Made available by Hasselt University Library in https://documentserver.uhasselt.be

Exploring mitochondrial heteroplasmy in neonates: implications for growth patterns and overweight in the first years of life Peer-reviewed author version

COSEMANS, Charlotte; ALFANO, Rossella; SLEURS, Hanne; MARTENS, Dries; NAWROT, Tim & PLUSQUIN, Michelle (2024) Exploring mitochondrial heteroplasmy in neonates: implications for growth patterns and overweight in the first years of life. In: INTERNATIONAL JOURNAL OF OBESITY,.

DOI: 10.1038/s41366-024-01537-z Handle: http://hdl.handle.net/1942/43088

1	Exploring Mitochondrial Heteroplasmy in Neonates: Implications for
2	Growth Patterns and Overweight in the First Years of Life
3	Charlotte Cosemans ^a , Rossella Alfano ^a , Hanne Sleurs ^a , Dries S Martens ^a , Tim S Nawrot ^{a,b} , Michelle
4	Plusquin ^{a*} .
5	^a Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
6	^b School of Public Health, Occupational & Environmental Medicine, Leuven University, 3000 Leuven, Belgium
7	* Corresponding author: michelle.plusquin@uhasselt.be, Agoralaan Bulding D, 3590 Diepenbeek, Belgium. +3211268289
8	

KEYWORDS: mitochondria, heteroplasmy, rapid growth, childhood overweight

10 ABSTRACT

Background: Mitochondrial heteroplasmy reflects genetic diversity within individuals due to the presence of varying mitochondrial DNA (mtDNA) sequences, possibly affecting mitochondrial function and energy production in cells. Rapid growth during early childhood is a critical development with long-term implications for health and well-being. In this study, we investigated if cord blood mtDNA heteroplasmy is associated with rapid growth at six and 12 months and overweight in childhood at four to six years.

Methods: This study included 200 mother-child pairs of the ENVIRONAGE birth cohort. Whole mitochondrial genome sequencing was performed to determine mtDNA heteroplasmy levels (in variant allele frequency; VAF) in cord blood. Rapid growth was defined for each child as the difference between WHO-SD scores of predicted weight at either six or 12 months and birth weight. Logistic regression models were used to determine the association of mitochondrial heteroplasmy with rapid growth and childhood overweight. Determinants of relevant cord blood mitochondrial heteroplasmies were identified using multiple linear regression models.

Results: One % increase in VAF of cord blood MT-D-Loop_{16362T>C} heteroplasmy was associated with rapid growth at six months (OR=1.03; 95% CI: 1.01 to 1.05; p=0.001) and 12 months (OR=1.02; 95% CI: 1.00 to 1.03; p=0.02). Furthermore, this variant was associated with childhood overweight at four to six years (OR=1.01; 95% CI 1.00 to 1.02; p=0.05). Additionally, rapid growth at six months (OR=3.00; 95% CI: 1.49 to 6.14; p=0.002) and 12 months (OR=4.05; 95% CI: 2.06 to 8.49; p<0.001) was also associated with childhood overweight at four to six years. Furthermore, we identified maternal age, pre-pregnancy BMI, maternal education, parity, and gestational age as determinants of cord blood MT-D-Loop_{16362T>C} heteroplasmy.

30 **Conclusions:** Our findings, based on mitochondrial DNA genotyping, offer insights into the molecular 31 machinery leading to rapid growth in early life, potentially explaining a working mechanism of the 32 development towards childhood overweight. 33 INTRODUCTION

34 Mitochondria, the powerhouses of our cells, are crucial for energy production through oxidative phosphorylation (OXPHOS). Each mitochondrion contains multiple copies of its own circular DNA, encoding 35 36 various proteins essential for energy metabolism. Due to its proximity to the inner mitochondrial 37 membrane where reactive oxygen species (ROS) are generated, mtDNA is more exposed to oxidative stress 38 than nuclear DNA (1). The lack of protective histones and limited DNA repair mechanisms makes it more 39 vulnerable to mutations (2). In fact, the mitochondrial mutation rate is about 100-fold higher than that of 40 the nuclear genome (3). These mutations result in the presence of different mtDNA sequences within 41 tissues or cells, called mitochondrial heteroplasmy (4). The association of mtDNA mutations and 42 mitochondrial diseases has been studied before, but their role in more common, complex disorders has 43 not been fully proven (5-8). Given the important role of mitochondria in energy metabolism and the fact 44 that they are more prone to mutations, mitochondrial dysfunction contributes to cellular energy 45 imbalance (9), possibly reduced energy expenditure, leading to various metabolic disorders, including 46 obesity (10, 11). Cord blood mitochondrial heteroplasmy can potentially affect energy production (12). 47 Previously, we identified an association between cord blood MT-ND4L10550A>G heteroplasmy and 48 overweight in children aged four to six (13), but studies linking cord blood mitochondrial heteroplasmy 49 and rapid growth are scarce. Changes in mitochondrial heteroplasmy might lead to enhanced 50 mitochondrial function, resulting in increased ATP production. Another possibility is that mitochondrial heteroplasmy might lead to reduced energy expenditure, leading to metabolic disorders (10). Molecular 51 52 pathways in cord blood have been found to mediate the risk of experiencing rapid growth at 12 months 53 (14, 15), raising the question if cord blood mtDNA heteroplasmy could also affect rapid growth. As this 54 concept is not well understood, we hypothesised that cord blood mtDNA heteroplasmy is associated with 55 rapid growth at six and 12 months and childhood overweight at four to six years.

56 MATERIALS AND METHODS

57 STUDY POPULATION

58 Within the framework of the ongoing prospective birth cohort 'Environmental Influence on Aging in Early 59 Life' (ENVIRONAGE; Flanders, Belgium) (16), we included 200 mother-child pairs recruited between 60 February 2010 and September 2013 (17) (Supplementary Figure S1). Details on the study protocol have 61 been described previously (16). Briefly, mothers without a planned caesarean section who can fill out a 62 Dutch language questionnaire are eligible for participation. Biological samples (e.g., placental tissue, cord 63 blood, maternal blood) are collected, and medical records during and after pregnancy can be accessed, 64 which include foetal ultrasound data. In addition, lifestyle factors are derived from questionnaires filled 65 out after delivery.

All study participants signed an informed consent according to procedures authorized by the Ethical
 Committees of the East-Limburg Hospital (Genk, Belgium) and Hasselt University. This study has been
 performed according to the Helsinki Declaration.

69 DATA COLLECTION

70 Medical records provided information about the date of birth, gestational age, newborn's sex, and birth 71 weight. Pre-pregnancy BMI was determined between gestational weeks seven and nine. Questionnaires 72 completed by the mothers provided detailed information on the participants. Maternal education was 73 coded low (no diploma or primary school), middle (secondary school), or high (college or university). Parity 74 was divided into three categories: primiparous (first child), secundiparous (second child), or multiparous 75 (third child or more). Smoking during pregnancy was coded "yes", in case the mother reported that she 76 had smoked during the pregnancy, otherwise as "no". Newborn's ethnicity was considered European when 77 at least two grandparents were European, otherwise as non-European. In addition, trained staff of the "Kind 78 governmental agency en Gezin" (K&G Child and Family, URL: 79 https://www.kindengezin.be/en/child-and-family) reported child weight at an average of seven time 80 points in the first year. Predicted weight at six or 12 months was calculated using mixed-effects linear 81 regression models with the best fitting fractional polynomials of age by sex (18). WHO's growth curves 82 were used to calculate the sex- and age-adjusted standard deviation (SD) weight scores. Rapid growth 83 (yes/no) was defined as the difference between WHO-SD scores of predicted weight at six or 12 months 84 and birth weight being greater than 0.67, according to Ong et al. (19). At the follow-up visit between four 85 and six years of age, trained examiners measured clinical parameters of the child, including height and 86 weight (of which BMI was calculated as the ratio between weight and squared height), and mothers filled out multiple questionnaires addressing general information about the lifestyle of the child and parents. 87 88 Childhood overweight was defined as WHO-SD BMI scores being higher than the sex- and age-specific BMI 89 cut-offs, according to the International Obesity Task Force (IOTF) (20).

90 NEXT GENERATION SEQUENCING

91 Umbilical cord blood was collected in Vacutainer[®] Plus Plastic K2EDTA Tubes (BD, Franklin Lakes, NJ, USA) 92 right after delivery. Buffy coats containing cord blood leukocytes were used for the extraction of total 93 genomic DNA with the QIAamp DNA Mini Kit (Qiagen, Venlo, the Netherlands) following the 94 manufacturer's instructions. DNA quantity and purity were determined on a NanoDrop ND-1000 UV-Vis 95 spectrometer (Thermo Scientific, Wilmington, DE). Total genomic DNA samples was stored at -80°C for 96 further analyses.

97 Whole mitochondrial genome sequencing was performed by Macrogen Europe, as described elsewhere 98 (17). Demultiplexed fastq files were used for downstream analyses, which were performed with Geneious 99 Prime (version 2021.2.2). Adapters and low-quality regions were trimmed using BBDuk, after which 100 sequences were aligned to the human mitochondrial reference genome (NC_012920, URL: 101 https://www.ncbi.nlm.nih.gov/nuccore/NC_012920), and variants were called. Base call accuracy was

assessed with the Phred Score. Mitochondrial heteroplasmy levels were determined based on the variant
 allele frequency (VAF). This study focused on SNPs with a VAF >5%, coverage >300x, and a prevalence of
 at least 5% in the study population. SNPs without variation were excluded.

105 MITOCHONDRIAL DNA CONTENT

106 Cord blood mtDNA content was measured by determining the ratio of two mitochondrial gene copy 107 numbers (MTF3212/R3319 and *MT-ND1*) to two single-copy nuclear control genes (*RPLPO* and *ACTB*) using 108 the 7900HT Fast Real-Time PCR System (Applied Biosystems). The full protocol is described elsewhere (21).

109 STATISTICAL ANALYSES

110 The power calculations were performed using G*Power (version 3.1.9.7) and based on the observed 111 association between cord blood MT-ND4L_{10550A>G} heteroplasmy and childhood overweight (13). 112 Considering β = 95% and α = 0.05, a sample size of n = 200 was sufficient. Data management and statistical 113 analysis were performed using R (version 4.3.1) and RStudio software (version 2023.06.0.0). Continuous 114 variables (i.e., maternal age, pre-pregnancy BMI, gestational age, birth weight, cord blood mtDNA content, 115 and children's age at follow-up) were presented as means ± SD, and categorical variables (i.e., maternal 116 education, parity, smoking during pregnancy, newborn's sex, ethnicity, rapid growth, and childhood 117 overweight) as numbers (frequency in %).

Firstly, the association between cord blood mitochondrial heteroplasmy and rapid growth was evaluated using logistic regression models (i) minimally adjusted for gestational age and newborn's sex and (ii) fully adjusted for covariates selected based on previous literature (13, 22, 23), including maternal age, maternal education, pre-pregnancy BMI, parity, smoking during pregnancy, gestational age, newborn's sex, ethnicity, birth weight, and cord blood mtDNA content. Cord blood mtDNA content was added to correct for possible variation in mtDNA input. Estimates were provided as odds ratios (OR) with 95% CI of developing rapid growth per 1% increase in VAF. Furthermore, the association between cord blood mtDNA 125 content and rapid growth was explored using logistic regression models adjusted for maternal age, 126 maternal education, pre-pregnancy BMI, parity, smoking during pregnancy, gestational age, newborn's 127 sex, ethnicity, birth weight, cord blood leukocyte count, and cord blood platelet count. Estimates were 128 provided as OR with 95% CI of developing rapid growth per unit increase in cord blood mtDNA content. 129 The residuals of the regression models, as well as a visual inspection of histograms and QQ-plots were 130 used to evaluate the normality assumption and they did not deviate from normality. Principal component 131 analysis was performed to determine the degree of correlation between the detected SNPs (17, 24). To 132 allow for making multiple comparisons while considering the degree of correlation, the effective number 133 of tests based on principal component analysis was estimated. Since 11 principal components explained 134 90% of the variation in the data (Supplementary Table S1), a corrected significance level of p = 0.05/11 =135 0.005 was used. In sensitivity analyses, we examined the association between cord blood mitochondrial 136 heteroplasmy and rapid growth after additionally adjusting for leukocyte and platelet count and stratified 137 by sex.

Secondly, based on the observed significant results, the association between cord blood MT-D-Loop_{16362T>C} heteroplasmy and childhood overweight was determined with logistic regression models adjusted for the same set of covariates and, in addition, the child's age at follow-up. Estimates were provided as OR with 95% CI of childhood overweight per 1% increase in VAF. Furthermore, the association between rapid growth and childhood overweight was assessed. Estimates were provided as OR with 95% CI of having childhood overweight after experiencing rapid growth at six or 12 months. For both analyses, a *p*-value < 0.05 was considered significant.

Lastly, possible determinants of cord blood MT-D-Loop_{16362T>C} heteroplasmy were investigated using multiple linear regression models adjusted for maternal age, maternal education, pre-pregnancy BMI, parity, smoking during pregnancy, newborn's sex, ethnicity, gestational age, birth weight, and cord blood mtDNA content. Estimates for maternal age, pre-pregnancy BMI, gestational age, birth weight, and cord blood mtDNA content were provided as difference in VAF (in %) with 95% CI per unit increase of the characteristic. Estimates for maternal education, smoking during pregnancy, parity, sex, and ethnicity were provided as difference in VAF (in %) with 95% CI compared to low education, no smoking during pregnancy, primiparity, male, and European, respectively. As this analysis was exploratory, a significance level of p <0.10 was used.

154 RESULTS

155 POPULATION CHARACTERISTICS

An overview of the study population characteristics is provided in **Table 1**. Participating mothers were 29.7 ± 4.1 years old, had a pre-pregnancy BMI of 24.1 ± 4.5 kg/m², and most of them were highly educated (66.5%). Most pregnancies were primiparous (53.5%), and gestation lasted 39.6 ± 1.4 weeks. Newborns weighed 3420 ± 424g at birth, 52.0% were girls, and most were of European ethnicity (94.0%). The assessment of children's growth revealed that 12.0% and 27.5% of them showed rapid growth at six and 12 months, respectively. At the follow-up visit, the children were 4.7 ± 0.4 years old and 15.5% of them were overweight.

163 Table 1: Study population characteristics (n = 200).

Characteristic	Mean ± SD or n (%)		
Maternal			
Age at delivery (years)	29.7 ± 4.1		
Pre-pregnancy BMI (kg/m ²)	24.1 ± 4.5		
Maternal education			
Low	12 (6.0)		

Middle	55 (27.5)			
High	133 (66.5)			
Parity				
Primiparous	107 (53.5)			
Secundiparous	69 (34.5)			
Multiparous	24 (12.0)			
Smoking during pregnancy (yes)	24 (12.0)			
Newborn				
Gestational age (weeks)	39.6 ± 1.4			
Sex (female)	104 (52.0)			
Birth weight (g)	3420 ± 424			
Ethnicity				
European	188 (94.0)			
Non-European	12 (6.0)			
Child at follow-up				
Age (years)	4.7 ± 0.4			
Childhood overweight (yes)	31 (15.5)			
Rapid growth (yes)				
At 6 months	24 (12.0)			
At 12 months	55 (27.5)			

165 THE ASSOCIATION BETWEEN CORD BLOOD MITOCHONDRIAL HETEROPLASMY, mtDNA CONTENT,

166 AND RAPID GROWTH

167 In our study population, 2928 cord blood mtDNA variants were detected, including 2866 SNPs 168 (Supplementary Figure S2). Considering the exclusion criteria (n = 2818) and the exclusion of SNPs due to 169 lack of variation (n = 6), 42 mtDNA SNPs were included for analyses (Supplementary Table S2). In the 170 minimally adjusted model corrected for gestational age and newborn's sex, cord blood MT-D-Loop16362T>C 171 heteroplasmy was significantly associated with rapid growth at six months (OR = 1.02; 95% CI: 1.01 to 1.03; 172 p = 0.003) after correction for multiple testing (Figure 1A). Cord blood MT-ND4_{24917A>G}, MT-ND5_{12372G>A}, 173 MT-TRNL2_{12308A>G}, MT-ND2_{5460G>A}, and MT-D-Loop_{16362T>C} heteroplasmy tended to be linked with rapid 174 growth at 12 months (0.005 < p < 0.05) (Figure 1A). After full adjustment and a correction for multiple 175 testing, cord blood MT-D-Loop_{16362T>C}, on average 5.5% ± 22.8% (Supplementary Table S2), was 176 significantly associated with rapid growth at six months (OR = 1.03; 95% CI: 1.01 to 1.05; p = 0.001) and 12 177 months (OR = 1.02; 95% CI: 1.00 to 1.03; p = 0.02). The latter did not survive significance after correction 178 for multiple testing. The same trend was found for the association between cord blood MT-ND2_{5460G>A}, on 179 average 5.2% ± 21.9% (Supplementary Table S2), and rapid growth at six months (OR = 1.02; 95% CI: 1.00 180 to 1.04; p = 0.04) (Figure 1B). Sensitivity analyses for the association between cord blood MT-D-Loop_{16362T>C} 181 heteroplasmy and rapid growth at six months showed that additionally adjusting for leukocyte and platelet 182 count did not affect our results (Supplementary Table S3). Furthermore, stratifying by sex did not affect 183 the effect size, but the association was stronger in girls (p = 0.006) compared to boys (p = 0.05; 184 Supplementary Table S3). Cord blood mtDNA content was not linked with rapid growth at six or 12 months 185 (Supplementary Table S4).

187 Figure 1: Volcano plot for the association between cord blood mitochondrial heteroplasmy and rapid growth at six 188 (black) and 12 months (red). (A) In the minimally adjusted model corrected for gestational age and newborn's sex, 189 MT-D-Loop_{16362T>C} heteroplasmy was significantly associated with rapid growth at six months (p < 0.005; grey solid 190 line). MT-ND424917A>G, MT-ND512372G>A, MT-TRNL212308A>G, MT-ND25460G>A, and MT-D-Loop16362T>C heteroplasmy tended 191 to be linked with rapid growth at 12 months (p < 0.05; grey dotted line). Estimates were provided as OR of developing 192 rapid growth per % increase in VAF. (B) In the fully adjusted model corrected for maternal age, maternal education, 193 pre-pregnancy BMI, parity, smoking during pregnancy, gestational age, newborn's sex, ethnicity, birth weight, and 194 cord blood mtDNA content, MT-D-Loop16362T>c heteroplasmy was significantly associated with rapid growth at six 195 months (p < 0.005; grey solid line), with a similar trend at 12 months (p < 0.05; grey dotted line). MT-ND2_{54606>A} 196 heteroplasmy tended to be linked with rapid growth at six months (p < 0.05; grey dotted line). Estimates were 197 provided as OR of developing rapid growth per % increase in VAF.

198

THE ASSOCIATION BETWEEN CORD BLOOD MT-D-LOOP_{16362T>C} HETEROPLASMY, RAPID GROWTH,
 AND CHILDHOOD OVERWEIGHT

201 Cord blood MT-D-Loop_{16362T>C} heteroplasmy was positively associated with childhood overweight at four 202 to six years, although borderline significant. One % increase in VAF for cord blood MT-D-Loop_{16362T>C} was 203 linked with higher odds of a four-to-six-year-old child being overweight (OR = 1.01; 95% CI 1.00 to 1.02; p 204 = 0.05) after adjustment for maternal age, maternal education, pre-pregnancy BMI, parity, smoking during 205 pregnancy, gestational age, newborn's sex, ethnicity, birth weight, cord blood mtDNA content, and the 206 child's age at follow-up. Experiencing rapid growth at six months of age increased the odds of having 207 childhood overweight at four to six years (OR = 3.00; 95% CI: 1.49 to 6.14; p = 0.002). Furthermore, rapid 208 growth at 12 months of age was associated with increased odds of developing childhood overweight at 209 four to six years (OR = 4.05; 95% CI: 2.06 to 8.49; p < 0.001).

210 DETERMINANTS OF CORD BLOOD MT-D-LOOP_{16362T>C} HETEROPLASMY

211 Five characteristics, specifically maternal age, pre-pregnancy BMI, maternal education, parity, and 212 gestational age were identified as determinants of cord blood MT-D-Loop_{16362T>C} heteroplasmy (Table 2), 213 with a significance level set at p < 0.10. One year increase in maternal age was associated with an increase 214 of 0.85% (95% CI: -0.02 to 1.72; p = 0.05) of cord blood MT-D-Loop_{16362T>C} heteroplasmy. One unit increase 215 in pre-pregnancy BMI was linked with an increase of 0.63% (95% CI: -0.08 to 1.34; p = 0.08) of cord blood 216 MT-D-Loop_{16362T>C} heteroplasmy. Middle and high maternal education levels were associated with a -217 17.26% (95% CI: -31.95 to -2.57; p = 0.02) and -17.15% (95% CI: -31.55 to -1.75; p = 0.02) lower cord blood 218 MT-D-Loop_{16362T>C} heteroplasmy compared to low maternal education, respectively. Multiparity was 219 associated with a decrease of 12.86% (95% CI: -24.12 to -1.61; p = 0.03) when compared to primiparity, 220 but no difference was found between secundi- and primiparity. One day increase in gestational age was 221 linked with a decrease of 0.32% (95% CI: -0.69 to 0.06; p = 0.10) of cord blood MT-D-Loop_{16362T>C} 222 heteroplasmy.

Table 2: Determinants for cord blood MT-D-Loop_{16362T>C} heteroplasmy. Models included maternal age, prepregnancy BMI, maternal education, smoking during pregnancy, parity, newborn's sex, ethnicity, gestational age, birth weight, and cord blood mtDNA content. Estimates for maternal age, pre-pregnancy BMI, gestational age, birth weight, and cord blood mtDNA content were provided as difference in VAF (in %) with 95% CI per unit increase of the characteristic. Estimates for maternal education, smoking during pregnancy, parity, sex, and ethnicity were provided as difference in VAF (in %) with 95% CI compared to low education, no smoking during pregnancy, primiparity, male, and European, respectively. p < 0.10 was considered significant.

	n	Estimate (95% CI)	<i>p</i> -value
Maternal age (years)	200	0.85 (-0.02 to 1.72)	0.05
Pre-pregnancy BMI (kg/m ²)	200	0.63 (-0.08 to 1.34)	0.08

Maternal education			230
Low	12	Reference	231
Middle	55	-17.26 (-31.95 to -2.57)	0.02
High	133	-17.15 (-31.55 to -1.75)	<u>232</u> 0.02
Smoking during pregnancy			233
No	176	Reference	234
Yes	24	-3.15 (-13.63 to 7.33)	0.835
Parity			236
Primiparous	107	Reference	
Secundiparous	69	-2.45 (-9.88 to 4.97)	237 0.52
Multiparous	24	-12.86 (-24.12 to -1.61)	0.038
Sex			239
Male	96	Reference	240
Female	104	0.14 (-6.35 to 6.64)	0.97
Ethnicity			241
European	188	Reference	242
Non-European	12	3.14 (-10.51 to 16.78)	0.223
Gestational age (days)	200	-0.32 (-0.69 to 0.06)	0.10 244
Birth weight (g)	200	0.002 (-0.01 to 0.01)	0.74
Cord blood mtDNA content	200	-1.56 (-6.90 to 3.79)	<u>245</u> 0.57
			246

247 DISCUSSION

The key findings of our study include a link between cord blood mtDNA heteroplasmy and growth patterns during the first year of life. Specifically, we observed a significant positive association between cord blood MT-D-Loop_{16362T>C} heteroplasmy and accelerated growth at six months, with a consistent trend persisting at the twelve-month mark. Further, a higher level of this genetic variant was correlated with childhood overweight between the ages of four and six, and pre-pregnancy BMI, parity, and maternal education were recognized as potential determinants.

254 Infants' rapid growth, or catch-up growth, was first described as accelerated growth in response to 255 recovery from illness or starvation (25, 26). However, a study involving twins revealed that genetic factors 256 also played a role in determining weight at six months and the rate of weight gain during infancy (27). 257 Furthermore, infants genetically predisposed towards higher weight gain but born to lean mothers showed 258 rapid postnatal growth (28). To unravel the underlying mechanisms of rapid growth, both environmental 259 and genetic factors should be considered. One potential underlying mechanism might be mitochondrial 260 heteroplasmy, which refers to the presence of multiple mtDNA sequences within an individual's cells or 261 tissues (4). The thrifty phenotype hypothesis states that adverse prenatal exposures have the potential to 262 lead to changes in fetal metabolism (29), postulating that alterations in mitochondrial biology might occur. 263 These changes can contribute to the storage of excess calories, predisposing children to develop 264 overweight or obesity (29). For instance, prenatal air pollution exposure was linked with changes in cord 265 blood mtDNA heteroplasmy levels (13, 17), of which cord blood MT-ND4L_{10550A>G} heteroplasmy was found 266 to be positively associated with childhood overweight at four to six years (13).

We identified a link between rapid growth at six months and cord blood MT-D-Loop_{16362T>C} heteroplasmy, which is a variant in the hypervariable, non-coding displacement loop (i.e., D-Loop). The D-Loop is an important region in the mtDNA, as it regulates replication and transcription of mitochondrial genes (30). It consists of three hypervariable (HV) regions (31), where the MT-D-Loop_{16362T>C} variant is located in HV

271 region I (HVI). Consistent with our results, mitochondrial heteroplasmy in this region was linked with 272 metabolic disorders in early life (32) and adulthood (32, 33). In the ALSPAC cohort, another variant (MT-273 D-Loop_{16189T>C}) was linked with a lower ponderal index at birth, while after two years, no difference in 274 adiposity was found between children with the variant compared to those without it. The authors 275 suggested that children with this MT-D-Loop_{16189T>C} variant showed early postnatal rapid growth (32), 276 however, the association between MT-D-Loop_{16189T>C} heteroplasmy and rapid growth was not confirmed 277 in our study (data not shown). This specific mitochondrial variant was also associated with insulin 278 resistance (33) and a 5-fold increase in type 2 diabetes in the Hertfordshire cohort (32). Our study 279 demonstrated that rapid growth was influenced by cord blood mitochondrial heteroplasmy rather than 280 cord blood mtDNA content. This finding suggests that not the amount of mitochondrial DNA but 281 mitochondrial mutations might play a more important role in rapid growth development. As also cord 282 blood metabolites have been linked with rapid growth in the first 12 months of life and childhood 283 overweight (14, 18), our research adds to this knowledge by identifying cord blood markers that have the 284 potential to predict the risk of developing rapid growth in the early phases of life.

285 We showed a borderline significant association between cord blood MT-D-Loop_{16362T>C} heteroplasmy and 286 childhood overweight at four to six years (p = 0.05). The study by Flaquer et al. (34) showed a link between mitochondrial variants in multiple genes (i.e., MT-COX1, MT-COX3, MT-ND1, MT-ND2, and MT-ND4L) and 287 288 BMI in adults (34), while another study did not find an association with common mtDNA variants (9). Two 289 variants in the D-Loop region (MT-D-Loop_{16292C>T} and MT-D-Loop_{16189T>C}) were linked with obesity in adults 290 (10). Consistent with our results, we previously found that cord blood $MT-ND4L_{10550A>G}$ heteroplasmy was 291 positively linked with childhood overweight at four to six years (13). In contrast, another study did not find 292 an association between mitochondrial heteroplasmy and childhood obesity (6). As the D-Loop is an 293 important regulator of the mtDNA (30), it is plausible that it plays a role in the development of overweight or obesity. However, the exact mechanism underlying the link between mitochondrial heteroplasmy andchildhood overweight warrants further investigation.

296 Several studies reported the link between rapid growth and metabolic disorders, such as obesity (19), 297 cardiovascular diseases (35-38), and type 2 diabetes (35, 37) in later life. Especially growth trajectories in 298 the first year of life may be critical for long-term metabolic health. Rapid growth between three and 12 299 months of life was linked with higher insulin resistance (39). Between zero and six months of life, rapid 300 growth predicted metabolic risk in adolescents aged 17 years old (40). Our study demonstrated a link 301 between rapid growth at six and 12 months of life and developing overweight at four to six years of age. 302 Consistent with our results, experiencing rapid growth at 12 months of age was associated with higher 303 odds of being overweight at 16 and 18 years old (41), and rapid growth in the first five years of life was 304 linked with a higher BMI in young adulthood (42). Furthermore, a meta-analysis showed that rapid growth 305 in infancy was associated with overweight and obesity from childhood to adulthood (43). They also 306 reported that rapid growth from birth to 12 months was linked with a higher likelihood of childhood 307 overweight and obesity compared to rapid growth from birth to two years (43). Taken together, these data 308 suggest that the first few years of life are a critical time window for monitoring growth patterns in infants.

309 To investigate factors influencing cord blood mitochondrial heteroplasmy, our study examined several 310 possible determinants of which four maternal variables (i.e., maternal age, pre-pregnancy BMI, maternal 311 education, and parity) were linked with cord blood MT-D-Loop_{16362T>C} heteroplasmy. A previous study 312 found that higher pre-pregnancy BMI, low maternal education, and primiparity were also positively linked 313 with childhood overweight at four to six years old (14). Parity was also found to be a potential determinant 314 for infant rapid growth, while no association was found with pre-pregnancy BMI and maternal education 315 (22). Since mtDNA is exclusively inherited from the mother (3), any mtDNA mutations can potentially be 316 transmitted to her offspring. A positive association was found between maternal age at fertilisation and 317 mitochondrial heteroplasmy in their child (44). Furthermore, several maternal factors have been known 318 to affect mitochondrial function in their offspring. Pre-pregnancy BMI altered the expression of genes 319 involved in mitochondrial metabolism in umbilical vein endothelial cells (45). Moreover, maternal 320 allostatic load (including pre-pregnancy BMI) was linked with mtDNA content and mitochondrial 321 bioenergetic capacity in early childhood (46). Oxidative stress during pregnancy is influenced by lifestyle 322 factors, such as socioeconomic status (47). In addition, animal studies showed that parity influenced 323 mitochondrial enzyme activity (48) and respiratory capacity (49). Furthermore, we found that gestational 324 age was linked with cord blood MT-D-Loop_{16362T>C} heteroplasmy, which can be explained due to an increase 325 in oxidative stress as gestation progresses (50). These findings suggest an important role for these factors 326 in mitochondrial function.

327 In the context of the Developmental Origins of Health and Disease (DOHaD) hypothesis, having distinct 328 mitochondrial heteroplasmies at birth could contribute to potential health effects in later life, for example, 329 metabolic diseases. The translational potential of our results lies in identifying cord blood mitochondrial 330 heteroplasmy as a potential predictor of the risk of developing rapid growth in the early phases of life, 331 which in turn may lead to a higher risk for childhood obesity. This marker, in combination with known risk 332 factors, may offer the possibility of contributing to a valuable screening tool for early interventions. Prior 333 to translating this knowledge into a broader context, it is essential to explore the causality of our identified 334 associations through longitudinal and experimental studies.

Strengths and limitations – Our study has several strengths. We used whole mitochondrial genome sequencing to analyse the entire mitochondrial genome. With an average coverage of 19,627x, base calls were made with a high degree of confidence. We investigated the link between multiple mtDNA variants, which are potentially correlated. Therefore, we used principal component analysis to correct the significance level for the analyses between mitochondrial heteroplasmy and rapid growth. We acknowledge some limitations in our study. Firstly, our study has a relatively small sample size (n = 200), which prevents us from stratifying our analyses, for example, by breastfeeding practices. Secondly, in this study, we focused on maternal characteristics, while paternal factors might also contribute to the growth patterns of the child (51, 52), although not via mitochondrial heteroplasmy. While we showed a link between cord blood mitochondrial heteroplasmy and growth patterns in early life, the effect size is relatively small, underscoring the need for additional research to explore this association further.

346 CONCLUSION

347 We presented evidence that mitochondrial heteroplasmy in neonates is associated with rapid growth in 348 infancy and overweight in early childhood, providing new insights into a potential mechanism underlying 349 growth patterns in the first years of life. In addition, multiple factors (i.e., maternal age, pre-pregnancy 350 BMI, maternal education, parity, and gestational age) were found to influence mitochondrial heteroplasmy 351 in neonates. Understanding the relationship between mitochondrial heteroplasmy, energy imbalance, and 352 growth patterns requires further investigation into specific molecular mechanisms that link mitochondrial 353 function to growth regulation. Additionally, longitudinal studies assessing growth trajectories in individuals 354 with varying levels of heteroplasmy could provide valuable insights into the link between mitochondrial 355 dynamics, rapid growth, and childhood overweight.

356 ACKNOWLEDGMENTS

The ENVIRONAGE birth cohort is supported by the Methusalem Fund, the Research Foundation Flanders (FWO, grant numbers 1516112N, G.0873.11.N.10), and Kom op Tegen Kanker. Charlotte Cosemans was financially supported by the Special Research Fund of Hasselt University (grant number BOF22PD04) and Fund Orcadia (grant number 2022-E2210890-228297), managed by the King Baudouin Foundation. FWO financially supported Rossella Alfano (grant number 1296523N) and Dries S Martens (grant number 12X9623N).

The authors are extremely grateful to the participating women and neonates, as well as the staff of the maternity ward, midwives, and the staff of the clinical laboratory of East-Limburg Hospital in Genk.

365 AUTHOR CONTRIBUTIONS

- 366 Charlotte Cosemans: Conceptualization, Methodology, Formal analysis, Investigation, Writing Original
- 367 Draft, Writing Review & Editing, Visualization. **Rossella Alfano**: Data Curation, Writing Review & Editing.
- 368 Hanne Sleurs: Investigation, Writing Review & Editing. Dries S Martens: Investigation, Writing Review
- 369 & Editing. **Tim S Nawrot**: Conceptualization, Funding acquisition, Writing Review & Editing, Supervision.
- 370 **Michelle Plusquin**: Conceptualization, Writing Review & Editing, Supervision.

371 ROLE OF THE FUNDING SOURCE

- 372 The funders of the study had no role in the study design, data collection, data analysis, data interpretation,
- or writing of the report.

374 DECLARATION OF INTERESTS

375 The authors declare no competing interests.

376 DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES IN THE WRITING PROCESS

- 377 During the preparation of this work the author(s) used ChatGPT in order to improve the language and
- 378 readability of the manuscript. After using this tool, the author(s) reviewed and edited the content as
- 379 needed and take(s) full responsibility for the content of the publication.

380 REFERENCES

Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic
 disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis.
 2017;1863(5):1066-77.

Lax NZ, Turnbull DM, Reeve AK. Mitochondrial mutations: newly discovered players in neuronal
 degeneration. Neuroscientist. 2011;17(6):645-58.

386 3. Chial H, Craig J. mtDNA and Mitochondrial Diseases. Nature Education. 2008;1(1):217.

Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for
 human health and disease. Nature reviews Genetics. 16. England2015. p. 530-42.

Wallace DC. Mitochondrial DNA mutations in disease and aging. Environmental and molecular
 mutagenesis. 2010;51(5):440-50.

Grant SF, Glessner JT, Bradfield JP, Zhao J, Tirone JE, Berkowitz RI, et al. Lack of relationship
between mitochondrial heteroplasmy or variation and childhood obesity. Int J Obes (Lond). 2012;36(1):803.

Avital G, Buchshtav M, Zhidkov I, Tuval Feder J, Dadon S, Rubin E, et al. Mitochondrial DNA
heteroplasmy in diabetes and normal adults: role of acquired and inherited mutational patterns in twins.
Human molecular genetics. 2012;21(19):4214-24.

Bournat JC, Brown CW. Mitochondrial dysfunction in obesity. Curr Opin Endocrinol Diabetes Obes.
 2010;17(5):446-52.

399 9. Saxena R, de Bakker PI, Singer K, Mootha V, Burtt N, Hirschhorn JN, et al. Comprehensive
association testing of common mitochondrial DNA variation in metabolic disease. Am J Hum Genet.
2006;79(1):54-61.

402 10. Knoll N, Jarick I, Volckmar AL, Klingenspor M, Illig T, Grallert H, et al. Mitochondrial DNA variants
403 in obesity. PLoS One. 2014;9(5):e94882.

Andrew T, Calloway CD, Stuart S, Lee SH, Gill R, Clement G, et al. A twin study of mitochondrial
DNA polymorphisms shows that heteroplasmy at multiple sites is associated with mtDNA variant 16093
but not with zygosity. PLoS One. 2011;6(8):e22332.

407 12. Gómez-Durán A, Pacheu-Grau D, López-Gallardo E, Díez-Sánchez C, Montoya J, López-Pérez MJ,
408 Ruiz-Pesini E. Unmasking the causes of multifactorial disorders: OXPHOS differences between
409 mitochondrial haplogroups. Human molecular genetics. 2010;19(17):3343-53.

Cosemans C, Wang C, Alfano R, Martens DS, Sleurs H, Dockx Y, et al. In utero particulate matter
exposure in association with newborn mitochondrial ND4L(10550A>G) heteroplasmy and its role in
overweight during early childhood. Environmental health : a global access science source. 2022;21(1):88.

413 14. Alfano R, Plusquin M, Robinson O, Brescianini S, Chatzi L, Keski-Rahkonen P, et al. Cord blood
414 metabolites and rapid postnatal growth as multiple mediators in the prenatal propensity to childhood
415 overweight. Int J Obes (Lond). 2022;46(7):1384-93.

416 15. Alfano R, Zugna D, Barros H, Bustamante M, Chatzi L, Ghantous A, et al. Cord blood epigenome417 wide meta-analysis in six European-based child cohorts identifies signatures linked to rapid weight growth.
418 BMC medicine. 2023;21(1):17.

419 16. Janssen BG, Madlhoum N, Gyselaers W, Bijnens E, Clemente DB, Cox B, et al. Cohort Profile: The
420 ENVIRonmental influence ON early AGEing (ENVIRONAGE): a birth cohort study. International journal of
421 epidemiology. 2017.

422 17. Cosemans C, Wang C, Martens DS, Janssen BG, Vanpoucke C, Lefebvre W, et al. In Utero Exposure
423 to Air Pollutants and Mitochondrial Heteroplasmy in Neonates. Environmental Science & Technology.
424 2022.

Handakas E, Keski-Rahkonen P, Chatzi L, Alfano R, Roumeliotaki T, Plusquin M, et al. Cord blood
metabolic signatures predictive of childhood overweight and rapid growth. Int J Obes (Lond).
2021;45(10):2252-60.

428 19. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up
429 growth and obesity in childhood: prospective cohort study. BMJ (Clinical research ed).
430 2000;320(7240):967-71.

Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight
and obesity worldwide: international survey. BMJ (Clinical research ed). 2000;320(7244):1240-3.

433 21. Cosemans C, Nawrot TS, Janssen BG, Vriens A, Smeets K, Baeyens W, et al. Breastfeeding predicts
434 blood mitochondrial DNA content in adolescents. Sci Rep. 2020;10(1):387.

Zheng M, Hesketh KD, Vuillermin P, Dodd J, Wen LM, Baur LA, et al. Determinants of rapid infant
weight gain: A pooled analysis of seven cohorts. Pediatr Obes. 2022;17(10):e12928.

Janssen BG, Gyselaers W, Byun HM, Roels HA, Cuypers A, Baccarelli AA, Nawrot TS. Placental
mitochondrial DNA and CYP1A1 gene methylation as molecular signatures for tobacco smoke exposure in
pregnant women and the relevance for birth weight. Journal of translational medicine. 2017;15(1):5.

Preston GW, Plusquin M, Sozeri O, van Veldhoven K, Bastian L, Nawrot TS, et al. Refinement of a
Methodology for Untargeted Detection of Serum Albumin Adducts in Human Populations. Chemical
research in toxicology. 2017;30(12):2120-9.

443 25. Tanner JM. Catch-up growth in man. Br Med Bull. 1981;37(3):233-8.

444 26. Prader A, Tanner JM, von HG. Catch-up growth following illness or starvation. An example of 445 developmental canalization in man. The Journal of pediatrics. 1963;62:646-59.

Johnson L, van Jaarsveld CH, Llewellyn CH, Cole TJ, Wardle J. Associations between infant feeding
and the size, tempo and velocity of infant weight gain: SITAR analysis of the Gemini twin birth cohort. Int
J Obes (Lond). 2014;38(7):980-7.

Singhal A. Long-Term Adverse Effects of Early Growth Acceleration or Catch-Up Growth. Annals of
Nutrition and Metabolism. 2017;70(3):236-40.

451 29. Hales CN, Barker DJP. The thrifty phenotype hypothesis: Type 2 diabetes. British Medical Bulletin.
452 2001;60(1):5-20.

453 30. Kwaśniewski W, Stupak A, Warowicka A, Goździcka-Józefiak A, Mosiewicz J, Mieczkowska J.
454 Mitochondrial DNA Polymorphism in HV1 and HV2 Regions and 12S rDNA in Perimenopausal Hypertensive
455 Women. Biomedicines. 2023;11(3).

456 31. Sun M, Fu SM, Wang LF, Dong GY, Wu D, Wang GX, Wu Y. Hypervariable region polymorphism of 457 mtDNA of recurrent oral ulceration in Chinese. PLoS One. 2012;7(9):e45359.

458 32. Dunger D, Casteels K, Ong K, Phillips D, Bendall H, Pembrey M, Poulton J. Mitochondrial 16189
459 variant, thinness at birth, and type-2 diabetes. The Lancet. 1999;353(9163):1499-500.

460 33. Poulton J, Brown MS, Cooper A, Marchington DR, Phillips DIW. A common mitochondrial DNA 461 variant is associated with insulin resistance in adult life. Diabetologia. 1998;41(1):54-8.

462 34. Flaquer A, Baumbach C, Kriebel J, Meitinger T, Peters A, Waldenberger M, et al. Mitochondrial 463 genetic variants identified to be associated with BMI in adults. PLoS One. 2014;9(8):e105116.

464 35. Leunissen RW, Kerkhof GF, Stijnen T, Hokken-Koelega A. Timing and tempo of first-year rapid 465 growth in relation to cardiovascular and metabolic risk profile in early adulthood. Jama. 466 2009;301(21):2234-42.

467 36. Kerkhof GF, Willemsen RH, Leunissen RW, Breukhoven PE, Hokken-Koelega AC. Health profile of
468 young adults born preterm: negative effects of rapid weight gain in early life. J Clin Endocrinol Metab.
469 2012;97(12):4498-506.

470 37. Eriksson JG. Early growth and coronary heart disease and type 2 diabetes: findings from the
471 Helsinki Birth Cohort Study (HBCS). The American journal of clinical nutrition. 2011;94(6 Suppl):1799s472 802s.

38. Singhal A, Lucas A. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet
(London, England). 2004;363(9421):1642-5.

39. Zhang DL, Du Q, Djemli A, Julien P, Fraser WD, Luo ZC. Early and Late Postnatal Accelerated Growth
Have Distinct Effects on Metabolic Health in Normal Birth Weight Infants. Front Endocrinol (Lausanne).
2017;8:340.

478 40. Ekelund U, Ong KK, Linné Y, Neovius M, Brage S, Dunger DB, et al. Association of weight gain in
479 infancy and early childhood with metabolic risk in young adults. J Clin Endocrinol Metab. 2007;92(1):98480 103.

481 41. Thorén A, Werner B, Lundholm C, Bråbäck L, Silfverdal SA. A rapid growth rate in early childhood
482 is a risk factor for becoming overweight in late adolescence. Acta paediatrica (Oslo, Norway : 1992).
483 2015;104(11):1138-43.

484 42. Sutharsan R, O'Callaghan MJ, Williams G, Najman JM, Mamun AA. Rapid growth in early childhood
485 associated with young adult overweight and obesity--evidence from a community based cohort study. J
486 Health Popul Nutr. 2015;33:13.

487 43. Zheng M, Lamb KE, Grimes C, Laws R, Bolton K, Ong KK, Campbell K. Rapid weight gain during
488 infancy and subsequent adiposity: a systematic review and meta-analysis of evidence. Obes Rev.
489 2018;19(3):321-32.

490 44. Rebolledo-Jaramillo B, Su MS, Stoler N, McElhoe JA, Dickins B, Blankenberg D, et al. Maternal age
491 effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proceedings of
492 the National Academy of Sciences of the United States of America. 2014;111(43):15474-9.

493 45. Costa SM, Isganaitis E, Matthews TJ, Hughes K, Daher G, Dreyfuss JM, et al. Maternal obesity
494 programs mitochondrial and lipid metabolism gene expression in infant umbilical vein endothelial cells.
495 Int J Obes (Lond). 2016;40(11):1627-34.

496 46. Gyllenhammer LE, Picard M, McGill MA, Boyle KE, Vawter MP, Rasmussen JM, et al. Prospective
497 association between maternal allostatic load during pregnancy and child mitochondrial content and
498 bioenergetic capacity. Psychoneuroendocrinology. 2022;144:105868.

499 47. Jovandaric MZ, Babic S, Raus M, Medjo B. The Importance of Metabolic and Environmental Factors 500 in the Occurrence of Oxidative Stress during Pregnancy. Int J Mol Sci. 2023;24(15).

48. Niesen AM, Genther-Schroeder ON, Bradley CMK, Davidson JA, Rossow HA. Peripheral blood
 mononuclear cell mitochondrial enzyme activity is associated with parity and lactation performance in
 early lactation Holstein dairy cows. Journal of Dairy Science. 2022;105(8):7036-46.

Park NR, Taylor HA, Andreasen VA, Williams AS, Niitepõld K, Yap KN, et al. Mitochondrial
physiology varies with parity and body mass in the laboratory mouse (Mus musculus). J Comp Physiol B.
2020;190(4):465-77.

50. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ. Onset of maternal arterial
blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol.
2000;157(6):2111-22.

510 51. Parrino C, Vinciguerra F, La Spina N, Romeo L, Tumminia A, Baratta R, et al. Influence of early-life 511 and parental factors on childhood overweight and obesity. Journal of Endocrinological Investigation. 512 2016;39(11):1315-21.

513 52. Lee JS, Jin MH, Lee HJ. Global relationship between parent and child obesity: a systematic review 514 and meta-analysis. Clin Exp Pediatr. 2022;65(1):35-46.