-
additive deflation-exact categories, under the assumption of three additional conditions: (a), (b1), and (b2).
Condition (a) is used to ensure the existence of the connecting morphism K35 — C7, while (b1) and (b2) are
used to show the exactness of the ‘snake’ sequence (see [28, section C2.3]). It is also shown that, in additive
categories, condition (a) is automatic and (b2) follows from (bl). We therefore only look more closely at
condition (bl).

Condition (b1) states that: if go f is a deflation and f is a deflation, then g is a deflation. It follows from
Theorem 1.2.(4) that an (additive) deflation-exact category with R0* satisfies (bl) if and only if it satisfies
axiom R3™.
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Without axiom R0*, condition (b1) is weaker than axiom R3". Indeed, we can endow an additive category
& with a deflation-cxact structure where the deflations are precisely the isomorphisms (see [2, example 3.5]).
If £ is not the zero category, then this conflation structure does not satisfy axiom R0*, and hence does not
satisfy axiom R3T either. However, condition (b1) is satisfied. As the only inflations are of the form 0— X,
all admissible morphisms are zero, and it is easy to verify that the snake lemma indeed holds in this example.

6. Equivalent formulations of the obscure axiom

In this section, we expand upon the previous results and provide several equivalent formulations of the
obscure axiom for a deflation- or inflation-exact category £ (Theorems 1.1 and 1.2). In particular, we show
some converses of the previous sections, i.e. we show that the obscure axiom holds in £ if and only if the
nine lemma holds, and that axiom R3™" holds if and only if the snake lemma or the ker-coker sequence
property holds.

6.1. Equivalent formulations of axiom R3

We now come to the proof of Theorem 1.1. For clarity, the proof has been split in several parts.

Proof of equivalence (1) < (2). Theorem 4.1 shows the implication (1) = (2). For the implication (2) =
(1), consider the commutative diagram

%

K-*.p_7,

Q4— <
&

where k = ker(p). We need to show that p is a deflation. By axiom R2, we can consider the pullback P of p
along the deflation poi. It follows from the universal property of the pullback that the morphism p’: P — A
is a retraction. Moreover, one can verify (see for example [30, Lemma 1]) that the map p’ has a kernel and
kerp’ = K. We find that P & K @& A and, using Proposition 2.6, we find that p’ is a deflation. We obtain
the following commutative diagram:

L
|

el

L
K > B s C
k p

By the nine lemma, the lower row is a conflation and thus p is a deflation. We conclude that (1) < (2), as
required. O

Proof of equivalences (1) < (3) < (4) < (5). The equivalence (1) < (5) is shown in Proposition 3.5. The
implication (1) = (3) is shown in [18, Proposition 2.6]. The implication (3) = (4) is trivial. To show the
implication (4) = (1), we consider the setup given in the commutative diagram (4), with k& = ker(p). As in



24 R. Henrard, A.-C. van Roosmalen / Journal of Pure and Applied Algebra 228 (2024) 107635

the proof following diagram (4), we consider the pullback P of p along the deflation p o i and obtain the
lower-right square of (5) as the pullback diagram. Using [2, Proposition 5.7], we find the conflation

k 1 .
K@A&B@A&»C

We can now find K — B — C as a direct summand of this conflation. Hence, it follows from (4) that
K — B — C'is a conflation. This shows the implication (4) = (1). O

Proof of equivalence (1) < (6). The implication (1) = (6) is trivial. Conversely, assume (6) and let g: Y —

Z, f: X =Y and f: Y — Y be maps such that go f’ is a deflation and f = ker(g). By axiom R2, we
obtain the commutative diagram

X ‘“sp_Lyy

| b
x Joy ¢

A

where the right square is a pullback. By the pullback property, there is a unique map u: Y’ — P such that
gf’ = hu and pu = ly.. It follows that p is a retraction with kernel i. By Proposition 2.6 and axiom R1,
the composition gh = gf'p is a deflation. By (6), g is a deflation as required. 0O

Proof of equivalences (1) < (7) < (8). The equivalence of (1) < (7) is shown in [18, Proposition 6.2]. The
equivalence of (7) < (8) follows from [18, theorem 1.2 and proposition 6.2]. O

Proof of equivalence (1) < (9). Assume that (1) holds, we need to show that £ lies extension-closed in its

weak idempotent completlon Let X -5 Y % Z be a conflation in € such that X, Z € £. By definition, there

exists a conflation X’ >Z—> v’ L 7' in € such that the direct sum X ® X' — Y BY’ — Z@ Z' is a conflation in
E. Without loss of generality, we may assume that X’ — Y’ — Z’ is a conflation in £. By Remark 2.16, there
exists an object Y. € £€ such that Y @Y, € £. It follows that the following natural commutative diagram

t 0 p 00
(37) (050)
00 001
XX —— YooY oY, —»Z0 72 @Y.
l<100> ”
0p' 0
001
X—sYoZ oY, —Z3Z' Y,

(8) (550)

Note that the lower row of the above diagram is a kernel-cokernel pair in £. By axiom R3, the lower row is
a conflation in £. By axiom R2, pullbacks along Y & Z' ¢ Y, — Z & Z' & Y¢ exist in &:

lies in &:

YeZ' oY, —» ZoZ' @Y.

P » Z

It now follows from Lemma 2.17 that P 2 Y. Hence, Y € £. This shows that £ is extension-closed in E.
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Conversely, assume that (9) holds. Let X Lo ¥ % Z be a kernel-cokernel pair in £ and let h: A — Y be
a map such that g o h is a deflation in £. Since g o h is also a deflation in £ and &£ satisfies axiom R37, the
map g is a deflation in . Since € < £ is fully exact, Y & Z is a deflation in £ as well. O

Remark 6.1. The Gabriel-Quillen embedding of an exact category in an abelian category allows one to
reduce homological statements in an exact category to homological statements in an abelian category. The
equivalence (1) < (8) in Theorem 1.1 gives a similar reduction: here, one can establish statements about
conflations in a strongly deflation-exact category by reducing it to a similar statement in its exact hull. In

particular, using the equivalence (1) < (8) in Theorem 1.1, one can deduce the nine lemma in a strong
deflation-exact category £ from the nine lemma in the exact hull £ of £.

6.2. Equivalent formulations of axiom R3*
We now come to the proof of Theorem 1.2. We will again present the proof in several parts.
Proof of equivalences (1) < (2) < (3). This is shown in Proposition 3.3 and Proposition 3.5. O

Proof of equivalence (1) < (4). The implication (1) = (4) is trivial. For the implication (4) = (1), consider
morphisms f: X — Y and g: Y — Z such that go f is a deflation. We find the following pullback square

p_—"4x
hl i lgf
Y A

g

NN

where h: P—Y is a deflation by axiom R2. Note that p: P — X is a retraction by the pullback property.
Write s: X — P for the corresponding section. By axiom RO*, the maps (p1) and (1s) are deflations.
Using (4), we can use the commutative diagram

(1s)
P X ——»P

N

X

to see that p: P — X is a deflation. It now follows from axiom R1 that the composition g o h is a deflation.
Hence (4) implies that g is a deflation. This shows that (1) holds, as required. O

Proof of equivalences (5) < (1) < (6). The implications (1) = (5) and (1) = (6) follow from Proposi-
tion 5.2, Corollary 5.3 and Theorem 5.5.

We now show that (5) = (4). As (4) = (1), this is sufficient. Let g: Y — Z be a morphism and f: X - Y
be a deflation such that go f: X — Z is a deflation, as in the statement of (4). We need to show that g is

. . o f : .
a deflation. Applying the ker-coker sequence to the composition ker f — X %z gives an acyclic sequence

0——X——ker(gf)—o—Y —»Z——0.

In particular, g: Y — Z is a deflation. The implication (6) = (4) can be shown in a similar fashion. 0O
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Proof of implications (4) = (7) = (8) = (4). Only the last implication is nontrivial, so let f: X — Y be
any map and let g: Y — Z be a deflation such that go f is a deflation. It follows from [19] (or the dual of
2, Proposition 5.7]) that (gf f): X @ Y — Z is a deflation (this uses axiom R0*). As invertible maps are
deflations, axiom R2 gives a deflation (g/ f)( % %) =(0/): X ®Y — Z. It now follows from (8) that f is
a deflation, as required. O

7. Obscure closures of one-sided exact categories

Let £ = (A, D) be a deflation-exact category satisfying axiom RO*. In this section, we examine closures of
& under the obscure axiom R3 (as well as the closures under axioms R3~ and R3™). As a first observation,
Proposition 3.3 shows that £ needs to be weakly idempotent complete in order to admit axiom R3". This
indicates that it is not sufficient to just refine the conflation structure on £ (thus, enlarge the set D) and
that we need to additionally adjust the underlying additive category A. A similar remark holds for axiom
R3 (see Example 7.6) below.

Definition 7.1. Let £ = (A, D) be a deflation-exact category. The R3-closure of £ is a deflation-exact category
Ers = (Ars, Drs) satisfying axiom R3 together with an exact functor ¢: € — Egrs satisfying the follow-
ing 2-universal property: for any strongly deflation-exact category F, the functor — o ¢: Hom(Egs, F) —
Hom(&, F) is an equivalence.

Similarly, one defines the R3™-closure.

The aim of this section is to show the following theorem.

Theorem 7.2. Let £ = (A, D) be a deflation-exact category satisfying axiom RO*.

(1) The category € has an R3-closure Egs.
(2) The category € has an R3"-closure Egg+.

Moreover, the natural maps £ — Epg — Egs+ lift to triangle equivalences on the bounded derived categories.

Additionally, there exists a deflation-ezact structure on &, denoted by Egz— = (A,Dgs-) extending the
conflation-structure D and satisfying axiom R3™. Moreover, Db(S) ~ Db(é'Rr) are triangle equivalent and
Eps— s the largest conflation structure on £ that does not change the bounded derived category up to triangle
equivalence.

7.1. The R3T-closure

By Proposition 3.3, a deflation-exact category & = (A, D) satisfying axiom R3T must be weakly idempo-
tent complete Given a deflation-exact category & satlsfylng axiom RO0*, one endows the weak 1demp0tent
completion A with the followmg conflation structure D: a sequence X »— Y —» Z is a conflation in A if and
only if it is a direct summand in A of a conflation in D. We simply write E= (A, ]D)) for the weak idempotent
completion of £ with the above conflation structure. By [18, appendix B], the following theorem holds:

Theorem 7.3. Let £ be a deflation-exact category satisfying axiom RO*. The weak idempotent completion 5
satisfies ariom R3' and the exact embedding £ — & is 2-universal among exact functors to deflation-exact
categories satisfying axiom R3T.

Moreover, the natural embedding €& — £ lifts to a triangle equivalence Db(é') — Db(A).

It follows that the R3T-closure Egs+ of a deflation-exact category £ is simply the weak idempotent
completion £ endowed with the natural conflation structure.
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The following corollary states that for a deflation-exact category £, axiom R3 implies the dual of Theo-
rem 1.1.(6) and axiom R3" implies the dual of Theorem 1.2.(4).

Corollary 7.4. Let £ be a deflation-exact category.

(1) Assume that & satisfies axiom R3. For any morphism f: X — Y having a cokernel g: Y — Z, if there
is an inflation h: Y — U such that h o f is an inflation, then f is an inflation.

(2) Assume that £ satisfies axiom R3". For any morphism f: X — Y, if there is an inflation h: Y »—U
such that h o f is an inflation, then [ is an inflation.

Proof. We show the second statement; the first statement then follows by taking the R3T-closure Egg+ and
using that & lies fully exact in Egg+ (see Theorem 1.1). Therefore, assume that £ satisfies axiom R3*. The
setup in the corollary yields the following commutative diagram:

hof
X > U »

Lo

0Or—— W ===W

where the rows are conflations and ¢ = coker h. It follows from axiom R3™ that the morphism [: V — W is
a deflation. The nine lemma (Theorem 4.1) allows us to extend the previous commutative diagram with

I g
> Y > Z

X

i
ho

X fU

— U —— V

As h is injective, we find that f = f’ is an inflation. O

The following proposition shows that to any conflation in Egs+, one can add split conflations in £ such
that the direct sum is a conflation in &.

Proposition 7.5. Let £ be a deflation-exact category satisfying axiom RO*. For any conflation C in Eps+,
there exists a split conflation C' in € such that C ® C' is a conflation in &.

Proof. Let X —Y — Z be a conflation in Egs+. We claim that there exists a conflation X »»Y —» Z in £
such that the direct sum X @ X —Y @Y — Z & Z is a conflation in &.

Indeed, by definition, there is a conflation X’ Y’ — Z’ in Egg+ such that X @ X' =Y oY’ =+ Z® 7' is
a conflation in £. By Remark 2.16, there are objects X, Y/, Z! € € such that X' @ X, Y' @Y/, Z/® Z, € £.

Thus adding the split conflations X, = X, —-0,Y! =Y/ —-0,0— Z. = Z/ to the conflation X’ — Y’ — Z’
shows the claim.
10
(66)

By axiom R2, taking the pullback of Z @ Z —5 Z @ Z along Y @Y - Z @ Z yields the following
commutative diagram in &:

XeoX—YoY —»ZaZ

| [ eyl

XoX—sYoXeoZ—»ZaZ
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The lower row is simply the direct sum (in Egs+) of the conflation X — Y — Z and the split conflations
X =X —»0and 0— Z = Z. This concludes the proof. O

7.2. The R3-closure

We now turn our attention to the R3-closure. The next example shows that, as is the case for the
R3"-closure, enlarging the conflation structure alone is, in general, not sufficient.

Example 7.6. Let @ be an equioriented quiver of type As and let D = rep, ) be the category of k-linear
representations, where k is a field. The Auslander-Reiten quiver of D is given by

w

v Yy
U AT ™M x AN 7
Let F be the full additive subcategory of D of all objects not isomorphic to V. We endow F with the
structure of a deflation-exact category by taking all conflations A — B — C' in D where A is not isomorphic
to U. It can be explicitly verified that this is indeed a deflation-exact structure (see also Remark 7.9 for a
less direct approach).

The category F does not satisfy axiom R3. Indeed, there is a conflation U®2— W®2 Y92 and U —
W — Y is a direct summand. As the pullback diagram

-

- w
]
Z

—

STRRNS

in F is not a pushout, we find that W — Y cannot be a deflation in any deflation-exact structure on F
(this follows from [19, Proposition 3.7.2] or the dual of [2, Proposition 5.7]). By Theorem 1.1, we see that
F cannot be refined to a deflation-exact structure satisfying axiom R3.

Theorem 1.1.(9) allows a straightforward construction of the R3-closure.

Proposition 7.7. Let Aps C A be the extension closure of A in & = (./Zl\,]ﬁ) The induced deflation-exact
structure Drs on Agrs satisfies axiom R3 and is the R3-closure Ers = (Ars, Dr3) of .
Moreover, the inclusion & < Egs lifts to a triangle equivalence DP(E) — DP(Egs).

Proof. By Theorem 1.1.(9), Egrs satisfies axiom R3. Let I': £ — F be an exact functor to a deflation-exact
category F satisfyi ing axiom R3. The functor F lifts to an exact functor F': € — F. It suffices to show that
the restriction of F to £gg maps to F C F. By Theorem 1.1. (9), F lies extension closed in F, the result
follows.

To see that & — Erg lifts to a derived equivalence, it suffices to note that £ and gz have the same weak
idempotent completion. Indeed, the result then follows from Theorem 7.3. O

It is easy to see that the largest deflation-exact structure Dy, on A is given by all semi-stable cokernels
(see Definition 9.1). The next corollary is straightforward.

Corollary 7.8. For a deflation-exact category € = (A, D), we have Dgy = DN Dy
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Remark 7.9. The deflation-exact category F from Example 7.6 can be obtained as follows. Let Q be the
quiver

180 30y

with relation a8 = 0. The category rep,, @ of finite-dimensional k-representations can be visualized via its
Auslander-Reiten quiver:

P4) =1(2)

AN

S(4)

P(3)/ \1(3)
.

P(2) = I(1)
S(1) S(2) (3

Let &€ be the full additive subcategory of rep, @ of all objects not isomorphic to S(1)®™ ¢ S(2), nor to
S(1)®™ @ P(3) (for any n > 0). As € is an extension-closed subcategory of C, it inherits an exact structure.
Let A be the full additive subcategory of £ generated by S(1), and let S4 C Mor &£ be the set of admissible
morphisms with kernel and cokernel in A. It is straightforward to check that A C & is an admissibly
deflation-percolation subcategory in the sense of [19], so that the localization £ [5’21], equipped with the
coarsest conflation structure for which Q: £ — E[S;ll] is exact, is a deflation-exact category.

Note that in £[S'], we have that S(1) 2 0 and P(2) @ E = S(2) @ E, for all nonzero E ¢ A. The

category F is equivalent to £ [S;tl] and hence a deflation-exact category.
7.3. The conflation structure Epz-

Let £ be a deflation-exact category satisfying axiom RO*. In contrast to the R3T-closure and the R3-
closure, for the R3~-conflation structure, we do not change the underlying category, but only the conflation
structure. We start with the following definition.

Definition 7.10. Let £ be a deflation-exact category satisfying axiom R0*. A morphism f: X — Y in £ is
called a P-deflation if it satisfies the following two properties:

P1 All pullbacks along f exist.
P2 There exists a map h such that f o h is a deflation in £.

Remark 7.11.

(1) Any deflation is a P-deflation.
(2) If € satisfies axiom R3, any P-deflation is also a deflation.

Lemma 7.12. P-deflations are stable under pullbacks.
Proof. This is a straightforward application of the pullback lemma. O

Proposition 7.13. Let £ be a deflation-exact category satisfying axiom RO*. The collection of P-deflations in
& defines a deflation-exact structure on £ satisfying axiom R3™.
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Proof. Let f: X — Y be a P-deflation. By property P1, the pullback of 0 — Y along f exists and thus f

admits a kernel K. We first show that K — X i> Y is a kernel-cokernel pair. By property P2, there is a
map h: A — X such that the composition f o h is a deflation. Write K’ for the kernel of f o h. Taking the
pullback of f along f o h it is straightforward to show that we obtain the following commutative diagram:

K ——

Y

~

K

Kr——KoA—»X
h

| |

Y

¥
K’y s A

z
Foh »
It follows from the dual of [2, Proposition 5.4] (see also [19, Proposition 3.7.2] or [24, Proposition 1.13.2])
that the lower right square is a pushout as well. It follows that f is the cokernel of K — X as required.

We now show that the P-deflations define a deflation-exact structure satisfying axiom R37. Clearly
X — 0 is a P-deflation as X — 0 is already a deflation by axiom R0* in £. Let f: X - Y and g: Y - Z
be two P-deflations. By the pullback lemma, the composition gf satisfies P1. By P2, there exists a map
h: B — Y such that gh is a deflation. By P1, the pullback P of h along f exists. Hence we obtain the
following commutative diagram:

PLB—»Z
j’h/ l}z ”
f g
X —Y —7

By Lemma 7.12, the map f’ is a P-deflation. Hence there exists a map h”: A — P such that f'h" is a
deflation. Tt follows that (gf)(h'h”) is a deflation by axiom R1. Hence gf is a P-deflation. It follows that
the P-deflations satisfy axiom R1. Lemma 7.12 shows that the P-deflations satisfy axiom R2 as well. By
construction, axiom R37 is satisfied. O

Corollary 7.14. Let £ = (A, D) be a deflation-exact category. There is a smallest deflation-exact structure
Dgrs (2 D) on A such that Epg = (A, Dgrs) satisfies axiom R3™.

Proof. This follows from Proposition 7.13 where Dgrs- consists of all conflations whose deflations are P-
deflations. 0O

The following proposition characterizes the conflation structure £gs- in a universal way.

Proposition 7.15. The conflation structure on Eps- is the largest deflation-exact structure on & such that
the identity € — Eps- is a conflation-exact functor lifting to a triangle equivalence D°(E) — DP(Eps-).

Proof. Let &' = (A,D’) be a deflation-exact structure on A4 such that 14: &€ — &£’ is an exact functor that
lifts to a triangle equivalence DP(E) — D”(&). It suffices to show that 1g: & — Epy- is exact.

Combining Theorem 7.3 with the fact that 1.4 lifts to a triangle equivalence D”(£) — D" (&), we see that
the embedding 1 4: £ < & lifts to a triangle equivalence D" &)= D" (E,A" ). Using the universal property of
the weak idempotent completion, we obtain the following commutative diagram:
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EC y EC > D(E)
[15 [ lﬂ
£ & DP(E)

By [18, Proposition 6.2], the categories € and & have the same conflation structures as conflations correspond
to triangles.

Let X — Y — Z be a conflation in &. As € = &', the conflation X — Y — Z is a retract (in E) of a
conflation X —Y — Z in £. We obtain the following commutative diagram

X —Y —7

T N A

R

X —Y —7

where the vertical arrows compose to the identities. Note that we factored the section from X — Y — Z to
X —Y — Z via the conflation X — P — Y obtained by taking the pullback of Z — Z along Y — Z. Note
that the composition P -+ Y — Y — Z is a deflation in £ and thus Y — Z is a P-deflation. It follows that
1g: & — Egy- is exact. O

The following example shows that Egg- does not satisfy a 2-universal property as in Definition 7.1.

Example 7.16. Let F be the deflation-exact category constructed in Example 7.6. Let £ be the deflation-
exact subcategory of F generated by U,W and Y. Note that W — Y is not a deflation in £ but it is a
deflation in Egz-. As we had already established that W — Y is not a deflation in any deflation-exact
structure on F, we know it is not a deflation in Fps-. It follows that the exact embedding £ — F does not
lift to an exact map Egz- — Fpr3--

Note that & is closed under kernels in F, so it is a deflation-closed subcategory of F (and of Fgs-) which
does not satisfy axiom R3~. This provides the example mentioned in Remark 3.14.

Remark 7.17.

(1) The R3~-closure of a (possibly non-additive) deflation-exact category has been introduced in [28, §1.4]
as the closure of the category &.

(2) Proposition 7.15 extends the fact that the R3™-closure of a deflation-exact category preserves projectives
(see [28, Proposition 1.4.4]).

7.4. About the conflations in the obscure closures

We now have a closer look at which sequences X — Y — Z in a deflation-exact category £ become
conflations in the closures considered in this section. The following proposition is the main result.
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Proposition 7.18. Let X Ly % Zbea sequence in a deflation-exact category £. The following are equiva-
lent:

(1) the sequence is a conflation in Egs,
(2) the sequence is a conflation in Egs+,
(3) the sequence is a conflation in E*,

fo
(4) there is an A € € such that X & A M Y@ A WO 7 sa conflation in .

If g: Y — Z admits all pullbacks, then the previous are furthermore equivalent to

(5) the sequence is a conflation in Ers .

Proof. If (4) holds, then (2) holds, as X — Y — Z is a direct summand of a conflation in £. If (2) holds,
then there is a sequence A — B — C' such that X® A - Y ® B — Z® (' is a conflation in £. The pullback
of this conflation along the embedding Z — Z @ C' yields the required conflation X @ A —Y ® A— Z, and
hence (4) holds.

The equivalence (1) < (2) holds as Egrs lies extension-closed in Eps+. The equivalence (1) < (3) is
established in Theorem 1.1.

Finally, assume that ¢g: Y — Z admits all pullbacks. If (4) holds, then it follows from Proposition 3.5
that (5) holds. The other direction follows since conflations are closed under direct sums. 0O

As a corollary, we obtain the following description of the closure Egs-.
Corollary 7.19. For a deflation-exact category € = (A, D), we have Dry = D0, N Dyse.

Proposition 7.20. Let A be an additive category with two deflation-exact structures D and D'. The following
are equivalent:

(1) (-AaD)Re?' = (A’D/)R3‘7
(2) (AaD)Rif - (AaD/)Rv?;
(3) (A, D)gs+ = (A, D) ps+.

Proof. The implication (3) = (2) holds as Ers is the extension-closure of £ in Egz+. For the implication
(2) = (1), it follows from Proposition 7.18 that a sequence X — Y 2 Z in A lies in (A, D)gs if and only if
it lies in (A, D)rs and g is a semi-stable cokernel. Finally, for the implication (1) = (3), it suffices to notice
that (8R3')R3+ =E&ry+. O

We end this section with a variant of Proposition 7.18.

Proposition 7.21. Let £ be a deflation-exact category. A sequence X — Y — Z in Egs+ is a conflation if and
only if there is a split conflation A — B — C in € such that A X —B&®Y —»C® Z is a conflation in £.

Proof. Let X — Y — Z be a conflation in Egs+. By the definition of the weak idempotent completion, there

is an object X’ € £ such that X ® X’ € £. Similar complements Y/, Z’ € £ exist for Y, Z € £. We find that
the conflation

X' eYeX—X oY eZ)YoY»Z' &Z
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in Egs+ of which all terms lie in £. The existence of the split sequence A — B — C as in the statement of
the proposition now follows from Proposition 7.18.
The converse follows from the definition of the conflation structure of Egs+. O

8. The lattice of strongly one-sided exact structures

Let A be an additive category. It is known that the set of exact structures on an additive category A
forms a complete lattice (see for example [8,14,15]), and it is easy to see that the same observation holds
for one-sided exact structures (see [28]). These observations have been generalized in [1] to the setting of
weakly (inflation- or deflation-)exact structures.

In this section, we have a closer look at the posets of deflation-exact structures satisfying the various
versions of the obscure axiom from Definition 3.1. We show that the lattices of deflation-exact structures
satisfying axiom R3 or R3™ are ideals in the strong deflation-exact structures on the weak idempotent
completion A.

We start by recalling the notion of a lower and an upper adjoint of a morphism between posets.

Definition 8.1. Let (A, <) and (B, <) be two partially ordered sets. A (monotone) Galois connection between
(A,<) and (B, <) consists of two monotone functions F': A — B and G: B — A such that for all a € A
and b € B, we have

F(a) <bea<G(D).

The map F is called the lower adjoint and the map G is called the upper adjoint. We write F = G” and
G = F*.

The following lattices will be considered in this section.

Notation 8.2. Let A be a (small) additive category. We write ©(.A) for set of deflation-exact structures on
A. The set of strongly deflation-exact structures on A is denoted by sD(A4). We write ®~(A) and DT (A)
for the sets of deflation-exact structures satisfying axiom R3~ or R3™, respectively.

Likewise, the set of inflation-exact structures on A is denoted by J(A) and the set of strongly inflation-
exact structures on A is denoted by s7 4.

The partially ordered set of (two-sided) exact structures on A is denoted by E(.A).

Proposition 8.3. Let A be an additive category. The posets D(A),sD(A), and D~ (A) (ordered by inclusion)
are complete lattices. If A is weakly idempotent complete (so that DT (A) is nonempty), then DT A) is a
complete lattice.

Proof. The meet operation is given by the intersection. The least element is given by the split conflation
structure (this satisfies axiom R3™ if and only if A is weakly idempotent complete). The greatest element
of ® is given by [30, Proposition 1] (this is also the greatest element of ®~ by Corollary 7.14), and the
greatest element of s® is given by [30, Corollary 1]. When A is weakly idempotent complete, a greatest
element of D1 (A) is given by [12]. O

Proposition 8.4. Let D C D’ be two deflation-exact structures on an additive category A. Assume that D
satisfies axiom R3™.

(1) If D’ satisfies axiom R3 or R3*, then so does D.
(2) If D' is exact, then so is D.



34 R. Henrard, A.-C. van Roosmalen / Journal of Pure and Applied Algebra 228 (2024) 107635

Proof. The first statement is straightforward to verify. For the second statement, note that D satisfies R3
as D’ does. It then follows from [30, theorem 1] that D = D ND’ is an exact structure on A. O

Remark 8.5. The previous proposition can be reformulated as follows: the posets s9(.A) and €(A) are ideals
in ® (A).

Notation 8.6. Let C be any conflation structure on an additive category 4. We write C for the conflation
structure on the weak idempotent completion A given by: a sequence X — Y — Z in A lies in C if and
only if it is a direct summand of a conflation in C.

— —_—

We write D (A) for the image of D~ (A) under C — C. The sets sD(A) and €(A) are defined in a
similar fashion.

Remark 8.7. For a deflation-exact category €& = (A, C) satisfying axiom R0*, we have Egz+ = (fT, @)

Corollary 8.8. Let A be an additive category. The map D~ (A) — 5‘3"'(./1): D — D is an injection. In

—

particular, the sets @/_(j), sD(A), and €(A) are ideals in DT (A). Each of the embeddings of the ideals

~

into D7 (A) has an upper adjoint.

Proof. The map ©(A) — D+(A): D — D is an injection by Corollary 7.19. This implies that both 5D (A)

and €(A) embed in DT (A) as well. Each of the embeddings into D7 (A) has an upper adjoint, given by
intersecting with the appropriate maximal structure on 4 (this follows from Proposition 8.4). O

Remark 8.9. It is shown in [30] that the embedding a: s©(A) — D(A) has an upper adjoint, given by the
operator PQ (explicitly, every deflation-exact structure D on 4 admits a largest deflation-exact substructure
satisfying axiom R3). The embedding does not need to have a lower adjoint, for example, the maximal exact
structure from Example 8.10 need not be embedded into a strong deflation-exact structure.

It follows from Corollary 7.14 that the embedding f: ©®~ (A) — ©(A) admits a lower adjoint, mapping
(A,D) to (A, D)gs. Moreover, a admits a lower adjoint (so every deflation-exact structure D on A has an
obscure closure in A) if and only if the maximal deflation-exact structure Dy, satisfies axiom R3, thus

when D7 (A) = sD(A).

The following example shows that, for an additive category A4 with the maximal deflation-exact structure
Dmax, the deflation-exact structure Dy, need not be the maximal exact structure on the weak idempotent
completion A.

Example 8.10. Let R = C[[t]] be the formal power series ring in one variable and let A be the additive
subcategory of mod R generated by the indecomposables R and R/(t")®™, for cach m > n > 1. Here,
A ~ mod R, so the maximal deflation-exact structure on A is given by all kernel-cokernel pairs.

We claim that R % R — R/(t) is not a conflation in m so that m is not the maximal deflation-
exact structure on A. Indeed, for R - R — R/(t) to be a conflation in ﬁrr;(, there needs to be a (split)
sequence A — B — C such that R& A— R&® B—» R/(t) ® C is a conflation in Dy,,x, see Proposition 7.21.
Let p: R/(t") — R/(t) be a nonzero morphism and consider the following commutative diagram

ROPA—— ROAOR/t" Yo R/(t")" " —» R/(t") ® R/(t")" 1

| | [

Ra A »R® B » R/(t)® C
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where the rows are conflations and the right square is a pullback. Note that R A® R/(t"~ 1)@ R/(t")" !
can only lie in A if R/(t") is a direct summand of A. As this can only be the case for finitely many choices
of n, this shows that not all pullbacks lie in A. Consequently, RLR— R/(t) is not a conflation in m
and hence ]Dmax is not the maximal exact structure on A ~ mod R.

9. The exact structure of stable kernel-cokernel pairs

Let A be an additive category. The set C of stable kernel-cokernel pairs in A is given by the intersection
of the maximal inflation-exact and deflation-exact structures on A. It is shown in [31] that C need not
be an exact structure on A. Indeed, the maximal exact structure on A can be considerably smaller (see
[31]). In this subsection, rather than restricting C to an exact structure on A, as is done in [30], we enlarge
the category A so that C generates an exact structure, that is, we construct an exact category (A’,E)
which is, in some way, the smallest exact category containing the conflation category (A, C). We refer to
Proposition 9.5 below for a precise statement.

We proceed in slightly more generality. Instead of the starting from the intersection of the maximal
inflation-exact and deflation-exact structures, we allow to begin with the intersection of any inflation-exact
structure I and any deflation-exact structure D. The category A’ we construct is a subcategory of the weak
idempotent completion A and is dependent on the choices of I and D.

Definition 9.1. Let A be an additive category. We say that a cokernel g: Y — Z is semi-stable if for every
morphism s: Y’ — Z, the pullback

p "y
o
x4z

exists and p: P — Y’ is itself a cokernel. A semi-stable kernel is defined dually.

A kernel-cokernel pair X 1oy 9 7 is called stable if f is a semi-stable kernel and g is a semi-stable
cokernel.

The following is shown in [28] and [30].

Proposition 9.2. Let A be an additive category. The conflation structure C consisting of all kernel-cokernel

pairs X Ly % 7 where g is a semi-stable cokernel is a deflation-exact structure on A and is mazximal
with that property.

We continue by having a closer look at DNT.

Lemma 9.3. Let D and I be a deflation- and an inflation-exact structure on an additive category A, respec-
tively. We have

~ —

DNI=DNI.

Proof. The inclusion D N1 - D NT is clear. For the other inclusion, let X —Y — Z be a conflation in
D NT. It follows from Proposition 7.21 that there is a split kernel-cokernel pair A— B — C in A such that
XPA—YDB—» Z®C is a conflation in D, as well as in T. The dual of Proposition 7.21 yields the existence of
a split kernel-cokernel pair A’ — B’ — C” such that the conflation X & (A®A") — Y& (Ba&B') » Za(CaC’)
is a conflation in D NI. O
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Proposition 9.4. Let D and 1 be a deflation- and an inflation-exact structure on an additive category A. The
conflation structure D NI =D N1 on the weak idempotent completion A is an exact structure.

Proof. By Theorem 1.2, the deflation-structure D satisfies axiom R3*, and dually T satisfies axiom L3*.
AsDNT=DnNT, it follows from 30, theorem 1] that D N T is an exact structure on A. 0

Proposition 9.5. Let D and I be a deflation- and an inflation-exact structure on an additive category A.
There is an exact category (A’ E) and a conflation-exact functor ¢: (A,D N1) — (A E) satisfying the
following 2-universal property: for each exact category (B,E), the functor

—o0p: Homexact (A, D NT), (B,F)) = Homexact (A, E), (B,F))
is an equivalence.

Proof. The 2-universal property of the weak idempotent completion gives an equivalence Hom(A, E) —
Hom(yzl\, g) Let A’ be the extension-closure of A in A with respect to the conflation structure DN It
follows from Proposition 9.4 that D NT is an exact structure on A As A - A s extension-closed, A’
inherits an exact structure E from (/T, D ﬁﬁ) To verify that the universal property is satisfied, we consider
the following (essentially) commutative diagram

N1) —— (B,F)

We only need to verify that the functor A" — A — B factors through B. However, the essential image of
this functor is B C B (this uses that (B,F) lies extension-closed in (B,F), see Theorem 1.1). The required
property follows from this. O

Remark 9.6. In the proof of Proposition 9.5, we construct the exact category (A’,E) as the extension-closure
of A in the intersection of the categories (A, )13+ and (A, D)gs+. Similarly, one can obtain the exact category
(A’ E) as the intersection of (A,T)rs and (A, D)gs, seen as subcategories of A.

Remark 9.7. As (A,D N 1) is just a conflation category, its derived category is not defined. Therefore, we
cannot express that the closure in Proposition 9.5 gives a derived equivalence. However, it is easy to see

that D”(A’,E) = K”(A)/[Ac”(A,D) N Ac”(A,T)].

Example 9.8. We return to the setting of Example 8.10. It follows from Proposition 7.21 that, for every
> 2, the sequence R/(t) — R/(t") — R/(t"~!) is a conflation in &rg+ (with A = R/(t")®" and C =
R/(t"~1)®(=1)) Likewise, considering the maximal inflation-exact structure on A we find that the sequence
R/(t) — R/(t") — R/(t" ') is a conflation in Tmax. This implies that A’ = A. As the sequence R & R —
R/(t) is not a conflation in ]D)/m;(, we see that (A’,E’) is not the maximal exact structure on A =modR.
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