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Abstract

Part of the recent literature on the validation of biomarkers as surrogate endpoints
proposes to undertake the validation exercise in a multi-trial context which led to a
definition of validity in terms of the quality of both trial level and individual level as-
sociation between the surrogate and the true endpoints (Buyse et al., 2000). These au-
thors concentrated on continuous univariate responses. However, in many randomized
clinical studies, repeated measurements are encountered on either or both endpoints.
When both the surrogate and true endpoints are measured repeatedly over time, one
is confronted with the modelling of bivariate longitudinal data. In this work, we show
how such a joint model can be implemented in the context of surrogate marker val-
idation. In addition, another challenge in this setting is the formulation of a simple
and meaningful concept of “surrogacy”. We propose the use of a new measure, the
so-called variance reduction factor, to evaluate surrogacy at the trial and individual
level. On the other hand, most of the work published in this area assume that only
one potential surrogate is going to be evaluated.We also show that this concept will
let us evaluate surrogacy when more than one surrogate variable is available for the
analysis. The methodology is illustrated on data from a meta-analysis of five clinical
trials comparing antipsychotic agents for the treatment of chronic schizophrenia

Some Keywords: Bivariate longitudinal data, Randomized Clinical Trials, Surro-
gate Marker, Validation, Canonical Correlations.



1 Introduction

One of the most important factors influencing the duration and complexity of the process
of developing new treatments is the choice of the endpoint, which will be used to assess
the efficacy of a treatment. It often happens that the most sensitive and relevant clinical
endpoint, the so-called “true” endpoint, is difficult to use in a clinical trial. In that case,
the use of the true endpoint might increase the complexity and/or duration of the study. A
seemingly attractive solution for this problem is to replace the true endpoint by another one,
which may be measured earlier, more conveniently, or more frequently than the endpoints

of interest. Such “replacement endpoints” are termed “surrogate” endpoints.

However some failed attempts in the past, when using surrogates instead of true endpoints,
make clear that before deciding to use a surrogate, it is of the utmost importance to inves-
tigate its validity. Recent literature on the validation of biomarkers as surrogate endpoints
has focused on different points of view. Prentice (1989) defines surrogacy in terms of the
equivalence of hypothesis tests for treatment effects and proposes operational criteria for his
definition. Freedman, Graubard and Schatzkin (1992) introduced the proportion explained to
quantify how much of the treatment effect on the true endpoint is captured by the surrogate
endpoint. Buyse and Molenberghs (2000) decomposed the proportion explained into the
relative effect and adjusted association and argued in favor of these quantities instead. These
proposals were formulated assuming that the validation of a surrogate is based on data from a
single randomized clinical trial. This leads to problems with untestable assumptions and too
low statistical power. To overcome these problems, Albert et al. (1998) suggested to combine
information from several groups of patients (multi-center trials or meta-analyses). This was
implemented by Daniels and Hughes (1997), Gail et al. (2000) and Buyse et al. (2000). The
latter suggested a multi-trial approach that led to a new definition of validity in terms of the

quality of both trial level and individual level association between the surrogate and the true



endpoint. In their approach, the quality of a surrogate at the trial level is assessed by means

of a coefficient of determination R2 . At the individual level, the squared correlation R?

trial®
between the surrogate and true endpoint, after adjustment for both the trial effects and the
treatment effects is used. A surrogate will be said to be good when both R2,  and R?, are
sufficiently high. However most of the previous work focuses on univariate responses. Going
from a univariate setting to a multivariate framework represents new challenges. The R?
measures proposed by Buyse et al., are no longer applicable. These authors proposed their
methodology based on the simplest cross-sectional case in which both the surrogate and the
true endpoint, are continuous and normally distributed. Subsequently, different variations
to the theme were implemented for binary responses, times to event, mixtures of binary and
continuous endpoints, etc. In all of these cross-sectional cases, one assumed that only one
potential surrogate was available and that treatment effect on both responses was constant
over time and could be characterized by a single parameter. The previous assumptions can

fail when a patient is measured repeatedly over time. Extending the methodology to this

setting opens some new conceptual problems.

The objective of this paper is to study surrogate and true endpoint that are both longitudinal.
To this end, an additional challenge is to summarize “surrogacy”’ in simple measures. We
propose the use of the so-called variance-reduction factor (VRF). Technically, a joint model

for multivariate repeated measurements is required. Useful references on this topic include

Galecki (1994), Sy, Taylor and Cumberland (1997), Jorgensen et al. (1999).

The paper is organized as follows: Section 2 introduces a joint model for bivariate longi-
tudinal data. Section 3 defines the variance reduction factor to evaluate surrogacy when
repeated measurements for surrogate and true endpoints are available. Section 4 illustrates
the methodology on data from a meta-analysis of randomized clinical trials comparing an-

tipsychotic agents for the treatment of chronic schizophrenia.



2 Model Formulation

In many practical applications, repeated measurements are encountered on either or both
endpoints. In analogy to the cross-sectional setting considered by Buyse et al. (2000),
we will base the calculation of surrogacy measures on a two-stage approach rather than
a full random effects approach, to reduce numerical complexity. Technically, we need (1)
a model for bivariate longitudinal outcomes, and (2) new measures that let us evaluate
surrogacy when longitudinal data is available. In this section we focus on the former issue
and introduce a possible joint model for bivariate longitudinal outcomes along the ideas of
Galecki (1994). An advantage of this approach is that it can be easily implemented within
standardly available software programs. The extension towards more flexible modelling

structures for bivariate longitudinal data is the topic of future research.

In the case of univariate longitudinal endpoints one can consider different types of covariance
structures, including compound symmetry, autoregressive, banded, factor-analytic, spatial,
unstructured, etc. Here, however, we have repeated measurements on two outcome variables,
the surrogate and the true endpoint. A possible joint covariance structure can then be based
on the Kronecker product of (1) an unstructured covariance matrix for the type of outcome
and (2) a suitable covariance structure for the repeated measurements on an outcome. While,
in the setting of Buyse et al. (2000) the error variance-covariance matrix could be assumed
constant over all trials, this assumption is no longer plausible in most practical longitudinal
settings. Measures could be taken at different time points within different trials, the number
of measurements could be different in each trial, etc. Therefore, we will allow for different

covariance structures over the different trials.

Suppose we have data from ¢ = 1,..., N trials in the ¢th of which j = 1,... n; subjects are

enrolled and further suppose that t;; is the time at which subject j in trial ¢ was measured.



Let T;;; and S;;; denote the associated true and surrogate endpoints, respectively, and let
Z;; be a binary indicator variable for treatment. Following the ideas of Galecki (1994), a
possible joint model at the first stage for both responses can then be written as

Tyjt = pry + BiZs; + g1, (ts;) + 13,

: (1)

Sijt = ps; + i Zig + gs,(ti;) + €5y,
where pg, and fp, are trial-specific intercepts, «;, §; are trial-specific effects of treatment
Z;; on the two endpoints and g7, and gg, are trial-specific time functions. Note that, even
though in practice T;; and S;; are frequently measured at the same time points, model (1)
would let us approach situations in which this condition does not hold. The vectors £,
and €s,; are correlated error terms, assumed to be jointly mean-zero multivariate normally
distributed with covariance matrix

5 ( orri 0TS ) ® R, (2)

orsi 08Si

In the aforementioned formulation, R; reflects a general correlation matrix for the repeated
measurements of the responses. A frequent choice in practice would be the first order autore-

gressive structure (in case measures are equally spaced, otherwise a spatial-type structure is

better)
Ri=1 : : Do
A S|

where p; denotes the number of designed time points at trial z.

As we will argue in what follows, the above model is, of course, not free from assumptions.
It is therefore important to check the model assumptions in each specific example. However,
the measures of surrogacy we will propose, also hold covariance models, more general than

the one defined in (2).

Due to replication at the trial level, we can impose a distribution on the trial-specific para-



meters. At the second stage, we therefore assume

Hs; hs Mg,
) M.
:u’Tz — IU’T + T; 7 (3)
Qy; 07 Q;
Bi p bi

where the second term on the right-hand side is assumed to follow a zero-mean normal

distribution with covariance matrix D.

In the special case of a single measurement per response, Buyse et al. (2000) examined
the validity question at each of these two levels. They argue that a key motivation for
validating a surrogate endpoint is to be able to predict the treatment effect on the true
endpoint, based on the observed effect of treatment on the surrogate endpoint and that it
is therefore essential to explore the quality of the prediction of the treatment effect on the
true endpoint by information obtained in the validation process based on trialsz=1,..., N
and by information available on the surrogate endpoint in a new trial ¢ = 0, say. A measure
to assess the quality of a surrogate at the trial level is then calculated based on some of the
elements of D. It is given by the coefficient of determination
Ao\ [ des dsa ) da
o)) () .

trial ~ dbb

This coefficient measures how precisely the effect of treatment on the true endpoint can be
predicted, provided that the treatment effect on the surrogate endpoint has been observed
in a new trial (z = 0). It is unitless and ranges in the unit interval if the corresponding
variance-covariance matrix D is positive-definite, two desirable features for its interpretation.
The association between the surrogate and final endpoint after adjustment for the effect of
treatment and trial is captured by

Rind = ——, (5)

OssOrr



Although the inclusion of fixed trial-specific treatment coefficients in our model enables us

to estimate RZ.  at the trial level, at the individual level the R? proposed by Buyse et

trial
al (2000) is no longer applicable and new proposals are needed. Even at the trial level
extensions may be necessary for more complicated models where treatment effects may vary
over time. Hence, there is a clear need for alternative approaches to summarize “surrogacy”

in simple yet meaningful measures. In the next section, we propose the use of the so-called

variance reduction factor (VRF) to this effect.

3 Variance Reduction Factor

From Section 2 we know that, in general, the error vector £r,; and €g,; follow a multivariate

normal distribution with variance-covariance matrix

5 Yrri 2Tsi
' YTei Lssi

where Xpr; and Ygg; are the variance-covariance matrices associated with the residual vectors
ér,; and £g,; respectively and Yirg; contains the covariances between the elements of 7, and
the elements of £s,. Hence, we allow for a different covariance structure in each clinical
trial, thus leaving the possibility to tackle very general problems for which the assumption

of homogeneous covariance structures over trials would be overly restrictive. Note that,

under model (2), Xpp; = orpi Ry, Yssi = 0ssiRi, and Yrg; = orsi R;.

To validate a surrogate endpoint at the individual level in an univariate setting, Buyse et
al.(2000) suggested to look at the correlation between the surrogate and the true endpoint
after adjustment for trial and treatment effects. Instead, we propose a new concept, named
the Variance Reduction Factor (V RF'). Essentially, we summarize the variability of the
repeated measurements on the true endpoint by the trace of its variance-covariance matrix

and sum this over all trials. In a similar way, we summarize the conditional variability of the



true endpoint measurements, given the surrogate by the trace of the conditional variance-
covariance matrix summed once more over trials. Following these ideas the relative reduction

in the true endpoint variance after adjusting by the surrogate can be quantified as

Z{tr(ETTi) — tl’(z(ﬂs)i)}
VRE,, = S ) : (6)

where ¥(7)5), denotes the conditional variance-covariance matrix of €z,; given €g,.: X7y =
Yrri — YreiYgs; kg, Intuitively, expression (6) tries to quantify how much of the total
variability around the repeated measurements on the true endpoint is explained by adjusting
for the treatment effects and the repeated measurements on the surrogate endpoints. In that
respect, expression (6) fits into the general definition of the “proportion of variation of a
dependent variable, Y, explained by a vector of covariates X” (PVE) in general regression

models
_ SAD) - DX}
> D(Y)) ’

where D(Y;) denotes a measure of distance of Y; from a central location parameter of the

PVE

estimated marginal distribution of Y and D(Y;|X;) denotes the same measure using distrib-

utions of Y conditional on a given model and on the covariate vector for the 7th observation

(Schemper and Stare 1996).

Further one can show (i) that the V RF,,, ranges between zero and one, (ii) that the V RF,,
equals zero if and only if the error terms of the true and surrogate endpoints are independent
within each trial, (iii) that the V RF,, equals one if and only if there exists a deterministic
relationship between the error terms of the true and surrogate endpoints within each trial
and finally (iv) that the V RF,,, reduces to the R?, when the endpoints are measured only

once.

If model (1) is considered then the V RF, 4 can be rewritten in terms of the squared corre-

. 0T5s;q . . .
lations (p%Si = st ) between surrogate and true endpoints at each time point at the

O0TTi05S4%
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different trialsz=1,..., N

PioTTi
VRFE,.=)_ <i> Prsn

B > i DiOTTi

The latter expression yields an appealing interpretation of the VRF. Indeed, the VRF is just
a sum of different trial contributions, where each contribution is the product of the squared
correlation between the surrogate and the true endpoint at each time point in that trial with

the proportion of the total true endpoint variance that is accounted for by that trial.

In addition, the VRF can be incorporated into a much more general framework that al-
lows interpretation in terms of the canonical correlations of the error term vectors. Indeed,
if at trial ¢+ we have p; time points then we will also have t = 1,...,p; canonical corre-
lations ,of for (éxy;,€s;;) such that p’f > ,02; > > ,ofi and ,of are the eigenvalues of
Z;;/i?ETSiEgéiEg&E;%Q. Now, one can show that the VRF can be written as a linear com-
bination over all trials and over all timepoints within a trial of the canonical correlations of
the error terms. The coefficients in this linear combination need to be positive and sum to 1.
The investigation of advantages and disadvantages of this canonical correlation framework

as well as the potential extension to non-normal data will be a topic of further research.

As mentioned before, as soon as the treatment effect cannot be assumed to be constant over
time, the classical multi trial approach becomes inapplicable as well at the trial level and
other approaches are needed. In this case the treatment effect at the ith trial could not be
characterized by the scalars 3; and «; but by the p; dimensional vectors BZ and &, Verbyla

(1999).

For reasons explained earlier it would then be unrealistic to assume that the variance-

covariance matrix D is constant over the trials. We can then define the Variance Reduction



Factor at the trial level (V RF}.;4). Suppose that (BZ, 5@) ~ N ( (BZ, o‘zi) ,Di) , with

. — [ Posi Dpai
;=
D[j;m' Daai
Here (BZ, @;) is the 2p; dimensional mean treatment effect vector at the ith trial. Then we

can define, similarly to the individual level and with straightforward notations, V RF;,.,, as
>~ {tr(Dsss) — tr(Diglans)}
Z tl’(Dﬁgi)

V RF, trial — (7)
The properties stated above can now be easily extended for the trial level and in case of a

single normally distributed endpoint it can be shown that V RE,,,, = R?

trial *

The scope of this methodology is not limited to the longitudinal framework, there are other
settings in which the use of these tools can be appealing. Most of the work published in
this area assumes that only one potential surrogate is going to be evaluated. However in
many practical situations the analyst has to study surrogacy in a multivariate framework,
for instance, it is plausible to think that a treatment can affect a medical condition in a very
complex way acting at the same time on different factors. Therefore it would be sensible to
presume that prediction of the treatment effect on the true endpoint can be substantially
improved if we use the information about the treatment effect not only on a single surrogate

but on a whole set of possibly relevant variables.

Let us consider again the setting used by Buyse et al.(2000) to introduce their R? measure-
ments but assuming that two potential surrogates are now available. At the first stage the

following multivariate regression model is assumed

Tij = pr, + BiZij + e,
Slij = sy, + a’liZij + 55127' (8)
Saij = psy; + Q2 Zij + Esy
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where: (5Tij, €811 6522,].) ~ N (0,%). At the second stage we will by way of illustration assume

that (f;, g, agi) ~ N (8, a1, ) , D) where

20+0 o o
D = o c 0
o 0 o

If we now apply the methodology proposed by Buyse et al.(2000) on both surrogates sepa-

rately then it is not difficult to show that

o
R} =R} ="
ltrial 2trial 20_ _|_ 0

whereas if both of them are considered jointly with the VRF concept to evaluate surrogacy

then we obtain
20

Eriaz .
Vi 20 +0

This leads us to a very interesting point about the new concept. Reasoning at the population
level, note that Var(3;|au;, ag;) = 6 and hence it is clear that for small values of 6 there is an
almost deterministic relationship between [; and (ay;, ag;). This will imply that we should be
able to predict the treatment effect on the true endpoint with a high precision if the treatment
effects on both surrogates S; and S; are known. However, these surrogates would poorly
predict the treatment effect on the true endpoint if they were considered independently as

can be concluded from the expressions

P2 i P2 _
él_I)%R (0) = él_I)%R (0) = 0.5.

ltrial 2trial

On the other hand, the V RF,,,, clearly reflects that, in this setting, a very accurate prediction

for the true endpoint treatment effect can be obtained if both endpoints are jointly used:

lim V RE,..(0) = 1.
6—0

Of course, while in practice effects like this would be milder, because we would have to

take measurement error due to finite sampling into account (Gail et al 2000), the previous

11



example does illustrate that a lot can be gained if more than a single surrogate is used. In
principle, any number of potential surrogates could be studied and even several endpoints

and several surrogates could be analyzed in a multivariate framework.

4 Case Study: a Meta-analysis of Trials in Schizophrenic
Subjects

In this section we apply the proposed definition to individual patient data from a meta-
analysis of five double-blind randomized clinical trials, comparing the effects of risperidone
to conventional antipsychotic agents for the treatment of chronic schizophrenia. Only sub-
jects who received doses of risperidone (4-6 mg/day) or an active control (haloperidol, per-
phenazine, zuclopenthixol) were included in the analysis. Depending on the trial, treatment

was administered for a duration of 4 to & weeks.

Our meta-analysis contains five trials. This is insufficient to apply the meta-analytic methods
described in previous sections, in line with findings reported in Buyse et al (2000), where
it is shown that a sufficient amount of replication at all levels is necessary to identify all of
the variance components, preferably with a decent amount of precision. Fortunately, in all
the trials information is also available on the countries where patients were treated. Hence,
we can use country within trial as unit of analysis. A total of 20 units are thus available
for analysis, with the number of patients ranging from 9 to 128. The number of patients

per country is tabulated in Table 1. The choice of the unit is an important issue and it is

Table 1: Number of Patients per Country-unit
CountryId 1 2 3 4 5 6 7 8 9 10
# Patients 31 29 26 44 44 9 37 32 68 49
Country Id 11 12 13 14 15 16 17 18 19 20
# Patients 43 21 25 39 36 17 33 69 30 128

12



not free of controversy. It can depend on practical considerations, such as the information
available in the data set at hand and also on experts’ considerations about the most suitable
unit for a specific problem. In general, the choice of the unit should be made considering
different aspects like physician’s opinion, statistical ideas, information available in the data
and so on. Ideally, both the number of units and the number of patients per unit should be
sufficiently large to avoid numerical problems (Buyse et al 2000). For the specific context of
schizophrenia, Molenberghs et al (2002) reported a particular instance where choice of units
(investigator versus main investigator) has a mild impact only. These authors also compare
results from two different trials. Of course, this is only evidence from a particular, though
important, example. Cortinas et al (2003) study a three-level hierarchy (e.g., country, trial,
and patient) and the impact on the assessment of surrogacy when either all three levels are
used for analysis or when one of the levels is ignored instead. For a number of situations,
these authors give explicit formulas for the remaining variance components and hence R?
measures, in case a level is ignored, as well as guidelines regarding the estimation strategy

to obtain the best possible estimate in such cases.

Several measures can be considered to assess a patient’s global condition. The Clinician’s
Global Impression (CGI) is generally accepted by practitioners as a reliable clinical measure
of patient’s status. This is a 7-grade scale used by the treating physician to characterize how
well a subject has improved. Another useful and sufficiently sensitive assessment scale is the
Positive and Negative Syndrome Scale (PANSS). PANSS consists of 30 items that provide
an operationalized, drug-sensitive instrument, which is highly useful for both typological and

dimensional assessment of schizophrenia.

Even though this is not a standard situation for surrogate validation due to the lack of a
clear “gold” standard, we consider as our primary measure (true endpoint) the Clinician’s

Global Impression scale which is the one that has the clearest clinical interpretation.
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It is important to notice that even though in this case a clear “gold” standard is not available,
our analysis will let us address some very important issues. At the trial level it will allow a
flexible assessment of a common question among practitioners, i.e. how a treatment effect
on PANSS can be translated into a treatment effect on CGI which is easier to interpret
clinically. On the other hand, at the individual level a VRF equal to one will imply that
the variability of CGI conditional on PANSS and the treatment effect is equal to zero. In
other words, it would mean that CGI could be estimated without error from PANSS. Other
values of the VRF will give us different levels of evidence about how strong the association

between both scales is.

In our model we use log(CGI) and log(PANSS) instead of the original variables to stabilize the
variances. Figure 1 shows the individual profiles for log(CGI) and log(PANSS) by treatment

groups. In all the panels a linear time trend seems plausible.

FIGURE (1) — ABOUT HERE

We applied the two-stage approach introduced in Section 2 to these data. At the first stage
different choices of gr; and gg; can be considered, each of them leading to different bivariate
joint models. Four different models were fitted. Here k = 1,2 denote the true endpoint

(CGI) and the surrogate scale (PANSS) respectively

1. Linear trend over time within each trial: gg;(t) = Oyt

2. Random intercept model: This model assumes a linear trend over time and independent

random intercepts are considered for each scale within each trial, gy;(t) = Okt + by

3. Random intercept and slope model: A linear trend over time and independent random
intercepts and slopes are considered for each scale within each trial , gg;(t) = Okt +

broi + b1it
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4. General trend over time modeled using splines via random effects as proposed by
Verbyla et al.(1999), gri(t) = ling(t) + sply;(¢). The term ling;(t) denotes the linear
effect of ¢;; and contributes a single regression parameter (slope) and sply;(¢) denotes

the corresponding random-spline component.

The AIC criterion was then used to select the best model in each trial and model (1) had
the best performance in all them. The comparison of model (1) with the bivariate cubic
smoothing splines model showed that, for the data at hand, a linear trend over time seems
to be a good model for the mean structure of both scales in all the trials which is in total

agreement with the profiles displayed in figure 1.

The estimated log(CGI) variance components (é7r;), the estimated log(PANSS) variance
components (7sg;), the log(CGI)—log(PANSS) correlation as well as p; parameter, separately
for each unit were obtained. All these variance components are plotted in Figure 2, which
clearly shows that the assumption of a constant covariance structure over all trials is not

really plausible, as already suggested before.

FIGURE (2) — ABOUT HERE

If we now want to study the relationship between the log(CGI) and the log(PANSS), then it

is clear that the R?

ind

measure proposed by Buyse et al. (2000) is no longer useful in such a
general situation with a complex variance-covariance structure for the bivariate longitudinal
data which cannot be assumed to be constant over trial. In contrast, the V RF,, that we
proposed in Section 3 does provide an adequate summary measure for the validation at the
individual level. By applying the two-stage approach based on model 1 we obtained an
estimate for VRF of 0.39 (95% confidence interval: [0.36;0.41]). Note that we could modify

our confidence interval estimation to include measurement error present in the estimation
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of the variance components. While this issue is of importance (Gail et al 2000), results
by Tibaldi et al (2003) have shown that in cases similar to the one considered here, the

improvement was minor but the computational burden increased considerably.

This shows that after adjusting for the surrogate log(PANSS) there is a relative reduction
in the marginal variance of log(CGI) of 39 percent. Of course, this should be interpreted as
an “average” reduction due to the fact that we are summing over trials. Hence, log(PANSS)

seems to be a rather poor surrogate for log(CGI) at the individual level.

Our procedure also allows us to estimate the contribution of each trial to the meta-analytic

VRF. Within each unit we can define

VRFZ _ tr(ETTZ-) — tr(E(T|S)Z~)
ind tr(ZTTi) ’

The first panel of figure 3 shows the different trial contributions as well as the VRF meta-
analytic value. From the graph it is clear that in most of the trials there was a relative weak
association between the surrogate and the true endpoint, with values of the VRF smaller

than 0.6 in almost all the cases.

FIGURE (3) — ABOUT HERE

At the trial level the results are much more encouraging. Since treatment is assumed not to

vary with time, the R?

trial

, as introduced by Buyse et al. (2000) can still be calculated. We find

a value of B2, of 0.85. The resulting correlation between treatment effects on log(CGI) and

‘trial
log(PANSS) equals 92% suggesting that a reliable prediction can be made of the treatment
effect on log(C'GT) having observed the treatment effects on log(PANSS). Graphically this

is represented in the second panel of figure 3 which plots the treatment effects on log(CGI)

16



by the treatment effects on log(PANSS). The size of each point is proportional to the number

of patients within a unit.

A 95% confidence interval for B2, was obtained using bootstrap. Precisely, patients within
trials were resampled, with the models refitted on the bootstrap samples. The «; and (;,

estimated from these samples were then used to calculate the R?

trial

measures, as well as the

confidence intervals. The so-obtained confidence limits for R2

trial

are [0.68; 0.95].

5 Concluding Remarks

In the past decade, research on the use of surrogate endpoints concentrated mainly on the
development of criteria and methods of validation for surrogate endpoints. The use of a
meta-analysis approach, as introduced by Daniels and Hughes (1997), Gail et al. (2000) and
Buyse et al. (2000) was a promising way forward compared to the single-trial approaches that
were proposed previously and that coped with serious conceptual problems; Lin, Fleming

and De Gruttola (1997); Buyse et al. (2000); Molenberghs et al. (2002).

However most of the previous work focused on univariate responses for the surrogate and
true endpoints. Going from an univariate setting to a multivariate framework presents
new challenges. In this paper, we proposed a new concept to validate surrogate endpoints
within the meta-analytic framework but in more complicated contexts. Even though in many
practical situations the analyst has to study surrogacy in a multivariate framework up to
now most of the research developed in this area assume that only one potential surrogate is
going to be evaluated. The example constructed in Section 3 clearly shows that a lot can be

lost if we limit ourselves to the analysis of single surrogates.

The VRF concept introduced here to evaluate surrogacy when repeated measurements are

present in both endpoints gives us the possibility of approaching the surrogacy problem from
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a new point of view. In principle, any number of potential surrogates can be studied.

In some practical situations there is no clear idea about which variable (or variables) could
be the best possible surrogate for certain endpoint of interest. The VRF allows us to explore
which subset of potential surrogates would be optimal. Another important limitation in the
current surrogacy literature is that most of the techniques are designed for two treatments
only. However, the use of three or more treatments in clinical trials is common practice in
some medical fields. The tools introduced in the present work allow to study surrogacy in

this setting as well.

It is important to notice that in our specific example PANSS can be considered continuous
given its large number of items. Nevertheless more debate surrounds the CGI scale. Although
many researches might argue that a 7-itemed scale can be considered continuous, others
might find this an unrealistic assumption. In the present work we have followed historical
papers in which CGI has been treated as a continuous scale and the results obtained seem

to be biologically plausible.

On the other hand fitting a joint model to analyze mixtures of discrete and continuous
responses in a longitudinal framework is a challenging task. Most research so far have con-
centrated on simultaneous analyses of binary and continuous responses. Further extensions
of our methodology using models for different types of responses are necessary and will be

the objective of future work.
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Figure 1: log(CGI) and log(PANSS): Mean profiles.

21



Figure 2: Variance Components.
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Figure 3: First panel: VRF trials contributions (V RF? ) and Meta-analytic VRF. Second
panel: Treatment effect for BPRS vs treatment effect for PANSS
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