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Abstract. A microscopic model for a translational Brownian motor, dubbed
a Brownian translator, is introduced. It is inspired by the Brownian gyrator
described by Filliger and Reimann (2007 Phys. Rev. Lett. 99 230602). The
Brownian translator consists of a spatially asymmetric object moving freely
along a line due to perpetual collisions with a surrounding ideal gas. When
this gas has an anisotropic temperature, both spatial and temporal symmetries
are broken and the object acquires a nonzero drift. Onsager reciprocity implies
the opposite phenomenon, that is dragging a spatially asymmetric object into
an (initially at) equilibrium gas induces an energy flow that results in aniso-
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erties are derived as a series expansion in the mass ratio (of gas particle
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1. Introduction

The Brownian gyrator [1] is a prototypical example of both a Brownian motor and
a heat engine. It beautifully illustrates how the combination of a spatial asymmetry
together with non-equilibrium conditions (breaking time reversal symmetry) leads to
steady motion [2–4]. By adding an external force to counteract this motion, work can be
done and one ends up with a heat engine. Research on Brownian motors is vast, ranging
from fundamental works on perpetual motion machines and energy conversion [5–8], to
the various chemical and biological molecular motors [9–12], including experimental
[13–18] and collective setups [19, 20]. In a series of papers [21–28], Christian Van den
Broeck and coworkers developed microscopic models for Brownian motors. In essence,
these describe the dynamics of a spatially extended rigid body due to the incessant
collisions with particles of a surrounding ideal gas. Such an approach rests upon a min-
imal set of premises, considering ideal gases in thermal equilibrium and the absence
of recollisions. This allows analytical expressions as well as a fundamental understand-
ing of the observed phenomena. It refrains from taking a phenomenological approach,
e.g. based upon a Langevin description, and as such it allows for a profound and system-
atic investigation leading often to unexpected results. A beautiful illustration is the so-
called intrinsic ratchet [29], which originates from nonlinear relaxation, a phenomenon
not found in a Langevin framework. Recently, this theoretical framework was augmented
by also including, apart from the dynamics, the energetics and thermodynamics [30].
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This allowed for the first time a systematic investigation of a microscopic Feynman
ratchet and pawl setup [6], corroborating the critique by Parrondo and Español in [31].

In this work we introduce a novel type of Brownian motor. Unlike the Brownian
gyrator, which consists of a pointlike (structureless) Brownian particle in an external
potential, our motor involves a spatially extended object. The advantage of using such an
object is that one can realize spatial asymmetry by a clever choice of the shape, thereby
dismissing the need for the external potential. In section 2, we introduce the model
and establish the basic ingredients for both the dynamics as well as the energetics. A
first comparison is made with exact microscopic simulations. These results show that the
setup indeed constitutes a Brownian motor, as expected. In the next sections, we develop
a theoretical framework that allows us to derive analytical expressions for the velocity
moments (section 3) and the energetics and thermodynamics (section 4). Analytical
expressions for work and heat are compared with simulation results. We conclude in
section 5.

2. The Brownian translator

The Brownian translator consists of a rigid convex object of mass M immersed in a two-
dimensional anisotropic ideal gas of particles with massm and density ρ. For conciseness,
we consider here the 2D setup as this already incorporates all of the essential features. A
generalization to 3D is feasible, though technically more cumbersome [28]. The motion
of the object is constrained to a single direction, the horizontal x -direction. Additionally,
a horizontal external force F⃗ = F êx is applied to the object. The anisotropy of the gas
is achieved by considering a velocity distribution with different (inverse) temperatures
βx and βy for each component of the velocity

φ(vx,vy) =
m
√
βxβy

2π
e−

m
2 (βxv2x+βyv2y). (1)

Such a distribution (or its 3D equivalent) is commonly used in plasma physics for
describing magnetized plasmas [32]. A sketch of the setup is given in figure 1.

The anisotropy of the gas is an essential ingredient of our model, and the velo-
city distribution given above is perhaps the simplest way to achieve this. Similar
anisotropic velocity distributions appear, for example, in (dusty) plasmas [32, 33] for
vapor molecules near an evaporating surface [34], or in driven granular gases [35].
Moreover, recent experimental developments provide the possibility to selectively ‘heat
up’ particles along specific spatial directions by applying external (Gaussian) random
forces [36–39]. This technique has already been used to create and maintain an aniso-
tropic thermal environment [18].

In the absence of an external force, the dynamics of the object is solely determined
through collisions with the gas particles. The anisotropy of the gas breaks time reversal
symmetry, while the breaking of spatial symmetry can be achieved by an appropriate
choice for the shape of the object. It is anticipated (and to be verified later) that when
the shape breaks the left/right symmetry with respect to the horizontal direction, the
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Figure 1. (a) Sketch of the Brownian translator and the surrounding ideal gas. The
object, represented by the yellow triangle, moves freely in the horizontal direction,
indicated by the dashed line, and is subjected to an external force F⃗ . (b) Sketch
of the tangential and normal unit vectors along with the angle θ between the
horizontal and the tangent line.

object will acquire a non-zero drift. From this it is clear that the precise form/shape is
an important ingredient of the model and we take a few moments to elaborate on this.
The shape of the object is described by the total circumference L and a (normalized)
probability shape function l(θ). This shape function is defined so that l(θ)dθ is the
fraction of the outer surface for which the angle θ, defined as the angle between the
tangent to the surface t̂ and the horizontal (as shown in figure 1), lies between θ and
θ+dθ. In the expressions derived later, the shape of the object appears as averages
of geometrical functions f(θ) (e.g. powers of sin or cos) w.r.t. the shape function. We
denote these averages by brackets,

2πˆ
0

f (θ) l (θ)dθ ≡ ⟨f (θ)⟩. (2)

From the definition of l(θ) and given the fact that the object is closed (i.e. one can
follow the contours of the object with a pen and after one complete turn end up in the
starting point), it follows immediately that ⟨sinθ⟩= ⟨cosθ⟩= 0.

Since the object has one degree of freedom, the dynamical variable is the velocity V
of the object. This velocity changes due to (i) the external force, expressed via

MV̇ = F , (3)

and due to (ii) the incessant collisions. The effect of a single collision event, i.e. the
change of velocity V of the object, with an incoming gas particle with velocity v⃗ can
be derived from elementary kinematic arguments, see e.g. [23]. The resulting collision
rule for the object velocity reads

V ′ = V − 2msinθ

msin2 θ+M

(
V⃗ − v⃗

)
· n̂, (4)

with V⃗ = V êx, V and V ′ the pre- and post-collisional velocity of the object, respectively,
and v⃗ is the pre-collisional velocity of the gas particle. The angle θ is measured between
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the horizontal and the tangent to the surface at the point of impact (see the right
panel in figure 1 for a sketch of the geometry). The vector n̂= (sinθ,−cosθ) is the
(outward) normal vector to the surface at that point. A similar expression holds for the
post-collisional velocity v⃗ ′ of the gas particle,

v⃗ ′ = v⃗+
2M

msin2 θ+M

[(
V⃗ − v⃗

)
· n̂
]
n̂. (5)

The thermal anisotropy and external force allow us to consider the setup as a thermal
engine. The work done by the external force entails systematic translational motion, and
the expression for the work rate is

d

dt
W = FV . (6)

The discussion of the heat is more subtle. Although there is only one ideal gas surround-
ing the object, one can still distinguish two separate thermal reservoirs, one for each
velocity component. Remember that the gas is two dimensional and so each gas particle
has a vx and vy velocity component. In principle, these components are independent
and do not mix, cf the properties of an ideal gas. However, mixing between these two
components does occur and is mediated by the interactions/collisions with the object:
any collision with θ differing from ±π/2 or ±π results in an exchange of kinetic energy
from one velocity component to the other. We shall consider these changes of kinetic
energy in both x and y velocity components as heat. For a single collision, the expression
simply reads:

∆Qα =
1

2
m
(
v ′ 2
α − v2α

)
α ∈ {x,y} . (7)

Given the anisotropic velocity distribution in equation (1), the two thermal reservoirs
then have a different temperature, and we anticipate a flow of heat between them.

Having established the basic ingredients and dynamical/thermodynamic events of
the Brownian translator, and before we set out a theoretical description, we first present
the numerical results obtained by performing exact simulations. Details of the simula-
tions are documented in the appendix. As we already anticipated, the shape will play
an important role in the properties of the system and we decided to do all simulations
for the kite-shaped object shown in the inset of figure 2. Its asymmetry is characterized
by a single parameter λ which controls the length of the horizontal diagonal. Varying
this length allows us to go from a symmetric to an asymmetric object.

The first investigation concerns the relation between the spatial asymmetry and
the appearance of a drift velocity in the absence of an external force. Figure 2 shows
the first moment of the velocity ⟨V ⟩ for F =0 as a function of λ. Comparison with the
theoretical result, cf (17), results in a remarkable agreement. Since the theoretical results
are obtained as an expansion in small mass ratio and small temperature anisotropy
(with expansion parameter ε=

√
m/M), the (small) deviations present for λ< 0.5 and

>2.5 can be attributed to the finite mass ratio and the rather large anisotropy in
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Figure 2. Average velocity ⟨V ⟩ as a function of the asymmetry parameter λ for
F =0: comparison between theory (17) and simulations. The error bars for the
numerical data are smaller than the symbol size. Per data point, the simulations
tracked about 5× 105 collisions. The system parameters are: M =20, m =1, ρ=1,
Tx = 1, Ty = 2 and kB = 1.

Figure 3. Average velocity ⟨V ⟩ as a function of the external force F for λ=2:
comparison between theory, equation (17) and simulations. The error bars for the
numerical data are smaller than the symbol size. The system and the simulation
setup are identical to the one in figure 2.

temperatures. Adding an additional order in ε to the equations significantly improves
the agreement (not shown). As expected, for a spatially symmetric shape, i.e. λ=1,
the average velocity vanishes. For asymmetric shapes (λ ̸=1) the direction of motion is
determined by the asymmetry. Note also that λ< 0 is not taken into consideration as
this would result in a concave object.

Figure 3 shows the average velocity as a function of F for a given shape (λ=2).
At F =0 the kite moves in the positive x -direction. Applying a small negative external
force, one that slows down the object while maintaining a positive velocity, allows the
object to deliver work.
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3. Theoretical description

A theoretical description of the Brownian translator closely follows the lines set out in
[30] and earlier references. As collisions occur randomly in time and in strength, the
appropriate framework to investigate the dynamical and thermodynamical properties
is based on a Boltzmann master equation. Focusing first on the dynamics, with V as
the appropriate variable, this equation describes the time evolution of the probability
density P (V , t)

∂

∂t
P (V , t) =− F

M

∂

∂V
P (V , t)+

ˆ
d∆V [K (V −∆V ;∆V )P (V −∆V , t)

− K (V ;∆V )P (V , t)] . (8)

The first term on the rhs accounts for the (deterministic) external force, whereas the
other terms represent the loss/gain terms accounting for the collisions. K(V ;∆V ) is the
transition rate for the object’s velocity to change from V to V +∆V as the result of a
single collision. Its expression reads

K (V ;∆V ) =

2πˆ
0

dθLl (θ)

ˆ

R2

d2v⃗ Θ
[(

V⃗ − v⃗
)
· n̂
]∣∣∣
(
V⃗ − v⃗

)
· n̂
∣∣∣ρφ (v⃗)

× δ
[
∆V − k (θ)

(
V⃗ − v⃗

)
· n̂
]
. (9)

The first integral over θ adds all contributions along the surface of the object. The
second integral involves a summation over all possible velocities v⃗ of the incoming
gas particles, whereby the Dirac delta picks out the incoming velocity resulting in the
requested velocity change ∆V . Its argument is determined by the collision law where,
for ease of notation, we introduce

k (θ) =−2
msinθ

msin2 θ+M
. (10)

The properties of the surrounding gas are captured by the density ρ and the velocity
distribution φ(v⃗), cf (1). A remark is in order here: while gas particles colliding for the
first time with the object are indeed distributed according to (1), this is no longer true
in the case of subsequent recollisions. While recollisions cannot be avoided, their number
is significantly reduced by considering convex objects and imposing the limit M ≫m.
The latter condition implies that the change in velocity of the object upon a collision
is small, since V ′ −V ∝m/M , and this reduces the likelihood of the object overtaking
a particle with which it had previously collided. The fact that recollisions are rare and
their effect negligibly small is confirmed by the excellent agreement between theory and
simulations (see, e.g. figure 3), the latter incorporating all possible (re)collisions.
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The integrals over the gas particle velocity v⃗ in (9) are Gaussian and can therefore
be calculated exactly, leading to

K (V ;∆V ) =

√
m

2π

2πˆ
0

dθLl (θ) Θ

[
∆V

k (θ)

]
|∆V |
k (θ)2

g (θ)e−
mg(θ)2

2 (V sinθ− ∆V
k(θ) )

2

, (11)

where Θ[·] is the Heaviside step function, and where we have defined the function

g (θ) =

√
βxβy

βx cos2 θ+βy sin
2 θ

. (12)

This factor g(θ), which reduces to
√
β for an isotropic ideal gas with inverse temperature

β, is the sole fingerprint of the temperature anisotropy.
A Kramers–Moyal expansion of the master equation leads to the following equivalent

set of evolution equations for the moments of P (V , t) [40],

d

dt
⟨V n⟩= nF

M
⟨V n−1⟩+

n∑

k=1

(
n

k

)
⟨V n−kak (V )⟩, (13)

with the jump moments ak(V ) defined as

ak (V ) =

ˆ
d∆V∆V nK (V ;∆V ) . (14)

The equations for the first two moments are:

d

dt
⟨V ⟩= F

M
+ ⟨a1 (V )⟩ (15)

d

dt
⟨V 2⟩= 2F

M
⟨V ⟩+2⟨V a1 (V )⟩+ ⟨a2 (V )⟩ . (16)

The infinite set of coupled differential equation (13) is equally hard to solve as the
original master equation. The standard approach (see, for example [30]) to derive the
stationary moments is to expand the equations in the parameter ε=

√
m/M . For any

given order in this parameter, equation (13) decouples to a finite set of equations, which
can be solved algebraically leading to power series coefficients of the involved moments.
An outline of the procedure is given in the appendix. For the first two moments of V
the lowest-order results are

⟨V ⟩=
√

π

2mβ̄

[
F β̄

2Lρ⟨sin2 θ⟩
− ∆β

2β̄

⟨sin3 θ⟩
⟨sin2 θ⟩

]
; ⟨V 2⟩= 1

M β̄
(17)

where β̄ = (βx+βy)/2 and ∆β = βy −βx. Before turning to the example of the kite-
shaped object, we elaborate on this result. The first term in ⟨V ⟩ represents the drift
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velocity the object attains when subjected to an external force. Introducing the friction
coefficient γ [23],

γ = 2Lρ

√
2m

π β̄
⟨sin2 θ⟩, (18)

leads to ⟨V ⟩ ∼ F/γ. The second term is due to the temperature anisotropy. Note that
this term explicitly takes into account any left/right asymmetry of the object via ⟨sin3 θ⟩.
The friction coefficient, on the other hand, does not. The result for the second moment
⟨V 2⟩ shows that, at this order in ε, the object exhibits thermal fluctuations at an
effective temperature Teff given by

Teff =
2TxTy

Tx+Ty
. (19)

In order to evaluate the averages ⟨sinn θ⟩ appearing in (17) for the kite, we first
establish the shape function. The diagonals have lengths (1+λ)ℓ (in the horizontal
direction) and 2ℓ (vertical direction). For polygons such as the kite, the shape function
is a weighted sum of δ-functions:

l (θ) =

√
2ℓ

L

[
δ

(
θ− 3π

4

)
+ δ

(
θ− 9π

4

)]
+

ℓ
√
1+λ2

L

[
δ (θ−π−φ)+ δ

(
θ− 3π

2
−φ

)]

(20)

with sin(φ) = 1/
√
1+λ2. In the simulations we fix L=1, which implies that any

variation in λ has a corresponding change of ℓ such that the total circumference
L= 2ℓ

(√
2+

√
1+λ2

)
remains constant. The moments of sin(θ) with respect to this

shape function are then

⟨sinn θ⟩= 1√
2+

√
1+λ2

[(
1√
2

)n−1

−
(

−1√
1+λ2

)n−1
]
. (21)

Figures 2 and 3 show a comparison between ⟨V ⟩ given by (17) and the simulation
data. Note that even at the lowest order in ε there is a very good agreement and the
discrepancies can be attributed mainly to the large thermal anisotropy.

4. Energetics and thermodynamics

The kinetic energy of the translator changes either due to collisions with the gas or
via the work done by the external force F. These two contributions are easily identified
by looking at the evolution equation for the second moment of the object’s velocity,
cf (16):

1

2
M⟨V̇ 2⟩= F ⟨V ⟩+M ⟨V a1 (V )⟩+ M

2
⟨a2 (V )⟩ . (22)

https://doi.org/10.1088/1742-5468/ad3199 9
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The first term on the rhs is the average rate of work ⟨Ẇ ⟩ and hence the other two
terms must be related to the collisions. For an ideal gas there is only kinetic energy and
the collisions with the object are thus associated with the exchange of heat between
the object and the gas. In the steady state, the lhs of equation (22) is zero and the
work done by the external force must be dissipated as heat in the surrounding gas,
reminiscent to the classic Joule experiment (see e.g. [41]). As stated before, we will keep
track of the kinetic energy changes for the two velocity components separately; the
corresponding heat contributions per collision are defined in (7). The sign is such that
the quantities ∆Qα are positive when the respective velocity component is increased
due to the collision, i.e. heat is positive when transferred to the degrees of freedom of
the gas. The total heat exchange along the component α= x or α= y during a specific
realization of the object’s movement (starting at time 0 up to time t) is obtained by
adding the contributions of all collisions that occurred during this time interval,

Qα =

ˆ t

0
∆Qα (s)ds. (23)

Averaging over all realizations and time we then obtain the mean heat rates:

⟨Q̇α⟩=
1

t

〈ˆ t

0
∆Qα (s)ds

〉
. (24)

In terms of the work and heat rates, conservation of energy can now be expressed as

1

2
M⟨V̇ 2⟩= F ⟨V ⟩− ⟨Q̇x⟩− ⟨Q̇y⟩. (25)

Looking at (22) allows the following identification

⟨Q̇x⟩+ ⟨Q̇y⟩=−M ⟨V a1 (V )⟩− M

2
⟨a2 (V )⟩ . (26)

For the work and heat, we are primarily interested in the first moment. The average
work rate is already captured by the first moment of the velocity, ⟨Ẇ ⟩= F ⟨V ⟩. For later
reference, the expression for the work rate to lowest order in ε is (cf the first equation
in (17))

˙⟨W ⟩=
√

π

2mβ̄

[
F 2β̄

2Lρ⟨sin2 θ⟩
− F∆β

2β̄

⟨sin3 θ⟩
⟨sin2 θ⟩

]
. (27)

For the heat this is more complicated. Two complications arise. First, while the
sum ˙⟨Qx⟩+ ˙⟨Qy⟩ can be related to the work and the moments of V via equations (25)
and (26), this is no longer the case for the separate contributions. So Qα must be
included as an additional variable in the Boltzmann master equation. The second
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complication, technical in nature, has to do with the specific expressions for the heat
exchanges per collision, ∆Qα. Plugging the collision rules into equation (7), we obtain

∆Qx =
m

2

[
M 2

m2
∆V 2− 2

M

m
vx∆V

]
, (28)

∆Qy =
m

2

[
M 2

m2
∆V 2 cot2 θ+2

M

m
vy∆V cotθ

]
. (29)

Note that these expressions contain not only ∆V but also vx or vy. Due to the presence
of these pre-collisional velocity components of the gas particle, we can no longer make
use of the expression for the transition rate given by (11), where these components are
already integrated over. Instead, we must plug the rhs of (9) directly into the master
equation, which now takes the form:

∂tP (V ,Qα) =− F

M

∂P

∂V
+

ˆ
d∆V d∆Qαdθd

2v⃗ κ(V −∆V ,θ,vx,vy)

×P (V −∆V ,Qα−∆Qα)

× δ
[
∆V − k (θ)

(
V⃗ −∆V⃗ − v⃗

)
· n̂
]

× δ [∆Qα− fα (V −∆V ,θ,vx,vy)]

−
ˆ

d∆V d∆Qαdθd
2v⃗ κ(V ,θ,vx,vy)P (V ,Qα)

× δ
[
∆V − k (θ)

(
V⃗ − v⃗

)
· n̂
]
δ [∆Qα− fα (V ,θ,vx,vy)] , (30)

where fα(V ,θ,vx,vy) is a short-hand for one of the expressions (28) and (29),
whichever is applicable (with α ∈ {x,y}). The function κ(V ,θ,vx,vy) is such that we can
write (9) as

K (V ,∆V ) =

2πˆ
0

dθ

ˆ

R2

d2v⃗ κ(V ,θ,vx,vy) δ
(
∆V − k (θ)

(
V⃗ − v⃗

)
· n̂
)
. (31)

The average heat exchange rates ⟨Q̇α⟩ can now be found by integrating by parts and
using (30) to be

˙⟨Qα⟩=
ˆ

∆Qα (V ,θ,vx,vy)κ(V ,θ,vx,vy)P (V )dV dθd2v⃗. (32)

As before, this integrandum can be expanded in ε. Expanding up to the desired order
in ε and rewriting it into the original variables, the result can be seen as a power series
in terms of F and ∆β (see the appendix for more details). The coefficients of this
power series are lengthy expressions involving the masses m and M, the average inverse
temperature β̄ and various factors of the form ⟨sinn θ⟩. The results up to second order
in F and ∆β can be found in the appendix, see equations (A.12) and (A.13).
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In figure 4, we show the work and heat rates and compare the analytical expressions
given in the appendix with the results of the simulations. While the order of mag-
nitude and trend are in excellent agreement, one notices a consistent deviation between
the theory and simulations. As before, the primary source for this discrepancy can be
traced to a rather large temperature anisotropy, namely Tx = 1 and Ty = 2. Repeating
the same simulations with a smaller anisotropy (e.g. Ty = 1.1) yields excellent quant-
itative agreement. A secondary source, though its impact is significantly smaller, is
related to our choice of the masses m =1 and M =20. It goes without saying, as the
analytical expressions are a series expansion in ε, that a smaller mass ratio improves the
agreement.

Having obtained expressions for the work and heat, the natural next step is to
consider entropy. Given the two thermal reservoirs, and the exchange of heat with those
reservoirs, one can define the (steady state) entropy production as

⟨Ṡ⟩= ⟨Q̇x⟩
Tx

+
⟨Q̇y⟩
Ty

. (33)

Conservation of energy allows to eliminate one of the heat flows in favor of the work.
As there is a priori no preference to one heat flow over the other, we choose to use the
following symmetrized result (see also [30])

⟨Ṡ⟩
kB

= ⟨V ⟩F β̄+
⟨Q̇y⟩− ⟨Q̇x⟩

2
∆β. (34)

From this expression we can identify the following two thermodynamic forces

X1 = β̄F ; X2 =∆β , (35)

and their associated thermodynamic fluxes

J1 = ⟨V ⟩; J2 =
⟨Q̇y⟩− ⟨Q̇x⟩

2
(36)

so that the entropy production is cast into the familiar bilinear form ⟨Ṡ⟩/kB =
J1X1 + J2X2. Expanding the fluxes w.r.t. the forces yields at linear order the Onsager
coefficients

J1 = L11X1 +L12X2; J2 = L21X1 +L22X2 . (37)

The expressions for these coefficients follow immediately from equations (A.12), (A.13)
and (27). To lowest nonzero order, the fluxes are

⟨V ⟩ ≈ F β̄

√
π

2mβ̄

1

2Lρ
〈
sin2 θ

〉 − ∆β

2

√
π

2mβ̄3

〈
sin3 θ

〉
〈
sin2 θ

〉 , (38)
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Figure 4. Average rate of work ⟨Ẇ ⟩ (upper panel) and heat flows (lower panel) as
a function of the external force F. The theoretical curves come from the expressions
given in equations (A.12), (A.13) and (27). Note that the temperatures are Tx = 1
and Ty = 2, and so as expected there is a heat flow from the hot (y, ⟨Q̇y⟩< 0) to
the cold (x, ⟨Q̇x⟩> 0) reservoir. The error bars for the numerical data are smaller
than the symbol size. The system, and the simulation setup, are identical to the
one in figure 2.

〈
Q̇y

〉
−
〈
Q̇x

〉

2
≈−F β̄

2

√
π

2mβ̄3

〈
sin3 θ

〉
〈
sin2 θ

〉 + Lρ∆β

2

√
π

2mβ̄5

[〈
sin3 θ

〉2
〈
sin2 θ

〉 +
8

π

〈
sin2 θ cos2 θ

〉
]
.

(39)

As expected, the diagonal coefficients are positive, whereas the off-diagonal coefficients
satisfy Onsager symmetry. However, and perhaps less expected, is the following obser-
vation: dragging a spatially asymmetric object through an equilibrium gas induces flows
of heat that allows to cool down one velocity component of the gas while heating the
other one. However, as dragging the object requires the input of work, the net effect
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Figure 5. Heat flows for the kite (λ=2) being dragged through an equilibrium ideal
gas. As dictated by the Onsager symmetry, and as the kite for λ=2 is asymmetric,
one of the velocity components is cooled down while the other is heated. The error
bars for the numerical data are smaller than the symbol size. Simulation parameters
are identical to the ones in figure 2 except for Tx = Ty = 1.

will be the heating of the gas as a whole. In figure 5, the heat flows are shown for
the kite (λ=2) being dragged through an equilibrium gas. Depending on the direction,
either the x - or the y-component heats up while the other cools down. As is clear from
the graphs, the heating is stronger in comparison with the cooling, so the net effect is
that the gas as a whole will heat up. We end with two remarks. First, for symmetrical
objects only heating of both components is possible. Second, for larger external forces,
the (Joule) heating becomes dominant and both velocity components are heated up.

5. Conclusion

In this work we introduce a new type of Brownian motor, the Brownian translator.
It consists of a spatially extended object with a single degree of freedom along which
it can move freely. The object is in contact with an anisotropic ideal gas for which
the horizontal and vertical velocity components are Maxwellian distributed at different
temperatures. The spatial extension of the object puts our model in contrast with the
Brownian gyrator of Filliger and Reimann [1] in that it no longer requires the presence
of an external potential. This is analogous to the intrinsic ratchet [29], which is akin to
the rocking ratchet but with the typical (sawtooth-like) ratchet potential being replaced
by a structured particle.

We show that objects which break the left/right symmetry with respect to the
horizontal direction attain a non-zero drift velocity. Analytical expressions are derived
within a Boltzmann master equation framework, capable of encapsulating both the
dynamical as well as the thermodynamic properties. These expressions are obtained as
a series expansion in the mass ratio m/M . Extensive and conceptually exact event-
driven molecular dynamics simulations corroborate our findings.

The resulting drift, both in terms of amplitude and direction, is determined by the
geometry: different shapes attain different velocities. Together with the absence of an
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external potential, this opens up the possibility for technological applications such as
the sorting of particles on the basis of their shape.
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Appendix A

A.1. ε-expansion

In this appendix we give an outline of the calculations leading to the expressions for the
velocity moments and thermodynamic quantities as a series expansion in the parameter
ε=

√
m/M . To this end, we consistently replace M by m/ε2, so that the limit ε→ 0

corresponds to M →∞ while keeping m constant.
The limit ε→ 0 is natural in the context of a Brownian particle in a fluid. However,

it also drastically changes the dynamic behaviour. First, note that, in equilibrium,
equipartition of energy dictates

1

2
M⟨V 2⟩= 1

2
kBT . (A.1)

Hence the typical velocity of the object depends on its mass through its average kinetic
energy. As a consequence, instead of using V, we introduce the rescaled dimensionless
variable

x=
√
M β̄V . (A.2)

For the moment, β̄ is an effective (inverse) temperature to be determined later by the
condition ⟨x2⟩= 1. With hindsight, and to lowest order in ε, this is β̄ = (βx+βy)/2. The
moments of x satisfy analoguous equations such as (13) upon introducing the rescaled
jump moments

An (x) =
(
M β̄

)n/2
an (x) . (A.3)

Lastly, the limit ε→ 0 also represents a slowing down of the system and changes the
relative magnitude of the momentum exchange in the average collsision compared to
the applied force F and the temperature difference ∆β = βy −βx. To fix these, we also
introduce the rescaled parameters τ ,f ,∆ ′β as

τ = ε2t, F = ε2f , ∆β = ε2∆ ′β. (A.4)
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Using expression (11) for the transition rate, the Heaviside function splits the integrals
over V and θ in two parts, which can be calculated. Recombining the two terms, the
result reads

An (x) =
(−1)n 2

3n−1
2

√
π β̄m

Lρ

2πˆ
0

dθl (θ)

(
εsinθ

ε2 sin2 θ+1

)n( β̄

g (θ)2

) n+1
2

×
[
Γ

(
n+2

2

)
Φ

(
−n+1

2
,
1

2
,−ε2x2 sin2 θ

2β̄
g (θ)2

)

+ g (θ)

√
2

β̄
εxsinθΓ

(
n+3

2

)
Φ

(
−n

2
,
3

2
,−ε2x2 sin2 θ

2β̄
g (θ)2

)]
, (A.5)

where Γ(·) is the usual gamma function and Φ(a,b,x) is Kummer’s confluent hypergeo-
metric function [42]. Working up to first order in ε, we can calculate the zeroth- and
first-order coefficients in the power series for ⟨x⟩ and the zeroth-order coefficient in the
power series for ⟨x2⟩. We formally write

⟨x⟩= a10 + a11ε (A.6)

⟨x2⟩= a20. (A.7)

Up to first order, the first two moment equations decouple from the rest and are solvable
order by order as

d

dτ
⟨x⟩=− 4ρC√

2πmβ̄
⟨x⟩⟨sin2 θ⟩+ εf

√
β̃

m
− ε

ρC√
mβ̃

⟨sin3 θ⟩
(
⟨x2⟩− β̃

β̄
(1− δ ′β)

)
, (A.8)

∂

∂τ
⟨x2⟩= 2f ε

√
β̄

m
⟨x⟩+4Lρ⟨sin2 θ⟩

√
2

πmβ̄

[
1−⟨x2⟩

]
. (A.9)

Solving these in steady state, we immediately see that ⟨x2⟩= 1 to zeroth order in ε,
which is due to our choice β̄ = (βx+βy)/2. We can then solve for the coefficients for ⟨x⟩
to find

a10 = 0 (A.10)

a11 =
1

2⟨sin2 θ⟩

√
π

2

[
f β̄

Lρ
−⟨sin3 θ⟩∆

′β

β̄

]
. (A.11)

The outlined procedure leads to purely algebraic calculations and allows us to obtain
expressions for any order in ε. However, note that for every increasing order, one must
consider an additional moment of x. For example, say we want to calculate ⟨x⟩ up to
second order in ε, so ⟨x⟩= a10 + a11ε+ a12ε2. This requires extra terms in (A.8) which
involve ⟨x3⟩. Hence, we need to also consider the evolution equation for ⟨x3⟩ to lowest
order.
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These expressions for the moments are needed when calculating heat flows by
expanding (32) after performing the same rescaling defined in (A.4). The end result
is again an expansion in terms of ε. Writing it out up to fourth order in ε yields terms
up to second order in F and ∆β:

⟨Q̇x⟩=
β̄F

16⟨sin2 θ⟩3
m

M

√
π

2mβ̄3

[
12⟨sin2 θ⟩⟨sin3 θ⟩⟨sin4 θ⟩−π ⟨sin3 θ⟩3

− 8⟨sin2 θ⟩2⟨sin5 θ⟩+8
M

m
⟨sin3 θ⟩⟨sin2 θ⟩2

]

+
m

M

∆βLρ

16
√
2πmβ̄5⟨sin2 θ⟩3

[
− 20π ⟨sin2 θ⟩⟨sin3 θ⟩2⟨sin4 θ⟩

+π2⟨sin3 θ⟩4 + 16π ⟨sin2 θ⟩2⟨sin3 θ⟩⟨sin5 θ⟩
+32⟨sin2 θ⟩2(2⟨sin4 θ⟩2 + ⟨sin2 θ⟩⟨sin4 θ cos2 θ⟩)

− 8
M

m
⟨sin2 θ⟩2(π ⟨sin3 θ⟩2 + 8⟨sin2 θ cos2 θ⟩⟨sin2 θ⟩)

]

+ β̄2F 2

√
π

2mβ̄3

8⟨sin2 θ⟩⟨sin4 θ⟩−π ⟨sin3 θ⟩2

16Lρ⟨sin2 θ⟩3

+
β̄F∆β

8⟨sin2 θ⟩3

√
π

2mβ̄5

[
− 10⟨sin2 θ⟩⟨sin3 θ⟩⟨sin4 θ⟩+π ⟨sin3 θ⟩3

+ 12⟨sin2 θ⟩2⟨sin5 θ⟩− 9⟨sin2 θ⟩2⟨sin3 θ⟩
]

+
∆β2Lρ

16
√
2πmβ̄7⟨sin2 θ⟩3

[
12π ⟨sin2 θ⟩⟨sin3 θ⟩2⟨sin4 θ⟩−π2⟨sin3 θ⟩4

− 2π ⟨sin2 θ⟩2⟨sin3 θ⟩(12⟨sin5 θ⟩− 9⟨sin3 θ⟩)

+ 16⟨sin2 θ⟩3(⟨sin2 θ⟩− 3⟨sin4 θ⟩+2⟨sin6 θ⟩)
]

(A.12)
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and

⟨Q̇y⟩=− β̄F

16⟨sin2 θ⟩3
m

M

√
π

2mβ̄3

[
12⟨sin2 θ⟩⟨sin3 θ⟩⟨sin4 θ⟩−π ⟨sin3 θ⟩3

− 8⟨sin2 θ⟩2⟨sin5 θ⟩+8
M

m
⟨sin3 θ⟩⟨sin2 θ⟩2

]

− m

M

∆βLρ

16
√
2πmβ̄5⟨sin2 θ⟩3

[
− 20π ⟨sin2 θ⟩⟨sin3 θ⟩2⟨sin4 θ⟩

+π2⟨sin3 θ⟩4 + 16π ⟨sin2 θ⟩2⟨sin3 θ⟩⟨sin5 θ⟩
+32⟨sin2 θ⟩2(2⟨sin4 θ⟩2 + ⟨sin2 θ⟩⟨sin4 θ cos2 θ⟩)

− 8
M

m
⟨sin2 θ⟩2(π ⟨sin3 θ⟩2 + 8⟨sin2 θ cos2 θ⟩⟨sin2 θ⟩)

]

+ β̄2F 2

√
π

2mβ̄3

8⟨sin2 θ⟩⟨sin2 θ cos2 θ⟩+π ⟨sin3 θ⟩2

16Lρ⟨sin2 θ⟩3

+
β̄F∆β

8⟨sin2 θ⟩3

√
π

2mβ̄5

[
10⟨sin2 θ⟩⟨sin3 θ⟩⟨sin4 θ⟩−π ⟨sin3 θ⟩3

− 12⟨sin2 θ⟩2⟨sin5 θ⟩+5⟨sin2 θ⟩2⟨sin3 θ⟩
]

− ∆β2Lρ

16
√
2πmβ̄7⟨sin2 θ⟩3

[
12π ⟨sin2 θ⟩⟨sin3 θ⟩2⟨sin4 θ⟩−π2⟨sin3 θ⟩4

− 2π ⟨sin2 θ⟩2⟨sin3 θ⟩(12⟨sin5 θ⟩− 9⟨sin3 θ⟩)

+ 16⟨sin2 θ⟩3(⟨sin2 θ⟩− 3⟨sin4 θ⟩+2⟨sin6 θ⟩)
]
. (A.13)

Although conservation of energy holds universally, our calculations, limited to the con-
sidered orders in ε, allow to confirm its validity within the specified order in ε.

A.2. Simulation details

The simulations use an event-driven molecular dynamics code with a fluctuating number
of point-like gas particles within a ‘virtual’ rectangular simulation box. This virtual box
contains the object and all the gas particles the code tracks explicitly.

Any gas particle can leave the box (in which case it is removed from the list of
particles in the box to ‘disappear’ into the surrounding environment) or collide with
the object (in which case the collision rules (4) and (4) are applied). The equilibrium
properties of the gas inside the box are maintained at specific density and temperature
by injecting gas particles through the box walls at the appropriate rates and velocities,
mimicking an infinitely large surrounding reservoir of an ideal gas. This injection of
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gas particles is determined by the so-called Maxwellian inflow distribution [43], see the
paragraph below for more details.

Since we want to keep track of the ideal gas in the vicinity of the object, the virtual
box is co-moving with the momentary velocity V⃗ of the object, i.e. it is changing velocity
when the object’s velocity is altered by a collision (the Maxwellian inflow distribution is
adjusted to the velocity of the virtual box, see below). Without external force, F =0, the
object thus can never leave the virtual box. However, since a non-vanishing external force
F accelerates the object between collisions, the code also takes into account the event
that the object comes close to a wall of the box, in which case the box is instantaneously
shifted so that the object is re-located to the box center and the empty region of the
newly positioned box is filled with an ideal gas with the given density and temperatures.
The box size and the distance from the box walls that trigger this event are chosen such
that the object is completely contained inside the box at all times.

A.2.1. The Maxwellian inflow distribution The injection of gas particles through the
walls of the virtual box is determined by the velocity distribution of the incoming
gas particles, which is called the Maxwellian inflow distribution [43]. Such an inflow
distribution describes the statistics of the injection time and velocity of the incoming
particle. As a general setup, we consider a straight line segment of length a (representing
a box wall), with normal vector n̂ (pointing outwards). This line is co-moving with
the object at velocity V⃗ . Surrounding the line is an ideal gas with inhomogeneous
inverse temperatures βx and βy , whose particle velocities are distributed according to
the Maxwellian velocity distribution φ(v⃗) given in (1).

We define R(v⃗, V⃗ , n̂)dv⃗ as the probability per unit time to observe a particle with
velocity v⃗ in the range ]v⃗, v⃗+dv⃗[ coming from outside the line segment a and crossing
it during a time interval dt; the line segment is moving with velocity V⃗ . It is given by

R
(
v⃗, V⃗ , n̂

)
dv⃗ = ρa

∣∣∣
(
v⃗− V⃗

)
· n̂
∣∣∣Θ
(
−
(
v⃗− V⃗

)
· n̂
)
φ(v⃗)dv⃗. (A.14)

Integrating this expression over all particle velocities yields the average time τ between
two particles crossings the line segment:

τ
(
V⃗ , n̂

)
=

ˆ
R
(
v⃗, V⃗ , n̂

)
dv⃗. (A.15)

Since the injection events are independent of each other for an ideal gas, the time
interval between successive injections of gas particles is exponentially distributed with
waiting time τ . The velocity of the incoming particle is drawn from the Maxwellian
inflow distribution, which is given by the normalized inflow probability per unit time:

p
(
v⃗, V⃗ , n̂

)
=

R
(
v⃗, V⃗ , n̂

)

τ
(
V⃗ , n̂

) . (A.16)
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Figure A1. Sketch of the Brownian translator and the surrounding virtual box.
Gas particles enter via the edges of this virtual box. x and y directions are shown,
and also the direction n̂=−e⃗x for the left vertical edge of the virtual box.

For the specific case of the Brownian translator, which only moves along the x -axis,
the velocity is V⃗ = (V ,0). The virtual box is taken as a rectangle of dimensions a and
b, see figure A1. As an example, we consider the vertical wall of the box at the left side.
Its length is a and the normal n̂=−êx, hence (v⃗− V⃗ ) · n̂= V − vx. For ease of notation,
we introduce the following velocities, which are proportional to the so-called thermal
velocities:

ωx =

√
2kBTx

m
and ωy =

√
2kBTy

m
. (A.17)

The calculation of τ is straightforward:

τ = ρa

ˆ
|vx−V |Θ(vx−V )

1

πωxωy
e−(vx/ωx)

2−(vy/ωy)
2

dv⃗

=
ρaωx

2
√
π

(
e−(V /ωx)

2

−
√
π (V /ωx)Erfc(V /ωx)

)
, (A.18)

where Erfc(·) is the complementary error function. Written in this way, a dimensional
check is immediate, with units for [τ ] = s−1. The inflow distribution is:

p
(
v⃗, V⃗ , n̂

)
=

(vx−V )Θ(vx−V ) 1
πωxωy

e−(vx/ωx)
2−(vy/ωy)

2

ωx

2
√
π

(
e−(V /ωx)

2 −
√
π (V /ωx)Erfc(V /ωx)

)

=
2(vx−V )Θ(vx−V ) e−(vx/ωx)

2

ω2
x

(
e−(V /ωx)

2 −
√
π (V /ωx)Erfc(V /ωx)

) e
−(vy/ωy)

2

√
πωy

. (A.19)

As a distribution of the particle velocity only, the inflow distribution is independent of
the gas density ρ and the length a of the linear segment. Moreover, since the x and y
components of the velocity are independent, it factorizes into separate distributions for
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vx and vy, as evident from the second line. For the vertical wall under consideration,
the vy component is the usual Maxwellian distribution and the corresponding velocities
can be generated from a Gaussian distribution with standard algorithms. However, for
vx we have to generate random velocities from the non-trivial distribution given by the
first factor in (A.19).

The procedure used in the simulation code is based on the following algorithm [44]:
given a probability density p(x ), a realization of the random number x, distributed
according to p(x ), can be generated by calculating x= P−1(r), where r is a random
number uniformly distributed in the interval ]0,1[, and P−1 is the (unique) inverse of
the cumulative distribution P (x) =

´ x
−∞dx ′ p(x ′).3 In the present case the cumulative

distribution cannot be inverted in closed form, so we have to solve the equation

r =
e−(V /ωx)

2 − e−(vx/ωx)
2

+
√
π (V /ωx) [Erf(V /ωx)−Erf(vx/ωx)]

e−(V /ωx)
2 −

√
π (V /ωx)Erfc(V /ωx)

(A.20)

for vx, where Erf(·) is the usual error function. Using Erfc(V /ωx) = 1−Erf(V /ωx) and
replacing 1− r → r (both expressions are statistically equivalent), this equation simpli-
fies to

e−(vx/ωx)
2

−
√
π (V /ωx)Erfc(vx/ωx)

= r
[
e−(V /ωx)

2

−
√
π (V /ωx)Erfc(V /ωx)

]
. (A.21)

For its solution, a root-finding algorithm from the www.boost.org/ library is used in
the simulation code.
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