
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Executable First-Order Queries in the Logic of Information Flows *

Non Peer-reviewed author version

Aamer, Heba A.; Bogaerts , Bart; SURINX, Dimitri; Ternovska, Eugenia & VAN DEN

BUSSCHE, Jan (2024) Executable First-Order Queries in the Logic of Information

Flows *. In: Logical Methods in Computer Science, 20 (2).

DOI: 10.46298/LMCS-20(2:6)2024

Handle: http://hdl.handle.net/1942/43086

Logical Methods in Computer Science
Volume 20, Issue 2, 2024, pp. 6:1–6:41
https://lmcs.episciences.org/

Submitted Oct. 05, 2022
Published May 08, 2024

EXECUTABLE FIRST-ORDER QUERIES IN

THE LOGIC OF INFORMATION FLOWS ∗

HEBA AAMER a, BART BOGAERTS a, DIMITRI SURINX b, EUGENIA TERNOVSKA c,
AND JAN VAN DEN BUSSCHE b

aVrije Universiteit Brussel, Belgium
e-mail address: heba.mohamed@vub.be,bart.bogaerts@vub.be

bHasselt University, Belgium
e-mail address: surinxd@gmail.com,jan.vandenbussche@uhasselt.be

c Simon Fraser University, Canada
e-mail address: ter@sfu.ca

Abstract. The logic of information flows (LIF) has recently been proposed as a general
framework in the field of knowledge representation. In this framework, tasks of procedural
nature can still be modeled in a declarative, logic-based fashion. In this paper, we focus
on the task of query processing under limited access patterns, a well-studied problem in
the database literature. We show that LIF is well-suited for modeling this task. Toward
this goal, we introduce a variant of LIF called “forward” LIF (FLIF), in a first-order
setting. FLIF takes a novel graph-navigational approach; it is an XPath-like language that
nevertheless turns out to be equivalent to the “executable” fragment of first-order logic
defined by Nash and Ludäscher. One can also classify the variables in FLIF expressions as
inputs and outputs. Expressions where inputs and outputs are disjoint, referred to as io-
disjoint FLIF expressions, allow a particularly transparent translation into algebraic query
plans that respect the access limitations. Finally, we show that general FLIF expressions
can always be put into io-disjoint form.

Introduction

An information source is said to have a limited access pattern if it can only be accessed
by providing values for a specified subset of the attributes; the source will then respond
with tuples giving values for the remaining attributes. A typical example is a restricted
telephone directory D(name; tel) that will show the phone numbers for a given name, but
not the other way around. For another example, the public bus company may provide its
weekdays schedule as a relation Route(stop, interval; time, line, next, duration) that, given a

Key words and phrases: Limited access pattern,expressive power,variable substitution,composition.
∗This paper is the combined, extended, and fully revised journal version of two papers presented at ICDT

2020 and ICDT 2021 [ABS+20, AVdB21].
This work was partially supported by FWO project G0D9616N and by the Flanders AI Research Program.

Heba Aamer was supported by the Special Research Fund (BOF) (BOF19OWB16) while at Hasselt University.
Jan Van den Bussche is partially supported by the National Natural Science Foundations of China (61972455).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(2:6)2024
© H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche
CC⃝ Creative Commons

6:2 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

bus stop and a time interval, outputs bus lines that stop there at a time within the interval,
together with the duration to the next stop. Note how we use a semicolon to separate the
attributes required to access the information source from the rest of the attributes.

The topic of querying information sources with limited access patterns was put on the
research agenda in the mid 1990s [RSU95], and has been intensively investigated since then,
with recent work until at least 2018 [YLGMU99, FLMS99, DGL00, Li03, MHF03, NL04,
DLN07, CM08b, CM08a, CCM09, BGS11, BBB13, BLT15, BtCT16, CMRU17, CU18]. The
research is motivated by diverse applications, such as query processing using indices, infor-
mation integration, or querying the Deep Web. A review of the field was given by Benedikt
et al. [BLtCT16, Chapter 3.12].

In this paper, we offer a fresh perspective on querying with limited access patterns,
based on the Logic of Information Flows (LIF). This framework has been recently introduced
in the field of knowledge representation [Ter17, Ter19]. The general aim of LIF is to
model how information propagates in complex systems. LIF allows machine-independent
characterizations of computation; in particular, it allows tasks of a procedural nature to be
modeled in a declarative fashion.

In the full setting, LIF is a rich family of logics with higher-order features. The present
paper is self-contained, however, and we introduce here a lightweight, first-order fragment of
LIF, which we call forward LIF (FLIF). Our goal then is to show that FLIF is suitable to
query information sources with limited access patterns.

Specifically, we offer the following insights and contributions:

(1) We offer a new perspective on databases with access limitations, by viewing them as a
graph. The nodes of the graph are valuations; the edges denote access to information
sources. The start node of an edge provides values to input variables, and the end node
provides values to output variables.

(2) Our perspective opens the door to using a graph query language to query databases
with access limitations. Standard navigational graph query languages [PAG10, FGL+15,
LMV13, SFG+15, AAB+17] have a logical foundation in Tarski’s algebra of binary
relations [Tar41, Mad91, Pra92, tCM07]. However, in our situation, nodes in a graph
are not abstract elements, but valuations that give values to variables.

(3) Interestingly, LIF, in its first-order version, can be understood exactly as the desired
extension of Tarski’s algebra to binary relations of valuations. LIF is a dynamic logic:
like first-order dynamic logic [HKT00] or dynamic predicate logic [GS91], expressions
of LIF are not satisfied by single valuations, but by pairs of valuations. Such pairs
represent transitions of information. However, LIF is very general and has operators,
such as converse, or cylindrification, which do not rhyme with the limited access to
information sources that we want to target in this work. Therefore, in this paper, we
introduce FLIF, an instantiation of the LIF framework where information can only flow
forward. Like navigational graph query languages, FLIF expressions define sets of pairs
of valuations so that there is a path in the graph from the first valuation of the pair to
the second.

(4) We show that FLIF is equivalent in expressive power to executable FO, an elegant syn-
tactic fragment of first-order logic introduced by Nash and Ludäscher [NL04]. Formulas
of executable FO can be evaluated over information sources in such a way that the
limited access patterns are respected. Furthermore, the syntactical restrictions are not
very severe and become looser the more free variables are declared as inputs.

Vol. 20:2 EXECUTABLE FO & FLIF 6:3

(5) Our equivalence result between FLIF and executable FO is interesting since FLIF
is a simple compositional language, built from atomic expressions using just three
navigational operators: composition, union, and difference. These operators allow one
to build paths, explore alternatives, and exclude paths. The atomic expressions are
information accesses, tests, or variable assignments. Thus, FLIF is a very different
language from executable FO, where the classical first-order constructs (disjunction,
conjunction, negation, quantification) are syntactically restricted to be ordered so as
to respect the access limitations, and cannot simply be combined orthogonally. FLIF,
which directly navigates through the graph, is also different from other approaches in
the literature where first the “accessible part” (up to some depth) of the database is
retrieved, after which an arbitrary query can be evaluated on this part.

(6) We also specialize our result to FLIF expressions that are io-disjoint. This is a property
coming from our companion paper where we analyze input and output sensitivity in
LIF expressions [ABS+23]. An expression α is io-disjoint if, whenever α can reach a
valuation νout from a valuation νin, the values of the variables in νout depend only on the
values of variables in νin that have not changed in νout. For io-disjoint expressions, the
single valuation νout contains all the relevant information: in this sense, the io-disjoint
fragment of FLIF can be given a static (single-valuation) semantics as opposed to the
dynamic semantics of full FLIF.

(7) We show three results on io-disjoint FLIF. First, when translating FLIF to executable
FO, a more economical translation is possible if the FLIF expression is io-disjoint. Here,
by “economical”, we mean that fewer variables are needed in the FO formula, and the
FO formula is closer in syntax to the FLIF expression.

(8) Second, we show that io-disjoint FLIF expressions can be translated into plans in a
particularly simple and transparent manner. Plans are a standard way of formalizing
query processing with limited access patterns [BLtCT16]. In such plans, database
relations can only be accessed by joining them on their input attributes with a relation
that is either given as input or has already been computed. Apart from that, plans
can use the usual relational algebra operations. That executable FO can be translated
into plans is well known, so, by the equivalence with FLIF, the same holds for FLIF.
However, the resulting plans can be rather complex, just like the classical translation
from relational calculus to relational algebra [AHV95] can produce rather ugly algebra
expressions in general. So, our result is that for io-disjoint FLIF, very simple plans can
be produced. The plans we generate do not need the renaming operator, and use only
natural joins (no cartesian products or theta-joins).

(9) Third, we show that, actually, any FLIF expression can be simulated by an io-disjoint one.
The simulation requires auxiliary variables and variable renamings, and the correctness
proof is quite intricate. We see this result mainly as an expressiveness result, not as
suggesting a practical way to evaluate arbitrary FLIF expressions. Indeed, these can be
evaluated rather directly as is, since FLIF is an algebraic language in itself.

This paper is further organized as follows. We begin with some preliminaries in Section 1.
Section 2 introduces the language FLIF. In Section 3, we recall the basic setting of executable
FO on databases with limited access patterns; furthermore, we prove the equivalence between
FLIF and executable FO. In Section 4, we formally define the io-disjoint fragment. Then,
in Section 5, we give a translation from that fragment to executable FO which improves
upon the translation from FLIF from Section 3. In Section 5, we also give a translation
from FLIF to its io-disjoint fragment. In Section 6, we give the correctness proofs of the

6:4 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

translation theorems from Sections 3 and 5. Section 7 discusses evaluation plans. Finally,
we discuss related work and then conclude in Sections 8 and 9 respectively.

1. Preliminaries

Relational database schemas are commonly formalized as finite relational vocabularies, i.e.,
finite collections of relation names, each name with an associated arity (a natural number).
To model limited access patterns, we additionally specify an input arity for each name. For
example, if R has arity five and input arity two, this means that we can only access R by
giving input values, say a1 and a2, for the first two arguments; R will then respond with all
tuples (x1, x2, x3, x4, x5) in R where x1 = a1 and x2 = a2.

Thus, formally, we define a database schema as a triple S = (Names, ar , iar), where
Names is a set of relation names; ar assigns a natural number ar(R) to each name R in
Names, called the arity of R; and iar similarly assigns an input arity to each R, such that
iar(R) ≤ ar(R). In what follows, we use oar(M) (output arity) for ar(M)− iar(M).

Remark 1.1. In the literature, a more general notion of schema is often used, allowing,
for each relation name, several possible sets of input arguments; each such set is called an
access method. In this paper, we stick to the simplest setting where there is only one access
method per relation, consisting of the first k arguments, where k is set by the input arity. All
subtleties and difficulties already show up in this setting. Nevertheless, our definitions and
results can be easily generalized to the setting with multiple access methods per relation.

The notion of database instance remains the standard one. Formally, we fix a countably
infinite universe dom of atomic data elements, also called constants. Now an instance D
of a schema S assigns to each relation name R an ar(R)-ary relation D(R) on dom. We
say that D is finite if every relation D(R) is finite. The active domain of D, denoted by
adom(D), is the set of all constants appearing in the relations of D.

The syntax and semantics of first-order logic (FO, relational calculus) over S is well
known [AHV95]. The set of free variables of an FO formula φ is denoted by fvars(φ).
Moreover, in formulas, we allow constants only in equalities of the form x = c, where x
is a variable and c is a constant. As we mentioned earlier, in writing relation atoms, we
find it clearer to separate input arguments from output arguments by a semicolon. Thus,
we write relation atoms in the form R(x̄; ȳ), where x̄ and ȳ are tuples of variables such
that the length of x̄ is iar(R) and the length of ȳ is oar(R). For example, the relation
atom R(x, z; y, y, z) indicates that R is a relation name with ar(R) = 5 and iar(R) = 2;
consequently, oar(R) = 3.

We use the “natural” semantics [AHV95] and let variables in formulas range over the
whole of dom. Formally, an X-valuation is a valuation defined on a set X of variables, and
precisely, it is a mapping ν : X → dom. We will often not specify the set X of variables a
valuation is defined on when it is clear from context. It is convenient to be able to apply
valuations also to constants, agreeing that ν(c) = c for any valuation ν and any c ∈ dom.
Moreover, in general, for a valuation ν, a variable x, and a constant c, we use ν[x := c] for
the valuation that is the same as ν except that x is mapped to c. Additionally, we say that
two valuations ν1 and ν2 agree on (outside) a set of variables X when ν1(x) = ν2(x) for
every variable x ∈ X (x ̸∈ X). Finally, given an instance D of S, an FO formula φ over
S, and a valuation ν defined on fvars(φ), the definition of when φ is satisfied by D and ν,
denoted by D, ν |= φ, is standard.

Vol. 20:2 EXECUTABLE FO & FLIF 6:5

2. Forward LIF

In this section, we introduce the language FLIF.1 The language itself is a form of dynamic
logic. Indeed, the semantics of any FLIF expression is defined as a set of pairs of valuations.
The operators are an algebraization of first-order logic connectives. Although FLIF is a
dynamic algebraic form of first-order logic, it is notable that it lacks quantification operators,
which makes it especially simple.

Syntax and semantics of FLIF: atomic expressions. The central idea is to view a
database instance as a graph. The nodes of the graph are all possible valuations on some set
of variables (hence the graph is infinite.) The edges in the graph are labeled with atomic
FLIF expressions. Some of the edges are merely tests (i.e., self-loops), while other edges
represent a change in the state.

Syntactically, over a schema S and a set of variables V, there are five kinds of atomic
expressions τ , given by the following grammar:

τ ::= R(x̄; ȳ) | (x = y) | (x = c) | (x := y) | (x := c)

Here, R(x̄; ȳ) is a relation atom over S as in first-order logic with x̄ and ȳ being tuples of
variables in V, x and y are variables from V, and c is a constant. The atomic expressions
(x = y) and (x = c) are equality tests, while the expressions (x := y) and (x := c) are
assignment expressions. From the grammar, we see that any atomic expression τ is defined
such that vars(τ) ⊆ V where vars(τ) is the set of variables used in τ .

Semantically, given an instance D of S, a set of variables V, and an atomic expression τ
over S and V, we define the set of τ -labeled edges in the graph view of D as a set JτKVD of
ordered pairs of V-valuations, as follows.

Definition 2.1.

(1) JR(x̄; ȳ)KVD is the set of all pairs (ν1, ν2) of V-valuations such that the concatenation
ν1(x̄) · ν2(ȳ) belongs to D(R), and ν1 and ν2 agree outside the variables in ȳ.

(2) J(x = y)KVD is the set of all identical pairs (ν, ν) of V-valuation such that ν(x) = ν(y).

(3) Likewise, J(x = c)KVD is the set of all identical pairs (ν, ν) of V-valuation such that
ν(x) = c.

(4) J(x := y)KVD is the set of all pairs (ν1, ν2) of V-valuations such that ν2 = ν1[x := ν1(y)].
Thus, ν2(x) = ν1(y) and ν2 agrees with ν1 on all other variables.

(5) Similarly, J(x := c)KVD is the set of all pairs (ν1, ν2) of V-valuations such that ν2 = ν1[x :=
c].

Note that each JτKVD, being a set of ordered pairs of valuations, is a binary relation on

valuations. When V is understood, we will feel free to omit the superscript in JτKVD.

Example 2.2. Consider a set of variables V = {x, y, z} and a schema S with two binary
relation names B and T , both of input arity one. In the rest of the example, assume that
dom ⊇ {1, 2, 3, 4, 5} and that we have an instance D of S that assigns the relation names
to the following binary relations:

D(B) = {(1, 2), (1, 3), (2, 3), (3, 5)} and D(T) = {(1, 4), (3, 5)}.
Intuitively, you could think of B and T as relations of source-destination pairs of stations
that could be reached by bus (B) or train (T) respectively.

1Pronounced as “eff-lif”.

6:6 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

Figure 1: Part of graph view of the database considered in Example 2.2.

Figure 1 shows a tiny fragment of the graph view of D. It shows only three valuations and
all labeled edges between these three valuations. We depict valuations by three consecutive
squares with the first being the value of x, the second being the value of y, and the third
being the value of z.

For another illustration of the same graph view, let us consider the following atomic
expressions: B(x;x), B(x; y), T (y; z), (x := z), and (x = z). Figure 2 depicts the entire
binary relations on valuations JτKVD for these five atomic expressions τ . For each of these
examples, we give a table below that shows its semantics (i.e., pairs of V-valuations). In
this depiction, ‘∗’ means that the value of the variable could be anything in the domain, i.e.,
the variable in that valuation is not restricted to a specific value. Furthermore, when, in
some pair, we put ‘−’ in both slots for some variable u, we mean that the value for u could
be anything on condition that it is the same on the left and right.

Syntax and semantics of FLIF: operators. The syntax of all FLIF expressions α (still
over schema S and set of variables V) is now given by the following grammar:

α ::= τ | α ; α | α ∪ α | α− α

Vol. 20:2 EXECUTABLE FO & FLIF 6:7

JB(x;x)KVD
ν1 ν2

x y z x y z

1 − − 2 − −
1 − − 3 − −
2 − − 3 − −
3 − − 5 − −

JB(x; y)KVD
ν1 ν2

x y z x y z

1 ∗ − 1 2 −
1 ∗ − 1 3 −
2 ∗ − 2 3 −
3 ∗ − 3 5 −

JT (y; z)KVD
ν1 ν2

x y z x y z

− 1 ∗ − 1 4
− 3 ∗ − 3 5

J(x := z)KVD
ν1 ν2

x y z x y z

∗ − 1 1 − 1
∗ − 2 2 − 2
∗ − 3 3 − 3
∗ − 4 4 − 4
∗ − 5 5 − 5

J(x = z)KVD
ν1 ν2

x y z x y z

1 − 1 1 − 1
2 − 2 2 − 2
3 − 3 3 − 3
4 − 4 4 − 4
5 − 5 5 − 5

Figure 2: Table view for the expressions considered in Example 2.2.

Here, τ ranges over atomic expressions over S and V, as defined above. The semantics of
the composition operator ‘;’ is defined as follows:

Jα1 ; α2KVD = {(ν1, ν2) | ∃ν : (ν1, ν) ∈ Jα1KVD and (ν, ν2) ∈ Jα2KVD}

Note that we are simply taking the standard composition of two binary relations on valuations.
Similarly, the semantics of the set operations are standard union and set difference on binary
relations on valuations.

Example 2.3. Continuing Example 2.2, consider the expression B(x; y) ;T (y;x). Intuitively,
this expression takes x as input and retrieves the possible values for x and y such that

(1) you can go from station x to station y by a bus, and moreover,
(2) you can go from station y to a possibly different station x by a train.

6:8 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

The next table of pairs of valuations shows the semantics of that FLIF expression, i.e.,
JB(x; y) ; T (y;x)KVD.

ν1 ν2

x y z x y z

1 ∗ − 5 3 −
2 ∗ − 5 3 −

We see that FLIF expressions describe paths in the graph, in the form of source–target
pairs. Composition is used to navigate through the graph, and to conjoin paths. Paths can
be branched using union, and excluded using set difference.

Remark 2.4. Sometimes, in writing FLIF expressions, we omit parentheses around
(sub)expressions involving composition since it is an associative operator. Also, we give
precedence to composition over the set operations.

Example 2.5. Consider a simple Facebook abstraction with a single binary relation F of
input arity one. When given a person as input, F returns all their friends. We assume that
this relation is symmetric.

To illustrate the dynamic nature of FLIF, over just a single variable V = {x}, the
expression F (x;x);F (x;x);F (x;x) describes all pairs (ν1, ν2) such that there is a path of
length three from ν1(x) to ν2(x).

For another example, suppose, for an input person x (say, a famous person), we want to
find all people who are friends with at least two friends of x. Formally, we want to navigate
from a valuation ν1 giving a value for x, to all valuations ν2 giving values to variables y1, y2,
and z, such that

• ν2(y1) and ν2(y2) are both friends with ν1(x);
• ν2(z) is friends with both ν2(y1) and ν2(y2); and
• ν2(y1) ̸= ν2(y2).

This can be done by the FLIF expression α− (α ; (y1 = y2)), where α is the expression

F (x; y1) ; F (x; y2) ; F (y1; z) ; F (y2; z1) ; (z = z1).

Note that using the extra variable z1 is needed, since using F (y2; z) instead would result in
overwriting the value of the variable z set by the variable y1.

Without the use of the extra variable, we could alternatively define α by the intersection
α1 ∩α2, where αi is the expression F (x; y1) ;F (x; y2) ;F (yi; z). We are using the intersection
operator here, which is formally not part of FLIF as defined, but easily expressible as
α1 − (α1 − α2).

Remark 2.6. In the above example, it would be more efficient to simply write α ; (y1 ̸= y2).
For simplicity, we have not added nonequality tests in FLIF as they are formally redundant
in the presence of set difference, but they can easily be added in practice. The purpose of
this paper is to introduce the formal foundation of FLIF; clearly, a practical language based
on FLIF will include arithmetic comparisons and operations.

Vol. 20:2 EXECUTABLE FO & FLIF 6:9

The evaluation problem for FLIF expressions. Given that FLIF expressions navigate
paths in the graph view of a database instance D, the natural use of FLIF is to provide
an input valuation νin to an expression α, and ask for all output valuations νout such that
(νin, νout) ∈ JαKD. Formally, we define:

Definition 2.7 (The evaluation problem EvalVα(D, νin) for FLIF expression α over V).
Given a database instance D and a V-valuation νin, the task is to compute the set

EvalVα(D, νin) = {νout | (νin, νout) ∈ JαKVD}.

Assume we have effective access to the relations R of D, in the following sense. If R has
input arity i and output arity o, and given an i-tuple t1, we can effectively retrieve the set
of o-tuples t2 such that t1 · t2 belongs to D(R). Moreover, this set is assumed to be finite.
Assuming such effective access, which is needed for the evaluation of atomic expressions of
the form R(x̄; ȳ), it is now obvious how more complex expressions can be evaluated. Indeed,
other atomic expressions are just assignments or tests, and operations of FLIF are standard
operations on binary relations. In Section 7, we will give an explicit description of this
evaluation algorithm, for the “io-disjoint” fragment of FLIF, in terms of relational algebra
plans. Nevertheless, the obvious evaluation algorithm described informally above can always
be applied, also for FLIF expressions that are not io-disjoint.

Example 2.8. Recall the expression F (x;x) ; F (x;x) ; F (x;x) from Example 2.5 over
V = {x}. On input a valuation νin on {x}, the evaluation will return all valuations νout on
{x} such that there is a path of length three from νin(x) to νout(x).

Next recall the expression F (x; y1) ; F (x; y2) ; F (y1; z) ; F (y2; z1) ; (z = z1). On input
valuation νin on V = {x, y1, y2, z, z1}, the evaluation will return all V-valuations νout such that
the tuples (νin(x), νout(y1)), (νin(x), νout(y2)), (νout(y1), νout(z)), (νout(y2), νout(z)) belong
to relation F , and moreover νout(z1) = νout(z) and νout(x) = νin(x). Note in particular that
the values provided by νin for y1, y2, z, and z1 are irrelevant; only the input value νin(x)
counts. Similarly, recall the expression

F (x; y1) ; F (x; y2) ; F (y1; z) ∩ F (x; y1) ; F (x; y2) ; F (y2; z)

over V = {x, y1, y2, z}. On input a V-valuation νin, the evaluation will return all V-
valuations νout such that the tuples (νin(x), νout(y1)), (νin(x), νout(y2)), (νout(y1), νout(z)),
(νout(y2), νout(z)) belong to the relation F , and moreover νout(x) = νin(x).

In contrast, consider the expression

F (x; y1) ; F (y1; z) ∩ F (x; y2) ; F (y2; z).

Now on input a valuation νin on V = {x, y1, y2, z}, the evaluation will return all V-valuations
νout such that the tuples (νin(x), νin(y1)), (νin(x), νin(y2)), (νin(y1), νout(z)), (νin(y2), νout(z))
belong to the relation F , and moreover, νout and νin agree on {x, y1, y2}. So for this expression,
not just νin(x), but also νin(y1) and νin(y2) are important values for the evaluation problem.
This behavior can be traced back to Definition 2.1, which requires ν1(y2) = ν2(y2) for any
pair (ν1, ν2) ∈ JF (x; y1)KVD as well as JF (y1; z)KVD. Similarly, ν1(y1) = ν2(y1) for any pair

(ν1, ν2) ∈ JF (x; y2)KVD as well as JF (y2; z)KVD.

6:10 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

3. Executable FO

Let us recall the language known as executable FO (cf. the Introduction). Executability of
formulas is a syntactic notion. In the literature, a lot of work has focused on the problem of
trying to rewrite arbitrary FO formulas into executable form [NL04, RSU95, Li03, DLN07,
CM08b, BLT15, BtCT16, CMRU17]. However, in this paper, we are focusing instead on
using executable FO as a gauge for accessing the expressiveness of our new language FLIF.
(Indeed, we will show that FLIF and executable FO are equivalent.) Hence, in this paper,
we work only with executable FO formulas and not with arbitrary FO formulas.

The notion of when a formula is executable is defined relative to a set of variables V,
which specifies the variables for which input values are already given. Beware (in line with
established work in the area [Li03, NL04]) that the notion of executability here is syntactic,
and dependent on how subformulas are ordered within the formula. One may think of the
notion of executability discussed in this paper as a “left-to-right” executability, which shall
be clear from the following examples. Indeed, we begin with a few examples.

Example 3.1.

• Let φ be the formula R(x; y). As mentioned above, this notation makes clear that the
input arity of R is one. If we provide an input value for x, then the database will give
us all y values such that R(x, y) holds. Indeed, φ will turn out to be {x}-executable.
Giving a value for the first argument of R is mandatory, so φ is neither ∅-executable nor
{y}-executable. However, it is certainly allowed to provide input values for both x and y;
in that case we are merely testing if R(x, y) holds for the given pair (x, y). Thus, φ is also
{x, y}-executable. In general, a V-executable formula will also be V ′-executable for any
V ′ ⊇ V.
• Also, the formula ∃y R(x; y) is {x}-executable. In contrast, the formula ∃xR(x; y) is not,
because even if a value for x is given as input, it will be ignored due to the existential
quantification. In fact, the latter formula is not V-executable for any V.
• The formula R(x; y) ∧ S(y; z) is {x}-executable, intuitively because each y returned by
the formula R(x; y) can be fed into the formula S(y; z), which is {y}-executable in itself.
In contrast, the semantically equivalent formula S(y; z) ∧R(x; y) is not {x}-executable,
because we need a value for y to execute the formula S(y; z). However, the entire formula
is {y, x}-executable.
• The formula R(x; y) ∨ S(x; z) is not {x}-executable, because any y returned by R(x; y)
would already satisfy the formula, leaving the variable z unconstrained. This would lead
to an infinite number of satisfying valuations. The formula is neither {x, z}-executable; if
S(x, z) holds for the given values for x and z, then y is left unconstrained. Of course, the
formula is {x, y, z}-executable.
• For a similar reason, ¬R(x; y) is only V-executable for V containing x and y.

V-executable Formulas. We now define, formally, for any set of variables V, the set of
V-executable formulas are defined as follows. Our definition closely follows the original
definition by Nash and Ludäscher [NL04]; we only add equalities and constants to the
language.

• An equality x = y, for variables x and y, is V-executable if at least one of x and y belongs
to V.
• An equality x = c, for a variable x and a constant c, is always V-executable.

Vol. 20:2 EXECUTABLE FO & FLIF 6:11

• A relation atom R(x̄; ȳ) is V-executable if X ⊆ V, where X is the set of variables from x̄.
• A negation ¬φ is V-executable if φ is, and moreover fvars(φ) ⊆ V.
• A conjunction φ ∧ ψ is V-executable if φ is, and moreover ψ is V ∪ fvars(φ)-executable.
• A disjunction φ∨ψ is V-executable if both φ and ψ are, and moreover fvars(φ)△fvars(ψ) ⊆
V. Here, △ denotes symmetric difference.
• An existential quantification ∃xφ is V-executable if φ is V − {x}-executable.
Note that universal quantification is not part of the syntax of executable FO.

Example 3.2. Recall the query considered in Example 2.5, asking for all triples (y1, y2, z)
such that, for some input x, we have F (x; y1), F (x; y2), F (y1; z), F (y2; z), and y1 and y2
are different. The natural FO formula for this query is indeed {x}-executable:

F (x; y1) ∧ F (x; y2) ∧ F (y1; z) ∧ F (y2; z) ∧ ¬(y1 = y2).

Note that the above executable FO formula and FLIF expression from Example 2.5 are
quite similar in their structure. The main difference is the use of the extra variable z1 which
was explained in Example 2.5.

Remark 3.3. Continuing Remark 1.1, in an extended setting where multiple access patterns
are possible for the same relation, the simple syntax we use both in FLIF and in executable
FO needs to be changed. Instead of relation atoms of the form R(x̄; ȳ) we would use
adornments, which is a standard syntax in the literature on access limitations. For example,
if a ternary relation R can be accessed by giving inputs to the first two arguments, or to the
first and the third, then both Riio(x, y, z) and Rioi(x, y, z) would be allowed relation atoms.

Given an FO formula φ and a finite set of variables V such that φ is V-executable, we
describe the following task:

Definition 3.4 (The evaluation problem Evalφ,V(D, νin) for φ with input variables V).
Given a database instance D and a valuation νin on V, compute the set of all valuations ν
on V ∪ fvars(φ) such that νin ⊆ ν and D, ν |= φ.

As mentioned in the Introduction, this problem is known to be solvable by a relational
algebra plan respecting the access patterns. In particular, if D is finite, the output is always
finite: each valuation ν in the output can be shown to take only values in adom(D)∪νin(V).2

3.1. From Executable FO to FLIF. After introducing FLIF and executable FO, we
observe that executable FO formulas translate rather nicely to FLIF expression as given by
the following Theorem.

Theorem 3.5. Let φ be a V-executable formula over a schema S. There exists an FLIF
expression α over S and a set of variables V ⊇ fvars(φ)∪V such that for every D, V-valuation
νin, and V-valuation ν ′in with ν ′in ⊇ νin, we have

Evalφ,V(D, νin) = {νout|fvars(φ)∪V | (ν ′in, νout) ∈ JαKVD}.

Example 3.6. Before giving the proof, we give a few examples. Note that in all the following
examples, we only consider sets of input variables V with V ⊆ fvars(φ).

2Actually, a stronger property can be shown: only values that are “accessible” from νin in D can be taken
[BLtCT16], and if this accessible set is finite, the output of the evaluation problem is finite.

6:12 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

• Suppose φ is R(x; y) with input variable x. Then, as expected, α can be taken to be
R(x; y). Suppose we have the same formula with V = {x, y}. Intuitively, the formula asks
for outputs (u) where u equals y. Hence, α can be taken to be R(x;u); (u = y). Note that
the FLIF expression R(x; y) is not a correct translation since the value of y may change
from the value given by V.
• Now, consider T (x;x, y), again with input variable x. Intuitively, the formula asks for
outputs (u, y) where u equals x. Hence, a suitable FLIF translation is T (x;u, y) ; (u = x).
Note that the FLIF expression T (x;x, y) is not semantically equivalent since the value of
x is changeable due to the dynamic semantics of FLIF.
• If φ is R(x; y)∧S(y; z), still with input variable x, we can take R(x; y) ;S(y; z) for α. The
same expression also serves for the formula ∃y φ.
• Suppose φ is R(x;x)∨S(y;) with V = {x, y}. For V ∩ fvars(R(x;x)), we translate R(x;x)
to R(x;u) ; (x = u). Similarly, S(y;) is translated to S(y;). Then, the final α can be taken
to be R(x;u) ; (x = u) ∪ S(y;).
• A new trick must be used for negation. For example, if φ is ¬R(x; y) with V = {x, y},
then α can be taken to be (u := 42) − R(x;u) ; (u = y) ; (u := 42). Composing each side
of ‘−’ with the same dummy assignment to u is required since the value of the u in the
second operand should not affect the result of the needed negation.

Proof Sketch of Theorem 3.5. We only describe the translation; its correctness is proven in
Section 6.1.

If φ is a relation atom R(x̄; ȳ), then α is R(x̄; z̄);ξ, where z̄ is obtained from ȳ by replacing
each variable from V by a fresh variable. The expression ξ consists of the composition of all
equalities (yi = zi) where yi is a variable from ȳ that is in V and zi is the corresponding
fresh variable.

If φ is x = y, then α is (x = y).
If φ is x = c, then α is (x = c).
If φ is φ1 ∧ φ2, then by induction we have an expression α1 for φ1 and V ∩ fvars(φ1),

and an expression α2 for φ2 and (V ∪ fvars(φ1)) ∩ fvars(φ2). Now α can be taken to be
α1 ; α2.

If φ is ∃xφ1, then without loss of generality we may assume that x /∈ V. By induction,
we have an expression α1 for φ1 and V. This expression also works for φ.

If φ is φ1 ∨ φ2, then by induction we have an expression αi for φi and V, for i = 1, 2.
Now α can be taken to be α1 ∪ α2.

Finally, if φ is ¬φ1, then by induction we have an expression α1 for φ1 and V. Fix
an arbitrary constant c, and let ξ be the composition of all expressions (z := c) for
z ∈ vars(α1) − V. (If that set is empty, we add an extra fresh variable.) Then α can be
taken to be ξ − α1 ; ξ.

3.2. From FLIF to executable FO. The previous translation shows that FLIF is expressive
enough, in the sense that executable FO formulas can be translated into FLIF expressions
such that they evaluate to the same set of valuations starting from the same assignment. It
turns out that the converse translation is also possible, so, FLIF exactly matches executable
FO in expressive power.

Actually, two distinct translations from FLIF to executable FO are possible:

Vol. 20:2 EXECUTABLE FO & FLIF 6:13

(1) A somewhat rough translation, which translates every FLIF expression on a set of
variables V to an equivalent V-executable formula that uses thrice the number of
variables in V;

(2) A much finer translation, which often results in V-executable formulas with a much
smaller set V than the entire V. This set V will consist of the “input variables” of the
given FLIF expression. We will this idea further in Sections 4 and 5.

Next, we proceed with the rough translation. Assume V = {x1, . . . , xn}. Since the se-
mantics of FLIF expressions on V involves pairs of V-valuations, we introduce a copy
Vy = {y1, . . . , yn} disjoint from V. For clarity, we also write Vx for V. By FO[k] we denote
the fragment of first-order logic that uses only k distinct variables [Lib04].

The following proposition is a variant of a result shown in our companion paper on
LIF [ABS+23, Proposition 7.9]. That result is for a larger language LIF, but it does not
talk about executability.

Proposition 3.7. Let S be a schema, and Vx a set of n variables. Then, for every FLIF
expression α over S and Vx, there exists a Vx-executable FO[3n] formula φα over S with
free variables in Vx ∪ Vy such that

(ν1, ν2) ∈ JαKVD ↔ D, (ν1 ∪ ν ′2) |= φα,

where ν ′2 is the Vy-valuation such that ν ′2(yi) = ν2(xi) for i = 1, . . . , n.

Proof. The proof is by induction on the structure of α. First, we introduce a third copy
Vz = {z1, . . . , zn} of V. Moreover, for every u, v ∈ {x, y, z} we define ρuv as follows:

ρuv : Vu → Vv : ui 7→ vi

Using these functions, we can translate a valuation ν on V = Vx to a corresponding valuation
on Vu with u ∈ {y, z}. Clearly, the function composition in ν ◦ ρux does this job.

In the first part of the proof, we actually show a stronger statement by induction, namely
that for each α and for every u ̸= v ∈ {x, y, z} there is a formula φuv

α in FO[Vx ∪ Vy ∪ Vz]
with set of free variables equal to Vu ∪ Vv such that for every D,

(ν1, ν2) ∈ JαKVD ↔ D, (ν1 ◦ ρux ∪ ν2 ◦ ρvx) |= φuv
α .

Since the notations x, y, z, u and v are taken, we use notations a, b and c for variables and
d for constants.

• α = R(a; b). Take φuv
α to be R(ρxu(a); ρxv(b)) ∧

∧
c ̸∈b ρxu(c) = ρxv(c).

• α = (a = b). Take φuv
α to be ρxu(a) = ρxu(b) ∧

∧
c∈Vx

ρxu(c) = ρxv(c).
• α = (a = d). Take φuv

α to be ρxu(a) = d ∧
∧

c∈Vx
ρxu(c) = ρxv(c).

• α = (a := b). Take φuv
α to be ρxv(a) = ρxu(b) ∧

∧
c∈Vx−{a} ρxu(c) = ρxv(c).

• α = (a := d). Take φuv
α to be ρxv(a) = d ∧

∧
c∈Vx−{a} ρxu(c) = ρxv(c).

• α = α1 ∪ α2. Take φ
uv
α to be φuv

α1
∨ φuv

α2
.

• α = α1 − α2. Take φ
uv
α to be φuv

α1
∧ ¬φuv

α2
.

• α = α1 ; α2. Let w ∈ {x, y, z} − {u, v}. Take φuv
α to be ∃w1 . . . ∃wn (φuw

α1
∧ φwv

α2
).

In the rest of the proof, we verify that φuv
α is indeed Vu-executable. As for the atomic

FLIF expressions, this is clear.
In case α = α1 ∪ α2, we know by induction that both φuv

α1
and φuv

α2
are Vu-executable.

For φuv
α to be Vu-executable, it must be the case that fvars(φuv

α1
)△ fvars(φuv

α2
) ⊆ Vu which

is trivial since fvars(φuv
α1
) = Vu ∪ Vv = fvars(φuv

α2
), so fvars(φuv

α1
)△ fvars(φuv

α2
) = ∅.

6:14 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

Now, consider the case α = α1 − α2. We know by induction that both φuv
α1

and φuv
α2

are
Vu-executable. For φ

uv
α to be Vu-executable, it must be the case that fvars(φuv

α2
) ⊆ fvars(φuv

α1
)

which is true since fvars(φuv
α1
) = Vu ∪ Vv = fvars(φuv

α2
).

Finally, consider the case α = α1 ; α2. We know by induction that φuw
α1

is Vu-executable
and φwv

α2
is Vw-executable. It is clear that Vw ⊆ fvars(φuw

α1
), consequently, the formula

φuw
α1
∧ φwv

α2
is Vu-executable. Hence, since Vu and Vu are disjoint, the same formula is

(Vu − Vw)-executable which is sufficient to show that φuv
α itself is Vu-executable.

Although the previous translations show that FLIF and executable FO are effectively
equivalent in expressive power, the translation from FLIF to executable FO overlooks some
of the interesting relations between both formalisms and moreover, it uses lots of variables
unnecessarily. This is best shown by example.

Example 3.8. Consider the FLIF expression α = R(x1;x1) ; R(x1;x1) ; R(x1;x1) where
Vx = {x1}. According to the procedure given in the proof of Proposition 3.7, the resultant
φα would be

∃z1
[
R(x1; z1) ∧ ∃x1

[
R(z1;x1) ∧R(x1; y1)

]]
.

In contrast, consider the FLIF expression α = R(x1;x2) ; R(x2;x3) ; R(x3;x4) where
Vx = {x1, x2, x3, x4}. Now φα would be

∃z1∃z2∃z3∃z4
[
R(x1; z2) ∧ (z1 = x1) ∧ (z3 = x3) ∧ (z4 = x4)∧

∃x1∃x2∃x3∃x4
[
R(z2;x3) ∧ (x1 = z1) ∧ (x2 = z2) ∧ (x4 = z4)∧

R(x3; y4) ∧ (y1 = x1) ∧ (y2 = x2) ∧ (y3 = x3)
]]
.

However, it is clear that taking φα to be R(x1;x2) ∧R(x2;x3) ∧R(x3;x4) would work fine,
in the sense that given an arbitrary {x1}-valuation ν and any Vx-valuation ν

′ that is an
extension of ν (i.e., ν ′ ⊇ ν), α and φα would evaluate to the same set of Vx-valuations as
stated below (where D below is an arbitrary instance):

Evalφα,{x1}(D, ν) = EvalVx
α (D, ν ′)

This shows that the values provided for {x2, x3, x4} in ν ′ to evaluate the expression α are not
important since their values would be overwritten regardless of what ν ′ sets them to. Stated
differently, variables x2, x3, x4 are outputs of α, but not inputs ; the only input variables for
α is x1.

In the next section, we develop the notions of input and output variables of FLIF
expressions more formally. Then in Section 5.2, we will give an improved translation from
FLIF to executable FO taking inputs into account.

4. Inputs and outputs of forward LIF

In this section, we introduce inputs and outputs of FLIF expressions. In every expression,
we can identify the input and the output variables. Intuitively, the output variables are
those that can change value along the execution path; the input variables are those whose
values at the beginning of the path are needed in order to know the possible values for the
output variables. These intuitions will be formalized below. We first give some examples.

Vol. 20:2 EXECUTABLE FO & FLIF 6:15

Table 1: Input and output variables of FLIF expressions. In the case of R(x̄; ȳ), the set X
is the set of variables in x̄, and the set Y is the set of variables in ȳ. Recall that △
is symmetric difference.

α I(α) O(α)

R(x̄; ȳ) X Y

(x = y) {x, y} ∅
(x := y) {y} {x}
(x = c) {x} ∅
(x := c) ∅ {x}
α1;α2 I(α1) ∪ (I(α2)−O(α1)) O(α1) ∪O(α2)

α1 ∪ α2 I(α1) ∪ I(α2) ∪ (O(α1)△O(α2)) O(α1) ∪O(α2)

α1 − α2 I(α1) ∪ I(α2) ∪ (O(α1)△O(α2)) O(α1)

Example 4.1.

• In both expressions given for α from Example 2.5, the only input variable is x, and the
other variables are output variables.
• FLIF, in general, allows expressions where a variable is both input and output. For
example, consider the relation Swap of input arity two that holds of quadruples of the form
(a, b, b, a) for a and b in the dom, so the values of the first two arguments are swapped in
the second two. Then, using the expression Swap(x, y;x, y) would result in having the
values of x and y swapped. Formally, this expression defines all pairs of valuations (ν1, ν2)
such that ν2(x) = ν1(y) and ν2(y) = ν1(x) (and ν2 agrees with ν1 on all other variables).
• On the other hand, for the expression R(x; y1) ∪ S(x; y2), the output variables are y1 and
y2. Indeed, consider an input valuation ν1 with ν1(x) = a. The expression pairs ν1 either
with a valuation giving a new value for y1, or with a valuation giving a new value for y2.
However, y1 and y2 are also input variables (together with x). Indeed, when pairing ν1
with a valuation ν2 that sets y2 to some b for which S(a, b) holds, we must know the value
of ν1(y1) so as to preserve it in ν2. A similar argument holds for y2.

The semantic properties that we gave above as intuitions for the notions of inputs and
outputs are undecidable in general (see related work Section 8). Here, we will work with
syntactic approximations.

Definition 4.2. For any FLIF expression α, its sets I(α) and O(α) of input and output
variables are defined in Table 1.

Note that previously we have used vars(α) to denote the set of all variables occurring
in the expression α. Since FLIF has no explicit quantification, this is precisely the union of
I(α) and O(α). From now on, we will also refer to this set as the free variables.

Next we establish three propositions that show that our definition of inputs and outputs,
which is purely syntactic, reflects actual properties of the semantics. (See Section 8 on
related work for their proofs.)

The first proposition confirms an intuitive property and can be straightforwardly verified
by induction.

6:16 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

Proposition 4.3 (Inertia property). If (ν1, ν2) ∈ JαKD then ν2 agrees with ν1 outside O(α).

The second proposition confirms, as announced earlier, that the semantics of expressions
depends only on the free variables; outside vars(α), the binary relation JαKD is cylindrical,
i.e., contains all possible data elements.3 An illustration of this was already given in Figure 2,
using the asterisk indications.

Proposition 4.4 (Free variable property). Let (ν1, ν2) ∈ JαKD and let ν ′1 and ν ′2 be valuations
such that

• ν ′1 agrees with ν1 on vars(α), and
• ν ′2 agrees with ν2 on vars(α), and agrees with ν ′1 outside vars(α).

Then also (ν ′1, ν
′
2) ∈ JαKD.

The third proposition is the most important one. It confirms that the values for the
input variables determine the values for the output variables.

Proposition 4.5 (Input-output determinacy). Let (ν1, ν2) ∈ JαKD and let ν ′1 be a valuation
that agrees with ν1 on I(α). Then there exists a valuation ν ′2 that agrees with ν2 on O(α),
such that (ν ′1, ν

′
2) ∈ JαKD.

By inertia, we can see that the valuation ν ′2 given by the above proposition is unique.
Moreover, using the free variable property, we showed the input-output determinacy property
is equivalent to the following alternative form.

Lemma 4.6 (Input-output determinacy, alternative form). Let (ν1, ν2) ∈ JαKD and let ν ′1 be
a valuation that agrees with ν1 on I(α) as well as outside O(α). Then also (ν ′1, ν2) ∈ JαKD.

Intuitively, it is easier to work with the alternative form since we have to consider only
three valuations instead of four in the original form.

Example 4.7. Let us denote the expression R(x; y) ∪ S(x; z) by α. The definitions in
Table 1 yield that O(α) = {y, z} and I(α) = {x, y, z}. Having y and z as input variables
may at first sight seem counterintuitive. To see semantically why, say, y is an input variable
for α, consider an instance D where S contains the pair (1, 3). Consider the valuation
ν1 = {(x, 1), (y, 2), (z, 0)}, and let ν2 = ν1[z := 3]. Clearly (ν1, ν2) ∈ JS(x; z)KD ⊆ JαKD.
However, if we change the value of y in ν1, letting ν

′
1 = ν1[y := 4], then (ν ′1, ν2) neither

belongs to JS(x; z)KD nor to JR(x; y)KD (due to inertia). Thus, input-output determinacy
would be violated if y would not belong to I(α).

We are now in a position to formulate a new version of the FLIF evaluation problem
that takes the inputs into consideration. Given an expression α, we consider the following
task:4

Definition 4.8 (The evaluation problem Evalα(D, νin) for α). Given a database instance
D and a valuation νin on I(α), the task is to compute the set

Evalα(D, νin) = {νout|vars(α) | ∃ν ′in : νin ⊆ ν ′in and (ν ′in, νout) ∈ JαKD}.

3This terminology is borrowed from cylindrical set algebra [IL84, VdB01].
4For a valuation ν on a set of variables X (possibly all variables), and a subset Y of X, we use ν|Y to

denote the restriction of ν to Y , i.e., ν|Y is the function from the variables in Y to dom that agrees with ν
on Y .

Vol. 20:2 EXECUTABLE FO & FLIF 6:17

By inertia and input-output determinacy, the choice of ν ′in in the above definition of the
output does not matter. We show this formally in the next Remark.

Remark 4.9. The above definition improves on Definition 2.7 in that it is formally inde-
pendent of the encompassing universe V of variables; it intrinsically only depends on the
input and output variables of α. Indeed, formally, given any FLIF expression α on V, and
any V-valuation ν, it is not hard to see that the following equivalence holds:

Evalα(D, ν|I(α)) = {ν ′|vars(α) | ν ′ ∈ EvalVα(D, ν)}
Proof. It suffices to show the ‘⊆’ direction; the other direction is clear from the definitions.
Let ν be a V-valuation. Suppose that there exists an arbitrary V-valuation νin such that
νin ⊇ ν|I(α) (i.e., νin = ν on I(α)) and (νin, νout) ∈ JαKVD. We want to show that there exists

a valuation ν ′out such that (ν, ν ′out) ∈ JαKVD and νout = ν ′out on vars(α).

From the facts that ν = νin on I(α) and that (νin, νout) ∈ JαKVD, it follows by input-output

determinacy that there exists a valuation ν ′out such that (ν, ν ′out) ∈ JαKVD and ν ′out = νout
on O(α). It remains to verify that ν ′out = νout on I(α) − O(α). Indeed, this is true since
νout = νin = ν = ν ′out on I(α)−O(α), where the first and third equalities hold because of
inertia and having both (νin, νout) and (ν, ν ′out) in JαKVD. The middle equality follows from
the fact that ν = νin on I(α).

Consider an FLIF expression α for which the set O(α) is disjoint from I(α). Then
any pair (ν1, ν2) ∈ JαKD satisfies that ν1 and ν2 are equal on I(α). Put differently, every
νout ∈ Evalα(D, νin) is equal to νin on I(α); all that the evaluation does is expand the input
valuation with output values for the new output variables. This makes the evaluation process
for expressions α where I(β) ∩O(β) = ∅, for every subexpression β of α (including α itself),
very transparent in which input slots remain intact while output slots are being filled. We
call such expressions io-disjoint.

Example 4.10. Continuing Example 2.5 (friends), the expression F (x;x) is obviously not
io-disjoint. Evaluating this expression will overwrite the variable x with a friend of the
person originally stored in x. In contrast, both expressions given for α in Example 2.5
are io-disjoint. Also the expression R(x1;x2) ; R(x2;x3) ; R(x3;x4) from Example 3.8 is
io-disjoint. Finally, the expression R(x; y1) ∪ S(x; y2) already seen in Example 4.1 is not
io-disjoint.

Formally, we have the following useful property, which follows from inertia and input-
output determinacy.

Proposition 4.11 (Identity property). Let α be an io-disjoint expression and let D be an
instance. If (ν1, ν2) ∈ JαKD, then also (ν2, ν2) ∈ JαKD.

Intuitively, the identity property holds because, if in ν1 the output slots would accidentally
already hold a correct combination of output values, then there will exist an evaluation of α
that merely confirms these values. This property can be interpreted to say that io-disjoint
expressions can be given a “static” semantics; we could say that a single valuation ν satisfies
α when (ν, ν) belongs to the dynamic semantics. This brings io-disjoint expressions closer
to the conventional static semantics (single valuations) of first-order logic. Indeed, this will
be confirmed in the next Section.

Example 4.12. The identity property clearly need not hold for expressions that are not
io-disjoint. For example, continuing the friends example, for the expression F (x;x), a person
need not be a friend of themselves.

6:18 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

The following proposition makes it easier to check if an expression is io-disjoint:

Proposition 4.13. The following alternative definition of io-disjointness is equivalent to
the definition given above:

• An atomic expression R(x̄; ȳ) is io-disjoint if X ∩ Y = ∅, where X is the set of variables
in x̄, and Y is the set of variables in ȳ.
• Atomic expressions of the form (x = y), (x = c), (x := y) or (x := c) are io-disjoint.
• A composition α1 ; α2 is io-disjoint if α1 and α2 are, and moreover I(α1) ∩O(α2) = ∅.
• A union α1 ∪ α2 is io-disjoint if α1 and α2 are, and moreover O(α1) = O(α2).
• A difference α1 − α2 is io-disjoint if α1 and α2 are, and moreover O(α1) ⊆ O(α2).

The fragment of io-disjoint expressions is denoted by FLIFio. In the next section, we
are going to show that FLIFio is expressive enough, in the sense that FLIF expressions can
be simulated by FLIFio expressions that have the same set of input variables. Furthermore,
we will give the improved translation from FLIFio to executable FO, which takes inputs into
account.

5. Io-disjoint FLIF

We begin this section by showing that any FLIF expression can be converted to an io-disjoint
one. We will first discuss the problem and its complications by means of illustrative examples.
After that, we formulate the precise theorem and give a constructive method to rewrite
FLIF expressions into io-disjoint ones.

5.1. From FLIF to io-disjoint FLIF. In this section, we are discussing a possible
approach to translate general FLIF expressions into io-disjoint ones that simulate the
original expressions; we also discuss what “simulate” can mean. For instance, we will see
that we have to use extra variables in order to get io-disjointness. An appropriate notion of
simulation will then involve renaming of output variables.

For example, we rewrite R(x;x) to R(x; y) and declare that the output value for x can
now be found in slot y instead. This simple idea, however, is complicated when handling
the different operators of FLIF. These complications are discussed next.

5.1.1. Complications of Translation. When applying the simple renaming approach to the
composition of two expressions, we must be careful, as an output of the first expression can
be taken as input in the second expression. In that case, when renaming the output variable
of the first expression, we must apply the renaming also to the second expression, but only
on the input side. For example, R(x;x) ; S(x;x) is rewritten to R(x; y) ; S(y; z). Thus, the
output x of the overall expression is renamed to z; the intermediate output x of the first
expression is renamed to y, as is the input x of the second expression.

Obviously, we must also avoid variable clashes. For example, in R(x;x) ; S(y; y), when
rewriting the subexpression R(x;x), we should not use y to rename the output x to, as this
variable is already in use in another subexpression.

Another subtlety arises in the rewriting of set operations. Consider, for example, the
union R(x; y) ∪ S(x; z). As discussed in Example 4.10, this expression is not io-disjoint: the
output variables are y and z, but these are also input variables, in addition to x. To make
the expression io-disjoint, it does not suffice to simply rename y and z, say, to y1 and z1. We

Vol. 20:2 EXECUTABLE FO & FLIF 6:19

can, however, add assignments to both sides in such a way to obtain a formally io-disjoint
expression:

R(x; y1) ; (z1 := z) ∪ S(x; z1) ; (y1 := y).

The above trick must also be applied to intermediate variables. For example, consider
T (;) ∪ (S(; y) ;R(y; y)). Note that T is a nullary relation. This expression is not io-disjoint
with y being an input variable as well as an output variable. The second term is readily
rewritten to S(; y1);R(y1; y2) with y2 the new output variable. Note that y1 is an intermediate
variable. The io-disjoint form becomes

T (;) ; (y1 := y) ; (y2 := y) ∪ S(; y1) ;R(y1; y2).

In general, it is not obvious that one can always find a suitable variable to set intermediate
variables from the other subexpression to. In our proof of the theorem we prove formally
that this is always possible.

A final complication occurs in the treatment of difference. Intermediate variables used
in the rewriting must be reset to the same value in both subexpressions, since the difference
operator is sensitive to the values of all variables. For example, let α be the expression
S(;x) ;R(x;u, x) − T (;). We have I(α) = O(α) = {x, u}. Suppose we want to rename the
outputs x and u to x1 and u1 respectively. As before, the subexpression on the lhs of the
difference operator is rewritten to S(;x2) ;R(x2;u1, x1) introducing an intermediate variable
x2. Also as before, x1 and u1 need to be added to the rewriting of T (;) which does not have
x and u as outputs. But the new complication is that x2 needs to be reset to a common
value (we use x here) for the difference of the rewritten subexpressions to have the desired
semantics. We thus obtain the overall rewriting

S(;x2) ;R(x2;u1, x1) ; (x2 := x) − T (;) ; (x2 := x) ; (u1 := u) ; (x1 := x).

5.1.2. Statement of the theorem. As the overall idea behind the above examples was to
rename the output variables, our aim is clearly the following theorem, with ρ playing the
role of the renaming:5

Theorem 5.1. Let α be an FLIF expression and let ρ be a bijection from O(α) to a set of
variables disjoint from vars(α). There exists an FLIFio expression β such that

(1) I(β) = I(α);
(2) O(β) ⊇ ρ(O(α)); and
(3) for every instance D and every valuation ν1, we have

{ν2|O(α) | (ν1, ν2) ∈ JαKVD} = {ν2 ◦ ρ | (ν1, ν2) ∈ JβKVD}.
Here, V is any set of variables containing vars(α) and vars(β).

In the above theorem, we must allow O(β) to be a superset of ρ(O(α)) (rather than being
equal to it), because we must allow the introduction of auxiliary (intermediate) variables.
For example, let α be the expression S(x;)−R(x;x). Note that O(α) is empty. Interpret
S as holding bus stops and R as holding bus routes. Then α represents an information
source with limited access pattern that takes as input x, and tests if x is a bus stop to
where the bus would not return if we would take the bus at x. Assume, for the sake of
contradiction, that there would exist an io-disjoint expression β as in the theorem, but

5We use g ◦ f for standard function composition (“g after f”). So, in the statement of the theorem,
ν2 ◦ ρ : O(α) → V : x 7→ ν2(ρ(x)).

6:20 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

with O(β) = O(α) = ∅. Since I(β) must equal I(α) = {x}, the only variable occurring in
β is x. In particular, β can only mention R in atomic subexpressions of the form R(x;x),
which is not io-disjoint. We are forced to conclude that β cannot mention R at all. Such an
expression, however, can never be a correct rewriting of α. Indeed, let D be an instance
for which JαKD is nonempty. Hence JβKD is nonempty as well. Now let D′ be the instance
with D′(S) = D(S) but D′(R) = ∅. Then JαKD′ becomes clearly empty, but JβKD′ = JβKD
remains nonempty since β does not mention R.

5.1.3. Variable renaming. In the proof of our theorem we need a rigorous way of renaming
variables in FLIF expressions. The following lemma allows us to do this. It confirms that
expressions behave under variable renamings as expected. The proof by structural induction
is straightforward.

As to the notation used in the lemma, recall that V is defined to be the universe of
variables. For a permutation θ of V, and an expression α, we use θ(α) for the expression
obtained from α by replacing every occurrence of any variable x by θ(x).

Lemma 5.2 (Renaming Lemma). Let α be an FLIF expression and let θ be a permutation
of V. Then for every instance D, we have

(ν1, ν2) ∈ JαKD ⇐⇒ (ν1 ◦ θ, ν2 ◦ θ) ∈ Jθ(α)KD.

5.1.4. Rewriting procedure. In order to be able to give a constructive proof of Theorem 5.1
by structural induction, a stronger induction hypothesis is needed. Specifically, to avoid
clashes, we introduce a set W of forbidden variables. So we will actually prove the following
statement:

Lemma 5.3. Let α be an FLIF expression, let W be a set of variables, and let ρ be a
bijection from O(α) to a set of variables disjoint from vars(α). There exists an FLIFio

expression β such that

(1) I(β) = I(α);
(2) O(β) ⊇ ρ(O(α)) and O(β)− ρ(O(α)) is disjoint from W ;
(3) for every instance D and every valuation ν1, we have

{ν2|O(α) | (ν1, ν2) ∈ JαKD} = {ν2 ◦ ρ | (ν1, ν2) ∈ JβKD}.

We proceed to formally describe an inductive rewriting procedure to produce β from α
as prescribed by the above lemma. The procedure formalizes and generalizes the situations
encountered in the examples discussed in the previous section. The correctness of the method
is proven in Section 6.2.

Terminology. A bijection from a set of variables X to another set of variables is henceforth
called a renaming of X.

Relation atom. If α is of the form R(x̄; ȳ), then β equals R(x̄; ρ(ȳ)).

Variable assignment. If α is of the form x := t, then β equals ρ(x) := t.

Equality test. If α is an equality test, we can take β equal to α.

Vol. 20:2 EXECUTABLE FO & FLIF 6:21

Nullary expressions. An expression α is called nullary if it contains no variables, i.e.,
vars(α) is empty. Trivially, for nullary α, the desired β can be taken to be α itself. We will
consider this to be an extra base case for the induction.

Composition. If α is of the form α1 ; α2 then β equals β1 ; θ(β2), where the constituents
are defined as follows.

• LetW2 =W ∪vars(α)∪ρ(O(α1)), and let ρ2 be the restriction of ρ to O(α2). By induction,
there exists an io-disjoint rewriting of α2 for W2 and ρ2; this yields β2.
• Let W1 =W ∪ vars(α), and let ρ1 be a renaming of O(α1) such that
– on O(α1) ∩O(α2) ∩ I(α2), the image of ρ1 is disjoint from vars(α) ∪O(β2) as well as

from the image of ρ;
– elsewhere, ρ1 agrees with ρ.
By induction, there exists an io-disjoint renaming of α1 for W1 and ρ1; this yields β1.
• θ is the permutation of V defined as follows. For every y ∈ I(α2) ∩O(α1), we have

θ(y) = ρ1(y) and θ(θ(y)) = y.

Elsewhere, θ is the identity.

Union. If α is of the form α1 ∪ α2 then β equals (β1 ; γ1 ; η1) ∪ (β2 ; γ2 ; η2) where the
constituent expressions are defined as follows.

• LetW1 =W ∪vars(α)∪ρ(O(α2)) and let ρ1 be the restriction of ρ on O(α1). By induction,
there exists an io-disjoint rewriting of α1 for W1 and ρ1; this yields β1.
• Let W2 =W ∪ vars(α) ∪O(β1) and let ρ2 be the restriction of ρ on O(α2). By induction,
there exists an io-disjoint rewriting of α2 for W2 and ρ2; this yields β2.
• γ1 is the composition of all (ρ(y) := y) for y ∈ O(α2) − O(α1), and γ2 is defined
symmetrically.
• If O(β2) − ρ2(O(α2)) (the set of “intermediate” variables in β2) is empty, η1 can be
dropped from the expression. Otherwise, η1 is the composition of all (y := z) for
y ∈ O(β2)− ρ(O(α2)), with z a fixed variable chosen as follows.
(a) If O(β1) is nonempty, take z arbitrarily from there.
(b) Otherwise, take z arbitrarily from vars(α2). We know vars(α2) is nonempty, since

otherwise α2 would be nullary, so β2 would equal α2, and then O(β2) would be empty
as well (extra base case), which is not the case.

• η2 is defined symmetrically.

Difference. If α is of the form α1 − α2 then β equals (β1 ; γ1 ; η1 ; η2) − (β2 ; γ2 ; η1 ; η2)
where the constituent expressions are defined as follows.

• Let W1 =W ∪ vars(α) and let ρ1 = ρ. By induction, there exists an io-disjoint rewriting
of α1 for W1 and ρ; this yields β1.
• LetW2 =W1∪O(β1) and let ρ2 be a renaming ofO(α2) that agrees with ρ onO(α1)∩O(α2),
such that the image of ρ2−ρ1 is disjoint from W2. By induction, there exists an io-disjoint
rewriting of α2 for W2 and ρ2; this yields β2.
• γ1 is the composition of all (ρ2(y) := y) for y ∈ O(α2) − O(α1), and γ2 is defined
symmetrically.
• If O(β2)− ρ2(O(α2)) is empty, η1 can be dropped from the expression. Otherwise, η1 is
the composition of all (y := z) for y ∈ O(β2)− ρ2(O(α2)), with z a fixed variable chosen
as follows.

6:22 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

(a) If O(α1) ∩O(α2) is nonempty, take z arbitrarily from ρ(O(α1) ∩O(α2)).
(b) Otherwise, take z arbitrarily from vars(α2) (which is nonempty by the same reasoning

as given for the union case).
• η2 is defined symmetrically.

5.1.5. Necessity of variable assignment. Our rewriting procedure intensively uses variable
assignment. Is this really necessary? More precisely, suppose α itself does not use variable
assignment. Can we still always find an io-disjoint rewriting β such that β does not use
variable assignment either? Below, we answer this question negatively; in other words, the
ability to do variable assignment is crucial for io-disjoint rewriting.

For our counterexample we work over the schema consisting of a nullary relation name
S and a binary relation name T of input arity one. Let α be the expression S(;) ∪ T (x;x)
and let ρ rename x to x1. Note that our rewriting procedure would produce the rewriting

S(;) ; (x1 := x) ∪ T (x;x1),

indeed using a variable assignment (x1 := x) to ensure an io-disjoint expression.
For the sake of contradiction, assume there exists an expression β according to Theo-

rem 5.1 that does not use variable assignment. Fix D to the instance where S is nonempty
but T is empty. Then JαKD consists of all identical pairs of valuations. Take any valuation ν
with ν(x) ̸= ν(x1). Since (ν, ν) ∈ JαKD, there should exist a valuation ν ′ with ν ′(x1) = ν(x)
such that (ν, ν ′) ∈ JβKD. Note that ν ′ ̸= ν, since ν(x1) ̸= ν(x). However, this contradicts
the following two observations. Both observations are readily verified by induction. (Recall
that D is fixed as defined above.)

(1) For every expression β without variable assignments, either JβKD is empty, or JβKD =
JγKD for some expression γ that does not mention T and that has no variable assignments.

(2) For every expression γ that does not mention T and that has no variable assignments,
and any (ν1, ν2) ∈ JγKD, we have ν1 = ν2.

5.2. Improved translation from io-disjoint FLIF to Executable FO. We now turn
to the translation from FLIFio to executable FO. Here, a rather straightforward equivalence
is possible, since executable FO has an explicit quantification operation which is lacking in
FLIF. Recall the evaluation problem for executable FO (Definition 3.4, and the evaluation
problem for α (Definition 4.8).

Theorem 5.4. Let α be an FLIFio expression over a schema S. There exists an I(α)-
executable FO formula φα over S, with fvars(φα) = vars(α), such that for every D and νin,
we have Evalα(D, νin) = Evalφα,I(α)(D, νin). The length of φα is linear in the length of α.

Example 5.5. To illustrate the proof, consider the FLIFio expression R(x; y, u) ; S(x; z, u).
Procedurally, to evaluate the first expression, we retrieve values for the variables y and u
that match the value given for the variable x in the relation R. We proceed to retrieve
a (z, u)-binding from S for the given x, effectively overwriting the previous binding for u.
Thus, a correct translation into executable FO is (∃uR(x; y, u)) ∧ S(x; z, u).

Interpreting relations as functions, this example can be likened to the following piece of
code in Python:

y,u = R(x) ; z,u = S(x)

Vol. 20:2 EXECUTABLE FO & FLIF 6:23

Table 2: Translation showing how FLIFio embeds in executable FO. In the table, φi

abbreviates φαi for i = 1, 2.

α φα

R(x̄; ȳ) R(x̄; ȳ)

(x = y) x = y

(x := y) x = y

x = c x = c

x := c x = c

α1;α2 (∃x1 . . . ∃xk φ1) ∧ φ2 where {x1, . . . , xk} = O(α1) ∩O(α2)

α1 ∪ α2 φ1 ∨ φ2

α1 − α2 φ1 ∧ ¬φ2

Indeed, formalisms such as FLIF, as well as its mother framework LIF [Ter19], dynamic
logic [HKT00], and dynamic predicate logic [GS91] provide logical foundations for such
programming constructs (and even natural language constructs).

For another example, consider the assignment (x := y). This translates to x = y
considered as a {y}-executable formula. The equality test (x = y) also translates to x = y,
but considered as an {x, y}-executable formula.

Proof Sketch of Theorem 5.4. Table 2 shows the translation, which is almost an isomorphic
embedding, except for the case of composition. The correctness of the translation for
composition again hinges on inertia and input-output determinacy. The formal correctness
proof, including the verification that φα is indeed I(α)-executable, is given in Section 6.3.

6. Correctness Proofs of Translation Theorems

6.1. From Executable FO to FLIF. In this section we prove Theorem 3.5, which is
reformulated below for convenience.

Theorem 3.5. Let φ be a V-executable formula over a schema S. There exists an FLIF
expression α over S and a set of variables V ⊇ fvars(φ)∪V such that for every D, valuation
νin on V, and valuation ν ′in on V with ν ′in ⊇ νin, we have

{ν|fvars(φ)∪V | νin ⊆ ν and D, ν |= φ} = {νout|fvars(φ)∪V | (ν ′in, νout) ∈ JαKVD}.

Proof. By structural induction. The containment from left to right is referred to as com-
pleteness, and the containment from right to left as soundness.

In the proof, we will omit the explicit definition of the set V and we take it to be the
set of all variables mentioned in the constructed expression α. It is also worth noting that it
follows from the statement of the theorem that α cannot change the values of the variables
in V . Precisely, for every ν1, ν2 such that (ν1, ν2) ∈ JαKD, it must be the case that ν1 agrees
with ν2 on V.

6:24 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

Atoms. If φ is a relation atom R(x̄; ȳ), then α is R(x̄; z̄) ; ξ, where z̄ is obtained from ȳ
by replacing each variable from V by a fresh variable. The expression ξ consists of the
composition of all equalities (yi = zi) where yi is a variable from ȳ that is in V and zi is
the corresponding fresh variable. In what follows, let X, Y , and Z be the variables in x̄, ȳ,
and z̄; respectively. Moreover, take νin to be an arbitrary valuation on V , and ν ′in to be any
valuation such that ν ′in ⊇ νin.

We first prove completeness. Let ν to be a valuation on Y ∪ V such that νin ⊆ ν. Now,
suppose that D, ν |= φ. We want to verify that there exists a valuation νout such that
(ν ′in, νout) ∈ JαKD and νout|fvars(φ)∪V = ν, which is clear when taking νout to be the valuation
that agrees with νin on V, agrees with ν on fvars(φ)− V, agrees with ν ′in outside vars(α),
and satisfies νout(z) = ν(y) for every y ∈ (Y ∩ V) and its corresponding z ∈ Z.

To show soundness, suppose that there exists a valuation νout such that (ν ′in, νout) ∈ JαKD.
We want to verify that D, νout|fvars(φ)∪V |= φ, which is clear given the semantics of α.

The cases where φ is of the form x = y or (x = c) are handled as already shown in the
previous section; correctness is clear.

Conjunction. If φ is φ1 ∧ φ2, then by induction we have an expression α1 for φ1 and V,
and an expression α2 for φ2 and V ∪ fvars(φ1) (since φ2 is V ∪ fvars(φ1)-executable). We
show that α can be taken to be α1 ; α2. Take νin to be an arbitrary valuation on V , and ν ′in
to be any valuation such that ν ′in ⊇ νin.

We first prove completeness. Let ν be a valuation on fvars(φ) ∪ V such that νin ⊆ ν.
Now, suppose that D, ν |= φ. We want to verify that there exists a valuation νout such
that (ν ′in, νout) ∈ JαKD and νout|fvars(φ)∪V = ν. Clearly, D, ν |= φ1 and D, ν |= φ2. By
induction, there exists ν1 such that (ν ′in, ν1) ∈ Jα1KD and ν1 = ν on fvars(φ1) ∪ V. From
the last equality and also from induction, there exists νout such that (ν1, νout) ∈ Jα2KD and
νout = ν1 = ν on fvars(φ2) ∪ V ∪ fvars(φ1) = fvars(φ) ∪ V.

We next show soundness. Suppose that there exists a valuation νout such that (ν ′in, νout) ∈
JαKD. We want to verify that D, νout|fvars(φ)∪V |= φ, and that νout ⊇ νin. Clearly, there
exists a valuation ν such that (ν ′in, ν) ∈ Jα1KD and (ν, νout) ∈ Jα2KD. By induction,
D, ν|fvars(φ1)∪V |= φ1 and ν ⊇ νin. Also by induction, D, νout|fvars(φ2)∪fvars(φ1)∪V |= φ2

and νout ⊇ ν|fvars(φ1)∪V . From the latter, we obtain D, νout|fvars(φ)∪V |= φ. Showing that
νout ⊇ νin is clear.

Disjunction. If φ is φ1 ∨ φ2, then by induction we have an expression αi for φi and
(fvars(φ1)△ fvars(φ2)) ∪ V for i = 1, 2 (since fvars(φ1)△ fvars(φ2) ⊆ V). We show that α
can be taken to be α1 ∪ α2. Take νin to be an arbitrary valuation on V, and ν ′in to be any
valuation such that ν ′in ⊇ νin.

We first prove completeness. Let ν be a valuation on fvars(φ) ∪ V such that νin ⊆ ν.
Now, suppose that D, ν |= φ. We want to verify that there exists a valuation νout such that
(ν ′in, νout) ∈ JαKD and νout|fvars(φ)∪V = ν. We only consider the case when D, ν |= φ1; the
other is symmetric. By induction, there exists a valuation νout such that (ν ′in, νout) ∈ Jα1KD
and νout|fvars(φ1)∪V = ν. Clearly, fvars(φ1) ∪ V = fvars(φ) ∪ V from the conditions on V,
and we are done.

To show soundness, suppose that there exists a valuation νout such that (ν ′in, νout) ∈ JαKD.
We want to verify thatD, νout|fvars(φ)∪V |= φ, and that νout ⊇ νin. Again, we only consider the
case when (ν ′in, νout) ∈ Jα1KD; the other is symmetric. By induction, D, νout|fvars(φ1)∪V |= φ1

Vol. 20:2 EXECUTABLE FO & FLIF 6:25

and νout ⊇ νin. Again, fvars(φ1) ∪ V = fvars(φ) ∪ V from the conditions on V, and we are
done.

Existential Quantification. If φ is ∃xφ1, then without loss of generality we may assume
that x /∈ V . By induction, we have an expression α1 for φ1 and V. We show that this
expression also works for φ. Take νin to be an arbitrary valuation on V, and ν ′in to be any
valuation such that ν ′in ⊇ νin.

We first prove completeness. Let ν be a valuation on fvars(φ)∪V such that νin ⊆ ν. Now,
suppose that D, ν |= φ, and hence, D, ν∪νx |= φ1 where νx is a valuation on {x}. We want to
verify that there exists a valuation νout such that (ν ′in, νout) ∈ Jα1KD and νout|fvars(φ)∪V = ν.
By induction, we know that such νout exists but with νout|fvars(φ1)∪V = ν ∪ νx. Since x
belongs neither to fvars(φ) nor to V, we easily obtain νout|fvars(φ)∪V = ν, and we are done.

To show soundness, let (ν ′in, νout) ∈ Jα1KD. By induction, D, νout|fvars(φ1)∪V |= φ1, so
certainly D, νout|fvars(φ)∪V |= φ. What remains to show is that νout ⊇ νin which is clear from
the induction step.

Negation. Finally, if φ is ¬φ1, then by induction we have an expression α1 for φ1 and V.
Fix an arbitrary constant c, and a fresh variable u. Let Z denote (vars(α1)− V) ∪ {u}, and
let ξ be the composition of all expressions (z := c) for z ∈ Z. We show that α can be taken
to be ξ − α1 ; ξ. Note that fvars(φ) = fvars(φ1) ⊆ V (by the V-executability of φ).

We first prove completeness. Suppose that D, νin |= φ. We want to verify that there
exists a valuation νout such that (ν ′in, νout) ∈ JαKD and νout|V = νin. Take ν ′out to be the
valuation that agrees with ν ′in outside Z (and hence, ν ′out|V = νin), and moreover, it assigns
the value c for every z ∈ Z. It is clear that (ν ′in, ν ′out) ∈ JξKD. For the sake of contradiction,
suppose (ν ′in, ν

′
out) ∈ Jα1 ; ξKD. Then, by definition, there exists ν such that (ν ′in, ν) ∈ Jα1KD.

By induction, we know that D, ν|V |= φ1 and ν|V = νin. It follows that D, νin ̸|= φ, which is
a contradiction. Thus, (ν ′in, ν

′
out) ̸∈ Jα1 ; ξKD, whence, (ν ′in, ν

′
out) ∈ JαKD, as desired.

To show soundness, suppose that there exists a valuation νout such that (ν ′in, νout) ∈ JαKD.
We want to verify that D, νin |= φ. By the semantics of α, we obtain that (ν ′in, νout) ∈ JξKD,
and (ν ′in, νout) ̸∈ Jα1 ; ξKD. From the former, we obtain that νout = ν ′in outside Z which is
disjoint from V . For the sake of contradiction, assume that D, νin |= φ1. Then, by induction,
there is a ν ′out such that (ν ′in, ν

′
out) ∈ Jα1KD and ν ′out = ν ′in = νout on V. What remains

to show is that (ν ′out, νout) ∈ JξKD yielding the contradiction. It is not hard to see that
ν ′in = ν ′out outside vars(α1) − V which contains all the set of variables outside Z. Thus,
νout = ν ′out outside Z, whence, (ν

′
out, νout) ∈ JξKD as desired.

6.2. From FLIF to io-disjoint FLIF. We prove that β constructed by the method
described in Section 5.1.4 satisfies the statement of Lemma 5.3. The base cases are straight-
forwardly verified. For every inductive case, we need to verify several things:

Inputs: I(β) = I(α).
io-disjointness: Every subexpression of β, including β itself, must have disjoint inputs and

outputs.
Outputs: O(β) ⊇ ρ(O(α)).
No clashes: O(β)− ρ(O(α)) is disjoint from W .
Completeness: For any instance D and (ν1, ν2) ∈ JαKD, we want to find ν such that

(ν1, ν) ∈ JβKD and ν(ρ(y)) = ν2(y) for y ∈ O(α).

6:26 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

Soundness: For any (ν1, ν2) ∈ JβKD, we want to find ν such that (ν1, ν) ∈ JαKD and
ν(y) = ν2(ρ(y)) for y ∈ O(α).

6.2.1. Composition. Henceforth, for any expression δ, we will use the notation

ν1
δ−→ ν2

to indicate that (ν1, ν2) ∈ JδKD.

Inputs. We first analyze inputs and outputs for θ(β2). Inputs pose no difficulty (note that
I(β2) = I(α2)). As to outputs, θ only changes variables in I(α2) and β2 is io-disjoint by
induction, so θ has no effect on O(β2). Hence:

I(θ(β2)) = (I(α2)−O(α1)) ∪ ρ1(I(α2) ∩O(α1))

O(θ(β2)) = O(β2)

Calculating I(β), the part of I(θ(β2)) that is contained in ρ1(O(α1)) disappears, because
ρ1(O(α1)) is contained in O(β1). Also, I(β1) = I(α1) by induction. Thus I(β) = I(α1) ∪
(I(α2)−O(α1)) = I(α) as desired.

Outputs. We verify:

ρ(O(α)) = ρ(O(α1)) ∪ ρ(O(α2))

= ρ(O(α1)−O(α2)) ∪ ρ(O(α2))

= ρ1(O(α1)−O(α2)) ∪ ρ2(O(α2))

⊆ O(β1) ∪O(β2)

= O(β).

io-disjointness. Expression β is io-disjoint since O(β1) and O(β2) are disjoint from vars(α)
by construction. For subexpression θ(β2), recall I(θ(β2)) and O(θ(β2)) as calculated above.
The part contained in I(α2) is disjoint from O(β2) since I(α2) = I(β2) and β2 is io-disjoint by
induction. We write the other part as ρ1(I(α2)∩O(α1)∩O(α2))∪ρ((I(α2)∩O(α1))−O(α2)).
The first term is disjoint from O(β2) by definition of ρ1.

The second term is dealt with by the more general claim that ρ(O(α1) − O(α2)) is
disjoint from O(β2). Towards a proof, let y ∈ O(α1) − O(α2) and assume for the sake of
contradiction that ρ(y) ∈ O(β2). Then ρ(y) ∈ O(β2) − ρ(O(α2)), which by induction is
disjoint from W2, which includes ρ(O(α1)). However, since y ∈ O(α1), this is a contradiction.

No clashes. We have

O(β)− ρ(O(α)) = (O(β1) ∪O(β2))− ρ(O(α1) ∪O(α2))

⊆ (O(β1)− ρ(O(α1)) ∪ (O(β2)− ρ(O(α2)).

By induction, the latter two terms are disjoint from W1 ⊇W and W2 ⊇W , respectively.

Vol. 20:2 EXECUTABLE FO & FLIF 6:27

Completeness. Since (ν1, ν2) ∈ JαKD, there exists ν such that

ν1
α1−→ ν

α2−→ ν2.

By induction, there exists ν3 such that (ν1, ν3) ∈ Jβ1KD and ν3(ρ1(y)) = ν(y) for y ∈ O(α1).
Also by induction, there exists ν4 such that (ν, ν4) ∈ Jβ2KD and ν4(ρ2(y)) = ν2(y) for
y ∈ O(α2). By the Renaming Lemma (5.2), we have (ν ◦ θ, ν4 ◦ θ) ∈ Jθ(β2)KD.

We claim that ν3 agrees with ν ◦ θ on I(θ(β)). Recalling that the latter equals (I(α2)−
O(α1)) ∪ ρ1(I(α2) ∩O(α1)), we verify this claim as follows.

• We begin by verifying that θ is the identity on I(α2)−O(α1). Indeed, let u ∈ I(α2)−O(α1).
Note that θ is the identity outside (I(α2) ∩O(α1)) ∪ ρ1(I(α2) ∩O(α1)). Clearly u does
not belong to the first term. Also u does not belong to the second term, since the image
of ρ1 is disjoint from vars(α).

• Now let u ∈ I(α2) − O(α1). Then θ(u) = u, so (ν ◦ θ)(u) = ν(u). Since ν1
α1−→ ν and u

does not belong to O(α1), we have ν(u) = ν1(u). Also, ν1
β1−→ ν3 and u does not belongs to

O(β1) since O(β1) is disjoint from vars(α). Hence, ν1(u) = ν3(u) so we get ν(u) = ν3(u).
• Let u ∈ I(α2) ∩ O(α1). Then (ν ◦ θ)(ρ1(u)) = ν(θ(θ(u))) = ν(u). The latter equals
ν3(ρ1(u)) by definition of ν3.

We can now apply input-output determinacy and obtain ν5 such that (ν3, ν5) ∈ Jθ(β2)KD
and ν5 agrees with ν4 ◦ θ on O(β2). It follows that (ν1, ν5) ∈ JβKD, so we are done if we can
show that ν5(ρ(y)) = ν2(y) for y ∈ O(α). We distinguish two cases.

First, assume y ∈ O(α2). Then ν5(ρ(y)) = ν5(ρ2(y)) = (ν4 ◦ θ)(ρ2(y)) by definition of ν5.
Now observe that θ(ρ2(y)) = ρ2(y). Indeed, ρ2(y) belongs to O(β2), while θ is the identity
outside (I(α2) ∩ O(α1)) ∪ ρ1(I(α2) ∩ O(α1)). The first term is disjoint from O(β2) since
O(β2) is disjoint from vars(α). The second term is disjoint from O(β2) as already shown in
the io-disjointness proof. So, we obtain ν4(ρ2(y)), which equals ν2(y) by definition of ν4.

Second, assume y ∈ O(α1) − O(α2). Since (ν3, ν5) ∈ Jθ(β2)KD and O(θ(β2)) = O(β2)
is disjoint from ρ(O(α1) − O(α2)) as seen in the disjointness proof, ν5(ρ(y)) = ν3(ρ(y)).
Since y /∈ O(α2), we have ν3(ρ(y)) = ν3(ρ1(y)), which equals ν(y) by definition of ν3. Now
ν(y) = ν2(y) since (ν, ν2) ∈ Jα2KD and y /∈ O(α2).

Soundness. The proof for soundness is remarkably symmetrical to that for completeness.
Such symmetry is not present in the proofs for the other operators. We cannot yet explain
well why the symmetry is present onlu for composition.

Since (ν1, ν2) ∈ JβKD, there exists ν such that

ν1
β1−→ ν

θ(β2)−−−→ ν2.

By induction, there exists ν3 such that (ν1, ν3) ∈ Jα1KD and ν3(y) = ν(ρ1(y)) for y ∈ O(α1).
By the Renaming Lemma, we have (ν ◦ θ, ν2 ◦ θ) ∈ Jβ2KD (note that θ−1 = θ). By induction,
there exists ν4 such that (ν ◦ θ, ν4) ∈ Jα2KD and ν4(y) = (ν2 ◦ θ)(ρ2(y)) for y ∈ O(α2).

Using analogous reasoning as in the completeness proof, it can be verified that ν3
agrees with ν ◦ θ on I(α2). Hence, by input-output determinacy, there exists ν5 such that
(ν3, ν5) ∈ Jα2KD and ν5 agrees with ν4 on O(α2). It follows that (ν1, ν5) ∈ JαKD, so we
are done if we can show that ν5(y) = ν2(ρ(y)) for y ∈ O(α). This is shown by analogous
reasoning as in the completeness proof.

6:28 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

6.2.2. Union.
Inputs. Let {i, j} = {1, 2}. We begin by noting:

I(γi) = O(αj)−O(αi)

O(γi) = ρ(O(αj)−O(αi))

Note that I(γi), being a subset of vars(α), is disjoint from O(βi), so I(βi ; γi) is simply
I(βi) ∪ I(γi). By induction, I(βi) = I(αi) and O(βi) contains ρ(O(αi)). Hence:

I(βi ; γi) = I(αi) ∪ (O(αj)−O(αi))

O(βi ; γi) = O(βi) ∪ ρ(O(αj))

We next analyze ηi. Recall that this expression was defined by two cases.

(a) If O(βi) is nonempty, I(ηi) ⊆ O(βi).
(b) Otherwise, I(ηi) ⊆ vars(αj). However, if O(βi) is empty then O(αi) is too, so that

I(α) = I(αi) ∪ I(αj) ∪O(αj) = I(αi) ∪ vars(αj). Hence, in this case, I(ηi) ⊆ I(α).
The output is the same in both cases:

O(ηi) = O(βj)− ρ(O(αj))

Composing βi ; γi with ηi, we continue with the two above cases.

(a) In this case I(ηi) is contained in O(βi ; γi), so I(βi ; γi ; ηi) = I(βi ; γi).
(b) In this case I(ηi) is disjoint from O(βi ; γi), and I(βi ; γi ; ηi) equals I(βi ; γi) to which

some element of I(α) is added.

In both cases, we can state that

I(αi) ∪ (O(αj)−O(αi)) ⊆ I(βi ; γi ; η1) ⊆ I(α).

For outputs, we have

O(βi ; γi ; ηi) = O(β1) ∪O(β2).

The set of inputs of the final expression β = (β1 ; γ1 ; η1) ∪ (β2 ; γ2 ; η2) equals the union
of inputs of the two top-level subexpressions, since these two subexpressions have the same
outputs (O(β1) ∪O(β2)). Hence

I(α1) ∪ I(α2) ∪ (O(α1)△O(α2)) ⊆ I(β) ⊆ I(α).

Since the left expression equals I(α) by definition, we obtain that I(β) = I(α) as desired.

Outputs. From the above we have O(β) = O(β1) ∪ O(β2). Since O(βi) ⊇ ρ(O(αi)) by
induction, we obtain O(β) ⊇ ρ(O(α1) ∪O(α2)) = ρ(O(α)) as desired.

io-disjointness. Let i = 1, 2. Expression γi is io-disjoint since the image of ρ is disjoint
from vars(α). Then βi ; γi is io-disjoint because both O(βi) and the image of ρ are disjoint
from vars(α). For the same reason, βi ; γi ; ηi and β are io-disjoint. We still need to
look at ηi. In case (b), I(ηi) ⊆ I(α) so io-disjointness follows again because O(βj) is
disjoint from vars(α). In case (a), we look at i = 1 and i = 2 separately. For i = 1 we
observe that O(η1) = O(β2) − ρ(O(α2)) is disjoint from W2, which includes O(β1). For
i = 2 we write O(β2) = ρ(O(α2)) ∪ (O(β2) − ρ(O(α2))). The first term is disjoint from
O(η2) = O(β1)− ρ(O(α1)) since the latter is disjoint from W1 which includes ρ(O(α2)). The
second term is disjoint from O(β1) as we have just seen.

Vol. 20:2 EXECUTABLE FO & FLIF 6:29

No clashes. We verify:

O(β)− ρ(O(α)) = (O(β1) ∪O(β2))− ρ(O(α1) ∪O(α2))

⊆ (O(β1)− ρ(O(α1))) ∪ (O(β2)− ρ(O(α2))).

By induction, both of the latter terms are disjoint from W , which confirms that there are
no clashes.

Completeness. Assume (ν1, ν2) ∈ Jα1KD; the reasoning for α2 is analogous. By induction,
there exists ν3 such that (ν1, ν3) ∈ Jβ1KD and ν3(ρ(y)) = ν2(y) for y ∈ O(α1).

Note that each of the expressions γi and ηi for i = 1, 2 is a composition of variable
assignments. For any such expression δ and any valuation ν there always exists a unique ν ′

such that (ν, ν ′) ∈ JδKD (even independently of D).
Now let

ν3
γ1−→ ν4

η1−→ ν5,

so that (ν1, ν5) ∈ JβKD. If we can show that ν5(ρ(y)) = ν2(y) for y ∈ O(α) we are done.
Thereto, first note that η1 does not change variables in ρ(O(α)). Indeed, for ρ(O(α2)) this
is obvious from O(η1) = O(β2)− ρ(O(α2)); for ρ(O(α1)) this follows because by induction,
O(β2)− ρ(O(α2)) is disjoint from W2, which includes O(β1), which includes ρ(O(α1)). So,

by ν4
η1−→ ν5 we are down to showing that ν4(ρ(y)) = ν2(y) for y ∈ O(α). We distinguish

two cases.
If y ∈ O(α1), since ν3

γ1−→ ν4 and γ1 does not change variables in ρ(O(α1)), we have
ν4(ρ(y)) = ν3(ρ(y)), which equals ν2(y) by definition of ν3.

If y ∈ O(α2)−O(α1), then ν4(ρ(y)) = ν3(y) by ν3
γ1−→ ν4. Now since

ν3
β1←− ν1

α1−→ ν2

and y /∈ O(β1) ∪O(α1), we get ν3(y) = ν2(y) as desired. (The reason for y /∈ O(β1) is that
by induction, O(β1) is disjoint from W1 which includes vars(α).)

Soundness. Assume (ν1, ν2) ∈ Jβ1 ;γ1 ;η1KD; the reasoning for β2 ;γ2 ;η2 is analogous. Then
there exist ν3 and ν4 such that

ν1
β1−→ ν3

γ1−→ ν4
η1−→ ν2. (∗)

By induction, there exists ν such that (ν1, ν) ∈ Jα1KD ⊆ JαKD and ν(y) = ν3(ρ(y)) for
y ∈ O(α1). As observed in the completeness proof, γ1 and η1 do not touch variables in
ρ(O(α1)). Since (∗) shows that γ1 followed by η1 maps ν3 to ν2, also ν(y) = ν2(ρ(y)) for
y ∈ O(α1).

If we can show the same for y ∈ O(α2)−O(α1), we have covered all y ∈ O(α) and we
are done. This is verified as follows. By inertia, we have ν(y) = ν1(y) = ν3(y), the latter

equality because O(β1) is disjoint from vars(α). From ν3
γ1−→ ν4 we have ν3(y) = ν4(ρ(y)).

Now the latter equals ν2(ρ(y)) since ν4
η1−→ ν2 and η1 does not touch variables in ρ(O(α2)).

6:30 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

6.2.3. Difference.
Inputs. Let {i, j} = {1, 2}. We begin by noting:

I(γi) = O(αj)−O(αi)

O(γi) = ρj(O(αj)−O(αi))

Slightly adapting the calculation of inputs in the proof for union (Section 6.2.2), we next
note:

I(βi ; γi) = I(αi) ∪ (O(αj)−O(αi))

O(βi ; γi) = O(βi) ∪ ρj(O(αj)−O(αi))

We next analyze η1. Recall that this expression was defined by two cases.

(a) If O(α1) and O(α2) intersect, I(η1) ⊆ ρ(O(α1) ∩O(α2)).
(b) Otherwise, I(η1) ⊆ vars(α2). However, note in this case that I(α) = vars(α), so that

I(η1) ⊆ I(α).
Regardless of the case,

O(η1) = O(β2)− ρ2(O(α2)).

Composing βi ; γi with η1, we continue with the above two cases.

(a) By induction, O(βi) contains ρi(O(αi)), and ρ agrees ρi on O(α1) ∩ O(α2). Hence
I(η1) ⊆ O(βi ; γi) and thus

I(βi ; γi ; η1) = I(βi ; γi) = I(αi) ∪ (O(αj)−O(αi)).

(b) In this case I(η1) ⊆ I(α) which is disjoint from O(βi ;γi). Note that also I(βi ;γi) ⊆ I(α).
In both cases, we can state that

I(αi) ∪ (O(αj)−O(αi)) ⊆ I(βi ; γi ; η1) ⊆ I(α).

For outputs, we have

O(βi ; γi ; η1) = O(βi) ∪ ρj(O(αj)−O(αi)) ∪ (O(β2)− ρ2(O(α2))).

Composing further with η2, which is defined similarly to η1, we can reason similarly and
still state that

I(αi) ∪ (O(αj)−O(αi)) ⊆ I(βi ; γi ; η1 ; η2) ⊆ I(α).
For outputs, note that O(η2) = O(β1) − ρ1(O(α1)). Uniting this to the expression for
O(βi ; γi ; η1) above, we obtain

O(βi ; γi ; η1 ; η2) = O(β1) ∪O(β2).

Indeed, the only part of O(β1) ∪ O(β2) that is not obviously there is ρj(O(αj) ∩ O(αi)).
However, that part is contained in ρ(O(αi)), because ρj agrees with ρ on O(α1) ∩ O(α2).
Since ρ(O(αi)) ⊆ O(βi), the part is included after all.

With the above results we can reason exactly as in the proof for union and obtain that
I(β) = I(α) as desired.

Outputs. From the above we have O(β) = O(β1) ∪ O(β2). Since O(β1) ⊇ ρ1(O(α1)) by
induction, and ρ1 = ρ and O(α) = O(α1), we obtain O(β) ⊇ ρ(O(α)) as desired.

Vol. 20:2 EXECUTABLE FO & FLIF 6:31

io-disjointness. Let i = 1, 2. Expression γi is io-disjoint by the choice of ρj . Then βi ; γi
is io-disjoint because both O(βi) and the image of ρj are disjoint from vars(α). Regarding
η1, we have seen that either (a) I(η1) ⊆ ρ(O(α1) ∩O(α2)) ⊆ ρ2(O(α2)), or (b) I(η1) ⊆ I(α).
In case (a) I(η1) is clearly disjoint from O(η1) = O(β2)− ρ2(O(α2)). Also in case (b) η1 is
io-disjoint because O(β2) is disjoint from vars(α). Using similar reasoning, the expressions
βi ; γi ; η1, η2, βi ; γi ; η1 ; η2, and finally β, are seen to be io-disjoint.

No clashes. Note that ρ(O(α)) = ρ1(O(α1)), and recall that O(β) = O(β1)∪O(β2). Hence
we can write O(β)− ρ(O(α)) as

(O(β1)− ρ1(O(α1))) ∪ (O(β2)− ρ1(O(α1))).

The first term is disjoint from W by construction and induction. For the second term, note
that O(β2) can be written as a disjoint union

ρ2(O(α2) ∩O(α1)) ∪ ρ2(O(α2)−O(α1)) ∪ (O(β2)− ρ2(O(α2))).

Again by construction and induction, the second and third terms are disjoint from W2, which
includes O(β1), which includes ρ1(O(α1)). On the other hand, the first term is included in
ρ1(O(α1)) since ρ1 and ρ2 agree on O(α1) ∩ O(α2). Hence, O(β2)− ρ1(O(α1)) reduces to
the union of the second and third terms, which are disjoint from W2, which includes W , as
desired.

Completeness. Since (ν1, ν2) ∈ Jα1 − α2KD, in particular (ν1, ν2) ∈ Jα1KD, so by induction
there exists ν3 such that (ν1, ν3) ∈ Jβ1KD and ν3(ρ1(y)) = ν2(y) for y ∈ O(α1).

Recall the output variables of γi and ηi for i = 1, 2:

O(γ1) = ρ2(O(α2)−O(α1))

O(γ2) = ρ1(O(α1)−O(α2))

O(η1) = O(β2)− ρ2(O(α2))

O(η2) = O(β1)− ρ1(O(α1))

We observe:

(1) None of the assignments in γ1, η1 or η2 affect variables in ρ1(O(α1)).
This claim is clear for η2. For γ1 it holds since ρ2 was chosen such that its image

on O(α2)−O(α1) is disjoint from W2, which includes O(β1), which includes ρ1(O(α1)).
For η1 the claim holds because, by induction, O(η1) is again disjoint from W2.

(2) None of the assignments in γ2, η1 or η2 affect variables in ρ2(O(α2)).
This claim is clear for η1. Next consider γ2. On O(α2)−O(α1)), we just noted that the

image of ρ2 is disjoint from ρ1(O(α1)). Now let y ∈ O(α2) ∩O(α1). Then ρ2(y) = ρ1(y)
and clearly ρ1(y) /∈ ρ1(O(α1) − O(α2)). Finally, consider η2. On O(α2) − O(α1), we
again use that the image of ρ2 is disjoint from O(β1). On O(α1) ∩ O(α2), again the
image of ρ2 agrees with the image of ρ1, which clearly is disjoint from O(η2).

Now, using the notation introduced in the completeness proof for union (Section 6.2.2),
let

ν3
γ1−→ ν4

η1−→ ν5
η2−→ ν6

so that (ν1, ν6) ∈ Jβ1 ; γ1 ; η1 ; η2KD. By Observation (1), for y ∈ O(α) = O(α1), we still have
ν6(ρ1(y)) = ν3(ρ1(y)) = ν2(y). Thus, completeness is proved provided we can show that
(ν1, ν6) /∈ Jβ2 ; γ2 ; η1 ; η2KD.

6:32 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

For the sake of contradiction, assume (ν1, ν6) ∈ Jβ2 ; γ2 ; η1 ; η2KD. By the identity
property (Proposition 4.11), also (ν6, ν6) ∈ Jβ2 ; γ2 ; η1 ; η2KD. Hence, there exists ν7 such
that (ν6, ν7) ∈ Jβ2KD and (ν7, ν6) ∈ Jγ2 ; η1 ; η2KD. By inertia, ν6 and ν7 can differ only on
O(β2), and among γ2, η1 and η2, only η1 can change variables in O(β2). Hence we have

ν7
γ2−→ ν7

η1−→ ν6
η2−→ ν6.

Since (ν6, ν7) ∈ Jβ2KD, by induction there exists ν8 such that (ν6, ν8) ∈ Jα2KD and
ν8(y) = ν7(ρ2(y)) for y ∈ O(α2). Recall that (ν1, ν6) ∈ Jβ1 ; γ1 ; η1 ; η2KD, so ν1 and ν6 agree
outside O(β1) ∪O(β2), which is disjoint from vars(α) which includes I(α2). Hence we can
apply input-output determinacy, yielding a valuation ν such that (ν1, ν) ∈ Jα2KD and ν
agrees with ν8 on O(α2). If we can show that ν = ν2 we have arrived at a contradiction,
since (ν1, ν2) /∈ Jα2KD.

By inertia, ν and ν1 agree outside O(α2), and ν1 and ν2 agree outside O(α1). Thus ν
and ν2 already agree outside O(α1) ∪O(α2) and we can focus on that set of variables. We
distinguish three cases.

First, let y ∈ O(α1)∩O(α2). Note that ρ(y) = ρ1(y) = ρ2(y). By definition of ν and ν8,
we have ν(y) = ν8(y) = ν7(ρ(y)). Since

ν3
γ1−→ ν4

η1−→ ν5
η2−→ ν6

η1←− ν7, (6.1)

by Observation (1), we have ν7(ρ(y)) = ν3(ρ(y)). The latter indeed equals ν2(y), by definition
of ν3.

Second, let y ∈ O(α2) − O(α1). As before we have ν(y) = ν7(ρ2(y)). By (6.1) and

Observation (2), ν7(ρ2(y)) = ν4(ρ2(y)). The latter equals ν3(y) since ν3
γ1−→ ν4. Now

since (ν1, ν3) ∈ Jβ1KD and (ν1, ν2) ∈ Jα1KD and y is neither in O(β1) nor in O(α1), we get
ν3(y) = ν1(y) = ν2(y).

Third, let y ∈ O(α1) − O(α2). Since (ν1, ν) ∈ Jα2KD and y /∈ O(α2), by inertia
ν(y) = ν1(y). Likewise, since

ν1
β1;γ1;η1;η2−−−−−−−→ ν6

β2−→ ν7

and y /∈ O(β1) ∪ O(β2), we get ν1(y) = ν6(y) = ν7(y). Since ν7
γ2−→ ν7 we have ν7(y) =

ν7(ρ1(y)). In the first case we already noted that ν7(ρ1(y)) = ν3(ρ1(y)). Now the latter
equals ν2(y) by definition of ν3, and we are done.

Soundness. Since (ν1, ν2) ∈ JβKD, we have (ν1, ν2) ∈ Jβ1 ; γ1 ; η1 ; η2KD. By the identity
property, also (ν2, ν2) ∈ Jβ1 ; γ1 ; η1 ; η2KD. Hence there exists ν3 such that (ν2, ν3) ∈ Jβ1KD
and (ν3, ν2) ∈ Jγ1 ; η1 ; η2KD. By inertia, ν2 and ν3 can differ only on O(β1), and among γ1,
η1 and η2, only η2 can change variables in O(β1). Hence we have

ν3
γ1−→ ν3

η1−→ ν3
η2−→ ν2.

Since (ν2, ν3) ∈ Jβ1KD, by induction there exists ν4 such that (ν2, ν4) ∈ Jα1KD and
ν4(y) = ν3(ρ1(y)) for y ∈ O(α1). Note that ν1 and ν2 agree outside O(β) which is disjoint
from I(α1). Hence we can apply input-output determinacy, yielding a valuation ν such that
(ν1, ν) ∈ Jα1KD and ν agrees with ν4 on O(α1). Our goal is to show that (ν1, ν) /∈ Jα2KD.

For the sake of contradiction, assume (ν1, ν) ∈ Jα2KD. Then by induction, there exists
ν5 such that (ν1, ν5) ∈ Jβ2KD and ν5(ρ2(y)) = ν(y) for y ∈ O(α2). Let

ν5
γ2−→ ν6

η1−→ ν7
η2−→ ν8 (6.2)

Vol. 20:2 EXECUTABLE FO & FLIF 6:33

so that (ν1, ν8) ∈ Jβ2 ; γ2 ; η1 ; η2KD. If we can show that ν8 = ν2, we have arrived at the
desired contradiction since (ν1, ν2) /∈ Jβ2 ; γ2 ; η1 ; η2KD.

By inertia, ν8 and ν1, and ν1 and ν2, agree outside O(β1) ∪ O(β2). Thus ν8 and ν2
already agree outside O(β1) ∪O(β2) and we can focus on that set of variables. Note that
O(β1) contains ρ1(O(α1)) and O(β2) contains ρ2(O(α2)). Accordingly, we distinguish five
cases.

(1) ρ(O(α1) ∩ O(α2)). Let y ∈ O(α1) ∩ O(α2). By (6.2) and Observation (2), ν8(ρ(y)) =
ν5(ρ(y)). By definition of ν5, ν and ν4 respectively, ν5(ρ(y)) = ν(y) = ν4(y) = ν3(ρ(y)).

The latter equals ν2(ρ(y)) since ν3
η2−→ ν2.

(2) ρ2(O(α2)−O(α1)). Let y ∈ O(α2)−O(α1). As in case (1), ν8(ρ2(y)) = ν(y). Since

ν
α1←− ν1

β1;γ1;η1;η2−−−−−−−→ ν2
β1−→ ν3

and y /∈ O(α1) ∪O(β1) ∪O(β2), we have ν(y) = ν3(y). The latter equals ν3(ρ2(y)) by

ν3
γ1−→ ν3. Now by ν3

η2−→ ν2 and Observation (2) we get ν3(ρ2(y)) = ν2(ρ2(y)).
(3) ρ1(O(α1)−O(α2)). Let y ∈ O(α1)−O(α2). By (6.2) and Observation (1), ν8(ρ1(y)) =

ν6(ρ1(y)). The latter equals ν5(y) by ν5
γ2−→ ν6. Since

ν5
β2←− ν1

α2−→ ν

and y /∈ O(β2) ∪O(α2), we get ν5(y) = ν(y). The latter equals ν2(ρ1(y)) as in case (1).
(4) O(β2) − ρ2(O(α2)). Let y ∈ O(β2) − ρ2(O(α2)). We distinguish two further cases

following the definition of η1, which involves the choice of a variable z.

(a) z = ρ(x) for some x ∈ O(α1) ∩ O(α2). Since ν7
η2−→ ν8, we have ν8(y) = ν7(ρ(x)).

The latter equals ν3(ρ(x)) as in case (1). Now ν3
η2−→ ν2 yields ν3(ρ(x)) = ν2(y).

(b) In this case z ∈ I(α) (see the Inputs part of this proof). Since ν7
η2−→ ν8, we have

ν8(y) = ν7(z). Since

ν2
β1;γ1;η1;η2←−−−−−−− ν1

β2;γ2;η1−−−−−→ ν7

and z, being in I(α), is not an output variable of the involved expressions, we have

ν7(z) = ν2(z). Since ν3
η2−→ ν2 with η2 not touching z, we obtain ν2(z) = ν3(z) =

ν2(y).
(5) O(β1)− ρ1(O(α1)). This case is symmetrical to the previous one.

The above five cases confirm ν8 = ν2 which gives the contradiction, showing (ν1, ν) /∈
Jα2KD whence (ν1, ν) ∈ JαKD. In case (1) and case (3) we already observed that ν(y) =
ν2(ρ1(y)) for y ∈ O(α1) = O(α). Thus, soundness is proved.

6.3. From io-disjoint FLIF to Executable FO. In this section we prove Theorem 5.4.
Recall the translation given in Table 2. In order to prove Theorem 5.4, using Lemma 4.11,
it suffices to prove the following:

Claim 6.1. For each α, the formula φα is I(α)-executable and fvars(φα) = vars(α).
Moreover, for any instance D and any valuation ν, we have

(ν, ν) ∈ JαKD ⇐⇒ D, ν |= φ.

Proof. By structural induction. The implication from left to right is referred to as complete-
ness, and the other implication as soundness.

6:34 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

Atomic expressions. If α is R(x̄; ȳ), only soundness is not immediate. If D, ν |= φ, then
ν(x̄) · ν(ȳ) ∈ D(R). Hence, (ν, ν) ∈ JαKD, since two identical valuations agree trivially
outside O(α). The cases where α is of the form (x = y), (x := y), (x = c), or (x := c), are
immediate.

Next, we verify the inductive cases. In each step of the induction, we refer to φα simply
as φ.

Composition. Consider α of the form α1 ; α2. We begin by checking that φα is I(α)-
executable. By Proposition 4.13, I(α1) is disjoint from both O(α1) and O(α2).

Let φ′
1 = ∃O(α1)∩O(α2)φ1. Then fvars(φ′

1) = I(α1) ∪ (O(α1)−O(α2)). Indeed,

fvars(φ′
1) = fvars(φ1)− (O(α1) ∩O(α2))

= vars(α1)− (O(α1) ∩O(α2))

= (I(α1) ∪O(α1))− (O(α1) ∩O(α2))

= I(α1) ∪ (O(α1)−O(α2))

By induction, φ1 is I(α1)-executable and φ2 is I(α2)-executable. Let V = I(α) = I(α1) ∪
(I(α2)−O(α1)). For φ to be V-executable, it must be the case that:

• φ′
1 is V-executable, which means that φ1 should be V − (O(α1)∩O(α2))-executable. Since

I(α1) ∩ O(α1) = ∅, we have I(α1) ∩ (O(α1) ∩ O(α2)) = ∅. This shows that I(α1) ⊆
V − (O(α1) ∩O(α2)). Consequently, φ

′
1 is V-executable.

• φ2 is V∪fvars(φ′
1)-executable, which means that φ2 should be V∪(I(α1)∪(O(α1)−O(α2)))-

executable. We know that

V ∪ fvars(φ′
1) = V ∪ (I(α1) ∪ (O(α1)−O(α2)))

= I(α1) ∪ (I(α2)−O(α1)) ∪ (O(α1)−O(α2))

= I(α1) ∪ ((I(α2) ∪O(α1))−O(α2))

Since I(α2) ∩ O(α2) = ∅, we have I(α2) ⊆ V ∪ fvars(φ′
1). Hence, φ2 is V ∪ fvars(φ′

1)-
executable.

We next prove completeness. To this end, assume that (ν, ν) ∈ JαKD. Then there exists
a valuation ν ′ such that

(1) (ν, ν ′) ∈ Jα1KD;
(2) (ν ′, ν) ∈ Jα2KD.
Since I(α2)∩O(α2) = ∅, Lemma 4.11 implies (ν, ν) ∈ Jα2KD. Thus, by induction, D, ν |= φ2.
Similarly from (1), we know that D, ν ′ |= φ1. Consequently,

D, ν ′ |= φ′
1 (6.3)

Additionally, we know from (1) and (2) and the law of inertia ν = ν ′ outside O(α1) and
outside O(α2). Hence,

ν = ν ′ outside O(α1) ∩O(α2) (6.4)

From (6.3) and (6.4), we obtain D, ν |= φ′
1, whence D, ν |= φ.

To show soundness, assume D, ν |= φ. Then

(1) D, ν |= φ′
1, which means that there exists ν ′ such that

(i) ν ′ = ν outside O(α1) ∩O(α2);
(ii) D, ν ′ |= φ1.

(2) D, ν |= φ2.

Vol. 20:2 EXECUTABLE FO & FLIF 6:35

By induction from (ii), we know that (ν ′, ν ′) ∈ Jα1KD. Since I(α1) ∩ O(α1) = ∅, we know
from (i) that ν agrees with ν ′ on I(α1) and outside O(α1). Hence, we know by Lemma 4.6
that (ν, ν ′) ∈ Jα1KD. Similarly, from (2), (ν ′, ν) ∈ Jα2KD. Consequently, (ν, ν) ∈ JαKD.

Difference. By induction, we know that φ1 is I(α1)-executable and φ2 is I(α2)-executable.
Let V = I(α) = I(α1) ∪ I(α2) ∪ (O(α1)△O(α2)). By Proposition 4.13, we have O(α1) ⊆
O(α2), so V = I(α) = I(α1) ∪ I(α2) ∪ (O(α2)−O(α1)).

For φ to be V-executable, we must verify the following:

• φ1 is V-executable and φ2 is V ∪ fvars(φ1)-executable. This holds since I(αi) ⊆ V for
i ∈ {1, 2}.
• fvars(φ2) ⊆ V ∪ fvars(φ1). We verify this as follows.

fvars(φ2) = I(α2) ∪O(α2)

⊆ I(α1) ∪ I(α2) ∪ (O(α2)−O(α1)) ∪O(α1)

= V ∪ I(α1) ∪O(α1) = V ∪ fvars(φ1).

Union. By induction, we know that φ1 is I(α1)-executable and φ2 is I(α2)-executable. Let
V = I(α) = I(α1) ∪ I(α2) ∪ (O(α1)△O(α2)). By Proposition 4.13 we have O(α1) = O(α2),
so V = I(α1) ∪ I(α2).

For φ to be V-executable, we must verify the following:

• φ1 is V-executable and φ2 is V-executable. This holds since I(αi) ⊆ V for i ∈ {1, 2}.
• fvars(φ1)△ fvars(φ2) ⊆ V. We verify this as follows. Since O(α1) = O(α2) and I(αi) ∩
O(αi) = ∅ for i = 1, 2, we can reason as follows: (we use O to abbreviate O(α1))

fvars(φ1)△ fvars(φ2) = (I(α1) ∪O)△ (I(α2) ∪O) = I(α1)△ I(α2)

⊆ I(α1) ∪ I(α2) = V.

7. Relational algebra plans for io-disjoint FLIF

In this section we show how the evaluation problem for FLIFio expressions can be solved
in a very direct manner, using a translation into a particularly simple form of relational
algebra plans.

We generalize the evaluation problem so that it can take a set of valuations as input,
rather than just a single valuation. Formally, for an FLIFio expression α over a database
schema S, an instance D of S, and a set N of valuations on I(α), we want to compute

Evalα(D,N) :=
⋃
{Evalα(D, νin) | νin ∈ N}.

Viewing variables as attributes, we can view a set of valuations on a finite set of variables
Z, like the set N above, as a relation with relation schema Z. Consequently, it is convenient
to use the named perspective of the relational algebra [AHV95], where every expression has
an output relation schema (a finite set of attributes; variables in our case). We briefly review
the well-known operators of the relational algebra and their behavior on the relation schema
level:

• Union and difference are allowed only on relations with the same relation schema.
• Natural join (▷◁) can be applied on two relations with relation schemas Z1 and Z2, and
produces a relation with relation schema Z1 ∪ Z2.

6:36 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

• Projection (π) produces a relation with a relation schema that is a subset of the input
relation schema.
• Selection (σ) does not change the schema.
• Renaming will not be needed. Instead, however, to accommodate the assignment expres-
sions present in FLIFio, we will need the generalized projection operator that adds a new
attribute with the same value as an existing attribute, or a constant. Let N be a relation
with relation schema Z, let y ∈ Z, and let x be a variable not in Z. Then

πZ,x:=y(N) = {ν[x := ν(y)] | ν ∈ N}
πZ,x:=c(N) = {ν[x := c] | ν ∈ N}

Plans are based on access methods, which have the following syntax and semantics. Let
R(x̄; ȳ) be an atomic FLIFio-expression. Let X be the set of variables in x̄ and let Y be
the set of variables in ȳ (in particular, X and Y are disjoint). Let N be a relation with a
relation schema Z that contains X but is disjoint from Y . Let D be a database instance.
We define the result of the access join of N with R(x̄; ȳ), evaluated on D, to be the following
relation with relation schema Z ∪ Y :

N
access
▷◁ R(x̄; ȳ) := {ν valuation on Z ∪ Y | ν|Z ∈ N and ν(x̄) · ν(ȳ) ∈ D(R)}

This result relation can clearly be computed respecting the limited access pattern on R.
Indeed, we iterate through the valuations in N , feed their X-values to the source R, and
extend the valuations with the obtained Y -values.

Formally, over any database schema S and for any finite set of variables I, we define a
plan over S with input variables I as an expression that can be built up as follows:

• The special relation name In, with relation schema I, is a plan.
• If R(x̄; ȳ) is an atomic FLIFio expression over S, with sets of variables X and Y as above,

and E is a plan with output relation schema Z as above, then also E
access
▷◁ R(x̄; ȳ) is a

plan, with output relation schema Z ∪ Y .
• Plans are closed under union, difference, natural join, and projection.

Given a database instance D, a set N of valuations on I, and a plan E with input
variables I, we can instantiate the relation name In by N and evaluate E on (D,N) in the
obvious manner. We denote the result by E(D,N).

We establish:

Theorem 7.1. For every FLIFio expression α over a database schema S there exists a plan
Eα over S with input variables I(α), such that Evalα(D,N) = Eα(D,N), for every instance
D of S and set N of valuations on I(α).

Example 7.2.

• Let α be R(x; y) ; S(y; z). Recall that I(α) = {x}. A plan for α can be taken to be

(In
access
▷◁ R(x; y))

access
▷◁ S(y; z).

• Let α be R(x1; y, u) ;S(x2, y; z, u). Recall that I(α) = {x1, x2}. A plan for α can be taken
to be

πx1,x2,y(In
access
▷◁ R(x1; y, u))

access
▷◁ S(x2, y; z, u).

• Recall the expression R(x; y1) ∪ S(x; y2) from Example 4.1, which has input variables
{x, y1, y2} and no output variables. A plan for this expression is

(πx,y2(In)
access
▷◁ R(x; y1)) ▷◁ In ∪ (πx,y1(In)

access
▷◁ S(x; y2)) ▷◁ In.

Vol. 20:2 EXECUTABLE FO & FLIF 6:37

The joins with In ensure that the produced output values are equal to the given input
values, which may be needed in case N has multiple tuples.

Proof. To prove the theorem we need a stronger induction hypothesis, where we allow N to
have a larger relation schema Z ⊇ I(α), while still being disjoint with O(α). The claim then
is that

Eα(D,N) = {ν on Z ∪O(α) | ν|vars(α) ∈ Evalα(D, ν|I(α))}.

The base cases are clear. If α is R(x̄; ȳ), then Eα is In
access
▷◁ R(x̄; ȳ). If α is (x = y),

then Eα is the selection σx=y(In). If α is (x := y), then Eα is the generalized projection
πy,x:=y(In).

In what follows we use the following notation. Let P and Q be plans. By Q(P) we
mean the plan obtained from Q by substituting P for In.

Suppose α is α1 ;α2. Plan Eα1 , obtained by induction, assumes an input relation schema
that contains I(α1) and is disjoint from O(α1). Since I(α) = I(α1) ∪ (I(α2) − O(α1)),
I(α1) ∩O(α1) = ∅, and Z is disjoint from O(α) = O(α1) ∪O(α2), we can apply Eα1 with
input relation schema Z. Let P1 be the plan πZ−O(α2)(Eα1). Then Eα is the plan Eα2(P1).
(One can again verify that this is a legal plan.)

Next, suppose α is α1 ∪ α2. Then I(α) = I(α1) ∪ I(α2), which is disjoint from O(α1) =
O(α2) (compare Proposition 4.13). Hence, for Eα we can simply take the plan Eα1 ∪ Eα2 .

Finally, suppose α is α1 − α2. Then Eα is

Eα1 − (Eα2(πI(α)−O(α2)(In)) ▷◁ In.

In general, in the above translations, we follow the principle that the result of a subplan
Eαi must be joined with In whenever O(αi) may intersect with I(α).

Remark 7.3. When we extend plans with assignment statements such that common
expressions can be given a name [BLtCT16], the translation given in the above proof leads to
a plan Eα of size linear of the length of α. Each time we do a substitution of a subexpression
for In in the proof, we first assign a name to the subexpression and only substitute the
name.

Example 7.4. Recall the query from Example 2.5 expressed in FLIFio slightly differently
as follows:

F (x; y1) ; F (x; y2) ; (F (y1; z) ∩ F (y2; z)) ; (y1 ̸= y2)

The plan equivalent to this expression is:

σy1 ̸=y2((E ▷◁ F (y1; z)) ▷◁ (E ▷◁ F (y2; z)))

where E is the partial plan In ▷◁ F (x; y1) ▷◁ F (x; y2) with In a relation name over {x}
providing input values.

8. Related Work

Much of the work on the topic of information sources with access limitations has been
on processing queries expressed in generic query languages, such as conjunctive queries,
unions of conjunctive queries, conjunctive queries with negation, first-order logic (relational
calculus), or Datalog. Here, the query is written as if the database has no access limitations;
the challenge then is to find a query plan that does respect the limitations, but produces,

6:38 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

ideally, the same answers, or, failing that, produces only correct answers (also known as
sound rewritings) [DGL00].

Query plans could take the form of syntactically ordered fragments of the query languages
that are used, like executable FO considered in the present paper [RSU95, Li03, NL04].
Query plans can also be directly described in relational algebra, like the plans defined here
in Section 7 [YLGMU99, FLMS99, BtCT16]. An alternative approach to query processing
under access limitations is to first retrieve the “accessible part” of the database; after
that we can simply execute the original query on that part, which is a sound strategy for
monotone queries. Computing the accessible part may require recursion; on the other hand,
the computation can be optimized so as to contain only information needed for the specific
query [CM08b].

When the query language used is first-order logic, the planning and optimization
problems mentioned above are, of course, undecidable. Yet, a remarkable preservation
theorem [BLtCT16] states that, assuming a given first-order query only depends on the
accessible part of the database (for any database; this is a semantic and undecidable property),
then, that query can actually be rewritten into an executable FO formula.

Interestingly, a variant of our translation results from FLIF to executable FO in Propo-
sition 3.7 can be seen to follow from the preservation theorem just mentioned. It would
suffice to express a given FLIF expression α by any first-order logic formula φα in the free
variables Vx ∪ Vy, without taking care that φα is executable. Indeed, FLIF expressions are
readily seen to be access-determined by the variables in Vx, so, the preservation theorem
would imply that φα can be equivalently written by an executable formula. Of course, our
result provides a much more direct translation, and moreover, shows a bound on the number
of variables (free or bound) needed in φα.

Furthermore, it is natural to expect (although we have not verified it formally) that any
FLIF expression α is already access-determined by the set of its input variables I(α). In
this manner, also Theorem 5.4 would be implied by the preservation theorem. Again, our
theorem provides a direct and actually very efficient translation.

Incidentally, in the cited work [BLtCT16], Benedikt et al. define their own notion of
executable FO, syntactically rather different from the one we use in the present paper
(which was introduced much earlier by Nash and Ludäscher [NL04]). We prefer the language
we use for its elegance, and because its treatment of input variables matches well with
input variables for FLIF expressions. Still, both executable-FO languages are equivalent in
expressive power, as they are both equivalent to the plans used here in Section 7 and also
used by Benedikt et al.

In a companion paper [ABS+23], first presented at the KR 2020 conference, we consider
LIF in a broader (but still first-order) context, independently of access limitations. The
companion paper considers the problem of sensitivity analysis for general LIF expressions
and introduces semantic as well as syntactic definitions of input and output variables. the
syntactic definitions were shown to be optimal approximations of the semantic definitions.
We have adopted the syntactic treatment in this paper, and have shown its relevance, when
applied it to FLIF, to querying information sources with access limitations. Propositions 4.3,
4.4 and 4.5 are adopted here from our companion paper (there, numbered Proposition 4.3,
Lemma 4.4, and Lemma 4.6, respectively); the proofs can be found there.

Vol. 20:2 EXECUTABLE FO & FLIF 6:39

Figure 3: Summary of the translations shown in the paper, where a dashed arrow denotes
an input-respecting translation, a double arrow denotes a simple translation, and
finally, a double dashed arrow denotes both.

9. Conclusion

We have presented a connection between executable queries on databases with access
limitations on the one hand, and first-order dynamic logic frameworks on the other hand.
Specifically, we have defined Forward LIF (FLIF), an instantiation of the Logic of Information
Flows (LIF). FLIF presents itself as an XPath-like language for graphs of valuations, where
edges represent information accesses. The main novelty of FLIF lies in its graph-navigational
nature (without explicit quantification), its input-output mechanism, and the law of inertia
that it obeys. Specifically for io-disjoint FLIF expressions, our work also presents a more
transparent alternative to the result by Benedikt et al. on translating (their version of)
executable first-order formulas to plans. We have also given renewed attention to Nash and
Ludäscher’s elegant executable FO language, which seemed to have been overlooked by more
recent research in the field.

Figure 3 illustrates our main technical results, which offer translations between various
languages. Most of the translations are simple in their formulation, although the rigorous
proof of correctness is not always that simple.

We are not claiming that FLIF is necessarily more user-friendly than previous languages,
or necessarily easier to implement or optimize. Both of these aspects should be the topic of
further research. Still we believe it offers a novel perspective. That FLIF can express all
executable FO queries is something that is not obvious at first sight.

In closing, we note that querying under limited access patterns has applicability beyond
traditional data or information sources. For instance in the context of distributed data,
when performing tasks involving the composition of external services, functions, or modules,
limited access patterns are a way for service providers to protect parts of their data, while
still allowing their services to be integrated seamlessly in other applications. Limited access
patterns also have applications in active databases, where we like to think of FLIF as an
analog of Active XML [ABM08] for the relational data model.

Acknowledgment

This research was partially supported by the Flanders AI Research Program. We thank the
anonymous reviewers for their critical comments on an earlier version of this paper, which
prompted us to significantly improve the presentation of our results.

6:40 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Vol. 20:2

References

[AAB+17] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč. Foundations of modern
query languages for graph databases. ACM Computing Surveys, 50(5):68:1–68:40, 2017.

[ABM08] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML project: an overview. The VLDB
Journal, 17(5):1019–1040, 2008.

[ABS+20] H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche. Executable first-order
queries in the logic of information flows. In Proceedings 23rd International Conference on
Database Theory, volume 155 of Leibniz International Proceedings in Informatics, pages 4:1–4:14.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020.

[ABS+23] H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche. Inputs, outputs,
and composition in the logic of information flows. ACM Transactions on Computational Logic,
24(4):33:1–33:44, 2023.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[AVdB21] H. Aamer and J. Van den Bussche. Input-Output Disjointness for Forward Expressions in the

Logic of Information Flows. In Ke Yi and Zhewei Wei, editors, 24th International Conference on
Database Theory (ICDT 2021), volume 186 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 8:1–8:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[BBB13] V. Bárány, M. Benedikt, and P. Bourhis. Access patterns and integrity constraints revisited. In
W.-C. Tan et al., editors, Proceedings 16th International Conference on Database Theory, pages
213–224. ACM, 2013.

[BGS11] M. Benedikt, G. Gottlob, and P. Senellart. Determining relevance of accesses at runtime. In
Proceedings 30st ACM Symposium on Principles of Databases, pages 211–222. ACM, 2011.

[BLT15] M. Benedikt, J. Leblay, and E. Tsamoura. Querying with access patterns and integrity con-
straints. Proceedings of the VLDB Endownment, 8(6):690–701, 2015.

[BLtCT16] M. Benedikt, J. Leblay, B. ten Cate, and E. Tsamoura. Generating Plans from Proofs: The
Interpolation-based Approach to Query Reformulation. Morgan & Claypool, 2016.

[BtCT16] M. Benedikt, B. ten Cate, and E. Tsamoura. Generating plans from proofs. ACM Transactions
on Database Systems, 40(4):22:1–22:45, 2016.

[CCM09] A. Calı, D. Calvanese, and D. Martinenghi. Dynamic query optimization under access limitations
and dependencies. Journal of Universal Computer Science, 15(1):33–62, 2009.

[CM08a] A. Calı and D. Martinenghi. Conjunctive query containment under access limitations. In
Q. Li, S. Spaccapietra, et al., editors, Proceedings 27th International Conference on Conceptual
Modeling, volume 5231 of Lecture Notes in Computer Science, pages 326–340. Springer, 2008.

[CM08b] A. Calı and D. Martinenghi. Querying data under access limitations. In Proceedings 24th
International Conference on Data Engineering, pages 50–59. IEEE Computer Society, 2008.

[CMRU17] A. Calı, D. Martinenghi, I. Razon, and M. Ugarte. Querying the deep web: Back to the
foundations. In Reutter and Srivastava [RS17].

[CU18] A. Calı and M. Ugarte. On the complexity of query answering under access limitations: A
computational formalism. In D. Olteanu and B. Poblete, editors, Proceedings 12th Alberto
Mendelzon International Workshop on Foundations of Data Management, volume 2100 of
CEUR Workshop Proceedings, 2018.

[DGL00] O.M. Duschka, M.R. Genesereth, and A.Y. Levy. Recursive query plans for data integration.
Journal of Logic Programming, 43(1):49–73, 2000.

[DLN07] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting queries using views with access patterns
under integrity constraints. Theoretical Computer Science, 371(3):200–226, 2007.

[FGL+15] G.H.L. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den Bussche, D. Van Gucht,
S. Vansummeren, and Y. Wu. Relative expressive power of navigational querying on graphs.
Information Sciences, 298:390–406, 2015.

[FLMS99] D. Florescu, A.Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the presence of
limited access patterns. In SIGMOD99 [SIG99], pages 311–322.

[GS91] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy, 14:39–100,
1991.

[HKT00] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

Vol. 20:2 EXECUTABLE FO & FLIF 6:41

[IL84] T. Imielinski and W. Lipski. The relational model of data and cylindric algebras. Journal of
Computer and System Sciences, 28:80–102, 1984.

[Li03] C. Li. Computing complete answers to queries in the presence of limited access patterns. The
VLDB Journal, 12(3):211–227, 2003.

[Lib04] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[LMV13] L. Libkin, W. Martens, and D. Vrgoč. Quering graph databases with XPath. In Proceedings

16th International Conference on Database Theory. ACM, 2013.
[Mad91] R.D. Maddux. The origin of relation algebras in the development and axiomatization of the

calculus of relations. Studia Logica, 50(3/4):421–455, 1991.
[MHF03] T.D. Millstein, A.Y. Halevy, and M.T. Friedman. Query containment for data integration

systems. Journal of Computer and System Sciences, 66(1):20–39, 2003.
[NL04] A. Nash and B. Ludäscher. Processing first-order queries under limited access patterns. In

Proceedings 23th ACM Symposium on Principles of Database Systems, pages 307–318, 2004.
[PAG10] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for RDF. Journal

of Web Semantics, 8(4):255–270, 2010.
[Pra92] V. Pratt. Origins of the calculus of binary relations. In Proceedings 7th Annual IEEE Symposium

on Logic in Computer Science, pages 248–254, 1992.
[RS17] J.L. Reutter and D. Srivastava, editors. Proceedings 11th Alberto Mendelzon International

Workshop on Foundations of Data Management, volume 1912 of CEUR Workshop Proceedings,
2017.

[RSU95] A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answering queries using templates with binding
patterns. In Proceedings Fourteenth ACM Symposium on Principles of Database Systems, pages
105–112. ACM Press, 1995.

[SFG+15] D. Surinx, G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht,
S. Vansummeren, and Y. Wu. Relative expressive power of navigational querying on graphs
using transitive closure. Logic Journal of the IGPL, 23(5):759–788, 2015.

[SIG99] Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data,
volume 28:2 of SIGMOD Record. ACM Press, 1999.

[Tar41] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73–89, 1941.
[tCM07] B. ten Cate and M. Marx. Navigational XPath: Calculus and algebra. SIGMOD Record,

36(2):19–26, 2007.
[Ter17] E. Ternovska. Recent progress on the algebra of modular systems. In Reutter and Srivastava

[RS17].
[Ter19] E. Ternovska. An algebra of modular systems: static and dynamic perspectives. In A. Herzig

and A. Popescu, editors, Frontiers of Combining Systems: Proceedings 12th FroCos, volume
11715 of Lecture Notes in Artificial Intelligence, pages 94–111. Springer, 2019.

[VdB01] J. Van den Bussche. Applications of Alfred Tarski’s ideas in database theory. In L. Fribourg,
editor, Computer Science Logic, volume 2142 of Lecture Notes in Computer Science. Springer,
2001.

[YLGMU99] R. Yerneni, C. Li, H. Garcia-Molina, and J.D. Ullman. Computing capabilities of mediators. In
SIGMOD99 [SIG99], pages 443–454.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

