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A B S T R A C T

Infectious disease outbreaks can have a disruptive impact on public health and societal processes. As decision-
making in the context of epidemic mitigation is multi-dimensional hence complex, reinforcement learning in
combination with complex epidemic models provides a methodology to design refined prevention strategies.
Current research focuses on optimizing policies with respect to a single objective, such as the pathogen’s
attack rate. However, as the mitigation of epidemics involves distinct, and possibly conflicting, criteria
(i.a., mortality, morbidity, economic cost, well-being), a multi-objective decision approach is warranted to
obtain balanced policies. To enhance future decision-making, we propose a deep multi-objective reinforcement
learning approach by building upon a state-of-the-art algorithm called Pareto Conditioned Networks (PCN) to
obtain a set of solutions for distinct outcomes of the decision problem. We consider different deconfinement
strategies after the first Belgian lockdown within the COVID-19 pandemic and aim to minimize both COVID-19
cases (i.e., infections and hospitalizations) and the societal burden induced by the mitigation measures. As such,
we connected a multi-objective Markov decision process with a stochastic compartment model designed to
approximate the Belgian COVID-19 waves and explore reactive strategies. As these social mitigation measures
are implemented in a continuous action space that modulates the contact matrix of the age-structured epidemic
model, we extend PCN to this setting. We evaluate the solution set that PCN returns, and observe that it
explored the whole range of possible social restrictions, leading to high-quality trade-offs, as it captured the
problem dynamics. In this work, we demonstrate that multi-objective reinforcement learning adds value to
epidemiological modeling and provides essential insights to balance mitigation policies.
1. Introduction

Infectious disease outbreaks represent a major challenge (Miranda
et al., 2022). To this end, understanding the complex dynamics that un-
derlie these epidemics is essential. Epidemiological transmission mod-
els allow us to capture and understand such dynamics and facilitate
the study of prevention strategies through simulation. However, de-
veloping efficient mitigation strategies remains a challenging process,
given the non-linear and complex nature of epidemics. To address these
challenges, reinforcement learning provides a methodology to automat-
ically learn mitigation strategies in combination with complex epidemic
models (Libin, Moonens, et al., 2021). Previous research focused on
optimizing policies with respect to a single objective, such as the
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pathogen’s attack rate, while the mitigation of epidemics is a problem
that inherently covers distinct and possibly conflicting criteria (i.a.,
prevalence, mental health, cost). Therefore, optimizing on a single ob-
jective requires that these distinct criteria are somehow aggregated into
a single metric. Manually designing such metrics is time-consuming,
costly and error-prone, as this non-intuitive process requires repetitive
and tedious tuning to achieve the desired behavior (Roijers, Vamplew,
Whiteson, & Dazeley, 2013). Moreover, taking a single objective ap-
proach reduces the explainability of the learned solution, as we cannot
compare the learned behavior with alternatives (Hayes et al., 2021).

This challenging process can be circumvented by taking an explicitly
multi-objective approach that aims to learn the different trade-offs
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957-4174/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.eswa.2024.123686
Received 9 July 2023; Received in revised form 12 February 2024; Accepted 13 M
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

arch 2024



Expert Systems With Applications 249 (2024) 123686M. Reymond et al.

𝐬

regarding the considered criteria. By assuming that a decision maker
will always prefer solutions for which at least one objective improves,
it is possible to learn a set of optimal solutions referred to as the Pareto
front (Hayes et al., 2021). This enables decision makers to review each
solution on the Pareto front before making a decision, thereby being
aware of the trade-offs that each solution implies.

In this work, we investigate the use of multi-objective reinforcement
learning (MORL) to learn a set of solutions that approximate the Pareto
front of multi-objective epidemic mitigation strategies. We consider the
first wave of the Belgian COVID-19 epidemic, which was mitigated
by a strict lockdown (Willem et al., 2021). When the incidence of
confirmed cases was steadily decreasing, epidemiological experts were
tasked to investigate deconfinement strategies, to reduce the severe
social contact and mobility restrictions. Here, we consider an epidemi-
ological model that was constructed to describe the Belgian COVID-19
epidemic and was fitted to hospitalization incidence data and serial
sero-prevalence data (Abrams et al., 2021). This model constitutes
a stochastic discrete-time age-structured compartmental model that
simulates mitigation strategies by varying social distancing parameters
concerning school, work and leisure contacts. Based on this model,
we contribute a novel multi-objective epidemiological reinforcement
learning environment (Multi-Objective Belgian COVID environment,
MOBelCov), in the form of a multi-objective Markov decision process
(MOMDP) (Roijers et al., 2013). MOBelCov encapsulates the epidemi-
ological model developed by Abrams et al. (2021) to implement state
transitions, with an action space that combines a proportional reduction
of school, work and leisure contacts at each time step, Furthermore,
it defines a reward function based on two objectives: the attack rate
(i.e., proportion of the population affected by the pathogen) and the
social burden that is induced by the mitigation measures.

To learn and explore the trade-offs between the attack rate and
social burden we use a state-of-the-art MORL approach based on Pareto
Conditioned Networks (PCN) (Reymond, Eugenio, & Nowè, 2022). PCN
uses a single neural network to learn the policies that belong to the
Pareto front. As PCN is an algorithm designed for discrete action-
spaces, we extend it towards continuous action-spaces to accommodate
MOBelCov’s action-space. With this continuous action variant of PCN,
we explore the Pareto front of multi-objective COVID-19 mitigation
policies. As PCN makes no assumptions about the shape of the coverage
set, it is particularly well suited for the complex decision problem that
we consider, for which the shape of the coverage set is not known a
priori.

By evaluating the solution set of mitigation policies learned by PCN,
we observe that PCN minimizes the social burden in scenarios where
hospitalization rates are sufficiently low. Therefore, in this work we
illustrate that multi-objective reinforcement learning can provide im-
portant insights concerning the trade-offs between complex mitigation
polices in real-world epidemiological models.

In Section 2, we formally introduce multi-objective reinforcement
learning and explain a series of commonly used metrics to evaluate
MORL learning performance. In Section 3, we introduce the methods
used in this work, which includes the epidemiological model, the
MOMDP that encapsulates this model, a short description of the Pareto
Conditional Networks (PCN) MORL algorithm, and the extensions that
were required to PCN. In Section 4, we present our experimental results
regarding our study of the COVID-19 exit strategies, in terms of the
social burden and hospitalization rates. In Section 5, we present the
literature that is related to our study. In Section 6, we interpret our
experimental results, discuss the limitations of our work, and look into
future research avenues.

2. Multi-objective reinforcement learning

Real-world decisions problems typically consider multiple and pos-
sibly conflicting objectives. Multi-objective reinforcement learning
2

(MORL) can be used to find optimal solutions for sequential deci-
sion making problems with multiple objectives (Hayes et al., 2021).
Multi-objective sequential problems are typically modeled as a multi-
objective Markov decision process (MOMDP), i.e., a tuple,  =
⟨ ,,  , 𝛾,⟩, where ,  denote the state and action spaces respec-
tively,  ∶ ×× → [0, 1] denotes a probabilistic transition function,
𝛾 is a discount factor determining the importance of future rewards and
∶×× → R𝑛 is an 𝑛-dimensional vector-valued immediate reward
function, where 𝑛 corresponds to the number of objectives.

While MOMDPs define the actions an agent can take, it does not
define the agent’s behavior, i.e., which actions are taken in each state.
Given this MOMDP, an agent follows a policy 𝜋, that expresses the
probability to take action 𝑎 ∈  when in state 𝐬 ∈ :  × → [0, 1]. We
measure the performance of 𝜋 through the expected sum of discounted
rewards (denoted the Value 𝐕𝜋) it achieves from the initial state 𝐬0 until
the end of the decision problem:

𝐕𝜋 = E

[ ℎ
∑

𝑡=0
𝛾 𝑡𝐫𝑡| 𝜋, 𝐬0

]

, (1)

where 𝐫𝑡 corresponds to the multi-objective reward observed at time 𝑡,
by following policy 𝜋, given by the reward function (𝐬𝑡, 𝑎𝑡, 𝐬𝑡+1), where
𝑡 is the current state, 𝑎𝑡 corresponds to the action that was taken, and
𝐬𝑡+1 signifies the state reached by taking action 𝑎𝑡.

On the one hand, for single-objective RL, where 𝑛 = 1, the goal is
to find the policy 𝜋∗ that maximizes the 𝑉 -value:

𝜋∗ = argmax
𝜋
𝑉 𝜋 . (2)

On the other hand, for MORL, 𝑛 > 1 which leads to vectorial returns.
In this case, there can be policies for which, without any additional
information, it is impossible to know if one is better than the other.
For example, it is impossible to decide which policy between 𝜋1, 𝜋2 is
optimal if both policies lead to expected returns 𝐕𝜋1 = (0, 1),𝐕𝜋2 = (1, 0)
respectively. We call these solutions non-dominated, i.e., solutions for
which it is impossible to improve an objective without decreasing the
value of another. The set that contains all the non-dominated solutions
of the decision problem is called the Pareto front  . Our goal is to find
the set of policies that lead to all the 𝑉 -values contained in the Pareto
front 𝛱∗ = { 𝜋|𝐕𝜋 ∈ }. In general, we call any set of 𝑉 -values a
solution set. When a solution set contains only non-dominated 𝑉 -values,
it is referred to as a coverage set. In the case that no 𝜋 exists that has a
𝐕𝜋 dominating any of the solutions in a coverage set, then this coverage
set is the Pareto front.

2.1. Multi-objective metrics

Comparing the learned coverage sets produced by different algo-
rithms is a non-trivial task, as one algorithm’s output might dominate
the other in some region of the objective-space, but be dominated
in another. Intuitively, one would generally prefer the algorithm that
covers a wider range of decision maker preferences.

A widely used metric in the literature is called the hypervolume (Zit-
zler, Thiele, Laumanns, Fonseca, & Da Fonseca, 2003). This metric
evaluates the learned coverage set by computing its volume with
respect to a fixed reference point. The reference point is taken as
a lower bound on the achievable returns so that the volumes are
always positive. By definition, the solutions contained in the Pareto
front dominate all other possible solutions. Thus, no other solution can
further increase the volume under the Pareto front. This means that the
hypervolume is the highest for the Pareto front. One drawback of the
hypervolume is that it can be difficult to interpret. For example, when
working in high-dimensional objective-spaces, adding or removing a
single point can drastically change hypervolume values, especially if
the point lies close to an extremum of said space.

To counterpoise these shortcomings, we can consider an additional
metric called the 𝜀-indicator 𝐼 (Zitzler et al., 2003), which measures
𝜀
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Fig. 1. Example of a Pareto front (black dots) and a coverage set (white dots) in a
2-objective environment. The hypervolume metric (in light blue) measures the volume
of all dominated solutions with respect to a reference point (cross). The reference point
is taken as a lower bound on the achievable returns, which is why it can differ from
the origin. The 𝜀 metrics first compute the maximum distance between each point in
the Pareto front and its closest point in the coverage set (𝜀𝑖). We can then take their
maximum value to compute the 𝐼𝜀 metric, or their mean value to obtain the 𝐼𝜀−𝑚𝑒𝑎𝑛
metric of the coverage set.

how close a coverage set is to the Pareto front  . Intuitively, 𝐼𝜀 shows
that any solution of  is at most 𝜀 better with respect to each objective

than the closest solution of the evaluated coverage set:

𝜀 = inf
𝜀∈R

{∀ 𝐕𝜋∈  , ∃ 𝐕𝜋′∈ �̂� ∶ ‖𝐕𝜋 − 𝐕𝜋′‖∞ ≤ 𝜀}, (3)

where ‖.‖∞, the L-infinity norm, is defined as the magnitude of the
argest entry of a vector.

The main disadvantage of this metric is that we need the true Pareto
ront to compute it, which is unknown for our MOMDP. To still gain
nsights from our learned policies, we approximate the true Pareto front
sing the non-dominated policies across all runs.

We note that the 𝜀-indicator metric is quite pessimistic, as it mea-
ures worst-case performance (Zintgraf, Kanters, Roijers, Oliehoek, &
eau, 2015), i.e., it will still report low performance as long as a single
oint of the Pareto front is incorrectly modeled, even if all the other
oints are covered. As such, we also use the 𝐼𝜀−𝑚𝑒𝑎𝑛 which measures the
average 𝜀 distance of the solutions in  with respect to the evaluated
coverage set (Reymond et al., 2022).

As an example, Fig. 1 shows a visual representation of the hyper-
volume and 𝜀 metrics in two dimensions.

3. Methods

In this section, we first introduce the compartment model that
we use to simulate the epidemic (Section 3.1). Second, we explain
the considered intervention strategies (Section 3.2). Third, we propose
MOBelCov, a MORL environment that encompasses the epidemiological
model and intervention strategies (Section 3.3). Finally we present the
Pareto Conditioned Networks (PCN) algorithm (Reymond et al., 2022),
a multi-objective reinforcement learning algorithm that will be used to
approximate the Pareto front of the MOBelCov. We briefly present the
original PCN algorithm and explain the methodological extensions we
made with respect to continuous action spaces and stochastic transition
functions, that were necessary for the MOBelCovenvironment.

Through the remainder of this manuscript, we use bold notation to
denote variables with a vectorial value, while non-bold notation for its
scalar counterpart.
3

i

3.1. Stochastic compartment model for SARS-CoV-2

To evaluate non-pharmaceutical interventions, we consider the
compartmental model presented by Abrams et al. that was used to
investigate exit strategies in Belgium after the first epidemic wave of
SARS-CoV-2 (Abrams et al., 2021). This model concerns a discrete-
time stochastic model, that considers an age-structured population.
The model generalizes a standard SEIR model1, extended to capture
the different stages of disease spread and history that are associated
with SARS-CoV-2 (i.e., pre-symptomatic, asymptomatic, symptomatic
with mild symptoms and symptomatic with severe symptoms) and to
represent the stages associated with severe disease, i.e., hospitalization,
admission to the intensive care unit (ICU) and death.

A visual representation of the model is depicted in Fig. 2. It shows
the different compartments, as well as the flow rates at which individ-
uals move between compartments.

These flow rates are defined by a set of ordinary differential equa-
tions, which are outlined as follows:

𝑑𝐒(𝑡)
𝑑𝑡

= −𝜆(𝑡)𝐒(𝑡),

𝑑𝐄(𝑡)
𝑑𝑡

= 𝜆(𝑡)𝐒(𝑡) − 𝛾𝐄(𝑡),

𝑑𝐈𝑝𝑟𝑒𝑠𝑦𝑚(𝑡)
𝑑𝑡

= 𝛾𝐄(𝑡) − 𝜃𝐈𝑝𝑟𝑒𝑠𝑦𝑚(𝑡),

𝑑𝐈𝑎𝑠𝑦𝑚(𝑡)
𝑑𝑡

= 𝜃𝑝𝐈𝑝𝑟𝑒𝑠𝑦𝑚(𝑡) − 𝛿1𝐈𝑎𝑠𝑦𝑚(𝑡),

𝑑𝐈𝑚𝑖𝑙𝑑 (𝑡)
𝑑𝑡

= 𝜃(1 − 𝑝)𝐈𝑝𝑟𝑒𝑠𝑦𝑚(𝑡) − {𝜓 + 𝛿2}𝐈𝑚𝑖𝑙𝑑 (𝑡),

𝑑𝐈𝑠𝑒𝑣(𝑡)
𝑑𝑡

= 𝜓𝐈𝑚𝑖𝑙𝑑 (𝑡) − 𝜔𝐈𝑠𝑒𝑣(𝑡),

𝑑𝐈ℎ𝑜𝑠𝑝(𝑡)
𝑑𝑡

= 𝜙1𝜔𝐈𝑠𝑒𝑣(𝑡) − {𝛿3 + 𝜏1}𝐈ℎ𝑜𝑠𝑝(𝑡),

𝑑𝐈𝑖𝑐𝑢(𝑡)
𝑑𝑡

= (1 − 𝜙1)𝜔𝐈𝑠𝑒𝑣(𝑡) − {𝛿4 + 𝜏2}𝐈𝑖𝑐𝑢(𝑡),

𝑑𝐃(𝑡)
𝑑𝑡

= 𝜏1𝐈ℎ𝑜𝑠𝑝(𝑡) + 𝜏2𝐈𝑖𝑐𝑢(𝑡),

𝑑𝐑(𝑡)
𝑑𝑡

= 𝛿1𝐈𝑎𝑠𝑦𝑚(𝑡) + 𝛿2𝐈𝑚𝑖𝑙𝑑 (𝑡) + 𝛿3𝐈ℎ𝑜𝑠𝑝(𝑡) + 𝛿4𝐈𝑖𝑐𝑢(𝑡)

In this set of ordinary differential equations, each state variable
represents a vector over all age groups for a particular compartment
at time 𝑡. For example, 𝐒 = (𝑆1(𝑡), 𝑆2(𝑡),… , 𝑆𝑘(𝑡))𝑇 is the vector repre-
senting the susceptible members of the population of each age group 𝑘
at time 𝑡. Infection dynamics are governed by an age-specific force of
infection 𝝀:

𝜆(𝑘, 𝑡) =
𝐾
∑

𝑘′=1
𝛽(𝑘, 𝑘′)𝐼𝑘′ (𝑡), (4)

here 𝐾 is the total number of age groups, and 𝛽(𝑘, 𝑘′) is the time-
nvariant transmission rate that encodes the average per capita rate
t which an infectious individual in age group 𝑘 makes an effective
ontact with a susceptible individual in age group 𝑘′, per unit of time.

As we consider an age-structured population, we consider this ex-
ended SEIR structure for 𝐾 = 10 age groups, i.e., [0−10), [10−20), [20−
0), [30−40), [40−50), [50−60), [60−70), [70−80), [80−90), [90, 100+). Con-
acts of the different age-groups, which impact the propagation rate of
he epidemic, are modeled using social contact matrices (Willem et al.,
020). We define a social contact matrix for 6 different social envi-
onments: 𝑪home,𝑪work,𝑪 transport,𝑪school,𝑪 leisure,𝑪other, for the home,

work, transport, school, leisure, other environments respectively. The
social contact matrix across all social environments is defined as:

𝑪 = 𝑪home + 𝑪work + 𝑪 transport + 𝑪school + 𝑪 leisure + 𝑪other (5)

1 A standard SEIR model divides the population into four different states,
.e., susceptible, exposed, infectious and recovered individuals.
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Fig. 2. Schematic diagram of the compartmental model for SARS-CoV-2 based on the work of Abrams et al. (2021), that is used to derive the MOMDP. The model consists of 10
compartments, listed here together with their abbreviations: susceptible (𝐒), exposed (𝐄), pre-symptomatic infection (𝐈𝑝𝑟𝑒𝑠𝑦𝑚), asymptomatic infection (𝐈𝑎𝑠𝑦𝑚), symptomatic infection
with mild symptoms (𝐈𝑚𝑖𝑙𝑑 ), symptomatic infection with severe symptoms (𝐈𝑠𝑒𝑣), hospitalization (𝐈ℎ𝑜𝑠𝑝), admission to the ICU (𝐈𝑖𝑐𝑢), death (𝐃) and recovered (𝐑).
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Under the social contact hypothesis (Wallinga, Teunis, & Kret-
zschmar, 2006), we have that:

𝛽(𝑘, 𝑘′) = 𝑞 ⋅ 𝑪(𝑘, 𝑘′), (6)

where 𝑞 is a proportionality factor.
Following Abrams et al. (2021), we rely on distinct social con-

tact matrices for symptomatic and asymptomatic individuals, respec-
tively 𝑪𝑠 and 𝑪𝑎. Therefore, we define the transmission rates for both
symptomatic and asymptomatic individuals as follows:

𝛽𝑠(𝑘, 𝑘) = 𝑞𝑠 ⋅ 𝐶𝑠(𝑘, 𝑘′), (7)

nd

𝑎(𝑘, 𝑘′) = 𝑞𝑎 ⋅ 𝐶𝑎(𝑘, 𝑘′). (8)

The age-dependent force of infection can be defined as follows:

(𝑡) = 𝜷𝑎 × {𝐈𝑝𝑟𝑒𝑠𝑦𝑚(𝑡) + 𝐈𝑎𝑠𝑦𝑚(𝑡)} + 𝜷𝑠 × {𝐈𝑚𝑖𝑙𝑑 (𝑡) + 𝐈𝑠𝑒𝑣(𝑡)}, (9)

where 𝝀(𝑡) = (𝜆(1, 𝑡), 𝜆(2, 𝑡),… , 𝜆(𝐾, 𝑡)). For all further information about
the different compartments and parameters we refer the reader to the
work of Abrams et al. (2021).

Variability in social contact behavior, disease transmission, recov-
ery and mortality impacts the epidemic outcome and is subject to
chance. To evaluate intervention strategies that modulate infectious
disease transmission and prevention, the use of stochastic epidemio-
logical models is warranted (Abrams et al., 2021). Moreover, the effect
of stochasticity is most pronounced when the number of infectious
individuals is small or variability is high, for example studying the
initial growth of an epidemic (Britton & Lindenstrand, 2009), or when
implementing deconfinement strategies after strict lock-downs.

The spread of a virus in a population is a stochastic process, hence
intervening by, for example, reducing social contacts or government
interventions affects the further course of a stochastic outbreak. There-
fore, to understand how interventions affect the spread of the disease
we adopted a stochastic version of the deterministic model described
above, which can capture the variability with and without interventions
related to social contacts.

By formulating the set of differential equations defined above,
as a chain-binomial, we can obtain stochastic trajectories from this
model (Bailey, 1975). A chain-binomial model assumes a stochastic
model where infected individuals are generated by some underlying
probability distribution. The equations that underlie this model are
specified in Section A of the Appendix.

For this stochastic model we consider a time interval (𝑡, 𝑡+ℎ], where
ℎ is defined as the length between two consecutive time points. In
this work we set ℎ = 1

240 . We tuned this ℎ to ensure that the average
ehavior of the binomial chain model matches the ODE model.
4

u

3.2. Intervention strategies

To model different types of non-pharmaceutical interventions, we
follow the contact reduction scheme presented by Abrams et al. (2021).
Firstly, to consider distinct exit scenarios, we modulate the social
contact matrices to reflect a contact reduction in a particular age group.

We consider a contact reduction function that imposes a propor-
tional reduction of work (including transport) 𝑝𝑤, school 𝑝𝑠 and leisure
𝑝𝑙 contacts, which is implemented as a linear combination of social
contact matrices:

�̂�(𝑝𝑤, 𝑝𝑠, 𝑝𝑙) = 𝑪home + 𝑝𝑤(𝑪work +𝑪 transport) + 𝑝𝑠𝑪 school + 𝑝𝑙(𝑪 leisure +𝑪other)

(10)

We denote �̂� 𝑡 the social contact matrix at timestep 𝑡, resulting from
he reduction function �̂�. Secondly, we assume that compliance to the
nterventions is gradual and represent the transition from �̂� 𝑡 to �̂� 𝑡+1
sing a logistic compliance function (see details in Sec. A.2 of the
ppendix).

.3. The MOBelCov environment

In order to apply multi-objective reinforcement learning, we con-
truct the MOBelCov MOMDP based on the epidemiological model
ntroduced in Section 3.1 and graphically depicted in Fig. 2. Moreover,
e consider a finite-horizon setting where we simulate the compart-
ent model for a fixed number of weeks.

ction-space: Our actions concern the installment of a social contact
atrix with a particular reduction resulting from the reduction function
̂ (see Section 3.2). To this end, we use the proportional reduction
arameters 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 defined in Section 3.2. Thus, each 𝐚 ∈  is a
-dimensional continuous vector in [0, 1]3 (i.e., 𝐚 = [𝑝𝑤, 𝑝𝑠, 𝑝𝑙]) which

impacts the social contact matrix according to Eq. (10).

Transition function: The model defined by Abrams et al. (2021) utilizes
a model transition probability 𝑀 (see Sec. A of the Appendix for details
on𝑀), that progresses the epidemiological model in one timestep based
on the currently installed social contact matrix �̂�(𝑝𝑤, 𝑝𝑠, 𝑝𝑙). We use this
unction as the transition function in MOBelCov.

In a classical MDP, executing an action 𝐚𝑡 in any state 𝐬𝑡 leads to a
ext state 𝐬𝑡+1 according to the transition function  . At every timestep
, the agent is free to choose the action to perform. In our case, this
otentially results in a different restriction [𝑝𝑤, 𝑝𝑠, 𝑝𝑙] every week. How-
ver, we argue that in the context of mitigation policies, consistency is
mportant and policies that impose changes too frequently will be hard
o adhere to.

In order to obtain consistent mitigation policies, we introduce a
udget regarding the number of times a policy can change its actions
ntil the terminal state of the MOMDP is reached. To facilitate this,



Expert Systems With Applications 249 (2024) 123686M. Reymond et al.

s
w
i
1

𝐻

w

t

we maintain a budget for each of the actions. Concretely, when the
action changes, i.e., if the social restriction proposed by the policy is
different from the one that is currently in place, we reduce the budget
for that action by one. We only allow action changes as long as there
is budget left. Note that, since the actions are continuous values, we
consider a change when the difference in action-value is greater than a
delta (reported with the hyperparameter values in Sec. D.1). We note
that we can mimic a no-limit budget setting by choosing a budget that
corresponds to the horizon of the environment.

Finally, for each timestep 𝑡, our transition function  uses the model
transition probability 𝑀 to simulate the model for one week, using �̂� 𝑡
obtained from 𝐚𝑡.

State-space: The state of the MOMDP concerns a 3-tuple. The first ele-
ment, 𝐬𝑚, directly corresponds to the aggregation of the state variables
in the epidemiological model, i.e., a tuple,

⟨𝑆𝑘, 𝐸𝑘, 𝐼
𝑝𝑟𝑒𝑠𝑦𝑚
𝑘 , 𝐼𝑎𝑠𝑦𝑚𝑘 , 𝐼𝑚𝑖𝑙𝑑𝑘 , 𝐼𝑠𝑒𝑣𝑘 , 𝐼ℎ𝑜𝑠𝑝𝑘 , 𝐼 𝑖𝑐𝑢𝑘 ,𝐻𝑛𝑒𝑤

𝑘 , 𝐷𝑘, 𝑅𝑘⟩, (11)

for each age group 𝑘 ∈ {1,… , 𝐾}, where 𝑆 encodes the members
of the population who are susceptible to infection and 𝐸 encodes
the members of the population who have been exposed to COVID-
19. Moreover, 𝐼𝑝𝑟𝑒𝑠𝑦𝑚, 𝐼𝑎𝑠𝑦𝑚, 𝐼𝑚𝑖𝑙𝑑 , 𝐼ℎ𝑜𝑠𝑝, 𝐼 𝑖𝑐𝑢 denote the members
of the population infected with COVID-19 and are, respectively, pre-
symptomatic, asymptomatic, mildly symptomatic, hospitalized, or in
the ICU. Finally, in addition to these compartments which define the
transmission dynamics, we define a separate compartment 𝐻𝑛𝑒𝑤

𝑘 to
keep track of the number of newly hospitalized individuals in age group
𝑘.

We parameterize the epidemiological model using the mean of the
posteriors as specified by Abrams et al. (2021) (details in Sec. A.1 of
the Appendix).

The second element of the tuple consists of the social contact matrix
�̂� 𝑡 that is currently in place. The reason to incorporate it in the state–
space is two-fold. First, Abrams et al. (2021) define a compliance
function, simulating the time people need to get used to the new rules
set in place. As such, during the simulated week, there is a gradual shift
from the current �̂� 𝑡 to the new social contact matrix, �̂� 𝑡+1. Thus, we
need to include the current �̂�𝑡, to establish a Markovian environment.
Secondly, we require the current �̂� 𝑡 to determine whether the action
changes the social restrictions in place, and thus consume part of the
budget.

The third element of the tuple concerns the budget 𝒃. We incor-
porate a distinct budget per action-dimension, so 𝑝𝑤, 𝑝𝑠 and 𝑝𝑙 each
have their own budget, resulting in a vector 𝒃 = [𝑏𝑤, 𝑏𝑠, 𝑏𝑙]. As such,
it is possible that, at timestep 𝑡, the budget for one of the proportional
reductions is reduced but not the others.

Therefore, we define a state in MOBelCov as follows:

𝐬 = 𝐬𝑚 ∪ �̂� ∪ 𝒃 (12)

Reward function: We define a vectorial reward function which consid-
ers multiple objectives: attack rate (i.e., infections or hospitalizations)
and the social burden imposed by the interventions on the population.

The attack rate in terms of infections is defined as the difference
in susceptibles from the current state to the next state. Since this is a
cost that needs to be minimized, we defined the corresponding reward
function as the negative attack rate (Libin, Moonens, et al., 2021):

ARI(𝐬, 𝐚, 𝐬′) = −(
𝐾
∑

𝑘=1
𝑆𝑘(𝐬) −

𝐾
∑

𝑘=1
𝑆𝑘(𝐬′)). (13)

The reward function to reduce the attack rate in terms of hospital-
izations is defined as the inverse of new hospitalizations:

ARH(𝐬, 𝐚, 𝐬′) = −
𝐾
∑

𝑘=1
𝐻new
𝑘 (𝐬). (14)

Finally, we use the contact reduction resulting from the intervention
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measures as a proxy for societal burden. To quantify this, we consider p
the original social contact matrix 𝐶 and the installed social contact ma-
trix �̂� to compute the difference �̂� −𝐶. The resulting difference matrix
quantifies the social contact impairment. To determine the population-
based loss, we apply the difference matrix to the population sizes of the
respective age groups that are currently uninfected (i.e., susceptible and
recovered individuals). Formally, we define the social burden reward
function SB, as follows:

SB(𝐬, 𝐚, 𝐬′) =
𝐾
∑

𝑖=1

𝐾
∑

𝑗=1
(�̂� − 𝐶)𝑖𝑗𝑆𝑖(𝐬)𝑆𝑗 (𝐬) +

𝐾
∑

𝑖=1

𝐾
∑

𝑗=1
(�̂� − 𝐶)𝑖𝑗𝑅𝑖(𝐬)𝑅𝑗 (𝐬), (15)

where 𝑆𝑘(𝐬) represents the number of susceptible individuals in age
group 𝑘 in state 𝐬 and 𝑅𝑘 represents the number of recovered individu-
als in age group 𝑘 in state 𝐬. In Section 4, we optimize PCN on two dif-
ferent variants for the multi-objective reward function: [ARH,SB] and
[ARI,SB], to study the impact of these distinct attack rate quantities.

3.4 Pareto conditioned networks

In multi-objective optimization, the set of optimal policies can grow
exponentially with the number of objectives. Thus, recovering them
all is a computationally expensive process and requires an exhaustive
exploration of the complete state space. To address this problem, we
use Pareto Conditioned Networks (PCN), a method that uses a single
neural network to encompass all non-dominated policies (Reymond
et al., 2022). The key idea behind PCN is to use supervised learning
techniques to improve the policy instead of resorting to temporal-
difference learning. PCN uses a single neural network that takes a tuple
⟨𝐬, ℎ̂, �̂�⟩ as input. �̂� represents the desired return of the decision maker,
i.e., the return PCN should reach at the end of the episode. ℎ̂ denotes
the desired horizon that expresses the number of timesteps that should
be executed before reaching �̂�. At execution time, both ℎ̂ and �̂� are
chosen by the decision maker at the start of the episode. Then, at every
timestep, the desired horizon is updated according to the perceived
reward 𝐫𝑡, �̂� ← �̂� − 𝐫𝑡 and the desired horizon is decreased by one,
ℎ̂ ← ℎ̂− 1. More detail on the PCN algorithm can be found in Sec. B of
the Appendix.

3.4.1 Training PCN for continuous actions
PCN trains the network as a classification problem, where each class

represents a different action. Transitions 𝑥 = ⟨𝐬𝑡, ℎ𝑡,𝐑𝑡⟩, 𝑦 = 𝑎𝑡 are
ampled from the dataset, and the ground-truth output 𝑦 is compared
ith the predicted output �̂� = 𝜋(𝐬𝑡, ℎ𝑡,𝐑𝑡). The predictor (i.e., the policy)

s then updated using the cross-entropy loss function (Shore & Johnson,
980):

= −
∑

𝑎∈
𝑦𝑎 log𝜋(𝑎|𝐬𝑡, ℎ𝑡,𝐑𝑡) (16)

here 𝑦𝑎 = 1 if 𝑎 = 𝑎𝑡 and 𝑦𝑎 = 0 otherwise.
While the original PCN algorithm is designed for MOMDPs with

discrete action-spaces, the problem we tackle is defined in terms of
a continuous action-space. We thus extend PCN to the continuous
action-space setting. We change the output of the neural network such
that there is a single output value for each dimension of the action-
space. Since the actions should be bound in the domain of possible
actions ([0, 1] in the case of MOBelCov, see Section 3.3), we apply a
sigmoid non-linearity function on each output, as the output of the
sigmoid function is bound in [0, 1]. Since the labeled dataset now
uses continuous labels 𝑦 = 𝐚𝑡 instead of discrete ones, we have a
regression problem instead of a classification problem. We thus use a
Mean Squared Error (MSE) loss to update the policy:

𝑀𝑆𝐸 = 1
||

∑

𝑎∈
(�̂�𝑎 − 𝑦𝑎)2 (17)

Learning the full set of Pareto-efficient policies 𝛱∗ requires that
he policies 𝜋∗ ∈ 𝛱∗ are deterministic stationary policies. If stochastic
olicies are permitted, the set of optimal policies corresponds to the
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convex part of the Pareto front (Roijers et al., 2013). However, we
argue that, in the context of mitigation policies, deterministic policies
are required, as the population needs to be informed in advance of
imposed measures. Thus, we use the output �̂�, which is deterministic,
as the action at execution time. However, PCN improves its policy
through exploration, by continuously updating its dataset with better
trajectories. Thus, at training time, we use a stochastic policy by adding
random noise to the action (Lillicrap et al., 2015):

𝐚𝑡 = 𝜋(𝐬𝑡, ℎ𝑡,𝐑𝑡) + 𝜂𝑠 with 𝑠 ∼  , (18)

where  is the standard Normal distribution and 𝜂 is a hyper-parameter
defining the magnitude of noise to be added.

3.4.2 Coping with stochastic transitions in PCN
PCN trains its policy on a dataset that is collected by executing

trajectories. It assumes that reenacting a transition from the dataset
leads to the same episodic return. When the transition function  of
the MOMDP is deterministic, the whole trajectory can be faithfully
reenacted, which guarantees the same return. Combined with the fact
that PCN’s policy is deterministic at execution time, conditioning the
policy on a target episodic return is equivalent to conditioning it on
the V-value 𝐕.

However, when  is stochastic this can no longer be guaranteed.
To mitigate this, we add a limited amount of random noise to 𝐑𝑡
when performing gradient descent, which reduces the risk of over-
fitting (Zur, Jiang, Pesce, & Drukker, 2009). Moreover, while the
MOBelCov model is stochastic, the variation is entirely due to the
sampling of the binomial distributions in the binomial-chain. While
this variation accumulates over time, the time window we consider for
each timestep (i.e., one week) is short enough that the accumulation
remains bounded. Thus, the possible next-states resulting from a state–
action pair are similar to each other. This allows PCN to compensate if
𝐫𝑡 = (𝐬𝑡, 𝐚𝑡, 𝐬𝑡+1) is worse than expected.

Although we use a stochastic model to cope with the variability
of the outcome of the outbreak, it is possible to deterministically
evaluate the set of ordinary differential equations that define the model.
We assess the validity of our approach by executing PCN on this
deterministic variant, and observing similar performance as with the
MOBelCov model. We show the results in Sec. C.1 of the Appendix.
Related to this, Maillard, Mann, and Mannor (2014) define a ‘‘hardness’’
measure for MDPs and show that in practice many MDPs are far from
the pathological, hard-to-solve MDPs that are analyzed in theory. In
particular, deterministic MDPs show low hardness as the number of
samples required to estimate the Value-function is much lower than
MDPs with high stochasticity. The fact that PCN achieves similar per-
formance on the stochastic and deterministic variant of the MOBelCov
model indicates that they have a similar hardness measure. Thus, the
stochasticity of the Binomial model is limited and has no long-term
persecutions on the policy.

4 Results

Our goal is to use PCN to learn deconfinment strategies in the MO-
BelCov environment. We aim to learn policies that balance between the
epidemiological objective of minimizing the attack rate (i.e., ARH for
hospitalization and ARI for infection) and the social burden (i.e., SB)
experienced by the population due to the implemented mitigation
measures. Although infections and hospital admissions are correlated,
the age-specific differences in transmission and disease burden might
result in distinct optimal trade-offs, as the affected social environments
are different. To this end, we consider two cases for the vectorial
reward functions [ARH,SB] and [ARI,SB], to learn and analyze
policies under different targets with respect to the considered attack
6

rate.
To conduct this analysis, we apply our extension of PCN for con-
tinuous action-spaces on the MOBelCov model. As explained in Sec-
tion 3.4.2, we extend PCN for environments with stochastic transitions.

As per Abrams et al. (2021), the simulation starts on the 1st of
March 2020, by seeding a number of infections in the population. Two
weeks later, on the 14th of March, the Belgian government initiated a
strict lockdown. This is implemented by fixing the actions 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 to
0.2, 0, 0.1 respectively. This lockdown ended on the 4th of May 2020,
at which point the government decided on a multi-phase exit strategy
to incrementally reduce teleworking, reopen schools and allow leisure
activities, such as the gradual re-opening of bars and the cultural
sector. It is from this day onward that PCN aims to learn policies
for diverse exit strategies, compromising between the total number of
daily hospitalizations and the total number of contacts lost as a proxy
for social burden. The simulation lasts throughout the summer school
holidays, from 01/07/2020 to 31/08/2020. Schools are closed during
the school holidays, which is simulated by setting 𝑝𝑠 = 0, regardless of
the corresponding value outputted by the policy, i.e., during periods of
school closure 𝑝𝑠 is ignored.

We draw the analogy with the multi-phase exit strategy established
by the Belgian government and the restriction on the number of action-
changes imposed by the MOBelCov’s budget 𝒃. Indeed, on the 11th of
May 2020, exactly one week after the end of the lockdown, stores and
certain companies were allowed to reopen, under strict conditions. This
corresponds to altering 𝑝𝑤 in our MOMDP. One week later, on 18th of
May, primary and secondary schools reopened for limited sized class-
groups, and the cultural sector reopened partially. This is equivalent
to increasing 𝑝𝑠 and 𝑝𝑙. Further changes of restrictions occurred on the
8th of June, 1st, 9th and 25th of July. Thus, we argue that, with a
limited budget, we can achieve realistic policies. In our experiments,
we consider budgets of 2 to 5, as these closely relate to the number of
changes that occurred until the end of the summer holidays of 2020.
As an upper bound, we also consider a no-limit budget setting.

To evaluate the quality of the policies learned by PCN, we compare
PCN to a baseline. This baseline consists of a set of 100 fixed policies,
that iterate over all the possible social restriction levels, with values
ranging between 0 and 1. Concretely, each policy uses a fixed propor-
tional reduction 𝑝𝑤 = 𝑝𝑙 = 𝑝𝑠 = 𝑢, 𝑢 ∼  (0, 1) throughout the episode.
In other words, the fixed policies directly operate in a fine-grained
manner on the whole contact reduction function �̂�. This allows us to
obtain a strong baseline for potential exit strategies over the objective
space. We note that while such fixed policies are a feasible approach,
they do not scale well in terms of action and objective spaces and
they will not be able to provide an adaptive restriction level, which
is our aim using PCN. This baseline provides a reference to show the
improvement of using dynamic learning methods. In this section, we
focus on the policies learned by PCN. We confirm the quality of the
learned policies in Sec. C.3 of the Appendix, by comparing PCN with
Multi-Objective Natural Evolution Strategies (MONES) (Parisi, Pirotta,
& Peters, 2017), another dynamic learning algorithm that searches for
the set of Pareto-optimal policies.

All experiments are averaged over 10 runs. The initial choice for
the number of runs was informed by our previous research experience
with the PCN algorithm. To ensure that this number of experiments
was sufficient, we assessed the variance of the Pareto front (Fig. 3) and
the variance of the different evaluation metrics (Table 1). The hyper-
parameters and the neural network architecture can be found in Sec.
D.1 and Sec. D.2 of the Appendix, respectively.

4.1 Learned coverage set

We learn a coverage set (see Fig. 3) that ranges from imposing
minimal restrictions to enforcing many restrictions. In Fig. 3, we display
on the right the coverage set of the best-performing run in terms
of hypervolume, for each budget setting. On the left, we show an

interpolated average of the coverage sets learned by the different runs.
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Fig. 3. The Pareto front of policies discovered by PCN using MOBelCov, showing the different compromises between the number of hospitalizations and the number of lost contacts.
n the right, we show, for each budget setting (colored, subscript indicates budget) the coverage set learned by the best performing run. On the left, we show an interpolated
verage of the coverage sets learned by the different runs, with the shaded regions corresponding to the standard deviation. For comparison, the baseline is displayed on both
lots (in black). As the budget increases, so does the size of the coverage set learnt by PCN. Changes are most noticeable in the less restrictive trade-offs in terms of social burden.
Table 1
Evaluation metrics for the coverage sets comparing hospitalizations with social burden. In general, an increase of budget results in a better
coverage set. Training on infections (ARI) still provides a competitive coverage set in terms of hospitalizations. All PCN coverage sets outperform
the baseline.

[ARH ,SB] [ARI ,SB]

Hypervolume 𝐼𝜀 𝐼𝜀−𝑚𝑒𝑎𝑛 Hypervolume 𝐼𝜀 𝐼𝜀−𝑚𝑒𝑎𝑛
PCN𝑏=2 158.370 ± 0.811 0.080 ± 0.011 0.033 ± 0.002 157.152 ± 1.023 0.087 ± 0.006 0.035 ± 0.002
PCN𝑏=3 158.721 ± 1.439 0.080 ± 0.012 0.032 ± 0.003 158.002 ± 2.081 0.084 ± 0.009 0.034 ± 0.005
PCN𝑏=4 160.642 ± 1.582 0.075 ± 0.007 0.028 ± 0.003 159.315 ± 2.601 0.088 ± 0.018 0.031 ± 0.006
PCN𝑏=5 163.104 ± 2.386 0.070 ± 0.023 0.022 ± 0.005 161.792 ± 2.464 0.075 ± 0.015 0.026 ± 0.005
Fixed 140.479 ± 0.000 0.139 ± 0.000 0.073 ± 0.000 140.479 ± 0.000 0.139 ± 0.000 0.073 ± 0.000
PCN 159.462 ± 7.713 0.264 ± 0.115 0.036 ± 0.020 159.852 ± 2.395 0.171 ± 0.093 0.032 ± 0.006
Regardless of the imposed budget, we notice that the coverage sets
iscovered by PCN almost completely dominate the coverage set of the
aseline, demonstrating that there are better alternatives to the fixed
olicies. This is most evident in the compromising policies, where one
as to carefully choose when to remove social restrictions while at
he same time minimizing the impact on daily new hospitalizations.
n these scenarios, PCN learns policies that drastically reduce the total
umber of new hospitalizations (e.g., more than 20000) for the same
ocial burden. We analyze the executions of such policies in Fig. 4
middle plot), that shows a flattened hospitalization curve, with a
radual increase of social freedom during the school holidays such that
he curve of the epidemic is flattened and gradually decreases over
ime.

Interestingly, we notice that the most restrictive policy (i.e., the one
hat prioritizes hospitalizations over social burden, see Fig. 4, bottom
lot) still starts to gradually increase 𝑝𝑤 and 𝑝𝑙 from the end of July
nward. This is because by then, the epidemic has mostly faded out,
nd it is safe to reduce social restrictions. The timing of this reduction
s important as reducing restrictions too soon can lead to a new wave.
CN learns the impact of its decisions over time, and correctly infers
he timing at which restrictions can be safely lifted.

Finally, the top plot shows that, without imposing social restrictions,
he number of hospitalizations peaks on the 15th of June. By the
eginning of July, the epidemic has spread out over the majority of
he population, and the number of admissions at the hospital has been
educed to a fraction of the number of hospitalizations at the peak.
hus, without social restrictions, we do not take advantage of the nat-
ral decrease of social contacts due to school holidays, as a significant
7

proportion of the population has already been infected before the start
of the holidays.

4.2 Impact of budgets on the coverage set

Fig. 3 demonstrates that the budget impacts the learned coverage
set. In general, an increase of budget is associated with an increasingly
better coverage set, as policies learned using a higher budget dominate
the ones learned with a lower budget. This is to be expected, as a
higher budget gives the agent more freedom to change its actions as
the epidemic progresses.

Moreover, we observe that the difference is concentrated around
the less restrictive policies in terms of social burden. We postulate that
this region contains the most complex policies, as these try to maintain
as much social freedom as possible, while containing the number of
hospitalizations. In these cases, the timing of the actions coincide with
the timing and duration of the peak of the epidemic, and a higher
budget allows for more fine-grained control to manage this timing. To
confirm this, we select, for each budget setting, the solution where
the difference in performance is most noticeable, corresponding to the
solutions with a total number of hospitalizations around 80000 (which
is in the middle of the range of possible hospitalizations, as can be
seen in Fig. 3). We plot the execution of the corresponding policies
in Fig. 5 and analyze their impact in terms of social burden. First,
we observe that the lower-budget policies are unable to reduce the
social restrictions past the peak of the epidemic. In contrast, the setting
with no budget restrictions meticulously controls the restrictions as the
epidemic progresses, completely removing restrictions by the end of the
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Fig. 4. Selection of policies learned by PCN𝑏=5, from least restrictive in terms of social burden (top) to most restrictive (bottom). The 𝑥-axis represents the time, starting from
the end of the lockdown, on the 4th of May, until the end of the school holidays, on the 1st of September. Since the lockdown is simulated before the start of the exit strategy,
the start-state differs for each episode (i.e., the hospital already contains infected individuals). The left 𝑦-axis represents the number of individuals affected by the epidemic. The
full-lined plots represent the number of individuals admitted into the hospital, ICU and deceased between the last timestep and the current one. The plot showing the newly
deceased individuals closely relates to the ICU admissions. The right 𝑦-axis represents the proportional reduction in effect, with 1 meaning a business-as-usual policy, and 0 meaning
a complete suppression of social contacts. The dotted-lined plots represent the proportional reductions for the work, leisure and school environments. We note that the school
reduction automatically goes to 0 at the start of the school holidays.

Fig. 5. Execution of the policies attaining a number of hospitalizations around 80000, for different budgets. From top to bottom we display the policy executions with budget 2,
3, 4, 5 and no-limit, respectively. We notice that the lower-budget policies are unable to reduce the social restrictions past the peak. The setting without budget restrictions finely
controls the restrictions as the epidemic progresses, completely removing restrictions by the end of the wave. Finally, there is no consensus on which social environment to restrict
most: certain policies provide similar restrictions for 𝑝𝑤 and 𝑝𝑙 , while others impose harsher restrictions on one social environment than the other.
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wave. Second, we note that the policy with a budget of 5 resembles the
execution of the one without restrictions. However, due to its budget,
the policy is unable to progressively reduce the restrictions and instead
resorts to a halfway compromise. Compared to this specific region
of the coverage set, the difference in performance between different
budget settings seems marginal around the extrema. At the extrema, the
policies are less complex (e.g., business-as-usual, resulting in the same
action executed throughout the episode) and are thus less impacted by
the budget restrictions.

Finally, we observe that, while the extrema deliver similar trade-
offs for any of the chosen budgets, these trade-offs differ for the
setting without budget restrictions. Indeed, in this setting, PCN does
not learn the most extreme policies with respect to restrictions, even
though there are no constraints on the action-set. As explained in Sec.
B.2, PCN searches for increasingly better solutions using a stochastic
policy. Thus, at every timestep, the action can change compared to the
previous one. Continuously outputting the same action (e.g., no social
restrictions) becomes a complicated task. In comparison, for the settings
with a limited budget, the action stays the same as the previous one
once the budget has been spent. As such, it is easier to learn the most
extreme policies. Thus, in the specific case where we have an unlimited
budget, the freedom of action actually hinders PCN’s search for certain
regions of the reward-space.

4.3 Analysis of the coverage set’s inflection point

The coverage set shown in Fig. 3 displays, on the far right of the
plot, a sharp decrease in social contacts, for a marginal improvement
on hospitalizations. We analyze the policies at the start of this decrease,
when the social burden results in 1000 lost contacts. For each budget
setting, we plot the policy executions that result in SB = −1000 in
Fig. 6. On average, these policies result in a total of 3811 hospital-
izations over the considered time-horizon (or 2.59% hospitalizations
with respect to the business-as-usual policy). Regardless of the budget,
these policies allow one of the 3 social environments to be open,
while closing the 2 others. Except for a budget of 4 (which opens the
working environment), each policy opens the leisure environment. On
average, these policies enforce a reduction of 71.92% of the number of
social contacts. Thus, allowing each citizen to see 28.08% of his social
contacts by keeping the leisure environment open as per Fig. 6 results
in a marginal number of hospitalizations.

4.4 Minimizing the hospitalizations versus minimizing the number of infec-
tions

Next, we assess the difference in coverage sets when optimizing on
the number of hospitalizations ARH versus the number of infections
ARI. Although these reward functions have a different scale (there
are more infected persons than hospitalized ones), our experiments
show that infections and hospitalizations are tightly correlated. This is
expected, as during the initial phase of the epidemic, limited immunity
was present in the population (i.e., limited natural immunity and
no vaccines), which induces a tight coupling between infection and
hospitalization cases. This is confirmed in Table 1. In this table, we
show the different performance metrics (hypervolume, 𝐼𝜀, 𝐼𝜀−𝑚𝑒𝑎𝑛) with
respect to the objectives [ARH,SB]. The table is split in two parts.
The left-side shows the different performance metrics, for PCN using
[ARH,SB] as optimization criteria. The right-side shows the same
performance metrics, but with PCN using [ARI,SB] as optimization
criteria.

Even with the ARI, the increased budget shows an increase in hy-
pervolume in terms of hospitalizations. Moreover, those hypervolumes
are close to the ones trained on ARH. Combined with the plotted
coverage sets (Fig. C.2, this indicates that their coverage sets are
similar. However, regardless of the imposed budget, the hypervolumes
9

are slightly worse. This is to be expected, since those experiments are o
Table 2
Comparing the difference in the desired return provided to PCN and the actual return
PCN obtained when executing its policy. We see that, regardless of the setting, the
learned policy faithfully receives a return similar to its desired return.

𝐼𝜀 𝐼𝜀−𝑚𝑒𝑎𝑛
PCN𝑏=2 0.047 ± 0.020 0.009 ± 0.004
PCN𝑏=3 0.048 ± 0.022 0.007 ± 0.002
PCN𝑏=4 0.064 ± 0.018 0.011 ± 0.003
PCN𝑏=5 0.058 ± 0.011 0.013 ± 0.003
PCN 0.035 ± 0.011 0.008 ± 0.004
Global average 0.050 ± 0.017 0.010 ± 0.004

not directly optimized on ARH. We draw a similar conclusion for 𝐼𝜀:
or budgets 2, 3 and 5, the difference between the worst-performing
olicy for the ARI variant and the ARH is less than 0.01, indicating
ess than 1% difference in return values between the two variants
hen comparing their worst-performing policy. As an exception, we
otice that PCN without budget restrictions results in better perfor-
ance across every metric for the ARI variant. Still, due to the high

tandard deviation of the unlimited budget, ARH setting, we do not
onsider this difference is meaningful. Thus, we could optimize on the
ttack rate of hospitalizations with ARI. As there is a 2-week delay
or hospitalizations, this would facilitate learning policies to react to
nexpected changes earlier than using ARH. This assumes that a good
roxy to the actual number of infections was available (e.g., due to a
cale up of PCR testing, as was the case after the first lockdown).

Finally, we observe that, even though the obtained coverage sets
shown in Fig. C.2 of the Appendix)) are similar, the coverage set
rained on 𝐑ARI is systematically dominated by the one when trained on
ARH. While hospitalizations and infections are highly correlated, they
iffer in terms of age-groups. Older age-groups are more susceptible to
e hospitalized after being infected, but they do not form the majority
f the population. For trade-offs where infections and social burden
eed to be balanced, the proportional reductions target different social
nvironments than for trade-offs balancing hospitalizations and social
urden. For example, as the work environment is mostly comprised
f individuals with a more robust immune system, reducing the social
ontact in this environment greatly affects the number of infections,
ut has a lesser impact on the number of hospitalizations.

Our experiments show, on average across all budgets, that poli-
ies with a similar social burden are 5.37% more permissive, 16.41%
ore permissive, 4.02% less permissive on 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 respectively, when

rained on ARI than when trained on ARH. These numbers were com-
uted as follows: at timestep 𝑡, the contact matrix depends on the
roportional reduction 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 imposed by the policy 𝜋, i.e., �̂�𝜋

𝑡 =
̂ (𝑝𝑤, 𝑝𝑠, 𝑝𝑙), 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 ∼ 𝜋(𝐬𝑡). These proportional reductions are dif-
erent for policies trained on 𝐑ARI and policies trained on 𝐑ARH. The
ifference 𝛥�̂� 𝑡 = �̂�

𝜋𝐑ARI
𝑡 − �̂�

𝜋𝐑ARH
𝑡 shows which social contacts are

ore affected by 𝜋𝐑ARH than by 𝜋𝐑ARI , the policy trained on 𝐑ARH,
ARI, respectively. Fig. 7 shows the average 𝛥�̂� 𝑡, across all timesteps
nd all trained policies, i.e., E𝜋𝐑ARI∼𝛱

∗
𝐑ARI

,𝜋𝐑ARH∼𝛱∗
𝐑ARH

[1∕𝑇
∑𝑇
𝑡=0 𝛥�̂� 𝑡 ∣

𝐑ARI , 𝜋𝐑ARH ], where 𝛱∗
𝐑ARI

, 𝛱∗
𝐑ARH

represents the Pareto front under
ARI, 𝐑ARH, respectively. Even though the proportional-reductions are
ot age-group specific, PCN learns the impact of the different social
nvironments on the age-groups. The changes in 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 show that
ptimizing on infections is less restrictive regarding older age-groups
i.e., people aged 60 or more). In contrast, social restrictions are
ignificantly higher for persons between 20 and 60 years old.

.5 Robustness of policy executions

The dataset of trajectories that PCN is trained on is pruned over
ime to keep only the most relevant trajectories. The returns of these
rajectories are used in Fig. 3 to visualize the learned coverage set. Each

f these returns can be used as the desired return for policy execution.
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Fig. 6. Policy where SB = −1000, for each budget setting. These policies focus on minimizing the number of hospitalizations, with a total of 3811 hospitalizations over the
considered time-period, compared to the 150000 hospitalizations of business-as-usual policies. However, these policies still allow for a significant percentage of the pre-pandemic
social contacts.
Fig. 7. We show a matrix that visualizes the expected difference between two
contact matrices. To this end, we consider the social contact matrix �̂�𝜋

𝑡 =
�̂�(𝑝𝑤 , 𝑝𝑠 , 𝑝𝑙), 𝑝𝑤 , 𝑝𝑠 , 𝑝𝑙 ∼ 𝜋(𝐬𝑡) resulting from the policy 𝜋. We compute the difference
between the matrices resulting from policies optimized on 𝐑ARI and 𝐑ARH. Thus, each
cell represents, for two specific age-groups, how many more social interactions they
have on average under a policy optimized on 𝐑ARH than under a policy trained on
𝐑ARI. Note that matrix can be asymmetric, as interactions across age-groups can be
asymmetric (e.g., 1 teacher interacts with a classroom of children). In general, the
matrix shows that optimizing on infections is less restrictive on older age-groups (60+)
than on younger ones.

We now assess the robustness of the executed policies, by comparing
the return obtained after executing the policy with the corresponding
target return. For each run, we execute the policy 10 times and compute
the 𝐼𝜀 and 𝐼𝜀−𝑚𝑒𝑎𝑛 metrics with respect to the coverage set learned
10
during the run. We show that the executed policies reliably obtain
returns that are similar to the desired return used to condition PCN.

Results are shown in Table 2. The 𝐼𝜀 indicators shows that, re-
gardless of the budget, the decision maker will lose at worst a 0.050
normalized return in any of the objectives. On average, it will lose
0.010 normalized returns, i.e., on average, the return obtained by
executing a policy will either result in an additional 1441 hospital-
izations than expected, or result in 12 additional social contacts lost.
Moreover, we emphasize that the learned coverage set contains the
non-dominated returns encountered over the whole training procedure.
Since the MOBelCov model is stochastic, for multiple executions of
the same policy, the executions kept in the coverage sets are the ones
for which the samples from the binomial-chain resulted in a better
progression of the epidemic than average. Thus, we expect our policy-
executions to be close to the target selected from the coverage set,
but not exactly on target. Based on this analysis, we conclude that
the policies trained by PCN are robust and produce returns as close
as possible from their chosen target.

5 Related work

Reinforcement learning (RL) has been used in conjunction with
epidemiological models to learn policies to limit the spread of diseases
and predict the effects of possible mitigation strategies (Libin, Moonens,
et al., 2021; Libin et al., 2018; Probert et al., 2019).

RL and Deep RL have been used extensively as a decision making aid
to reduce the spread of COVID-19. For example, to learn effective miti-
gation strategies (Ohi, Mridha, Monowar, Hamid, et al., 2020), to assess
lockdown and travel restrictions (Kwak, Ling, & Hui, 2021) and to
evaluate the limitation on the influx of asymptomatic travelers (Bastani
et al., 2021).

Multi-objective methods have also been deployed to learn optimal
strategies to mitigate the spread of COVID-19. Wan, Zhang, and Song
(2021) implement a model-based multi-objective policy search method
and demonstrate their method on COVID-19 data from China. Given
that this method is model-based, a model of the transition function must
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be learned by sampling from the environment. The method proposed
by Wan et al. (2021) only considers a discrete action space which limits
the applicability of their algorithm. Wan et al. (2021) use linear weights
to compute a set of Pareto optimal policies. However, methods which
use linear weights can only learn policies on the convex-hull of the
Pareto front (Vamplew, Yearwood, Dazeley, & Berry, 2008), therefore
the full Pareto front cannot be learned. We note that the method
proposed by Kompella et al. (2020) considers multiple objectives.
However, the objectives are combined using a weighted sum with hand-
tuned weights which are determined by the authors. The weighted sum
is applied by the reward function and a single objective RL method is
used to learn a single optimal policy. In contrast to previous work, our
approach makes no assumptions regarding the scalarisation function of
the user and is able to discover Pareto fronts of arbitrary shape.

In this work, due to the nature of the epidemiological decision
problem, we have no prior knowledge on the expected shape of the
coverage set. The fact that PCN does not make any assumptions on the
shape of the Pareto front, motivates the use of PCN for our setting.
In contrast, most other work in the MORL literature assumes that the
preferences of the decision maker can be modeled as a weighted sum
over the objectives (Abels, Roijers, Lenaerts, Nowé, & Steckelmacher,
2019; Alegre, Bazzan, & Da Silva, 2022; Alegre, Bazzan, Roijers, Nowé,
& da Silva, 2023; Castelletti, Pianosi, & Restelli, 2012), in which case,
the Pareto front is assumed to be convex (Roijers et al., 2013).

6 Discussion

Making decisions on how to maintain epidemic situations has im-
portant ethical implications with respect to public health and societal
burden. In this regard, it is crucial to approach this decision mak-
ing from a balanced perspective, to which end we argue that multi-
objective decision making is essential. In this work, we establish a novel
approach, i.e., an expert system, to study multi-faceted policies, and
this approach shows great potential to study future epidemic mitigation
policies. We are aware of the ethical implications that expert systems
have on the decision process and we make the disclaimer that all
results based on the expert system that we propose should be carefully
interpreted by experts in the field of public health, and in a broader
context that encompasses health economics, well-being and education.
We note that the work in this manuscript was conducted by a inter-
disciplinary consortium that includes computer scientists and scientists
with a background public health, epidemiology and bio-statistics, to
allow for a balanced perspective regarding these disciplines.

In this work, we focus on the clinical outcomes of intervention
strategies and use the reduced contacts as proxy for social burden.
It is important to note that the definition of social burden in this
work consists of a proxy that aggregates distinct aspects of the burden
that a population experiences. Furthermore, we chose to focus on the
burden of susceptible and recovered individuals, and did not include
infected individuals in the social burden statistic. Overall, this is a
reasonable assumption, however, one could argue that asymptomatic
infected individuals also endure social burden. However, as the inter-
actions of asymptomatic individuals may also induce new infections,
and as such impact the other objective that is a derivative of the
number of infected individuals, we choose not to include them in the
social burden statistic. This could be extended into more formal health
economic evaluations, by designing reward functions that explicitly
consider distinct health economic principles. The COVID-19 pandemic
demonstrates the broad impact of infectious diseases on sectors other
than health care. This stresses the need to capture a societal and thus
multi-objective perspective in the decision making process on public
health and health care interventions. Our learned policies confirm this,
showing that focusing solely on preventing hospitalizations admissions
as much as possible, with the aim to keep these admissions very
low, results in taking drastic measures – more than a thousand social
11

interactions lost per person over the span of 4 months – that may have
a long-lasting impact on the population. An important insight of our
analyses is that policies that act fast, i.e., when the number of infections
or hospitalizations are low, prove most effective, both with respect
to the averted number of infections and the induced social burden.
These observations confirm that the use of an infection barometer2, that
efines clear cutoffs regarding infections/hospitalizations and the rate
t which they rise, and couples these thresholds to concrete actions,
an be a useful instrument to mitigate an ongoing epidemic.

In MOBelCov, we consider the proportional contact reduction ac-
ions 𝑝𝑤, 𝑝𝑠, 𝑝𝑙. We acknowledge that these parameters are abstract in

nature and reflect the average reduction to the respective contribution
of work, school and leisure contacts. The reduction is thus proportional
to all individuals, e.g., in this model, it is not possible to close some
schools of a particular type completely and keep others open, and as
such it concerns effective reduction. To translate these parameters to
public health policy, contact reduction measures need to be combined
to meet the desired contact reduction proportion. In the context of work
contact reductions, certain jobs can be allowed on premise (e.g., super-
market staff, general practitioners and pharmacists), while other jobs
can be restricted to be performed from home. In the context of school
contacts, policy makers can choose to close certain types of schools
(i.e., daycare vs primary vs secondary vs tertiary) or can decide to allow
certain groups to attend live classes on particular days. In the context
of leisure, policy makers can choose to close certain types of leisure,
and keep others open (e.g., hospitality services vs sporting facilities).

Although we use an age-structured compartment model, with social
contact matrices to model social interactions, this remains a model that
evaluates the progression of the pandemic as an aggregated process
over the population. Individual-based models enable more specific
and targeted policies, such as contact tracing and household isolation,
which potentially improve the epidemiological and social output, hence
provide an interesting avenue for future work. However, due to the
computational cost of simulating such models, and the number of
interactions required by reinforcement learning in general, this remains
a challenging problem, that will require fundamental research to im-
prove the sample efficiency of multi-objective reinforcement learning
algorithms.

While we are able to interpret and analyze the obtained policies
and their corresponding trade-offs, as we can plot the Pareto front
for two objectives, this approach cannot be used for problems with
more objectives, which will be necessary to cover reward functions
that cover distinct health economic principles. To facilitate this kind
of research, new algorithms are necessary to enable reinforcement
learning in many-objective contexts and to interpret the learnt policies.

In this work, PCN is able to cope with model stochasticity, as
the stochasticity is limited due to the small time-window between
timesteps, i.e., due to ℎ = 1

240 . This results in more computations
or the same time-period. For compartment models, this additional
omputation is negligible compared to the computation required for
tochastic gradient descent used by PCN. However, in settings where
he stochasticity is more pronounced, PCN is not suitable and further
ethodological extensions are warranted. This is for example the case

or more complex models, such as individual-based models, that are
or example necessary when designing policies to control the initial
utbreak of an epidemic. The reason for that is that trajectories encoun-
ered at execution time might significantly deviate from the trajectories
ncountered at training time, on which PCN has been optimized. One
ay to mediate this issue would be to learn the transition probability

unction between two states. We can then measure the likelihood of a
rajectory, and take it into account when training PCN. We are currently
nvestigating this as ongoing research (Delgrange, Reymond, Nowé, &
érez, 2023).

2 https://motivationbarometer.com/en/
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In this work we studied policies that aim to balance social burden
and hospitalizations. Yet, the methodology that we propose shows
promise to address a wide variety of public health challenges, such as
balancing the number of lost schooldays with respect to the attack rate
of infections in schools (Torneri et al., 2021), the efficacy versus burden
of face masks for children (Esposito & Principi, 2020), contact tracing
effort compared to the impact of such policies (Willem et al., 2021),
the impact of antivirals on the epidemic while balancing the likelihood
for resistance mutations to emerge (Torneri et al., 2020), to balance
the efforts and insights of COVID-19 genomic surveillance (Chen et al.,
2022), and to balance the cost of universal testing and its impact on an
emerging epidemic (Libin, Willem, et al., 2021).

In MORL, there exist two possible optimization criteria: the Ex-
pected Scalarized Returns (ESR) and the Scalarized Expected Returns
(SER). The difference between the two is where the preferences of the
decision maker are applied: either on the episodic return (ESR), or on
the expected return (SER). Methods that learn the whole Pareto front
optimize for SER, as each solution on the Pareto front is expressed as
an expected (vectorial) return. However, in the case of epidemiological
outbreaks, the mitigation strategy will only be applied once (after-
wards, the epidemic will be over). Thus, the appropriate optimization
criterion to use is ESR. PCN learns a deterministic policy, and assumes
that the environment has a deterministic transition function. Under
those assumptions, optimizing SER is equivalent to optimizing ESR.
When these assumptions hold, PCN thus optimizes policies under ESR.
However, our environment and its transition function is stochastic and
as such these assumptions do not hold exactly. We argue that, since
PCN optimizes on episodic returns, and not on Q-values, the policies it
learns are geared towards single executions, thus complying with ESR.
Furthermore, although our environment is stochastic, this stochasticity
is limited, and additional experiments displayed in Appendix Fig C.1
show that these policies are very similar to policies trained on a de-
terministic version of the environment. This indicates that the optimal
policies for SER and ESR are similar.

To conclude, we show that multi-objective reinforcement learn-
ing provides decision maker with insightful and diverse alternatives
on real-world problems. PCN automatically learns all Pareto-efficient
trade-offs. Although extreme policies can be computed manually, the
fact that PCN learns them shows that it explored the whole range of
possible social restrictions, which led to many alternative trade-offs
between these extreme policies. Moreover, the subtle differences in
policies trained on the infection attack rate compared to the hospital-
ization attack rate show that the social interactions, rate of infection
spreading and risk of severe sickness are well-captured by our learning
algorithm, which indicates that the learned trade-offs are of high qual-
ity. Furthermore, we show that action budgets can act as a regularizer
that facilitates learning realistic policies that can be easily conveyed
to decision makers. Since the environment dynamics are well-captured,
we can analyze the effect of different budget settings. Finally, we notice
an inflection point on the right-side of the Pareto front, indicating that
taking extreme measures (which can be computed manually) may not
be necessary to root out the infection while minimizing the number
of hospitalizations. In this work, we demonstrate that multi-objective
reinforcement learning adds value to epidemiological modeling as it
brings essential insights to balance mitigation policies and provides
policy makers with a broader view on the decision space.
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