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Abstract 

This article provides a review of basic statistical methods for the analysis of data that include censored 

observations.  

Keywords:  censoring, Kaplan-Meier estimator, logrank test, accelerated failure-time model, 

proportional-hazards model 

Introduction 

Censoring occurs when we do not observe exactly the value that we are interested in, but we only 

learn about some bounds surrounding it. In particular, an observation is left-censored when it is larger 

than the true value. A right-censored observation is smaller than the true value. Interval censoring 

occurs when we learn that the true value lies within the interval limited by two observed values. 

Censoring is most often encountered in the case of observing a time to event (TTE), i.e., the time that 

elapses between a well-defined starting moment until a particular event of interest. For instance, in a 

retrospective cohort study organized in Iowa [1], dental records of 200 children younger than 6 years 

of age were used to investigate the age (in months) until the first dental caries. The records were 

followed for a minimum of 36 months after the first dental visit. In the study, left-censored 

observations were obtained for children with dental caries diagnosed at the first visit, and indicated 

that the age at the first caries was shorter than the age at the child’s first dental visit. Right-censored 

observations were obtained for children, for whom no dental caries was diagnosed or treated at any 

time throughout the study; they indicated that the age at the first caries was larger than the age at the 

last recorded visit. Interval-censored observations were obtained for children for whom dental caries 

was diagnosed during the study period; they indicated that the age at the first caries was equal to a 

value within the interval defined by the age at the last visit at which no caries was diagnosed and the 

age at the first visit at which caries was diagnosed. Figure 1 illustrates the different types of censoring 

for a hypothetical set of eight children entering the study at different ages with three 6-month visits 

recorded for the study purposes. 

 



Figure 1. A hypothetical set of eight children entering the retrospective cohort study at different ages 

with three 6-month visits recorded for the study purposes. Visits with diagnosed caries are indicated by 

the filled-in square. For participants 1, 2, and 3, interval-censored observations are obtained that 

indicate that the time to the first caries lies in the intervals (60, 66) (54, 60), and (48, 54), respectively. 

For participant 4, a right-censored observation equal to 78 months is recorded. For participants 5, 6, 7, 

and 8, left-censored observations are obtained, equal to 48, 66, 48, and 54 months, respectively. 

Note that censoring may apply to any measurement or observation, not only a TTE. For instance, 

left- and right-censoring applies to diagnostic assays with, respectively, lower and upper limits of 

detection. In the remainder of this article, however, we will focus on the case of observing a TTE. 

Moreover, we will consider analysis of data that include exact (uncensored) or right-censored 

observations of a TTE. This is because the presence of left-censored observations requires only a minor 

modification of methods of analysis of data with right-censored observations. On the other hand, in 

practice, interval-censored observations are very often (though incorrectly) transformed into 

uncensored ones by assuming that the event took place at the time equal to the observed upper limit 

of the interval. For instance, interval-censored observation of time to first caries is replaced by the 

time of the first visit, at which caries is diagnosed.  

The presence of censored observations complicates the statistical analysis. This is because, in such a 

case, the use of the classical statistics (such as, e.g., the sample mean) or statistical models (such as, 

e.g., linear regression) will result in biased results. For instance, if some of the observations in a dataset 

are right-censored, the sample mean will underestimate the true mean of the TTE. 

Analysis of data that include censored observations requires the use of methods that take into account 

the censoring. Collectively, in medicine, these methods are referred to as survival analysis. They can 

be parametric or non-parametric.  

In survival analysis, we are interested in making statements about the true (unknown) distribution of 

the TTE by using the observed (and possibly censored) data. We may want to get an idea about, for 

instance, a particular characteristic of the distribution such as the mean or the median. Or we may be 

interested in getting an idea about the entire distribution by estimating its cumulative distribution 

function or its complement, the survival function. 

Toward this aim, we may use parametric or non-parametric methods. Parametric methods estimate 

the characteristics of the TTE distribution by making concrete assumptions about the form of the 

distribution. For instance, we may assume that the TTE has an exponential or log-normal distribution. 

Non-parametric methods avoid making such assumptions. In general, parametric methods provide 

more precise estimates than the non-parametric methods. On the other hand, if the assumption about 

the TTE distribution is incorrect, the estimates obtained by applying a parametric method may be 

biased. 

To illustrate various methods discussed in the article, we will use data from two motion-sickness 

studies [2]. In both experiments, a motion generator was used to study effects of various motion 

parameters on the risk of motion sickness at sea.  Participants in the studies were observed with 

respect to the time of the first occurrence of frank emesis. Each of the experiments limited the 

exposure time to two hours, unless the participant requested to stop the experiment or experienced 

the event (emesis). Thus, for participants who did not experience the event for the entire period of 

two hours, or who prematurely quit the experiment, right-censored observation of the TTE was 

recorded. In one study, “soft motion” (with the frequency of 0.167 Hz and the acceleration of 0.111 G) 

was simulated. In the other one, “hard motion” (with the frequency of 0.333 Hz and the acceleration 

of 0.2222 G) was simulated. 



The recorded times (in minutes) for the “soft motion” experiment, with 21 participants, are as follows 

(right-censored times are indicated by the asterisk): 30, 50, 50*, 51, 66*, 82, 92, 120*, 120*, 120*, 

120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*. Note that this study yielded five 

uncensored observations and 16 right-censored ones (two for participants who quit the experiment 

prematurely at 50 and 66 minutes and 14 for the participants who endured the entire 120 minutes 

without an event). 

The recorded times (in minutes) for the “hard motion” experiment, with 28 participants, are as follows 

(right-censored times are indicated by the asterisk): 5, 6*, 11, 11, 13, 24, 63, 65, 69, 69, 79, 82, 82, 102, 

115, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*. This study yielded 

14 uncensored observations and 14 right-censored ones (one for the participant who quit the 

experiment at 6 minutes and 13 for the participants who endured the entire 120 minutes without an 

event). 

Parametric methods 

We will discuss the use of a parametric approach by using the example of the exponential distribution. 

The distribution is governed by a single parameter, which we will denote by λ. If the TTE is generated 

by an exponential distribution, then the mean value of the time is equal to 1/ λ, the median value is 

equal to ln(2)/λ, and variance is equal to 1/λ2. Thus, all characteristics of the TTE distribution depend 

on the single parameter. Consequently, if we can estimate λ, then we can subsequently derive from it 

estimates of the mean, variance, etc. 

In case of an exponential distribution, the estimation of λ based on data that includes right-censored 

observations is very simple. In particular, we estimate λ by taking the ratio of the number of events to 

the sum of (all) observed values of the TTE. For instance, in the case of the “soft motion” study, there 

were five events, while the sum of all observed times was equal to  

30 + 50 + 50 + 51 + 66 + 82 + 92 + 14∙120 = 2101. 

Thus, the estimated value of λ = 5/2101 = 0.0024. Consequently, the mean TTE can be estimated to be 

equal to 1/λ = 2101/5 = 420.2 minutes, i.e., for a person subjected to the “soft motion” we would 

expect a TTE of about 420 minutes. On the other hand, the estimated median TTE is equal to ln(2)/λ = 

0.693/(5/2101)=291.2 minutes, i.e., we would expect that half of persons subjected to the “soft 

motion” would experience the event before 291 minutes. Note that both of these values are much 

larger than the maximum time (120 minutes) observed in the study. Thus, these estimates are 

extrapolations beyond the range of observed the data, and their validity very much depends on the 

assumption of the exponential distribution. 

For the “hard motion” study, the estimated value of λ = 14/2356 = 0.0059. Thus, it is higher than for 

the “soft motion” study. As a consequence, the estimated values of the mean (1/λ = 2356/14 = 168.3 

minutes) and median (ln(2)/λ = 0.693/(14/2356)=116.6 minutes) are smaller than for the “soft motion” 

study. This suggests that the increase of the frequency and the acceleration shortened, on average, 

the TTE. 

Instead of estimating a particular characteristic, we may be interested in characterizing the entire 

distribution. Toward this aim, in survival analysis, we often focus on the survival function (sometimes 

also called survivor function). Traditionally, the function is denoted by S(t). For a particular value of the 

argument t, the function provides the probability that the TTE will be larger than or equal than t. Or, 

in other words, the probability that the event of interest will not take place by time t. In case of death, 

this is the probability of surviving at least time t; hence the name of the function. 



 

Figure 2. Parametric estimates of the survival function for the motion-sickness studies obtained by 

assuming an exponential distribution of the time to event. The red dashed lines indicate the estimates 

of the median time to event for each study.  

For the exponential distribution, the survival function is a simple exponential function of λ, i.e., S(t)=e-λt. 

For the “soft motion” study, we get the estimate S(t)=e-0.0024t; the plot of the function is presented as 

the solid black line in Figure 2. Note that the plot covers the values of time t up to an including 480 

minutes, to include the estimated mean value of 420.2 minutes. However, as mentioned earlier, the 

values of the estimated survival function for times larger than 120 minutes are extrapolations beyond 

the range of the observed data. Thus, their validity very much depends on the assumption of the 

exponential distribution.  

The estimated value of the survival function at, for instance, t=60 is equal to e-0.0024∙60 = 0.866. This 

means that the probability that the event will not occur before 60 minutes is equal to about 86.6%. On 

the other hand, the probability that the event will not occur before 90 minutes is equal to about 

e-0.0024∙90 = 0.806, i.e., 80.6%. 

For the “hard motion” study, we get S(t)=e-0.0059t (the dashed black line in Figure 2), which leads to 

S(60)=e-0.0059∙60 = 0.702 and S(90)=e-0.0059∙90 = 0.588. This means that the probability that the event will 

not occur before 60 and 90 minutes is equal to about 70.2% and 58.8%, respectively. These values are 

smaller than the corresponding estimates (86.6% and 80.6%, respectively) obtained for the “soft 

motion” study. In fact, this is true for all times t smaller than or equal to 120 minutes, as can be seen 

from Figure 2. They suggest that the increase of the frequency and the acceleration shortened, on 

average, the TTE, because the probability that the event will happen after a particular time is estimated 

to be smaller for the “hard motion” study.  

Accelerated failure-time model 

The difference in the estimated means, medians, and survival functions suggests that, on average, the 

TTE for individuals subjected to a lower frequency and acceleration might be longer as compared to a 

higher frequency and acceleration. However, the difference may be due to chance. Thus, we should 



apply a formal significance test. For the exponential distribution, the mean, median, and survival 

function depend on a single parameter λ. Thus, testing the null hypothesis about the equality of the 

means, medians, or the survival functions is equivalent to testing the null hypothesis about the equality 

of the value of λ. However, this is not the case for other distributions which may depend on more than 

one parameter. For instance, the survival function of the Weibull distribution is defined as follows: 

S(t)=exp(-ληtη), where λ is called the scale parameter and η is called the shape parameter. It appears 

that the exponential distribution is a particular case of the Weibull distribution with η=1. The median 

of a Weibull distribution is given by λ{ln(2)}1/η, while the mean is equal to Γ(1+1/η)/λ, where Γ(x) is the 

gamma function. Thus, testing the null hypothesis about the equality of, for instance, means for two 

Weibull distributions implies the need to test the equality of a function of two parameters that have 

to be estimated. 

A useful, general framework to test hypotheses about the mean of a TTE is the accelerated failure-time 

(AFT) model. The model allows evaluating the effect of explanatory variable(s) on the mean of a TTE. 

In particular, the effect is expressed by multiplying the reference mean by a constant. For instance, for 

the two motion-sickness studies, the AFT model assumes that  

(mean of TTE for the “hard motion” study) = (mean of TTE for the “soft motion” study)∙e 

where e is the multiplier expressing the relative change of the mean for the “hard motion” study as 

compared to the “soft motion” one, and  is a coefficient that has to be estimated from the data. We 

will refer to the multiplier as the mean ratio (MR), because we can transform the equation above as 

follows: 

e = (mean of TTE for the “hard motion” study)/(mean of TTE for the “soft motion” study). 

The reason why the MR is expressed as e is that this form guarantees that the ratio is positive, because 

it should correspond to a ratio of two non-zero means. Note that, for <0, we get e<1, which indicates 

that the mean for the “hard motion” study is smaller than for the “soft motion” (reference) study. This 

implies acceleration of the events for the “hard motion” study (hence the name of the model). On the 

other hand, for >0, we get e>1, i.e., deceleration of the events. In the special case of =0 we get 

e=1, i.e., the equality of the means. Thus, =0 is the null hypothesis that we would like to test. 

If, in order to estimate coefficient  of the AFT model, we make an assumption about the form of the 

distribution of the TTE, then we talk about a parametric AFT model. In that case,  is estimated by 

using the method of maximum likelihood. We are not going to discuss the details of the method here. 

For the two motion-sickness studies, and assuming that the TTE is exponentially distributed, we get an 

estimate of =-0.92 and MR = e = e-0.92 = 0.4 (see Table 1). Thus, the MR suggests that the true mean 

of the TTE for the “hard motion” study was about 60% shorter than for the “soft motion” study. The 

estimated standard error (SE) of the estimated  is equal to 0.52. Thus, the 95% confidence interval 

(CI) for the true value of  is equal to (-0.92-2∙0.52, -0.92+2∙0.52) = (-1.96, 0.12). It includes 0, so we 

cannot reject the null hypothesis that the means of the TTE for the two studies are equal. By 

exponentiating the limits of the CI, we obtain the 95% CI for the MR, which is equal to (e-1.96, e0.12) = 

(0.14, 1.13). As this interval includes 1, we cannot exclude the possibility that the true mean ratio is 

equal to 1, i.e., that the means of the TTE for the two studies are equal. 

 

 

 



Model variant AFT model PH model 

 (95% CI) MR=e (95% CI) θ (95% CI) HR=eθ (95% CI) 

exponential -0.92 (-1.96, 0.12) 0.40 (0.14, 1.13) 0.92 (-0.12, 1.96) 2.50 (0.89, 7.10) 

Weibull -0.80 (-1.76, 0.16) 0.45 (0.17, 1.17) 0.92 (-0.12, 1.96) 2.50 (0.89, 7.10) 

semi-parametric -0.73 (-1.83, 0.37) 0.48 (0.16, 1.47) 0.90 (-0.14, 1.94) 2.46 (0.87, 6.96) 

Table 1. Results of the parametric and semi-parametric models for the motion-sickness studies. AFT: 

accelerated failure-time; PH: proportional-hazards 

Note that, previously, we estimated that the mean values of the TTE for the “soft motion” and “hard 

motion” study were equal to 420.2 and 168.3 minutes, respectively. The ratio of these values is equal 

to 168.3/420.2=0.4, i.e., gives the same value as the MR obtained from the AFT model. This is not a 

coincidence; in this simple case, the correspondence is expected. However, the application of the 

model offers us a simple means to test the null hypothesis of the equality of the means. 

For illustration, we could also apply the AFT model while assuming that the distribution of the TTE is 

Weibull. In that case, we estimate =-0.80 and MR = e = e-0.80 = 0.45 (see Table 1). Thus, we get an 

estimated MR similar to the one obtained for the exponential AFT model. The estimated standard error 

(SE) of the estimated  is equal to 0.48 and the resulting 95% CI for the true value of  is equal to 

(-1.76, 0.16). As for the exponential AFT model, the CI includes 0, so we cannot reject the null 

hypothesis that the means of the TTE for the two studies are equal. The same conclusion is obtained 

by using the 95% CI for the MR that is equal to (e-1.76, e0.16) = (0.17, 1.17) and includes the value of 1. 

For the Weibull model, we also get an estimated value of η, which is equal to 1.15 with the 95% CI 

equal to (0.76, 1.75). The CI includes the value of 1, what suggests that we could simplify the model 

and assume the exponential distribution (as we have mentioned earlier, the exponential distribution 

is a special case of the Weibull distribution for which η=1). 

An advantage of the AFT model is that it can be combined with many distributions. Its results are easily 

interpretable in terms of the increase/reduction of the mean TTE. One important issue is the choice of 

the parametric distribution. There are several methods that can be used to guide the choice or check 

if the selected distribution fits the data; we will not review these methods here. A potential, systematic 

solution to this issue is the use of a semi-parametric AFT model (that does not require assumptions 

about the distribution of the TTE), which will be discussed later in the text. 

Proportional hazards model 

Proportional hazards (PH) model, also called the Cox model, is an often-considered alternative to the 

AFT model. The popularity of this model is due to its semi-parametric version, which will be discussed 

later in the text. However, there are parametric versions of the model. Unlike for the AFT model, the 

PH model can only be applied for selected distributions, which include the exponential distribution and 

the Weibull distribution. 

The PH model is defined on the scale of the hazard function. The hazard function, often denoted by 

λ(t), can be interpreted as the instantaneous risk of experiencing the event among individuals who are 

still at risk (have not had an event and are still exposed to it) at time t. The hazard function is sometimes 

referred to as the hazard rate. Note that is a non-negative function, i.e., λ(t)≥0 for all values of t≥0. The 

knowledge of the hazard function completely determines the distribution of the TTE. For instance, the 

survival function can be written in terms of the hazard function, and vice versa. 

For the exponential distribution with the survival function S(t)=e-λt, the hazard function is constant, i.e., 

λ(t)=λ, where λ is the parameter characterizing the distribution. For the Weibull distribution with the 

survival function S(t)=exp(-ληtη), the hazard function involves a power of the time, i.e., λ(t)=ηληtη-1.  



The form of the PH model is similar to the form of the AFT model, except that the effect of explanatory 

variable(s) is expressed in terms of multiplying the reference (often called baseline) hazard function. 

For instance, for the two motion-sickness studies, the PH model assumes that  

(hazard rate for the “hard motion” study at t) = (hazard rate for the “soft motion” study at t)∙eθ 

where eθ is the multiplier expressing the proportional change of the hazard function (hence the name 

of the model) for the “hard motion” study as compared to the “soft motion” one, and θ is a coefficient 

that has to be estimated from the data. We will refer to the multiplier as the hazard ratio (HR), because 

we can transform the equation above as follows: 

eθ = (hazard rate for the “hard motion” study at t)/(hazard rate for the “soft motion” study at t). 

Expressing the HR as eθ guarantees that the ratio is positive, because it should correspond to a ratio of 

two non-zero functions. Note that, for θ <0, we get eθ<1, which indicates that the hazard rate for the 

“hard motion” study is smaller (at any time t) than the hazard rate for the “soft motion” (reference) 

study. On the other hand, for θ>0, we get eθ >1, i.e., an increase of the risk of the event in the “hard 

motion” study. In the special case of θ=0 we get eθ =1, i.e., the equality of the hazards. Thus, θ=0 is the 

null hypothesis that we would like to test. 

It is worth noting that, in practice, the (true) ratio of two hazard functions may itself be a function of 

time t. However, the PH model requires that the ratio is constant in time. This is a very strong 

assumption, which needs to be checked; we will not discuss the methods for checking the PH 

assumption here. 

In case of the parametric PH model, θ is estimated by using the method of maximum likelihood. We 

are not going to discuss the details of the method here. For the two motion-sickness studies, and 

assuming that the TTE is exponentially distributed, we estimate θ=0.92 and HR = eθ = e0.92 = 2.5 (see 

Table 1). Thus, the HR suggests that the hazard function for the “hard motion” study is 2.5 times larger 

than for the “soft motion” study. The estimated standard error (SE) of the estimated θ is equal to 0.52. 

Thus, the 95% CI for the true value of  is equal to (-0.12, 1.96). It includes 0, so we cannot reject the 

null hypothesis that the hazard functions of the TTE for the two studies are equal. Consequently, all 

the characteristics of the distribution of the TTE (e.g., means, medians, survival functions, etc.) are the 

same. The same conclusion is obtained if we consider the 95% CI for the HR, which is equal to (e-0.12, 

e1.96) = (0.89, 7.10), because the interval includes HR=1. 

Note that, previously, we estimated the value of the exponential parameter λ to be equal to 0.0024 

and 0.0059 for the first and the second study, respectively. From these values we get 

0.0059/0.0024=2.46, which is a value very close to the HR obtained from the PH model.  

One could also note that the estimated value of θ=0.92 is exactly the negative of the estimated value 

of =-0.92 for the AFT model. This is not a coincidence, but the consequence of the fact that, for the 

exponential distribution, the mean value (1/λ) is the inverse of the hazard rate (λ). Thus, if the hazard 

rate is modified to λeθ, then the mean is modified to 1/(λeθ)=(1/λ)e-θ=(1/λ)e, so that =-θ. 

For illustration, we could also apply the PH model while assuming that the distribution of the TTE is 

Weibull. In that case, we get, essentially, the same results as for the exponential model: θ=0.92 with 

SE=0.52 (see Table 1). Thus, we arrive at the same conclusion that we cannot reject the null hypothesis 

that the hazard functions of the TTE for the two studies are equal.  

It is worth noting that the interpretation of the results of the exponential and Weibull PH models is not 

very intuitive. Taken at face value, the obtained value of HR=2.5 informs us that the instantaneous risk 



of the event (hazard rate) for a person subjected to the “hard motion” is 2.5 times higher than for a 

person subjected to the “soft motion”.  However, this information does not allow us to conclude 

anything about, for instance, the difference in the mean or median TTE. In this respect, the result of 

the AFT model is more direct and easier to understand. 

Thus, as compared to the AFT model, the PH model is less intuitive and interpretable. It can be 

combined with fewer distributions than the AFT model. Moreover, the PH assumption that the ratio 

of hazard functions is constant in time, is very strong. It has an important, negative consequence: if 

the model that is applied to a dataset omits an important explanatory variable, the coefficients of the 

variables included in the model become biased [3]. For randomized clinical trials, this implies that the 

PH model that includes treatment indicator as the only explanatory variable is likely to underestimate 

the treatment effect, which may also result in a non-significant result of the test of the effect. The AFT 

model is not subject to this constraint. 

One important advantage of the PH model is that its semi-parametric version has been available since 

1970s with accessible software implementation. We will discuss this version later in the text. 

Non-parametric methods 

It is possible to estimate the survival function non-parametrically. Toward this aim, the most often 

used method is the Kaplan-Meier estimator [4]. Its underlying idea is simple and intuitive: to survive t 

days, say, first we have got to survive t-1 days, and then the tth day. This implies that we have 

S(t)=S(t-1)∙(probability of no event happening at time t). Consequently, we can estimate the survival 

function recursively starting from t=0, at which we put S(0)=1, i.e., we assume that we observe TTE for 

individuals that are event-free at the start of our observation. We will explain the procedure by using 

the data for the “hard motion” study.  

We start with putting S(0)=1, as explained above. To estimate the value of S(1), we have got to estimate 

the probability that there will be no event at time t=1. We can compute this probability by the ratio of 

the number of participants that did not experience the event at t=1 relative to the total number of 

participants that remained under observation (and were, therefore, at risk/exposed to the event) at 

that time. In our data, all 28 participants remained under observation at the start of the first minute, 

and none of them experienced the event. Thus, the probability of no event happening at time t=1 can 

be computed as 28/28=1. Consequently, we get S(1)=S(0)∙(28/28)=1∙1=1.  

For t=2, the situation does not change: 28 participants remain under the observation at the start of 

the second minute, with none of them experiencing the event. Thus, S(2)=S(1)∙(28/28)=1∙1=1.  

The calculations follow in the same way for t=3 and 4, with S(3)=1 and S(4)=1, respectively.  

For t=5, the situation changes: among the 28 participants that remained under the observation at the 

start of the fifth minute, one experienced the event. This means that the probability of no event 

happening at time t=5 can be estimated as (28-1)/28=27/28=0.964. As a consequence, we get 

S(5)=S(4)∙(27/28)=1∙0.964=0.964.  

At t=6, we have got 27 participants remaining under the observation (because we had one event at 

t=5), with none of them experiencing the event. Thus, S(6)=S(5)∙(27/27)= 0.964∙1=0.964. 

At t=7, the situation changes: we have got 26 participants remaining under the observation, because 

we “lost” the individual for which we have got the right-censored observation at t=6. However, none 

of the 26 participants experienced the event. Thus, S(7)=S(6)∙(26/26)= 0.964∙1=0.964. 

The calculations follow in the same way for t=8, 9, and 10, with S(8)=S(9)=S(10)=1.  



At t=11, among the 26 participants that remained under the observation at the start of the 10th minute, 

two experienced the event. This means that the probability of no event happening at time t=11 can be 

estimated as (26-2)/26=24/26=0.923. As a consequence, we get S(11) = S(10)∙(24/26) = 0.964∙0.923 = 

0.890.  

At this point, the idea of the estimating procedure should be clear. A couple of comments are worth 

making.  First, the estimated value of the survival function changed only at the times at which an event 

was observed. Thus, for instance, while the “hard motion” study included 28 participants, the 

calculations have got to be conducted only for 11 values of time, because there were only 11 distinct 

uncensored times observed in the study. Second, the estimated value of the survival function did not 

change at t=6, the time at which only a right-censored observation was recorded. However, at the 

subsequent time(s), the number of participants remaining at observation was reduced. Thus, the 

censored observation was included in all the calculations for the preceding times. In this way, the 

partial information conveyed by the censored observation (that the participant did not experience 

event until t=6) was used in our estimation procedure. This illustrates how survival-analysis methods 

take into account the censored observations. 

For completeness, the estimated values of the survival function for both studies are provided in 

Table 2.  

“Soft motion” study “Hard motion” study 

time K-M estimator exponential Time K-M estimator exponential 

30 0.952 0.930 5 0.964 0.971 

50 0.905 0.887 11 0.890 0.937 

51 0.854 0.885 13 0.853 0.926 

82 0.801 0.821 24 0.816 0.868 

92 0.748 0.802 63 0.779 0.689 

   65 0.742 0.681 

   69 0.667 0.665 

   79 0.630 0.627 

   82 0.556 0.616 

   102 0.519 0.548 

   115 0.482 0.507 

Table 2. Non-parametric estimates of the survival function for the motion-sickness studies obtained 

by using the Kaplan-Meier estimator. For comparison, the parametric estimates obtained by 

assuming the exponential distribution are also provided. K-M: Kaplan-Meier. 

The plot of the Kaplan-Meier estimator of the survival function is often called a survival curve. Figure 3 

presents the survival curves for the motion-sickness studies. Both curves have a stepped shape, which 

reflects the comment just made that the Kaplan-Meier estimator changes its value only at the times at 

which events are recorded. The black tick marks with numbers on the curves indicate the number of 

the right-censored observations recorded at the particular time. It is worth observing that both curves 

are plotted for values of time until t=120 minutes. This is because the non-parametric estimator, unlike 

the parametric estimator, cannot be extrapolated beyond the range of times observed in the data.  



 

Figure 3. Non-parametric estimates of the survival function for the motion-sickness studies obtained 

by using the Kaplan-Meier estimator. The red dashed line indicates the estimate of the median time 

to event for the “hard motion” study. 

For the “soft motion” study, the Kaplan-Meier estimator indicates that the probability that the event 

will not occur before 60 and 90 minutes is equal to about 85.0% and 80.0%, respectively. For the “hard 

motion” study, the estimates are equal to 81.0% and 56.0%, respectively. These non-parametric 

estimates agree fairly well with the estimates obtained by assuming that the TTE is exponentially 

distributed (86.6% and 80.6% for the “soft motion” study, respectively, and 70.2% and 58.8% for the 

“hard motion” study, respectively). Figure 4 shows that, indeed, the Kaplan-Meier estimates agree 

reasonably well, within the range of the observed times, with the estimates obtained by using the 

exponential assumption (see also Table 2). Note that the figure clearly illustrates the fact that any 

inference regarding the distribution of the data beyond 120 minutes requires an extrapolation beyond 

the observed data range and depends on the validity of the parametric assumption. Despite the 

agreement between the non-parametric and parametric estimates for times up to 120 minutes, it is 

not guaranteed that the parametric assumption would be appropriate for longer times. 



 

Figure 4. Comparison of the non-parametric and parametric estimates of the survival function for the 

motion-sickness studies. 

The Kaplan-Meier estimator can be used to obtain a non-parametric estimate of the median TTE. 

Towards this aim, one may use the time, at which the estimator “drops” below 50%. For instance, 

Figure 3 shows that, for the “hard motion” study, the median TTE can be estimated to be equal to 115 

minutes (indicated by the vertical red dashed line). The value agrees very well with the estimate of 

116.6 minutes obtained by assuming that the distribution of TTE is exponential. On the other hand, for 

the “hard motion” study, we cannot estimate the median, because the survival curve never reaches 

values below 50%. This illustrates the difficulty in the non-parametric estimation of the median. 

The Kaplan-Meier estimator can also be used to obtain a non-parametric estimate of the mean TTE by 

computing the area under the survival curve. However, the estimate is only valid if the survival curve 

reaches the value of 0. As seen in Figure 3, this is the case of neither of the motion-sickness studies. As 

a result, we cannot obtain the non-parametric estimate of the mean TTE based on the data from the 

two studies.  

The Kaplan-Meier estimates and the exponential-distribution-based estimates (see Figure 4) suggest 

that the true survival functions for the two studies may be different. Thus, we might want to formally 

test the null hypothesis that the functions are the same. Toward this aim, we may use the logrank test. 

This is a non-parametric test. The underlying idea is to compare the observed number of the events 

with the number of events that would be expected under that null hypothesis, i.e., when assuming 

that the two survival functions are the same. 

To get an insight into the idea and construction of the test, we will illustrate the calculations necessary 

to conduct it by using the data from the two motion-sickness studies. 

First, we have to construct an ordered list of all uncensored times recorded in any of the studies. The 

list looks as follows: 5, 11, 13, 24, 30, 50, 51, 63, 65, 69, 79, 82, 92, 102, 115. Calculations are conducted 

for each time from the list, starting from the first one. 



At t=5 minutes, there were, in total, 49 participants under observation in both studies, with 21 (42.9%) 

in the “soft motion” study and 28 (57.1%) in the “hard motion” study. At that minute there was, in 

total, one event observed (in the “hard motion” study). Under the null hypothesis, there should be no 

difference in the probability of observing an event for both studies. Thus, we would expect that the 

events should be distributed between the studies according to the fraction of participants that were 

exposed to the event in each study. Consequently, at t=5, we would expect 1∙0.429 = 0.429 events in 

the “soft motion” study and 1∙0.571 = 0.571 in the “hard motion” one. Note that we allow the expected 

number of events not to be an integer. 

At t=11 minutes, there were, in total, 47 participants under observation in both studies (in the “hard 

motion” study, one individual had an event at t=5 and one was “lost” from observation at t=6), with 

21 (44.7%) in the “soft motion” study and 26 (55.3%) in the “hard motion” study. At that minute there 

were, in total, two events observed (both in the “hard motion” study). Under the null hypothesis, we 

would expect 2∙0.447= 0.894 events in the “soft motion” study and 2∙0.553 = 1.106 in the “hard 

motion” one. 

At t=13 minutes, there were, in total, 45 participants under observation in both studies (as compared 

to t=11, two individuals had events at t=11 in the “hard motion” study), with 21 (46.7%) in the “soft 

motion” study and 24 (53.3%) in the “hard motion” study. At that minute there was, in total, one event 

observed (in the “hard motion” study). Thus, under the null hypothesis, we would expect 1∙0.467= 

0.467 events in the “soft motion” study and 1∙0.533 = 0.533 in the “hard motion” one. 

At this point, the idea of the calculations should be clear. After completing them for all the times from 

the list (see Table 3), we sum the numbers of expected events for each study. As a result, we obtain 

8.86 expected events for the “soft motion” study and 10.14 events for the “hard motion” study. Note 

that their sum (8.86+10.14=19) is equal to the total number of events (5+14=19) observed in both 

studies. By definition, this should be the case; this is a useful check of the correctness of the 

calculations.  

It is worth noting that the, in the “soft motion” study, the number of expected events (8.86) is larger 

than the number (5) of the observed ones, with the opposite pattern occurring in the “hard motion” 

study. This suggests that, in the “soft motion” study, we observed fewer events than would be 

expected under the null hypothesis, which might be taken as a signal that the risk of the event in that 

study would be smaller. 

However, the differences between the observed and expected numbers of events may be due to the 

play of chance. To formally compare them, we construct the following test statistic: 

(8.86-5)2/8.86 + (10.14-14)2/10.14=3.15. 

Note that, for each group, we take the squared difference (which allows disregarding the sign of the 

difference) and make it relative to the number of the expected events (to make it comparable). Now, 

the question is, whether the obtained value of the statistic (3.15) is large or small? It appears that, 

assuming the null hypothesis, we would observe, for the constructed statistic, values as large as 3.15 

with probability p=0.076. This is the p-value of our test; it was computed by using the chi-squared 

distribution with 1 degree of freedom. Given that the p-value is larger than the often-used significance 

level of 0.05, we cannot conclude that the result of the logrank test is statistically significant at that 

significance level. Thus, we cannot reject the null hypothesis that the survival functions for the two 

studies may be the same, despite the differences observed in Figure 3. 

 



Both studies “Soft motion” study “Hard motion” study 

time exposed events 
(obs) 

exposed events 
(obs) 

events 
(exp) 

exposed events 
(obs) 

events 
(exp) 

5 49 1 21 0 0.429 28 1 0.571 

11 47 2 21 0 0.894 26 2 1.106 

13 45 1 21 0 0.467 24 1 0.533 

24 44 1 21 0 0.477 23 1 0.523 

30 43 1 21 1 0.488 22 0 0.512 

50 42 1 20 1 0.476 22 0 0.524 

51 40 1 18 1 0.450 22 0 0.550 

63 39 1 17 0 0.436 22 1 0.564 

65 38 1 17 0 0.447 21 1 0.553 

69 36 2 16 0 0.889 20 2 1.111 

79 34 1 16 0 0.471 18 1 0.529 

82 33 3 16 1 1.455 17 2 1.545 

92 30 1 15 1 0.500 15 0 0.500 

102 29 1 14 0 0.483 15 1 0.517 

115 28 1 14 0 0.500 14 1 0.550 

Table 3. Results of the computation of the expected number events (given in the sixth and nineth 

column) for the motion-sickness studies. For the explanation of the details of the computation, see 

the text. 

A couple of comments are worth making here. First, the procedure presented above illustrates a 

simplified calculation of the test statistic. A more precise (though numerically more cumbersome) 

procedure leads to the value of 3.12 and p=0.073, without any difference for the conclusion. Second, 

the procedure can be extended to comparison of three or more survival functions by using the 

appropriate fractions of individuals remaining under the observation at each event time. In that case, 

the p-value of the test has to computed by using the chi-squared distribution with the number of 

degrees of freedom equal to the number of compared survival functions less one. 

Semi-parametric AFT and PH models 

As it has been mentioned earlier, the AFT and PH models can be used in a semi-parametric form. This 

means that they can be applied without making assumptions about the distribution of the TTE. Note 

that the models still require the estimation of the coefficients  (AFT) and θ (PH). For this reason, the 

models cannot be termed non-parametric. 

The main advantage of avoiding the need to make assumptions about the distribution of the TTE is the 

broader applicability of the models. However, the models still require that their assumptions about 

the proportional change of the mean (AFT) or hazard function (PH) are met. As it has been mentioned 

earlier, especially the PH assumption is a strong one. 

The semi-parametric PH model was developed in 1972 [5]. Almost immediately, software allowing the 

estimation of the coefficients (θ) of the model became available. This resulted in an enormous 

popularity of the semi-parametric PH model. For instance, treatment effects in clinical trials in 

oncology are almost exclusively reported in terms of the HR.  

The semi-parametric AFT model was proposed in 1981 [6]. However, the estimation of the coefficients 

() of the model is numerically complicated and no software implementation was readily available. 

This difficulty hampered the use of the model. Thus, for several decades, mainly the parametric version 



of the AFT model has been available for practical applications. This was the major obstacle for a 

widespread use of the AFT model in the context of, for instance, cancer clinical trials.  

In recent years, however, important developments have taken place regarding the numerical tools 

allowing the estimation of the coefficients of the semi-parametric AFT model [7]. Thus, the model is 

available for practical applications. 

For the data obtained in the two motion-sickness studies, the semi-parametric AFT model yields an 

estimate of =-0.73 and MR = e = e-0.73 = 0.48 (see Table 1). The MR value is somewhat closer to 1 as 

compared to the estimates obtained for the exponential and Weibull models. The estimated SE of the 

estimated  is equal to 0.55. As a result, the 95% CI for the true value of  is equal to (-1.83, 0.37). As 

for the exponential and Weibull AFT models, it includes 0, so we cannot reject the null hypothesis that 

the means of the TTE for the two studies are equal. The same conclusion is obtained by using the 95% 

CI for the MR, which is equal to (e-1.83, e0.37) = (0.16, 1.47) and includes MR=1.  

The semi-parametric PH model provides the estimates of θ=0.90 and HR = eθ = e0.9 = 2.46 (see Table 1). 

The HR is comparable to the estimates obtained for the exponential and Weibull PH models. The 

estimated SE of the estimated θ is equal to 0.52 and leads to the 95% CI for the true value of  equal 

to (-0.14, 1.94). As for the exponential and Weibull PH models, it includes 0, so we cannot reject the 

null hypothesis that the hazard functions of the TTE for the two studies are equal. The same conclusion 

is obtained by using the 95% CI for the HR, which is equal to (e-0.14, e1.94) = (0.87, 6.96) and includes 

HR=1.  

For the two motion-sickness studies, the results of the parametric and semi-parametric variants of the 

AFT and PH models are similar. As it is seen in Figure 4, the exponential-distribution-based estimates 

of the survival function agree quite well with the result of the non-parametric Kaplan-Meier estimator. 

Thus, it seems that, in the case of data collected in the two studies, the assumption that the TTE has 

an exponential (or Weibull) distribution may actually be appropriate. Taking this into account, the 

agreement between the results obtained by the parametric and semi-parametric models should not 

be surprising. 

It is worth noting that the (parametric and semi-parametric) AFT and PH models can easily be extended 
to allow for effects of more than one explanatory variable. For instance, if the motion-sickness studies 
provided information about the sex of participants, one could consider, for instance, the following AFT 
model (a similar extension would work for the PH model): 

(TTE-mean for females and “hard motion”) = (TTE-mean for females and “soft motion”)∙e 

(TTE-mean for males and “soft motion”) = (TTE-mean for females and “soft motion”)∙eδ 

(TTE-mean for males and “hard motion”) = (TTE-mean for females and “soft motion”)∙e∙eδ 

In this model, the multiplier e describes the change of the mean TTE for “hard motion” as compared 

to the “soft motion”, while eδ describes the change of the mean TTE for males. Note that, by using the 

product e∙eδ, we assume that the change of the mean due to the nature of motion is independent of 

the change due to the sex. If we wanted to make the changes to depend on each other, we could 

introduce the interaction effect, eτ say, and specify that  

(TTE-mean for males and “hard motion”) = (TTE-mean for females and “soft motion”)∙e∙eδ∙eτ 

In this model, the relative effect of “hard motion” for males is equal to e∙eτ, i.e., is additionally 

modified by eτ as compared to the effect of “hard motion” for females, which is equal to e.  



 

Discussion 

When the collected data include censored observations, classical methods of statistical analysis such 

as the sample mean, sample median, linear regression etc. cannot be applied. This is because they, in 

general, produce biased results. Sometimes censored observations are dealt with by using some 

simplistic “imputation” techniques in an attempt to apply the classical methods. For instance, 

measurements below the lower limit of detection (i.e., left-censored observations) are replaced by the 

half of the limit and, subsequently, the sample mean is used to estimate the (unknown) true mean 

value. Such approaches are best to be avoided, because they do not remove the bias. Instead, the data 

should be analyzed by using survival-analysis methods, which properly take into account the presence 

of censored observations.  

In this article, parametric and non-parametric methods of survival analysis have been discussed. Both 

approaches are applicable in dentistry and orthodontics. For instance, Kuthy et al. (2014) applied the 

Weibull-distribution-based parametric PH model to analyze the data collected in their retrospective 

study.  

The choice between the parametric and non-parametric approaches depends on the data at hand. 

Parametric methods yield, in general, more precise estimates and more powerful tests of statistical 

significance, thus they may be useful for smaller sample sizes. However, the results crucially depend 

on the validity of the parametric assumption. Hence, the validity should be carefully checked. 

Non-parametric methods are more robust in that respect, but they require larger sample sizes. Note 

that, in case of data with censored observations, the information comes primarily from the observed 

event times, i.e., uncensored observations. Thus, it is not the total sample size that matters, but the 

number of observed events.  
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